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Abstract
We proposed a method to extract causal relations of spatial clusters from multi-dimensional event sequence data, also known
as a spatio-temporal point process. The proposed Granger cluster sequence mining algorithm identifies the pairs of spatial
data clusters that have causality over time with each other. It extended the cluster sequence mining algorithm, which utilized
a statistical inference technique to identify the occurrence relation, with a causality inference based on the Granger causality.
In addition, the proposed method utilizes a false discovery rate procedure to control the significance of the causality. Based
on experiments on both synthetic and semi-real data, we confirmed that the algorithm is able to extract the synthetic causal
relations from multiple different sets of data, even when disturbed with high level of spatial noise. False discovery rate
procedure also helps to increase the accuracy even more under such case and also make the algorithm less-sensitive to the
hyperparameters.

Keywords Relation mining · Granger causality · Spatio-temporal relation · Spatio-temporal point process

1 Introduction

Many of the data being collected today are spatio-temporal in
nature; for example, meteorological data, earthquakes, crime
occurrence, road traffic patterns, epidemic outbreaks, social
network posts are being used by real-world organizations on
a day-to-day basis [1]. Analysis and understanding of these
data are crucial to the applications of the ecology and environ-
mentalmanagement, crime analysis, transport route analysis,
disease management, precision agriculture, and many more.

In this work, we considered a point-process spatio-
temporal data [2]. A point process data consist of discrete
observations, for example, list of points in a Euclidean space.
A point process spatio-temporal data are point process data
that have freedom in both temporal and spatial dimensions,
for example, a series of Euclidean vectors. Many real-world
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spatio-temporal data can be represented as a point process,
such as earthquake epicenters as a list of latitude and lon-
gitude as the spatial part and the occurrence time as the
temporal part; or social network posts can be considered
as features extracted by natural language processing (NLP)
algorithm for the spatial part and the post time as the temporal
part.A spatial cluster of these data can represent ameaningful
concept, and the causal relationships between these clusters
over the time series indicate the mechanism of operation.
Thus, our objective is to find two spatial clusters of the data
that have a causal relationship with each other.

There were many existing works for identifying causal
relationships within purely temporal or spatial data. Granger
causality [3], for example, can identify causal relations
between time series, or PC algorithm [4] for discrete ran-
dom variables. When extended to spatio-temporal data, even
though several works can identify non-causal relation [1],
none can identify causal relations.Webelieve thatwith causal
relations, we can gain a more thorough understanding of the
occurrence mechanism.

Recently, co-occurrence cluster mining (CCM) [5] and
cluster sequence mining (CSM) [6] algorithm were pro-
posed for extracting relationships between spatial clusters
from the point-process spatio-temporal data, namely a co-
occurrence relationship. However, since correlation does not
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imply causation, we cannot conclude that the result from
those algorithms is causal relations.

In this work, we proposed the Granger cluster sequence
mining (G-CSM) algorithm, which is an extension to the
cluster sequence mining (CSM) algorithm.We integrated the
Granger Causality [3] method for temporal causality infer-
ence. Granger causality is one of the most commonly used
temporal causality analysis techniques. It originated from
the field of economics, where it is being used to analyze
the relationships between different time series. It was also
extensively used in the neuro-science applications [7]. The
principle of Granger causality is that if A causes B, then
B must be easier to predict using all available data than to
predict using all available data except A. Additionally, we
have extended our conference paper [8], a false discovery
rate (FDR) procedure was also used to quantify the signifi-
cance of the detected causality, allowing us to be certain of the
statistical significance and to eliminate false-positive result.
The proposed algorithm can extract causal relations between
spatial clusters within a point process spatio-temporal data
according to the causality proposed by Granger.

We validated the performance of our proposed G-CSM
algorithm against the original CSM algorithm using a syn-
thetic data. The result showed that the proposed G-CSM
algorithm can detect causal relations more accurately and
is more robust against noise. We also analyzed the hyperpa-
rameters of the G-CSM algorithm and found that the G-CSM
algorithm is less sensitive to them, unlike the original CSM
which required a careful setting of its hyperparameters. The
usage of FDR for statistical testing also increases the accu-
racy of the algorithm. We also applied the G-CSM algorithm
on the semi-real-world data, namely, we used an existing
real-world spatial data and the synthetic temporal relation-
ships.

