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Abstract
Adversarial attacks represent a threat to every deep neural network. They are particularly effective if they can perturb a given
model while remaining undetectable. They have been initially introduced for image classifiers, and are well studied for this
task. For time series, few attacks have yet been proposed. Most that have are adaptations of attacks previously proposed
for image classifiers. Although these attacks are effective, they generate perturbations containing clearly discernible patterns
such as sawtooth and spikes. Adversarial patterns are not perceptible on images, but the attacks proposed to date are readily
perceptible in the case of time series. In order to generate stealthier adversarial attacks for time series, we propose a new
attack that produces smoother perturbations. We introduced a function to measure the smoothness for time series. Using it,
we find that smooth perturbations are harder to detect both visually, by the naked eye and by deep learning models. We also
show two ways of protection against adversarial attacks: the first one by detecting the attacks using a deep model; the second
one by using adversarial training to improve the robustness of a model against a specific attack, thus making it less vulnerable.
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1 Introduction

A time series is a set of data points ordered in time. Time
series have become a growing field of research in deep learn-
ing and more globally in artificial intelligence. Nowadays,
thanks to the presence of sensors, they have become abundant
andwe can find use cases in almost all sectors of industry. For
example, time series are used in healthcare [13], for weather
forecasting [14] and for predictive maintenance [8].

Time series classification refers to the task of classifying
time series according to the presence or not of phenomena.
Szegedy et al. [7] have found that adding a small perturbation
to an input sample can change a classifier’s output. This is
known as an adversarial attack. It is illustrated in Fig. 1.

As all neural networks are vulnerable to adversarial
attacks, many attacks have been proposed. However, to date
the majority of these have been developed for image clas-
sification tasks. It is necessary to study adversarial attacks
in order to assess the robustness of the models, and to pre-
vent them on critical systems. For example, Eykolt et al. [6]
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Fig. 1 Scheme of adversarial attack. Time series from the BME dataset, perturbation generated with SGM, not represented at scale

showed an application on real-world road sign classification,
which is an obvious threat for autonomous vehicles.

Fawaz et al. [10] introduced and adapted some of them
for time series classification. The main difference between
adversarial attacks on images and time series lies in the visu-
alization and the interpretation of the data. When slightly
changing the value of one or few pixels, an imagewill always
look the same and have the same appearance to the human
visual system. These changes only affect how the neural net-
work will process the data, but not howwe, humans, perceive
the image. For images, the human classifier is a competitive
benchmark, often used as gold standard. For time series clas-
sification, it is not, because time series data aremore complex
to analyze.

The attacks introduced by Fawaz et al. [10] are effective
to perturb time series of the UCRArchive in order to mislead
a deep learning system [4]. But when we look at their visual
appearance, it is sometimes easy to distinguish the disturbed
series from the original ones. Indeed, these perturbed samples
often contain patterns like spikes of a sawtooth. Because the
presence of such elements can easily be spotted, they can
warn about the presence of an attack.

In this paper, we will introduce a novel adversarial attack
based on a gradient method.Wewill show that it outperforms
BIM’s performance over most of the UCR archive datasets in
terms of misleading a deep learning classifier. But unfortu-
nately this method generates perturbations that also contain
spike and sawtooth patterns. We will then explain how we
reduced these patterns, by enforcing a smoothness condition.
First, we will show its impact visually, using a set of exam-
ples. Secondly, we introduced a function used to measure
and compare the smoothness of time series. Finally, we will
show how adversarial training is a good way to improve a
time series classifier’s robustness against smoothed pertur-
bations.

