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Abstract
Clinical records frequently include assessments of the characteristics of patients, which may include the completion of various
questionnaires. These questionnaires provide a variety of perspectives on a patient’s current state of well-being. Not only is
it critical to capture the heterogeneity given by these perspectives, but there is also a growing demand for developing cost-
effective technologies for clinical phenotyping. Filling out many questionnaires may be a strain for the patients and therefore,
costly. Our goal is then to provide a strategy that refrains from themore expensive questionnaires while maintaining phenotype
quality. In this work, we propose COBALT—a cost-based layer selector model for detecting phenotypes using a community
detection approach. Our goal is to minimize the number of features used to build these phenotypes while preserving its
quality. We test our model using questionnaire data from chronic tinnitus patients and represent the data in a multi-layer
network structure. The model is then evaluated by predicting post-treatment data using baseline features (age, gender, and
pre-treatment data) as well as the identified phenotypes as a feature. For some post-treatment variables, prediction models
using phenotypes fromCOBALT as features outperformed those using phenotypes detected by traditional clustering methods.
Moreover, using phenotype data to predict post-treatment data proved beneficial in comparison with prediction models that
were solely trained with baseline features.

Keywords Multi-layer network · Layer cost · Missingness · Tinnitus

1 Introduction

Clinical records contain a wealth of characteristics of the
patients: their vital signs, for example, and other subjective
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markers determined by questionnaires. For chronic condi-
tions with a high clinical heterogeneity (e.g., tinnitus [1–3]),
there is still no standard treatment that is suitable for all
patients. Tailored treatments are therefore essential to tackle
this issue [4]. Phenotyping enables this by capturing hetero-
geneity and identifying subgroups of patients with similar
characteristics. For some chronic diseases like tinnitus and
diabetes, it is common that patients are asked to complete a
series of questionnaires to assess the severity of their symp-
toms and its impact on their well-being.

However, filling out multiple questionnaires can be a bur-
den for patients [5], which might affects their adherence to
complete crucial questionnaire items. The cost-effectiveness
of clinical phenotypes is already seen as a high priority,
according to Huckvale et al. [6].

As a response, we propose an algorithm that builds
a multi-layered network (MLN) of patient features (e.g.,
assessments, questionnaire scores) and derives communities
from it, taking missingness and diversity into account.

We opt for a MLN representation of the patient data,
because MLNs can capture intra- and inter-associations
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between features, highlighting the heterogeneity of the var-
ious perspectives provided by each feature. We propose an
extension of our work in [7] by including a cost-aware aspect
in our model. Our Cost-based layer selector (COBALT) has
thus a cost component that aims to minimize the number of
features (questionnaire data) for the construction of the phe-
notypes, without compromising its quality. Our overarching
research question for COBALT is:

How can we exploit features and inter-relationships
among them for the discovery of phenotypes?

We refine it as follows:

1. To what extent can patient similarity be represented and
captured using a multi-layer network?

2. How does our approachwith a community detection algo-
rithm in a multi-layer network compare to traditional
clustering models?

3. To what extent does including a cost-sensitive model
affect the quality of the phenotypes found?

4. To what extent do missing nodes impact the quality of the
phenotypes found?

To this purpose, we investigate howmissing data influence
the proposed model, as well as how traditional clustering
algorithms compare to our approach. We also carry out qual-
itative and quantitative evaluations to ensure that we analyze
the impact of our findings with respect to a practical appli-
cation. More specifically, we build a post-treatment data
prediction model that learns with baseline features (age,
gender and pre-treatment data) and with the phenotypes dis-
covered. We evaluate our approach on a clinical dataset with
pre-treatment and post-treatment records of tinnitus patients.
Tinnitus can be described as a phantom auditory perception
[4]. Tinnitus exhibits significant variety in the symptoms
experienced by patients, which motivates the discovery of
patient phenotypes. These patient phenotypes can be lever-
aged to guide tailored treatment plans.

The remainder of the paper is organized as follows: Sect. 2
presents related work on phenotyping and its applications on
multi-layer networks, Sect. 3 presents the dataset character-
istics used in the experiments, Sect. 4 describes the proposed
algorithm and Sect. 5 describes how the proposed method-
ology was evaluated. In Sect. 6, the results are shown and
discussed and Sect. 7 summarizes the main findings.

2 Related work

The role of cost-awareness in phenotyping research varies
among the medical domains. Current tinnitus phenotyping
research is centered on clustering methods such as hierar-

chical clustering analysis and latent clustering analysis [8].
There are many surveys on clinical phenotyping [8–10], but
they do not emphasize the issue of feature acquisition cost
when constructing phenotypes. Huckvale et al. [6], on the
other hand, identify a set of priorities for the future of clinical
digital phenotyping, and they mention the cost-effectiveness
of the models as important while implementing digital phe-
notyping in a clinical environment. Liang et al. [11] also
states the importance of cost-effective methods and, more
specifically, with respect to the acquisition of data.

2.1 Phenotyping with MLNs

Regarding the use of MLNs in the representation of pheno-
type and genotype data, Lee et al. [12] review computational
methods usingMLNs to represent the hierarchy of biological
systems. They focus on the quality of the representation of
interactions between phenotype data, gene data and SNP data
in biological systems, rather than finding phenotypes. More
recently, Yang et al. [13] use functional clustering methods
to capture MLNs from any dimension of their genetic data.
Concerning community detection for phenotype discovery,
Kramer et al. [14] use the Leiden and Louvain algorithms to
find phenotypes using a KNN and CoNet representation of
the data. We also use the Leiden algorithm for community
discovery in COBALT, but with a different representation of
the data. This method discovers a set of communities over
all the MLN layers. Hereafter, we use the terms ‘set of com-
munities’ and ‘partition (over the MLN)’ interchangeably.

Other types of architectures that use graphs exist, which
are widely used in the literature, such as graph neural net-
works [15]. These types of models are able to process graph
structures1 and learn from them [16] mainly for supervised
and semi-supervised tasks.

Grassia et al. [17] have recently proposed a generalization
of GNNs that take a MLN as input and evaluate it on a super-
vised learning task. In our work, we build a MLN and derive
communities on it, i.e., we have an unsupervised learning
task. Closer to our work is the study of Yang et al. [18], who
propose adapting GNNs to the unsupervised task of discov-
ering clusters/communities, for a given number of clusters.
This seems the closest in terms of relevance for our problem
setting. However, the method of [18] does not take aMLN as
input; unsupervised learning with a GNN that takes a MLN
as input is still an open problem. Moreover, our goal is to
build a MLN and derive communities on it in a cost-aware
way rather than to deliver a MLN as input to a GNN. There-
fore, we incorporate the Leiden method into our cost-aware
layer selection algorithm for community learning, rather than

1 The internal architecture built up by a GNN from the input graph can
be described as a MLN, but of relevance to our work are rather studies
that taken a multi-layer graph as input.
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incorporating a cost-aware layer selector mechanism into an
unsupervised GNN that takes a MLN as input.

An overview of community detection algorithms that are
directly applied to MLNs follows, after a brief explanation
on graph pruning.

2.2 Graph pruning in MLNs

Interdonato et al. [19] characterize graph pruning as a
network simplification filtering technique. This technique
improves computation for methods that do not perform well
in large networks. Pruning in networks/graphs is a dimen-
sionality reduction approach that assists in the removal of
noisy and redundant edges or nodes. These methods can be
grouped into: (i) centrality-based, (ii) node-layer relevance-
based and (iii) model-based. The first two focus on node
removal, while the last one focuses on edge pruning. In
COBALT, we use the Maximum Likelihood Filter (MLF)
of Dianati [20], which is mentioned in [19] as an unbiased
edge-filtering method that uses maximum entropy.

Themain idea behindMLF is to create a null model which
generates a “realized graph" with the same total weight and
degree sequence as the original graph and uses it to compute
a p-value of each edge. Then, edges with p values above a
threshold α (significance level) are pruned. In the realized
graph, the nodes are kept the same as in the original graph
andwith the same degree sequence. Edges are then randomly
assigned to a pair of nodes, but with a likelihood. A nodewith
a high degree is more likely to be assigned an edge than a
node with a lower degree. This likelihood is computed using
the binomial distribution, as follows:

Pr(σi j = m|ki , k j , E) =
(
E

m

)
pm(1 − p)E−m (1)

wherem is an edge from the set of edges E that connected the
pair of nodes (i, j); ki , k j are the degrees of nodes i and j ,
respectively; σi j is theweight of the undirected edge between

i and j , p = ki k j
2E2 and E = 1

2

∑
i ki . The p-value of an edge

connecting nodes i and j with aweight ofwi j is then denoted
as si j (wi j ). Equation2 shows the calculation of the p value
of an edge with weight wi j .

si j (wi j ) =
∑

m≥wi j

Pr(σi j = m|ki , k j , E) (2)

2.3 Community detection in MLNs

Huang et al. [21] highlight the following approaches for
the detection of communities: the variational Bayes [22]
(aggregation method), GenLouvain [23] (direct method),

Aggregation Pan [24] (flattening method), the ParticleGao
[25] (flattening method) and the multilayer label propaga-
tion [26] (MNLPA, direct method) algorithms.

2.3.1 Variational Bayes with stochastic block model

This method by Ali et al. [22] proposes to detect shared and
unshared communities in a multiplex network. The nodes
are represented in a community-wise connectivity matrix in
blocks. This matrix maps the probability of the nodes being
connected to other nodes. Nodes are placed in the same block
if their edges are stochastically similar. The Poisson distri-
bution is used to calculate the probability of the nodes being
connected.

The optimum number of blocks that represent the nodes
is determined via the Bayes factor [22] and communities are
extracted accordingly. Ali et al. [22] formulate the Weighted
Stochastic Block Model (WSBM) adapted to a multiplex
network. However, it is not stated if the achieved results out-
perform a benchmark method like Louvain.

2.3.2 Modularity optimization with genLouvain

The GenLouvain algorithm is a modularity optimization
algorithm that is widely used and considered a benchmark
algorithm [21].

Modularity is a metric that evaluates the quality of the
partition of the network into communities. The multislice
modularity is a modularity metric adapted to MLNs intro-
duced by Mucha et al. [27]. This metric can be defined as
follows:

QM =
∑
i jαβ

(
Ai jα − γ

kiαk jα
2mα

)
δαβ +δi jC jαβ

2μ
δ(gi j , g jβ) (3)

whereμ is the number of edges in theMLN, γ is a resolution
parameter, Ai jα is the value of the edges between i and j in
the layer α, C jαβ is an inter-layer edge between the same
node j that belongs to layer α and β and kiα represents the
degree of node i in the layer α.

The main difference between the GenLouvain algorithm
and the traditional Louvain algorithm is that the modularity
metric is replaced by the multislice modularity [23]. Despite
of Louvain being one of the benchmark algorithms for com-
munity detection based on modularity optimization, it can
lead to sub-optimal partitions as shown by Traag et al. [28].
To tackle this, Traag et al. [28] present the Leiden algo-
rithm as an improvement to the Louvain algorithm. They
include a refinement phase in which the nodes to be moved
to another community do not have necessarily to provide the
highest increase in the quality function. This is a major dis-
tinction to Louvain, where the approach is greedy and nodes
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are only assigned to another community if this results in
the largest increase in the quality function. Nonetheless, in
the Leiden algorithm there is a likelihood associated with the
decision onwhich nodes should bemoved to other communi-
ties. The higher the increase in the quality function provoked
by moving a node, the higher the likelihood of that node to
be selected.

It is important to note that even though modularity mea-
sures the quality of node partitioning into communities, this
does not imply that the communities perfectly reflect the
ground truth [29]. Aside from modularity, domain-specific
applications require a thorough examination of the evaluation
approach. For instance, by adding complementary domain-
specific evaluation steps.

2.3.3 AggregationPan

Pan et al. [24] propose an algorithm that aggregates the edge
weight matrices and then, applies a cut-off, so that the edge
weights with low values (< τ ) are converted to 0. However,
aggregation is criticized in the literature since its simplifica-
tion may mask the true nature of the initial modular patterns
[21]. Plus, there is the need to define τ .

2.3.4 Particle competition

Gao et al. [25] work is based on a particle competition algo-
rithm for MLNs. The fundamental concept is to insert a
certain amount of K particles into network nodes. Each par-
ticle’s goal is to dominate as many nodes as possible while
also safeguarding their current dominated nodes from other
particles. When a particle visits a node, it gains strength
while weakening the other particles in the node. At the end
of the algorithm, each particle should represent a commu-
nity. The particles can move in two ways: random walking
and preferential walking. Random walking chooses a node
at random from its neighbors, whereas preferential walking
visits a neighbor with a high dominance. A balancing param-
eter is then used to balance these two types of walking. This
means that a node’s propensity to choose a random or prefer-
ential walk is affected by this value. The experiments were,
however, not tested in real-world networks.

2.3.5 MNLPA

This algorithm is introduced by Alimadadi et al. [26] and
consists in a generalization of the label propagation algo-
rithm (LPA) to multiplex networks. At the beginning, each
node is assigned a label. Then, similarity measures are used
to compare nodes. If these two nodes have a certain similarity
metric higher than a given threshold, then the label of the two
nodes is replaced by a common label to both. This is done
until the stopping criteria are achieved. However, the survey

Table 1 Network similarity techniques for KNC and UNC

Network type Techniques

KNC Euclidean, Manhattan, Canberra distances

Weighted Jaccard distance (WJAC)

UNC Global statistics

Spectral adjacency

Laplacian SNL distances

MI-GRAAL

NetLSD

Portrait divergence

from [21] states that this method is better suited for directed
and weighted networks rather than for general MLNs. It is
also mentioned that it might be unstable due to the thresh-
old parameter defined, which impacts strongly the network
partition.

2.4 Similarity functions for MLNs

Bródka et al. [30] present somemethods to compare distribu-
tions between layers in a multiple network: (i) dissimilarity
index, (ii) Kullback–Leibler, (iii) Jensen–Shannon and (iv)
Jeffrey.

For comparing properties with binary and numeric values,
some other measures are mentioned by Bródka et al. [30].
For properties with binary values: Russel–Rao, Jaccard, cov-
erage, Kulczyński, simple matching coefficient (SMC) and
Hemann. For properties with numeric values, the following
metrics are normally used: cosine similarity, Pearson corre-
lation similarity, Spearman correlation coefficient.

2.4.1 Comparing the networks

Tantardini et al. [31] present approaches for comparing net-
works, both when the nodes are aligned and the pairs are
known (known-node correspondence, KNC) and when the
networks comprise nodes that are not aligned and hence, dis-
tinct (unknown-node correspondence, UNC). For undirected
andweighted networks, somemethods are presented in Table
1.