Our main contributions are:

– A novel adversarial attack for time series classifiers that
outperforms BIM

– An altered version of the first attack that produces smooth
perturbations

– We introduced a function in order to measure and com-
pare the smoothness of time series

– A quantitative benchmark of our twomethods along with
BIM over the UCR archive

– Qualitative evidence that smoothed perturbations are
harder to detect by visual inspection

– Quantitative evidence that adversarial training is a good
counter measure against smooth attacks

2 Related work

Given a neural network trained on an image classification
task, such as ImageNet, Szegedy et al. [21] showed that it is
possible to change themodel output by adding lowmagnitude
noise, small enough to be imperceptible to the human eye. It
was also shown that this vulnerability is present regardless
of the number of layers, activation functions or training data
and thus affects all deep neural networks.

Goodfellow et al. [7] proposed a single step attack called
Fast Gradient Sign Method (FGSM). Then, Kurakrin et al.
[15] presented the Basic IterativeMethod (BIM), an iterative
version of FGSM. Inspired by them, many similar attacks
were proposed, like M-FGSM [5] or vr-IGSM [22].

Other approaches where studied, like adding black and
white strips on stop signs [6] or stickers on objects [16].
These real life attacks raised the issue of security threat for
sensitive applications like autonomous vehicles. Along with
new attacks, multiple defensive strategies have also emerged,
including leveraging denoisers [17], randomization [24] and
adversarial training [12, 23].

Adversarial training trains a model using both normal and
perturbed samples. Rathore et al. [19] show how adversarial
training can help a model to become more robust.

Most of the work on adversarial attacks was first done on
image classification, as it is a trending topic in deep learning.
It is only later that Fawaz et al. [10] introduced adversarial
attacks for time series classification.

It is sometimes quite straightforward to adapt adversarial
attacks from images to times series. However, some attacks
that work well on images can’t be used, or are ineffective
on time series. For example Su et al. [20] describes attacks
where only one pixel of an image is affected. An equivalent
perturbation for time series would modify the value of only
a single data point. But such modifications would be very
noticeable as it takes extreme values to sufficiently perturb a
sample based solely on a single data point.

Adversarial attacks can be categorized into black and
white-box strategies. Black-box attacks, like those presented
in [2, 18], don’t use any knowledge of the architecture, the
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parameters, or the weights of the model. They also do not
have access to the training data. Huan et al. [9] showed that
even in these conditions, many currentmodels are still at risk.
In contrast, white-box attacks may use any of those elements
to perform the attack. Some attacks have both black-box and
white-box variants like the Carlini and Wagner method [3].
In this paper, we will focus exclusively on white-box attacks.

3 Backgroundmaterial

3.1 Mathematical description

In this paper, we only use univariate time series. We can
describe each time series as a vector x such as x ∈ R

T , x =
[x1, ..., xT ] with T denoting its length.

Given a time series classifier f and a time series x, the aim
of an adversarial attack is to perturb the classifier by adding a
small variation r to a time series x. rwill be referred as noise
or perturbation.Wecall the perturbed time seriesxadv = x+r
an adversarial sample. The attack is successful if the class
predicted for the original time series is different from the
class predicted for the adversarial sample, argmax f (x) �=
argmax f (xadv). The added noise r must be imperceptible
by design, and thus we need that x and xadv remain close to
each other.

3.2 Basic iterative method

In order to improve the success rate of FGSM, Kurakin et
al. [15] developed BIM. At each iteration N , the gradient
is computed and then added to the input, in the same way
as for FGSM. Instead of minimizing the loss function, the
aim is to maximize it by taking a step in the direction of the
gradient. At each iteration, the values are clipped using an
ε parameter. This ensures that each value of xadv will stay
close to x within a ε-neighborhood.

xadv
0 = x

xadv
N+1 = Clipx,ε

{
xadv

N+α sign(�x J (�, xadv
N , ytrue))

}

(1)

ytrue denotes the label of the time series x. If we don’t
know ytrue, as in a real attack scenario, we replace it with
f (x). The noise clipping is done for r = xadv −x as follows:

∀ri ∈ r, ri =
{

ε, if ri > ε

−ε, if ri < −ε

By adding iterations, BIM becomes more effective than
FGSM to perturb time series. But BIM requires clipping in
order to control the amount of noise. This method had two

main disadvantages. First, clipping the noise in such a way
often produce sawtooth shapes between (−ε) and +ε as we
can see in Fig. 7. This particular pattern can easily be detected
when added to a smooth time series and is, therefore, to be
avoided.