Concerning UNC, it is stated that global statistics are not
a reliable tool for comparing layer similarity because they
are overly simplistic. Spectral approaches also have several
downsides, such as co-spectrality between graphs, depen-
dence on matrix representation, and abnormal sensitivity.
According to Tantardini et al. [31], the MI-GRAAL has a
significant computational cost, but the Portrait divergence is
largely efficient with small to medium graphs.
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2.4.2 Comparing communities

All of the above metrics focus on describing the similarity
between networks based on their edges, nodes and/or other
properties. For the current work, we are interested in com-
paring a specific property—the community structures among
layers. Recently, Ghawi and Pfeffer [32] identified some
drawbacks when using extrinsic (that require ground truth)
evaluation metrics, such as the direction of the comparison.
More precisely, if we have 2 layers of aMLN, lα and lβ , there
are two-ways for matching the communities in each one of
them. One can use either lα or lβ as the basis of the com-
parison, and this may lead to different results. For instance,
let Clα = {c1, c2, ..., cr } be the set of communities in lα and
Clβ = {c1, c2, ..., ck} be the set of communities in lβ . Let

nlαC1
= {n1, n2, ..., nm} be the set of nodes in c1 of layer lα

and n
lβ
C1

= {n1, n2, ..., nn} the set of nodes in c1 of layer lβ .
In these communities, if we consider lα as the basis of the
comparison (the ground truth) and lβ as the layer to be com-
pared with the group truth. If we look at node existence, we

will check for the number of nodes from nlαC1
that are in n

lβ
C1
.

In the case that nlαC1
has 15 nodes and n

lβ
C1

has 30, from which
15 are the same as in lα , then the similaritymetric gives a per-
fect similarity. Therefore, a two-way matching is required,
in which each layer is considered the ground truth—one at
a time—and then, both similarity values are combined into
a single metric. Since purity and F-measure are among the
most commonly used metrics for clustering evaluation and
they allow the comparison between two clustering solutions,
they fit the purpose of the current work.

Ghawi and Pfeffer [32] convert the purity in a two-way
matching by computing firstly the purity of lα against lβ ,
puri ty[lα‖lβ ], and vice-versa, puri ty[lβ‖lα]. The harmonic
mean between both values is computed, and the final purity
is as follows:

puri ty = 2 ∗ puri ty[lα‖lβ ] ∗ puri ty[lβ‖lα]

puri ty[lα‖lβ ] + puri ty[lβ‖lα] (4)

With this metric, we can study the extent to which the
clustering is “pure," with respect to node existence.

F-measure is computed using the recall and precision of
the clusters. The precision of a cluster is the same as its
purity. The recall metric evaluates the fraction of nodes that
are shared between the ground truth cluster and the system-
generated one. In the end, the F-measure of a cluster is the
harmonic mean of its precision and recall. Considering that
F [lα‖lβ ] is the F-measure when considering lα as ground
truth and lβ as the system-generated clustering solution and
F [lβ‖lα] is the F-measure of the clustering solution when lβ
is considered as ground-truth and lα as the system-generated

clustering solution. The overall F-measure is given by the
harmonic mean of both values:

F = 2 ∗ F [lα‖lβ ] ∗ F [lβ‖lα]

F [lα‖lβ ] + F [lβ‖lα] (5)

3 Materials

The data analyzed in this study refers to chronic tinnitus
patients admitted to the University Hospital of Regensburg.
The data were gathered between January 3, 2016, and May
28, 2020. The studies involving human participants were
reviewed and approved by the ethics committee of the Uni-
versity Regensburg. The patients/participants provided their
written informed consent to participate in this study.

At the time of admission, each patient fills out a series of
questionnaires meant to assess some of the patient’s men-
tal and physiologic symptoms. These questionnaires are
endorsed in the guidelines for chronic tinnitus (cf. [33]). The
questionnaire data used in this research were gathered from
five questionnaires: tinnitus questionnaire by Goebel and
Hiller (TQ) [34], tinnitus handicap inventory (THI) [35], tin-
nitus functional index (TFI) [36], major depression inventory
(MDI) [37], and tinnitus impairment questionnaire (TBF12)
[38]. In total, data from 1087 patients were considered.

Two time points are considered: t0 denotes the so-called
“screening”, where all questionnaires are answered and the
treatment is scheduled to start; t1 denotes the moment of the
last visit of the patient at the end of the treatment, whereby
some of the questionnaires are answered again and the scores
are compared. We also use the expressions “pre-treatment”
and “before treatment” (moment) synonymously for t0 and
“post-treatment”, “after treatment” (moment) synonymously
for t1.

Table 2 shows the number of patients with available data
at t0 and the number of patients with records at both t0 and
t1. The last column shows the ranges of the questionnaire
scores. It can be seen that the questionnaires have different
value ranges. However, for all of them smaller values are
better, in the sense that the patient is in better health.

4 Methodology

Weadopt an iterative and cost-sensitive approach tofind com-
munities in a MLN and name it COBALT(Cost-based layer
selector).

The first phase is denoted as representation. The nodes,
edges and layers are defined in this phase. Then, pruning is
applied to remove edges that are not statistically significant.
Subsequently, we introduce the cost-sensitive component to
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Table 2 Number of patient records per questionnaire at t0, t0 and t1 and
range of each questionnaire—ordered on the number of questionnaires
at t0 descending

Questionnaire t0 t0 and t1 Range

THI 1067 123 [0, 100]
MDI 981 109 [0, 50]
TFI 798 87 [0, 100]
TQ 746 70 [0, 84]
TBF12 700 35 [0, 24]
All 479 4 Not applicable

“All” refers to the patients that completed all the questionnaires

our model. At this phase, the minimum set of layers that
capture patient phenotypes without compromising its quality
is found. This is done iteratively, with layers being added to
the structure in a specific order determined by their cost. The
cost of each layer is alsomodeled. Figure1 shows a summary
of the proposed methodology. More detailed explanations
can be found hereafter.

Section 4.1 describes the representation phase, Sect. 4.2
describes the graph pruning phase, Sect. 4.3 presents the
layer cost model, Sect. 4.4 illustrates an example of our
MLN, Sect. 4.5 describes the search algorithm, and Sect. 4.6
describes the stopping criteria for the proposed algorithm.

4.1 Representation

Let p ∈ P be the set of nodes (for our application: patients)
in a graph g ∈ G (for our application: questionnaires). Each
g is considered a layer, and therefore, we denote it instead by
l ∈ L . A node pi in layer l is denoted as (pi , l). Let e ∈ E
denote the edges in layer l. The edge between two nodes
pi and p j in layer l can be defined as e(pi ,p j ,l), which we
simplify to (pi , p j , l). We denote the edge weight (which is
an attribute of the edge) between these nodes as wpi ,p j ,l .

A MLN is constructed to combine the multiple data fea-
tures into a single structure. This network has L layers, and
each layer has nodes and connections between them (edges)
with a weight associated to it (edge weight).

We span an “intra-layer" edge between each pair of nodes
within the same layer, assigning the value of the normalized
distance between the nodes in this layer to it (edge weight).
We span an “inter-layer" edge across two layers, connecting
nodes that represent the same patient in different layers and
assign a value to it based on the distance between the nodes.

When building the inter-layer edges, two types of edges
may exist:

1. edges of a node with itself between two layers
2. edges between different nodes located in different layers

We generate the inter-layer edges to incorporate the different
perspectives given by different features of a node. Hence,
only inter-layer edges between the same nodes in different
layers are incorporated.Weuse the same logic as in [7],which
we explain in more detail in 4.1.1 and in 4.1.2.

4.1.1 Intra-layer edges

The distances between nodes within a layer are represented
by intra-layer edges. A layer represents a feature in our algo-
rithm and in the specific case of our application it represents
a questionnaire. These, however, can be generalized to other
types of numerical features.

Considering two nodes pi and p j in the same layer, the
edge between them are defined by the difference between
their feature values, which in our case are questionnaire
scores. Assuming a questionnaire l ∈ L (L is the set of
layers that represent questionnaires), scorepi ,l and scorep j ,l

denote the scores of nodes pi and p j in layer l, respectively.
The larger the discrepancy in scores between nodes, the

lower their edge weight. This ensures that their connection is
represented by a “weak" edge weight if their scores are not
close. To accommodate for this, we define the weight as in
Eq.6, which describes the transformation 1/x .

wpi ,p j ,l = 1∣∣∣score′
pi ,l

− score′
p j ,l

∣∣∣ (6)

In Eq.6, wpi ,p j ,l denotes the edge weight that connects
pi and p j in layer l. The scores are then normalized by sub-
tracting the mean and dividing by the standard deviation.

4.1.2 Inter-layer edges

Equation7 shows how to compute the weight w(pi ,lα),(pi ,lβ)

of an inter-layer edge that connects (pi , lα) and (pi , lβ).

w(pi ,lα),(pi ,lβ) = 1∣∣∣score′
pi ,lα

− score′
pi ,lβ

∣∣∣ (7)

score′
pi ,lα

and score′
pi ,lβ

denote the normalized score of
layer lα and lβ for node pi , respectively. lα, lβ ∈ L corre-
spond to layers α and β, respectively.

4.2 Graph pruning

The MLN representation of the previous paragraphs results
into a fully connected network at each layer. To ensure that
only the most important edges are retained, we apply next a
graph pruning step for inter-layer and intra-layer edges, using
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becomes less 
valuable

4 Goals*

Fig. 1 Diagram with the methodology workflow

the maximum likelihood filter (MLF) proposed by Dianati
[39], see Sect. 2.2. We fix the threshold for pruning the
edges at 0.05, i.e., edges with a p-value higher than 0.05 are
removed.

4.3 Cost model for layer selection

Certain questionnaires may be more likely to be completed
than others (due to the type of questions). This aspect should
be considered while deciding on the next layer to be added
to the MLN. The similarity of communities between layers
is a second criterion of relevance. We intend to add a layer
containing additional information about the patients while
avoiding adding redundant information. As a result, the more
distinct the layers are with respect to their communities, the
less redundant they are. The goal is to add a layer with a low
community similarity.

Hence, the cost of a layer is calculated using two terms:
an availability ratio term and a community similarity term.
We formulate the function to measure the cost of a layer lα ,
Clinc,lα , with respect to the incumbent set of layers in the
network (linc) as:

Clinc,lα = 1

Alinc,lα
+ CSlinc,lα (8)

where Alinc,lα denotes the availability ratio term andCSlinc,lα
the community similarity term.These two terms are described
hereafter.

4.3.1 Availability ratio term

We term the ratio of completion of the questionnaires as
availability ratio. Alinc,lα denotes the availability ratio of the
questionnaire that is represented by layer lα against linc. It is
the ratio of nodes that are not missing in lα from the nodes
that are already in linc.

Considering the set of nodes in layer lα as plα =
{p1, p2, ..., pm} and in the incumbent layer or layer set, linc,
as plinc = {p1, p2, ..., pn}, Alinclα is given by:

Alinc,lα =
∣∣plα ∩ plinc

∣∣∣∣plinc ∣∣ (9)

The higher the amount of missing nodes in a layer, the
fewer the number of nodes (patients) that are added to the
MLN. The goal is to add the maximum information about
the nodes in each iteration. Therefore, we aim to maximize
the availability ratio term.
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Fig. 2 Structure of a MLN with communities generated in each layer

4.3.2 Community similarity term

Wedefine the community similarity term as ameasure of how
similar are communities between layers, with respect to the
assigned nodes. More specifically, we focus on quantifying
the shared nodes between communities of different layers.

We use the bi-directional F-measure to quantify this term.
There are two reasons for this choice: (i) the metric includes
both the purity/precision and the recall of the solution and
(ii) it handles the absence of ground truth by considering as
ground truth one layer at a time.

The community similarity between layers lα and the
incumbent layer or set of layers linc is modeled as:

CSlinc,lα = 2 ∗ F [linc‖lα] ∗ F [lα‖linc]

F [linc‖lα] + F [lα‖linc] (10)

As previously stated, we intend to use layers that provide
the maximum additional information about the nodes. If the
community structure of two layers is substantially similar,
they are seen as redundant. We intend the exact opposite:
to add layers with a community structure that differs from
that of the incumbent (current) network. As a result,CSlinc,lα
should be minimized.

4.4 Illustration example

Figure2 illustrates the structure of aMLNwith communities.
Thicker edges between nodes correspond to a high similarity
between them.

Nodes are represented by dots of different colors, and they
may be present in all or only a subset of the layers. Commu-

nities are represented by colored circles that surround one or
more nodes.

In Fig. 2, the edge that connects nodes pi and p j in layer
lα is thicker than the ones that connect them to pk in the
same layer. This is because these two nodes are more similar
between themselves than with pk . The score of pi is 10%,
whereas the score of the p j is 20% in lα . Hence, the difference
between them, in layer lα , is only 10%. If we compare the
score of pk (of 70%), this difference is higher and hence, the
similarity between pi and p j with pk is lower. The edges are
therefore represented by thinner lines.

Since the layers represent different features, the similar-
ity between the same set of entities may differ from layer
to layer. An example is illustrated in layers lα and lβ , where
the pair of nodes pi and p j have a higher distance between
them in lβ than in lα , making the connection between them
“weaker". One of the motivations to use MLNs is the fact
that inter-layer edges provide information about the associa-
tion between features (layers). This association is taken into
account when building the communities with a community
detection algorithm, by using both intra-layer distances and
inter-layer distances for modeling.

The example also illustrates communities generated in
each layer, individually. Figure2 represents a scenario in
which a community detection algorithm runs on each single-
layer network. In the example, node pi appears in all layers
and in the same community, but node p j is assigned to the
red community in lα and to the blue community in lβ and
in lm . Additionally, node p j is assigned to the same com-
munity as pi in lα , but to other communities in the other
layers. We assume that if the community structure of lay-
ers is heterogeneous, then they provide different information
about the nodes (patients). These three layers could then be
considered as not redundant with respect to its community
structure.

As previously mentioned, using a bi-directional metric for
layer similarity is crucial in the context of the current work,
due to the fact that ground-truth is unknown. For instance, if
we compare the red community in lα to the red community
in lm and use the lα as the ground truth, then its precision
and recall is 1 and 1

2 , respectively. For the blue community,
precision and recall are both 0. If we compute the weighted
sum of the precision and recall, then this results in 1

2 of pre-
cision and 1

4 of recall. Therefore, the F-measure (F [lα‖lm ])
over all communities is 1

3 . In contrast, when we consider lm
as the ground-truth, then the precision and recall for the red
community are, respectively, 1

2 and 1. For the blue commu-
nity, both values are 0. In this case, we also include the grey
community and compute its precision and recall, which is 0
for both values. The weighted average of the recall, for this
community solution, is 1

6 and of the precision is 1
3 . The F-

measure (F [lm‖lα]) is then 2
9 . As a result, there is a significant
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difference when one layer is assumed to be the ground-truth
solution versus the other.

4.5 Cost-based layer selector: COBALT

On the basis of the aforementioned cost model, we now
present our algorithm COBALT for cost-based layer selec-
tion and community construction.

Table 3 displays a description of the main variables used
in the pseudocodes that follow.

Algorithm 1 shows the pseudocode for the generation of
the starting solution.