With BIM, in order to obtain a stealthier noise, we need
to reduce the value of ε. By doing this, the sawtooth shapes
will be harder to be noticeable, but this will result in a lower
attack success rate. This trade-off prevents the perturbations
that are both hard to detect and have a high attack success
rate.

In this paper, we decided to use BIM as our main com-
petitor. FGSM and BIM are the most well-known attacks.
Moreover, to our knowledge, they are the only adversar-
ial attacks adapted for time series, so it was convenient to
work with them. Other methods that we cited previously, M-
FGSM and vr-IGSM, are, respectively, variations of FGSM
and BIM. They do not tackle the issue of the occurrence of
perceptible patterns. Thus, they should behave in the same
way as FGSM and BIM, and we have not added them into
our benchmark.

3.3 Carlini andWagner

Carlini andWagner’s adversarial attack (C&W) [3] is a state-
of-the-art adversarial attack for image classifiers. C&W is an
optimization-based method that aims to minimize:

min ||r||2 + c × φ(x + r) with φ(x + r) ≤ 0 (2)

where c is a hyper-parameter balancing the trade-off between
the L2 regularization and φ, a function that enforces the mis-
classification. Several functionsφ are proposed in theoriginal
paper. We chose to use the recommended one:

φ(x) =
([

max
i �=t

Z(x)i

]
− Z(x)t

)+
. (3)

Here Z(x) denotes the logits of the model before the softmax
function. As the C&W method is a targeted attack, t depicts
the class to be obtained after perturbation.

In this work, we adapted this attack to time series classi-
fiers. The original work applied the constraint xadv ∈ [0, 1]n .
For time series, we removed this constraint as we are not
working with pixels and time series are not bounded by
specific values. When benchmarking C&W with other non-
targeted attacks, we will select the targeted class as the class
with the second biggest softmax score.
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4 Proposedmethods

4.1 Gradient method (GM)

In order to correct the flaws of BIM, we need to design a
method that, given a model, can perturb a time series while
optimizing the quantity of noise according to the L2 norm.

Ensuring f (x) �= f (x′) can be written as a maximization
problem of the KL-divergence between the two probability
distributions, as follows:

max DKL( f (x), f (x′)) ≡
c∑

f (x) log
f (x)
f (x′)

, (4)

with c denoting the classes in the dataset.
Generating an adversarial example can then be written as

follows where the primary addition is the term (−‖x− x′‖2)
to be maximized:

max
{
μDKL( f (x), f (x′)) − ‖x − x′‖2

}
, (5)

with μ denoting a hyper-parameter to control the penalty of
miss-classification.

Let us consider the generated time series x′ = x + r.
Then themaximizationproblem is equivalent to the following
minimization problem:

min {−μDKL( f (x), f (x + r)) + ‖r‖2} (6)

We can add a hyper-parameter α in order to control the
regularization of ‖r‖. Finally, we have:

xadv = min {−μDKL( f (x), f (x + r)) + α‖r‖2} (7)

4.2 Smooth gradient method (SGM)

The previous method manages to generate adversarial sam-
pleswhile optimizing theL2normof r. But it does not prevent
the appearance of sawtooth. In order to obtain smoother per-
turbations, we need to ensure a smoothness condition on r.
This can be done by adding a fused lasso term to the mini-
mization. The equation can now be written as:

min{−μDKL( f (x), f (x + r)) + α‖r‖2

+λ

T−1∑
i=1

‖ri − ri+1‖1} (8)

In equation 8, ‖.‖1 denotes the L1 norm. λ is a hyper-
parameter that controls the penalty for the smoothness
condition. To minimize the latter equation, we will use gra-
dient descent by computing the gradient with respect to r
(which will be initialized randomly).

4.3 Measuring the smoothness of a time series

In order to compare the smoothness between the original and
perturbed time series, we need a suitable metric. As we did
not find such ametric in the literature, we used penalties used
for spline smoothing. Splines are functions defined by sev-
eral pieces of polynomials. They are often used by computer
graphics drawing software or computer-aided design soft-
ware. Some of those software use as a smoothing penalty:

∫ ′′
f (x)2dx (9)

In order to use this penalty for time series, we need to
replace the integral by a sum and the second derivative by
the finite difference, as time series are not continuous in time.

g(x) =
T−1∑
t=1

(xt−1 − 2xt + xt+1)
2 (10)

To avoid having the result impactedby the length of the series,
we can divide it by T . Finally, we have:

s(x) = 1

T − 1

T−1∑
t=1

(xt−1 − 2xt + xt+1)
2 (11)

Theorem 1 We can use the functions g and s to compare the
smoothness of two time series. For two time series x and y,
if s(x) < s(y), we can say that x is smoother than y.

Proof A differentiable function f is said to have an L-
Lipschitz continuous gradient if for some L > 0:

||∇ f (a) − ∇ f (b)|| ≤ L||a − b|| (12)

Here L enforces a regularity on the function f . In the
context of time series, this regularity can be translated by
smoothness.

Previously, in order to compare the smoothness between
time series, we proposed to use the function g:

g(x) =
T−1∑
t=1

(xt−1 − 2xt + xt+1)
2

=
T−1∑
t=1

((xt+1 − xt ) − (xt − xt−1))
2

=
T−1∑
t=1

(
dxt+1 − dxt

)

=
T−1∑
t=1

||dxt+1 − dxt ||2
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= ||dx1 − dx0 ||2 + ||dx2 − dx1 ||2 + . . .

+||dxT−1 − dxT−2 ||2 (13)

By introducing Eq.12, we get:

g(x) ≤ L2||1 − 0||2 + L2||2 − 1||2
+ . . . + L2||(N − 1) − (N − 2)||2

≤ L ∗ (T − 1)

≤ L (14)

We can therefore compare the smoothness of two time
series, x and y, by using the function g. If g(x) < g(y), we
have Lx < Ly and we can conclude that the time series x is
smoother than y.

In our GitHub repository, we provide some examples
using several hand crafted time series. We shows, when the
time series is a straight line, that the function returns zero as
expected. For sinusoids, we showed that increasing either the
amplitude or the number of periods also increases the value.

5 Experimental setup

In this section, we present the data, models, and the param-
eters we used during our experiments.

5.1 Classifier and datasets

As our work consists of fooling a deep learning model, we
decided to use the InceptionTime [11] classifier in all our
experiments. InceptionTime is a TS classifier, which was the
state-of-the-art model on the UCR Archive [4], when pub-
lished in 2019. During our preliminary work, we tested other
deepmodels likeResNet or FCN.Wedecided not to add them
to the paper because we did not notice any visual or quan-
titative difference from InceptionTime. As InceptionTime is
still the state-of-the-art model for deep learning TSC, we
decided to only focus on this model. All the weights used
are the InceptionTime defaults, as used and presented in its
paper.

In order to demonstrate our results over several datasets,
we used the well know TSC benchmark UCR Archive. The
2018 version of this archive comprises 128 univariate time
series datasets.

Each dataset of theUCRArchive is split between the train-
ing and the test sets. When generating adversarial samples,
we used the samples of the test set, as the model has only
been trained on the training set.

A single experiment is realized on the RTD dataset [1].
It was build upon a technique called air writing. It consists
of writting characters in the air, here digits, which are then

recognized by a computer or a mobile phone. This dataset
is a collection of 20k trajectories made by various people. A
class is assigned for each one of the ten digits.