Algorithm 1 COBALT Initialization: Pseudo code for
choosing the first layer
Input: G
Output: gbestsingle
1: Ssingle ← ∅
2: gbestsingle ← NULL
3: Sbestsingle ← NULL; qbestsingle ← −∞
4: for g ∈ G do
5: (S, q) ← Leiden(g)
6: Ssingle ← Ssingle ∪ {S}
7: if qbestsingle < q then
8: gbestsingle ← g
9: Sbestsingle ← S ; qbestsingle ← q
10: end if
11: end for
12: return gbestsingle, Sbestsingle,Ssingle

The input of Algorithm 1 is the set of all single-layer
graphs G. For each g ∈ G, COBALT invokes the Leiden
algorithm which builds a set of communities and returns two
objects: the ‘partition’ S, which encompasses the community
membership of each node for the incumbent graph g ∈ G,
and q—themodularity of S. The partition Sbestsingle with the
largestmodularity and the correspondinggraph gbestsingle are
returned as initial solution of COBALT, together with the set
of all single-layer partitions.

After the initialization, COBALT gradually adds layers
to build up a multi-layer network and derive the best set of
communities in it. In each iteration, it invokes the cost model
(cf. Sect. 4.3) to add the least-cost layer, until a stopping
criterion is met. The pseudocode is depicted in Algorithm 2.
Note that we consider the first iteration of Algorithm 2 as
iteration 2, since the iteration 1 represents Algorithm 1.

The input of Algorithm 2 is the set of single-layer graphs
G and the outputs of Algorithm 1. The graph gbestsingle
becomes the first layer of the MLN structure L, which is
built iteratively by adding layers. To expand L, the list of
candidate graphsGcandidates is created fromG and is dynam-
ically updated to remove the graph g added at each iteration.
To choose this graph g, the layer cost is computed for each
candidate u ∈ Gcandidates , using the cost formula of Eq.8.

Algorithm 2 Iterative Layer Selection: Pseudo-code of the
subsequent iterations of COBALT
Input: G, gbestsingle, Sbestsingle,Ssingle
Output: Sbest (best set of communities)
1: Gcandidates ← G \ {gbestsingle}
2: S ← Sbestsingle
3: L ← gbestsingle
4: while Gcandidates �= ∅ and SC is False do
5: g ← NULL; c ← + ∞
6: for u ∈ Gcandidates do
7: cu ← cost(L, u, S, Su)
8: if cu < c then
9: g ← u ; c ← cu
10: end if
11: end for
12: extend L with g
13: (SL, qL) ← Leiden(L)

14: Gcandidates ← Gcandidates \ {g}
15: end while
16: return SL

This computation is made between the candidate u and
L, but it demands also the community memberships (for the
community similarity term). To make this more clear, we
include the corresponding partitions.

Next, the least-cost candidate g is selected. L is expanded
to incorporate g and the inter-layer edges between its nodes
and the nodes in g. Then, the set of communities is built,
Gcandidates is updated and the next iteration starts.

The algorithm runswhile there are candidates inGcandidates

and while the stopping condition SC is false. The stopping
condition monitors the cost of the growingMLN and is spec-
ified in the next Sect. 4.6.

4.6 Stopping condition for COBALT

The main loop of COBALT (cf. Algorithm 2, while-loop)
gradually adds each layer; the cost function only decides
which layer to add next. Since layers are chosen on the basis
of availability ratio and community similarity (Eq.4), and
since both factors take positive values, cost cannot be nega-
tive.Availability ratiomay increase or drop fromone iteration
to the next, though. Two stopping criteria can be derived from
it:

• SC1:COBALTstopswhen the availability ratio decreases
towards the previous iteration

• SC2: COBALT stops when the availability ratio drops
and the community similarity increases

where the “previous iteration” is the second (i.e., the first
after the initialization) or a later one.

We choose SC1 as stopping condition in the while-loop.
In our experiments, SC1 is not used, because we study the
behavior of COBALT as each layer is added.We rather report
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Table 3 Notation table

Symbol Description

G Set of graphs

Ssingle Set of the community memberships (partitions) of the nodes for each of the single-layer networks g ∈ G

gbestsingle First graph chosen for the MLN, it contains the partition with the best modularity

Sbestsingle Partition of the first graph

L The network structure: a single-layer or multi-layer network

at which iteration COBALT would have stopped, and what
would have been the effect on the communities’ contribution
to predictive power.

5 Evaluation design

For the evaluation of COBALT,we usemodularity as internal
measure and contribution to predictive performance as exter-
nal measure. We further quantify the impact of missingness.

Figure3 shows theworkflowfor the evaluationofCOBALT.

5.1 Phenotype quality as modularity

To investigate the role of layer cost on phenotype quality, we
use modularity as community quality evaluation measure,
cf. formula in Eq.3 and we study how modularity changes
as layers are added in a cost-sensitive way.

5.2 Community visualization scheme

To acquire insights on how communities change after select-
ing each additional layer, we use the Fruchterman–Reingold
layout [40] as basis for visualization: nodes that are posi-
tioned closer to one another have stronger connections
between them than with the ones located far apart. In this
layout, we use colors for the communities, i.e., each node
takes the color of the community it belongs to. Thus, ‘good’
communities are visualized as graph partitions colored with
only one color, while the occurrence ofmultiple colors in one
area of the visualized network indicates that the communities
are mixed up.

We juxtapose the visualizations of the layers utilized in
each iteration for community detection to illustrate how
the colors/communities span across layers. It should be
noted that the absolute horizontal and vertical positions of
nodes have no meaning; only their relative positions do,
with closer nodes positioned next to each other and hav-
ing strong connections between them (represented by darker
edges).

5.3 Contribution of phenotypes to predictive quality

To assess the contribution of the phenotypes discovered by
COBALT towards phenotype-sensitive treatment, we first
build a ‘Baseline’ set of regression models, each of which
predicts the score of each questionnaire (layer) at t1. They
use the following features for each patient: age, gender and
score of that questionnaire at t0. We compare this ‘Baseline’
to regression models that also exploit community informa-
tion, namely the ID of the patient’s community for each
patient/layer node. Since the patient’s community changes
as layers are added by COBALT, we train one regression
model on the community augmented data for each iteration.

For regression, we use linear regression, ridge, LASSO
and SVR (support vector regression). To set the hyper-
parameters, we apply a grid search. We perform 10-fold
cross-validation on the training set, and we evaluate with
mean absolute error (MAE), mean squared error (MSE) and
R2. The dataset is split into a test set of 30% and a training
set of 70%.

By using the post-treatment score (at t1) of each layer as
target and the communities at each iteration as input, we also
assess to what extent we can predict a post-treatment score
for some layer without exploiting the pre-treatment data (at
t0) of this layer. In particular, assume that the post-treatment
score of questionnaire/layer l is used as target and that we
use as input the communities learned over the layers l1 (first
iteration) and l2 (second iteration), where l /∈ {l1, l2}. If the
prediction quality is high in the evaluation setting for a given
phenotype, then we expect that we can predict the score of l
at t1 without recording layer l for this phenotype at all.

Lastly, we compare the contribution to predictive qual-
ity achieved by the communities found by COBALT to
the predictive quality achieved when using clusters built
with traditional clustering algorithms. The clustering tech-
niques used are: (i) agglomerative hierarchical clustering
[41], which we denote as ‘AHS’; (ii) BIRCH [42], (iii)
Gaussian Mixture Models with the Expectation Maximiza-
tion algorithm [43, 44], which we denote as ‘GMM_EM’;
(iv) HDBSCAN [45], (v) k-means [46] and (vi) OPTICS
[47]. It must be stressed that these clustering models serve
only as baselines, because they operate under different con-
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Fig. 3 Diagram with the evaluation workflow. In this figure, we use the terms “test set” and “holdout set” interchangeably

ditions than COBALT: they are cost-insensitive, since they
exploit all questionnaires/layers, while COBALT uses only
the layers up to a given iteration. Moreover, these cluster-
ing algorithms do not handle missing values; hence, they are
trained only on patients that answered all the questionnaires.
There is an interplay between modularity and predictive
power.Modularity is not independent of quality.Highermod-
ularity reflectswell connected communities,which allows for
better interpretability.

5.4 Impact of missingness on phenotype quality

COBALT is designed to dealwith layers that contain only few
nodes, i.e., layers for which only few entities (in our applica-
tion: patients) have delivered data. To measure the influence
of missingness, we gradually introduce missingness into a
dataset that originally has no missing data. In this dataset,
when removing an entity, we remove its corresponding node
from all layers.

The complete workflow is as follows. If the dataset in
use contains missing values, we extract from it the subset D
that has no missing values before treatment. In the next step,
we specify the maximum and minimum of the ‘missingness
ratio,’ which we define the percentage of entities to be ran-
domly selected and eliminated from D. Next, we perform a
grid search between the minimum and maximum percentage
and derive the corresponding subset of D for each value in
the grid; for our experiment, we vary the missingness ratio

from 0.1(10% of entities removed) to 0.9(90% of the entities
removed), with a step of 0.1, i.e., of 10%. Finally, we run
COBALT on each derived dataset and measure quality as (i)
modularity at each iteration and (ii) predictive quality for the
iteration with the best modularity.

6 Results and discussion

For our evaluation, we apply COBALT on the tinnitus patient
dataset described in Sect. 3. This dataset contains 5 question-
naires: in a realistic scenario, the addition of layers would
have stopped at an upper boundary of cost/budget; for the
evaluation, we add all layers and study the effects of adding
each one. COBALT adds the layers in the following order: (1)
THI, (2) MDI, (3) TQ, (4) TBF12 and (5) TFI questionnaire.
This indicates that the benefit of adding THI is the highest,
and the benefit of adding TFI is low.

6.1 Modularity versus cost per iteration

Figure4 shows the evolution of the modularity Q per iter-
ation, as well as the layer cost and availability ratio of the
selected layer at that iteration.

The modularity decreases as layers are added (uppermost
subfigure), while the community similarity stagnates at 0
(lowermost subfigure), indicating that there is substantial dif-
ference among the communities built while adding layers.
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Fig. 4 Evolution of modularity (uppermost subfigure), cost (middle
upper subfigure), availability ratio (middle lower subfigure) and com-
munity similarity (lowermost subfigure), computed as layers are added
by COBALT, one at a time

Despite the decrease in modularity, it is important to note
that the drop is from 0.730 to 0.591, indicating that there are
underlying structures in the MLN. The visualizations pre-
sented next deliver insights on how communities change as
layers are added.

At the same time, the cost of adding a layer is increasing
for all but the fourth layer (cf. middle upper subfigure). This
increase is mostly due to the decrease in the availability ratio
(cf. middle lower subfigure), since community similarity is
always low. The availability ratio decreases slowly; hence,
SC1 can be triggered already at the third or at the fourth
iteration.

6.2 Community visualization

In Figs. 5, 6, 7, 8, 9 and 10, we show the communities as
COBALT adds layers. The visualization is two-dimensional,
and therefore, we show one subfigure per layer.

6.2.1 Visualization of one layer

In Fig. 5, we depict the 6 communities in the THI layer, which
is chosen by COBALT in the first iteration.

The communities mark areas of a single color. There is
one subgraph with nodes of the ‘blue’ and the ‘darkgreen’
communities, and one subgraphwith both ‘purple’ and ‘pink’
nodes, but these two subgraphs are only small parts of the
network. Hence, the visualization scheme captures properly
community separation and clearlymarks the areaswith nodes
from more than one community.

Score distributions
Figure6 depicts the distribution of the questionnaire

scores for each of the 6 communities of this first iteration
of COBALT.

Fig. 5 First iteration: 6 communities on the THI at t0 layer; Q = 0.730.
Different colors represent different communities

The first column of Fig. 6 shows the value distribution for
sex,2 with one row per community. Subsequently, we show
one column per questionnaire and, inside it, one boxplot per
community. We see that all communities are rather homoge-
neous with respect to the THI questionnaire: the small boxes
indicate small variance. The variance increases for the other
questionnaires; this is expected, since COBALT considered
only the THI data to build these communities.

There are remarkable differences among some of the
communities. Community C1 (green boxes for the question-
naires) has the lowest average value in each questionnaire,
while community C2 (fade-yellow boxes) has the highest
average values, indicating C1 and C2 have considerably dif-
ferent characteristics. In the context of the data used, it seems
that C1 accommodates the patients with the most mild tinni-
tus symptoms, while C2 accommodates the patients with the
most severe tinnitus symptoms. There are also differences
in sex between communities. C1, for example, has a lower
proportion of female patients.

6.2.2 Communities across layers

Figure7 depicts the 5 communities found in the second iter-
ation, where COBALT adds the MDI layer as the one with
the lowermost cost.

As we have seen in the evolution curves of Fig. 4, iteration
2 incurs a cost increase and a slight modularity drop. The
visualization of the communities in the two layers makes
this evident: there is a rather clear separation of colors in
the THI network (cf. Fig. 7a), but the colors in the MDI
network (cf. Fig. 7b) are mixed. Hence, the use of the inter-
layer similarities and the similarities inside theMDI network
did not contribute to a good modularity score.

Figure8 shows the 4 communities found in the third itera-
tion, where COBALT added the TQ layer. From this iteration

2 Sex refers to the value given by the patients in the questionnaire. Note
that in some literature this variable is referred to as gender.
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Fig. 6 The 6 communities of the THI network added by COBALT as first layer, depicting the value distributions inside each questionnaire

(a) THI layer (b) MDI layer

Fig. 7 Second iteration with MDI questionnaire at t0 as second layer:
5 communities detected; Q = 0.632

(a) THI layer (b) MDI layer (c) TQ layer

Fig. 8 Third iteration with TQ questionnaire at t0 added as third layer:
4 communities detected; Q = 0.613

on, community induction is driven by the node similarities
inside theMDI layer, leading to more homogeneous commu-
nities in the MDI layer, while the community colors in the
other layers are mixed.

A further remarkable aspect in Fig. 8 is the high density
of the MDI network: the patients are very similar to each
other inside this layer. This might have led to communities
that are not clearly separated. This can also be seen in Fig. 9,
which depicts the 4 communities found when COBALT adds
TBF12 as fourth layer.

As in the third iteration, nodes are well-separated into
communities with respect to the MDI layer, but not with
respect to the other layers. The number of communities is
also the same as before: although this does not imply that
the communities are exactly the same, it indicates adding the
TBF12 layer does not add much information to the previous
MLN.

Finally, Fig. 10 shows the 4 communities found in the fifth
iteration, when the TFI layer is added as last one.

(a) THI layer (b) MDI layer

(c) TQ layer (d) TBF12 layer

Fig. 9 Fourth iteration with TBF12 questionnaire at t0 added as fourth
layer: 4 communities detected; Q = 0.592

As before, the communities are well separated in the
MDI network, but not in the other networks. The modular-
ity (0.591) is also very close to the modularity value of the
fourth iteration (0.592).

Summarizing, the visualization scheme shows a deteriora-
tion of community quality as layers are added. The evolution
of layer cost and of its two factors capture this deteriora-
tion well; the SC1 stopping criterion would have stopped the
MLN expansion after the third iteration by the latest.