5.2 Reproductibility

The code used and all our results are publicly available in
our companion repository.1

All experiments were done by leveraging the computation
power of a remote GPU cluster containing Nvidia GTX 1080
Ti graphic cards. Reproducing the results on a single graphic
card takes roughly 7 days of computing time.

5.3 Hyper-parameters

For BIM we set the number of iterations at 1000. For the
noise clipping, we use the value ε = 0.1. We use the same
value of ε, when applying the noise clipping to the Gradient
Method.

In the case of GM and SGM, both μ and α parameters
are always set to 1. In the case of SGM, when nothing is
specified, λ is also equal to 1.

Regarding the C&W method, we chose c = 1. c controls
the the L2 regularization, like α for SGM. Thus, we selected
the same value.

5.4 Comparisonmetrics

5.4.1 Average success rate

For evaluating the relative success of adversarial attacks,
we used the Average Success Rate (ASR). The ASR, cor-
responds to the rate of reclassified samples. In other words,
it is equal to the percentage of cases where the attack was
able to alter the output of the network ( f (x) �= f (xadv)).

5.4.2 L2 norm

The L∞ norm is commonly used to quantify the noise for
adversarial attacks. This is especially true in the case of
attacks on images. The L∞ norm of a time series is equal
to ‖x‖∞ = maxt |xt |. As explained earlier, our aim is to
design smooth perturbations that are hard to detect by the
naked eye. Moreover attacks designed for images are easily
detectable when adapted to time series. Thus, we needed to
evaluate the overall quantity of noise, not just its maximum
value, and choose to use the L2 norm over the L∞ norm.

1 https://github.com/Gpialla/SmoothPerturbationsTSAA.

123

https://github.com/Gpialla/SmoothPerturbationsTSAA


International Journal of Data Science and Analytics

5.5 Adversarial training

We will present an example of adversarial training using
adversarial samples generated by SGM. For each dataset,
we doubled the size of the training set, by adding the corre-
sponding adversarial samples of the original training set. The
validation is donewith the original test set, without additional
adversarial samples. Finally, we will show how adversarial
training is effective at reducing a classifier’s susceptibility to
adversarial attacks.

6 Results

In this section, we will first compare SGM with the other
methods according to the two metrics we selected: the ASR
and theL2 norm.The benchmark between the othersmethods
is available in our companion repository. In a second study,
we will vary the SGM’s λ parameter and see its influence
on the ASR. Finally, we will propose two counter measures
against SGM. The first one consists of improving the robust-
ness of the classifier by using adversarial training. The second
one consists of identifying the adversarial samples using a
deep classifier.

6.1 SGM benchmark

Figure 2 represents a Win/Draw/Loss diagram comparing
BIM and SGM. Each blue dot represents a single dataset. If
a dot lies above the median line in the upper left triangle, it
means that this dataset has an average value bigger for SGM
than for BIM for the given metric.

As we want to maximize ASR, in the corresponding plot,
the most successful method is the one with the most dots on
its side of the median line. For the L2 norm, however, the
reasoning is reversed as we want to minimize the metric.

Given Fig. 2, as the dots are evenly distributed, we con-
clude that SGM as an overall ASR as good as BIM on the
UCR archive. This also means that SGMmanages to perturb

Fig. 2 Win/draw/loss diagram. BIM versus SGM. On the left: average
success rate, on the right: L2 norm of the perturbation

Fig. 3 Win/draw/loss diagram. C&W versus SGM. On the left: the
average success rate, on the right: the L2 norm of the perturbation

Fig. 4 Win/draw/loss diagram. GM versus SGM. On the left: the aver-
age success rate, on the right: the L2 norm of the perturbation

datasets that BIM cannot and vice-versa. But for an equiv-
alent efficiency, BIM introduces an higher quantity of noise
than SGM, in a majority of datasets.

Figure 3 compares SGM with C&W. Regarding the ASR
we notice that SGM is slightly better than C&W. The same
can be concluded for the L2 norm. But when looking at the
distribution of the scores, we can all SGM’s scores are below
2.5, where many C&W scores are bigger. This suggests that
the C&W attack produces more noise than SGM.