In our application scenario, communities serve as pheno-
types, intended to contribute to prediction. For that reason,
we next report on how the communities contributed to pre-
dictive quality.

6.3 Phenotypes for prediction

According to our evaluation design, we compare the predic-
tion quality achieved when using COBALT communities to
that achieved by the Baseline regression model and to the
quality achieved when using clustering instead of COBALT.
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(a) THI layer (b) MDI layer

(c) TQ layer (d) TBF12 layer

(e) TFI layer

Fig. 10 Fifth iteration, last layer (TFI questionnaire at t0) added: 4
communities detected; Q = 0.591

Table 4 Number of data points in the train and test set size used, per
questionnaire score, for the prediction of the treatment outcome

Questionnaire Total Training set Test set

THI 123 86 37

MDI 109 76 33

TQ 70 49 21

TBF12 35 24 11

TFI 87 61 26

Table 4 shows the train and test size of the prediction tasks
for each target variable (questionnaire).

The results are in Table 5, which we discuss in detail here-
after. For each of the 5 scores at t1, we depict the performance
as MSE and MAE (where smaller values are better) and R2

(where larger values are better). Values marked in boldface
are the best to predict a questionnaire score.

6.3.1 Prediction with the phenotypes of each COBALT
iteration

The upper part of Table 5 shows for each iteration of
COBALT (first column) the quality of the phenotypes in the
MLNnetwork,measured asmodularityQ (third column). For
each predicted score, we mark in underline the best values
achieved in a COBALT iteration.

For each score, theCOBALT-augmented regressionmodel
outperforms the correspondingBaseline regressionmodel, as

can be seen by the underlined values for the scores. When
focusing on the phenotypes of each iteration, we observe the
following:

• iteration 1: COBALT outperforms the Baseline for the
THI score and for the MDI and TBF12 scores (the MAE
values are identical). For theTQandTFI scores, theBase-
line is better.

• iteration 2: COBALT outperforms the Baseline for the
TQ, TFI and TBF12 scores. For the THI score, COBALT
is better with respect to MSE and MAE.
For theMDI score,COBALT is inferior than theBaseline.
This is remarkable, since the layer included in the second
iteration is the MDI layer itself. However, as can be seen
in Fig. 7, the communities are more oriented toward THI.

• iteration 3: COBALT outperforms the Baseline for the
TQ and TBF12 scores, and for the THI score with respect
toMSE andMAE.With respect to theMDI score and the
TFI score, the Baseline is superior.

• iteration 4: COBALT outperforms the Baseline for the
THI, MDI, TQ and TBF12 scores, i.e., all but the TFI
score.

• iteration 5: COBALT outperforms the Baseline for the
THI score, but it is inferior to it for all the other scores.

Summarizing, the COBALT phenotypes on the THI and
MDI layers suffice to predict 4 out of the 5 scores at t1 with
better MAE and MSE than the Baseline that exploits the
scores of all 5 questionnaires at t0. The phenotypes of the
THI layer alone suffice for predicting 3 out of 5 scores at
t1. This indicates that the exploitation of phenotypes during
prediction is advantageous, and the advantage is higher when
adding the least-cost layer.

The influence of the MDI layer must be perceived as an
artifact, since this layer improves predictive performance but
not for the MDI score itself. An explanation is in the den-
sity of this layer, which may have resulted in poor-quality
communities inside this layer.

6.3.2 COBALT versus clustering

The lower part of Table 5 depicts the prediction quality
achieved when using clustering algorithms for phenotype
construction instead of COBALT on MLNs. We varied the
number of clusters to optimize silhouette, and we report the
clusters found for this optimal number. For example, for k-
means, the best silhouette was for k = 2.

For each of the 5 scores, there is at least one clustering
algorithm that outperforms the Baseline (first row). As with
COBALT, this indicates that exploiting phenotypes during
prediction is of advantage. However, unlike COBALT, there
is no clear winner among the clustering algorithms: for the
THI score, all algorithms deliveredmodels that were superior
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to the Baseline; for the TFI score, none did; for the other
scores, somemodels were superior to the Baseline and others
were inferior to it.

COBALT outperforms the Clustering approaches when
predicting the TFI score (iteration 2) and the TBF12 score
(iteration 3), i.e., before the corresponding layers are added.
For the MDI score, iteration 4 delivers the best R2 value, but
is inferior to OPTICSwith respect toMSE andMAE. For the
THI score, K-Means returns the best results. However, there
is no clear winner among the Clustering approaches with
respect to phenotype contribution: for each of the 5 scores,
another algorithm is best for one or more of the three mea-
sures, although, unlike COBALT, all Clustering algorithms
are trained on all scores at t0. In contrast, the phenotypes
returned by COBALT on the first two layers outperform the
Baseline for all scores except the MDI.

COBALT and Clustering cannot be compared directly
on community homogeneity: for clustering, we use silhou-
ette instead of modularity. When juxtaposing the results of
the Clustering algorithms, we see that BIRCH returns the
phenotypes with the highest silhouette value, but these phe-
notypes contribute less to prediction than those output by
other clustering algorithms. This agrees with our observa-
tion on modularity for COBALT: the phenotypes returned
at iteration 1 have the highest modularity, but the regression
models exploiting them are of inferior quality.

Summarizing, the phenotypes returned by COBALT
exhibitmore consistent predictive performance than achieved
by clusters built by individual clustering algorithms, albeit
the latter exploit all scores at t0. This holds particularly for
iteration 2, where a layer is chosen in a cost-sensitive way,
before the stopping criterion SC1 is triggered. Phenotype
quality, either the modularity in MLNs or the silhouettes in
clustering, is poor indicators of predictive performance. For
COBALT, phenotypes built in a cost-sensitivity way lead to
competitive predictive performance.

6.3.3 COBALT versus cost-insensitive MLN phenotypes

In our earlier work [7], we built MLN-based phenotypes,
optimizing on modularity rather than cost. Table 6, from [7],
shows the layer selected at each iteration and the modularity
scores achieved.

When we compare with the column on Q of Table 5, we
see that COBALT achieves higher modularity values. This
can be explained by the differences in the data: albeit we use
the same dataset and prediction tasks, in [7] we considered
only patients that had available data in all layers, whereas
COBALT uses all data, allowing for missing values in some
layers.

Acomparisononprediction quality is not possible because
in [7] we predicted for each community separately, and only
for the TQ score at t1, considering only communities that had

Table 6 From [7]: modularity per iteration

Layers Q

iteration 1 THI 0.752

iteration 2 [THI, TQ] 0.358

iteration 3 [THI, TQ, TBF12] 0.362

iteration 4 [THI, TQ, TBF12, TFI] 0.002

iteration 5 [THI, TQ, TBF12, TFI, MDI] 0.001

enough data for learning and testing. The order in which the
layers were selected in [7] and COBALT differs, which is
a result of adopting a cost-aware approach. In a scenario in
which the layer order would equal and missing nodes would
be allowed, then the predictive quality would also equal,
given that the detected communitieswould also agree (we use
the Leiden algorithm in bothworks and use the same dataset).
By comparing the modularity values and the selected fea-
tures of both methods (cf. Table 6 for the previous work and
Sect. 6.3.1 for the COBALT results), we can observe that the
selected layers/features differ in order: THI,TQ,TBF12,TFI,
MDI for the previous work and THI, MDI, TQ, TBF12, TFI
for the current work. The difference in modularity obtained
in the first layer is due to the fact that in COBALT, we use all
patient data, whereas in [7], we use only patients with avail-
able data in all layers. The fact that the modularity achieved
in the first layer is different is because in COBALT,we use all
patient data, while in [7] we take only patients with available
data in all layers.

The findings for prediction quality are not directly com-
parable because they use different amounts of data and the
prediction task itself is different. For instance, the prediction
task conducted in [7] produced a R2 of 0.183 with data from
only one community, whereas we achieved a R2 of 0.720
when predicting THI at t0 but using communities as a fea-
ture in our work. This new prediction task uses data from all
communities as features, whereas in [7] the prediction task
only uses patient data from one community at a time. As a
result, there are fewer data points per regression model.

Nonetheless, we can state that COBALT is superior to the
predecessor approach of [7] by design, since it allows for
missing values.

6.4 Impact of missingness

Fig. 11 shows how modularity changes from the first to the
last iteration as we increase missingness from 10% (left-
most, uppermost subfigure) to 90% (rightmost, lowermost
subfigure) in steps of percentual points. The data with 0%
missingness lead to the modularity values depicted by the
dashed line in each of the subfigures.
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Fig. 11 Modularity per iteration as missingness ratio is increased from 10 to 90%

The curves indicate that the modularity is not greatly
affected by missingness: it always drops towards 0.4, it
always remains close to the reference (dashed) line of 0%
missingness, mostly a bit below it but sometimes above it.
These findings suggest that subsets of the nodes in the MLN
have intra-/inter-layer edges andweights that lead to commu-
nities of comparable quality to that of 0%missingness. Table

7 depicts prediction quality as we increase missingness from
0 to 10% and then, to 20%. Prediction was possible only
for THI, MDI and TQ scores at t1 when the missingness
was 0% and 10%, and only for THI when the missingness
was increased to 20%. For TFI and TBF12, there were not
enough data for training and testing. For each missingness
value, we chose the iterationwith the highestmodularity: this
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Table 7 Prediction quality for each percentage value of missingness, showing the iteration (equiv. number of layers NL) that achieves the best
modularity

Partition quality THI score at t1 MDI score at t1 TQ score at t1
Q (best) n NL MSE MAE R2 n NL MSE MAE R2 n NL MSE MAE R2

Ratio of node missingness

0% 0.740 48 1 8.0 102.3 0.850 47 1 7.1 90.0 0.601 29 1 7.5 88.6 0.703

10% 0.741 48 4 9.1 149.0 0.789 47 4 5.5 45.4 0.574 29 4 9.8 142.5 0.635

20% 0.742 48 4 7.9 89.9 0.847

Number of patients used for training (n) is different for each questionnaire, since only patients that filled the questionnaire represented in each
column at t1 are considered if and only if they files all questionnaires at t0. Note that ‘n’ is then partitioned into two: train and holdout sets [cf.
Fig. 3 and Sect. 5.3])

is reflected in the column ‘NL’ that denotes the Number of
Layers (NL) used and may differ depending on the question-
naire score being predicted. The number of patients used for
training is shown in the column marked as ‘n’, which again
may differ for each questionnaire score.

In Table 5, we have seen that a decrease in modularity is
not necessarily associated with a tendency in the values of
the prediction quality measures. This agrees with the results
in Table 7, where the sets of communities with the best mod-
ularity are chosen, but the prediction quality measures vary
in both directions. In general, the prediction quality is good,
which indicates that a small increase in missingness does not
lead to dramatic quality deterioration. The THI score predic-
tion quality drops, albeit not substantially, as the number of
missing nodes rises from 0% to 10% (according to R2), but it
increases again when node missingness is increased to 20%.
For the MDI and TQ score prediction, the prediction quality
decreases with node missingness. However, the amount of
training data is so small that a generalization is not possible.

6.5 Modularity versus prediction quality

The aforementioned results provoke the question of whether
modularity is as important as prediction quality. Modularity
maximization is not a goal by itself. However, the construc-
tion of well-connected communities contributed to better
prediction quality. Communities are our key to cost-aware
choice of questionnaires, i.e., to reducing cost (eventually:
patient burden) per communitywithout sacrificing prediction
quality. Furthermore,modularitywas not strongly affected by
missingness,which implies that communities can be detected
even with fewer patients.

7 Conclusion

7.1 Summary

In thiswork,wehavepresentedCOBALT, a cost-basedmodel
to find communities in a single- or multi-layer network struc-

ture. We define cost as the cost of acquiring features and test
it in a dataset with questionnaire data from chronic tinnitus
patients. We also compare our results with traditional clus-
tering methods.

The major findings of this work can be summarized into
four:

1. COBALT is able find partitions in the data that are supe-
rior to conventional clustering algorithms in terms of our
evaluation criteria (performance on post-treatment data
prediction) for three of the five questionnaire predictions;

2. COBALT outperforms our prior work with the same
dataset (cf. [7]) by achieving higher modularity values.
As a result, taking a cost-effective strategy and allowing
missing values in each layer proved advantageous;

3. The partitions with the best modularity do not lead
necessarily to the best inputs for a post-treatment data
prediction;

4. Missing values have no substantial impact on the modu-
larity of the partitions.

In the context of clinical decision support, COBALT is
intended for personalized diagnostics and treatment planning
on the basis of patient phenotypes. COBALT demonstrates
that it is possible to build predictive phenotypes without
demanding a large number of questionnaires, as was the
case in our earlier work [48]. Our approach can be used in
different ways. First, we have shown that phenotypes are pre-
dictive; hence, once a patient’s phenotype has been assessed,
treatment outcome can be predicted without demanding that
the patient fills further questionnaires. Thus, the burden of
the patient during the diagnostic procedure can be reduced.
Next, the acquisition of information during screening can
be focused toward informative features, thus reducing cost
without compromising quality. Finally, phenotype-specific
treatments can be designed. To this purpose, clinical research
is needed to assess the robustness of the identifiedmodels and
their predictiveness. Moreover, the cost-sensitive selection
of questionnaires and the usage of phenotypes in the clinical
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practice demand a modification of the diagnostic guidelines,
which, again, is best initiated with a prospective study.

Our results agree with previous tinnitus studies on the
importance of sex when detecting different subgroups that
respond differently to treatment [49, 50]. In our work, THI
is considered the most important questionnaire by the algo-
rithm (to build patient phenotypes). This agrees with the
knowledge from the literature, in which this questionnaire
is elected to assess tinnitus severity [51, 52]. In this paper,
we order questionnaires by importance. However, refraining
from a questionnaire in a clinical setting is something that
requires a dedicated clinical study.

7.2 Outlook

Although our algorithm has been used for clinical data,
COBALT is suitable for any application where feature acqui-
sition is associated with some form of cost (including burden
or effort), as well as applications where it makes sense to
model the similarity of individuals for each feature/layer sep-
arately.

Medical diagnostics are a representative applicationdomain,
since some diagnostic procedures (e.g., for the acquisi-
tion of genetic material) demand more elaborate equipment
than others. For the use of COBALT in further applica-
tions, we need, next to a data set, also a cost function.
We are currently participating at a multi-center multi-armed
Randomized Clinical Trial, where each arm is a different
treatment (for tinnitus) [53]. Once the main study on the
effects of the treatments is finalized and once there are
insights on the predictiveness of each assessment (includ-
ing questionnaires, audiological examinations and genetic
codes), we will attempt to devise a cost function upon the
questionnaires and then, use COBALT for cost-aware phe-
notype identification.

As an example beyond healthcare, we consider diagnos-
tics for predictive maintenance on machines, because some
pieces of information regarding a machine’s status may be
more costly to acquire than others: an X-ray of a machine
(feature 1) is more expensive than visual inspection of the
machine’s surface (feature 2). We are currently looking for
datasets with such properties and functions.
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