Figure 4 compares GM with SGM. We can see that for
almost all datasets, GM has a better ASR than SGM. Intu-
itively,we can assert that sawtooth and spikes are patterns that
help to successfully perturb a TSC. SGM, by design, can not
produce such patterns. Thus, it is harder for SGM to achieve
a high ASR. By enforcing the smoothness condition, we are
doomed obtain a decreased ASR. In addition, some datasets,
such as those with truly distinct classes or with smooth time
series, are particularly difficult to be perturbed by the SGM
method. In these specific cases, smooth perturbations are not
sufficient to fool the network.

6.2 Varying the � parameter

According to our previous results, the best-case scenario
would be an attack with GM’s ASR and SGM’s smooth-
ness. As the only difference between the two methods is the
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Fig. 5 Varying SGM’s λ

parameter. For each value of λ is
displayed the number of
samples successfully perturbed
(blue) or not (orange) (color
figure online)

Fig. 6 Varying SGM’s α

parameter. For each value of α is
displayed the number of
samples successfully perturbed
(blue) or not (orange) (color
figure online)

addition of the smoothness condition, it is interesting to vary
the λ parameter. If λ is equal to zero, the attack is GM, and
if it’s equal to 1, we have SGM as we tested it previously.

Figure 5 shows the impact of varying the λ parameter over
two datasets, Beef and Car. As we could expect, the more
we enforce the smoothness condition, the fewer samples the
method manages to perturb successfully.

This parameter should be tuned for each dataset in order
to get the optimal trade-off between smoothness and ASR.

6.3 Varying the˛ parameter

The α parameter controls the penalization of the L2 norm
of r. We can see the impact of this parameter in Fig. 6. In
both cases, the smaller the α value, the better are the results.
Indeed, if SGM is able to introducemore noise, it will perturb
better the model. Once again, this parameter can be tuned in
order to obtain the optimal trade-off between L2 norm and
ASR.

6.4 Visual comparison

In order to remain undetectable by the naked eye, an attack
performed on a time series must be as smooth as possible.
We propose a visual comparison between the four methods
presented, on the same test sample of the Beef dataset. To be
fair, we picked a time series that is successfully perturbed by
all the attacks.

In this example, shown in Fig. 7, we plotted in green the
original time series, and for each method, in blue the per-
turbed time series and in red the perturbation.

We plotted a second version of GM with a clipped per-
turbation in the same way as BIM. As expected, for BIM
and the GMmethods, the perturbations are clearly visible, in

particular the parts containing sawtooth patterns that are cir-
cled in purple. The example of GM with clipping shows that
clipping the noise reduces indeed the amount of noise and
the visual impact, but not sufficiently enough. SGM is the
only attack that produces an adversarial sample with a per-
turbation that is not noticeable when judging with the naked
eye.

The C&W attack is the one that produces the smallest
noise. The magnitude of the noise is significantly smaller
than the other methods. Thus, the sawtooth patterns are less
noticeable but are still present.

Being closer to the eye doesn’t mean being closer
when using the L2 metric. Indeed, SGM’s perturbation
has the biggest L2 norm. This shows that, although a
method is better on average for a given dataset, this is not
necessarily true when we look at each sample indepen-
dently.

6.5 Comparison of the smoothness

In the previous subsection, we did a visual comparison. Now,
using the function 11, we can compute the average for each
dataset. We computed the average rank of smoothness for
each attack on theUCRarchive. These results are represented
in Fig. 8.

Like the visual comparison, SGM appears as the method
that produces the smoother samples and BIM is the opposite.
ForGM, as expected, clipping the noise reduces itsmaximum
amplitude, thus making it smoother.

The C&W method ranks third below SGM and GM with
clipped noise. Nevertheless, C&W ranks first among the
methods that do not enforce the smoothness of the pertur-
bations.
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Fig. 7 Time series from the
Beef dataset. All methods
perturbed time series (blue) and
generated noise (red). The
purple circles show the presence
of sawtooth on the perturbed
time series (color figure online)

6.6 Do adversarial attacks change the underlying
class of the samples?

While in images human perception is ameaningful gold stan-
dard, in TSC most of the time it is not. If we classify traffic
signs into stop signs and other signs, humans can easily do
that. The goal of a machine is then to achieve human per-
formance. The central argument of adversarial attacks is that
while to us humans it clearly still is a stop sign, i.e., the

underlying class has not changed, the algorithm now sud-
denly predicts it as something else.

Few time series datasets are easy to visualize and under-
stand at a glance. RTD is one of them. When perturbing this
dataset with SGM, we got an ASR equal to 0.829. Asmost of
the samples were successfully perturbed, we can observe in
Fig. 9 that the perturbed samples do not differ visually from
the originals.
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Fig. 8 Ranking of the methods according to the smoothness

Fig. 9 Original and SGM perturbed samples of the RTD dataset

But most time series datasets are not as easy to visual-
ize as the RTD dataset. For those datasets, we assume that
by doing small perturbations the underlying class will not
change. But in reality, we cannot be certain that this is the
case. So, the question is now what could be a good gold
standard to determine a time series’ underlying class? In
this section, we propose to use 1 Nearest Neighbor (1NN)
to determine whether the underlying classes change or not.
The 1NN classifier assigns to a sample the class of its clos-
est neighbor. Here we use 1NN combined with the Dynamic
Time Warping (DTW) distance.

We experimented on a subset of 22 datasets of the
UCR Archive. All the results are available in our GitHub
repository. By observing the confusion matrix produced,
we can identify 2 groups. The first one is constituted
by the datasets ArrowHead, BeetleFly, Car, Earthquake,
FaceAll, FordB, FreezerSmall, Ham, InerSkate, InsectWing-
beatSound, Lightning7, MoteStrain, OliveOil, ProximalPha-
lanxTW, TwoPatterns, Wine, WordSynonyms and Yoga.
The second one by the datasets EOGVerticalSignal, Gun-
PointOldVersusYoung, andMelbournePedestrian. In the first
group, for a majority of samples, the 1NN classifier predicts
the same class whether they are perturbed or not. This shows
that the underlying class did not change and that the adver-
sarial attack was conducted as expected.

For the second group of datasets, the results are different.
For each one of these datasets, the perturbed samples were
all classified as belonging to a single class. In those cases, the
underlying classes did change. Two examples, one of each
group, are shown in Fig. 10.

Through these examples, we have shown that, unlike com-
puter vision, adversarial attacks on time series can change the
underlying class. Nevertheless, for 19 out of the 23 datasets
we tested, it is not the case. In addition, the RTD dataset is an
example of a dataset that can be visualized and successfully
perturbed.

6.7 Discriminating adversarial samples

A simple way to protect a model against adversarial attacks
is to filter the inputs before feeding them to the network.
One can do this by training a small classifier to discriminate
perturbed samples. If an example is classified as an attack,
then it will not be fed to the second classifier.

In order to know if a classifier is indeed able to do so, we
trained a small FCN model. For each dataset, the samples
have been split into a training and a test set: 80% of the
samples in the training set, and the remaining 20% in the test
set. Then, the samples of each set have been perturbed and
added back to the set. Thus, we obtained, in the end, datasets
balanced between original and perturbed samples.

Table 1 shows the classification results of the fivemethods
presented previously. With almost 62% of accuracy, classi-
fying the samples perturbed by BIM is the easiest task. The
hardest one is when using the samples perturbed by SGM.
These results confirm that the patterns visible by the naked
eye are also easier to be discriminated using a deep model.
We can note that the overall accuracies are not very high,
proving that classifying perturbed samples is not trivial. In
order to achieve better performances, we could have used a
deeper model.

6.8 Adversarial training

Adversarial training aims to improve the robustness of a
model but without the disadvantages of the previous method.
Figure11 presents the results of adversarial training using
SGM adversarial samples. The scatter plot shows that adver-
sarial training highly improves the robustness of the model.
For 122 datasets, theASR is highly lower, and for the remain-
ing 6 datasets, the ASR is the same. In fact, for 72 datasets,
after adversarial training, the attack did not manage to per-
turb any sample, leading to an ASR of zero. This shows the
effectiveness of adversarial training against SGM attacks.

We can explain that adversarial training is very effec-
tive against SGM attacks because the strength of smoothed
attacks is also their weakness. The adversarial samples gen-
erated by SGM are close to the original samples. We even
showed that a FCN classifier can almost not tell the two
apart. Once we improved the robustness of the classifier
using adversarial training, it became robust enough not to
be affected by these smoothed perturbations.
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Fig. 10 Example of usage of a
1NN model to determine if the
underlying class of a sample
changed after being perturbed.
Results are presented as
confusion matrices. The left
example shows that for most
samples, the underlying class
did not change after the attacks.
On the right examples, regarding
the EOGVerticalSignal dataset,
all the underlying classes have
changed to class 0

Table 1 FCN accuracy when
classifying original and
perturbed samples

Attack name Accuracy (%)

BIM 61.99

GM with clip 56.97

GM 56.50

CW 55.70

SGM 54.53

Bold value indicates the lowest
accuracy, highlighting the best
performing attack

Fig. 11 Adversarial training results

7 Conclusion

In this paper, we explained that adapting adversarial attacks
from image classifiers to time series classifiers is not trivial.
The attacks are more likely to be detected on time series and
thus need smoother perturbations.

We introduced twonovel adversarial attacks for time series
classification: The Gradient Method (GM) and a smooth
version, called Smooth Gradient Method (SGM). We used
the Basic Iterative Method (BIM) and the Carlini&Wagner
method (C&W),well-known adversarial attacks, as baselines
to have a benchmark over the entireUCRarchive.We showed

that GM has a higher success rate on perturbing an Incep-
tionTime classifier, followed by BIM, SGM and C&W.

Through examples, we illustrated that GM, like BIM
and C&W, produces perturbations that have recognizable
patterns like spikes and sawtooth. On the one hand, these
patterns can help the attack to fool the network, but on the
other hand, they can be easily detected, even by the naked
eye.

Our secondmethod SGM is based onGMbut has an added
fuzed lasso regularization. It has the effect of smoothing the
generated perturbations.

We introduced a new function that helps measure the reg-
ularity, i.e., the smoothness of time series and therefore of
adversarial attacks. It is inspired by penalties used for spline
smoothing in computer graphics. Using this function, we
showed that SGM produces a perturbation that is smoother
on average than GM and BIM.

Smoothing the noise makes it harder to differentiate
between perturbed and original time series by the naked
eye. But smoothed adversarial samples are less effective
for attacking the neural network. This highlights the current
trade-off between having a stealth attack and an effective one.

Finally, we proposed two methods to counter adversarial
attacks. The first one leverages a FCN classifier by train-
ing it to discriminate perturbed time series. We showed that
the FCN model is better at discriminating perturbed samples
fromBIM, GM, or C&W attacks than SGM. This proves that
generating smooth perturbations is not only better at fooling
humans but also deep classifiers.

Then, we showed that adversarial training is an effective
way of countering SGM attacks. After adversarial training,
for 72 datasets out of the 128 datasets of the UCR archives, it
becomes impossible to successfully perturb InceptionTime.

The main limitation encountered while working on adver-
sarial attacks is the possible change of the underlying class.
Although we have shown that this happens in a minority of
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cases, it remains an unsolved issue. We think that tuning the
hyper-parameters of the attacks or adding newconstraints can
be helpful to prevent them. We will explore those options in
future works.
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