To summarize, the contribution of this paper is as follows:

1. We proposed a causal relation mining model for a spatio-
temporal point process data by extending the cluster
sequence mining algorithm with Granger causality.

2. We also propose the application of FDR procedure for
evaluation of the significance of the causality.

3. The experiments showed that our proposed algorithm
especially with the addition of the FDR procedure can
extract relations with higher F-score and is less sensitive
to the hyperparameters.

2 Literature review

2.1 Spatio-temporal point process

A point process is a framework used for modeling spatial
and/or temporal distributions of discrete events. Specif-

ically, the spatial/temporal distributions of an event are
represented by the probability of the event occurring in a
certain spatial/temporal domain, called the intensity func-
tion. The intensity function may be in the form of simple
Poisson distributions or more complex distributions [9]. The
spatio-temporal point process is a type of point process that
jointly models spatial and temporal distributions of events
together.

There are many spatio-temporal models that have fixed
spatial points; thus, the spatial model can be ignored
entirely. The example includes neural activities modeling
[10].

For works with arbitrary spatial points, the intensity func-
tion of the spatio-temporal point process can be roughly
separated into two groups: with or without first-order spatio-
temporal separability [2]. This distinction is basedonweather
or not the time and space are statistically modeled indepen-
dently.

The models with first-order spatio-temporal separability
are usually simpler and have previously been used to model
and predict real-world phenomena, such as earthquakes [11,
12], whose intensity function is defined by the epidemic
type aftershock-sequence (ETAS) model. Other earthquake
prediction models such as [13] use the Hawkes model for
temporal modeling and a kernel function of the spatial loca-
tion for spatial modeling. There is also the work [14], which
uses neural network to model the spatial and temporal inten-
sity function.

On the other hand, the assumption of time-space sepa-
rability usually hinders the accuracy of the model, so there
were alsomany types of research with non-separatable inten-
sity functions. A Marked Recurrent Temporal Point Process
model [15] represented the spatial information using a fea-
ture vector and use it as one of the input to the temporal
model. Some models use Gaussian mixtures as represen-
tative points and model the intensity function based on
these points [16]. There are also attempts to use deep learn-
ing for modeling the intensity function [17] by creating
representative points in the spatio-temporal space, assign
intensity to these points, and calculating the final inten-
sity as a neural network function over the representative
points. Other methods include using reinforcement learning
[18].

While adopting the framework of the spatio-temporal
point process is useful to study the occurrence mechanism
and predicting future events, it does not describe the rela-
tions between the events. These existing works focused on
modeling the actual point process, which is a mathemati-
cal model that captures the occurrence of each data point
in the spatio-temporal domain. They are useful for study-
ing the mechanics of each occurrence or for predicting
future events, but does nothing about relationships within
the data.
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Only a few works address the extraction of relations
among events in spatio-temporal point process modeling.
Higuchi et al. proposed a model [19] with the Gaussian
mixtures (the spatial part) and their temporal influences on
each other (the temporal part) to discover latent influences
between each mixture. Zhu et al. [20] proposed a deep learn-
ing model with intensity function for influence between each
spatial region of interest. However, both models derive the
relationships from the latent feature and thus could not be
considered a causality.

2.2 Relationmining

Relation mining is a type of data mining where a relation
between each random variable is to be determined [1]. Target
relations vary depending on data: similarity, dissimilarity,
causality, or co-occurrence, to list a few.

For temporal relation mining (e.g., time-series data), the
definitionof relation is relativelywell-defined, and therewere
many existing well-researched methods to find relationships,
e.g., dynamic time warping [21]. However, when spatial ele-
ments are involved, which is regarded as spatio-temporal
relation mining, the types of possible relations increase. In
the case where no time difference is observed between the
associating entities, there are many works, especially in neu-
roscience. One such work is to identify regions and relations
within the human brain from fMRI data [22].

By contrast, the exploration of relation mining when with
the element of time difference is extremely limited. Ebert-
Uphoff and Deng [23] proposed a framework of constraint-
based structure learning of graphical models, modeling the
temporal parts as time-lagged variables, to identify the rela-
tionship, however as stated in the paper, their introduction of
time lag variable violated the probabilistic independability
assumption of the constraint-based structure, and moreover,
the spatial components are quantized into predefined grids,
unlike our proposed method which works directly with the
spatial data.

Other methods proposed for determining time-lagged
relation included a co-occurrence cluster mining (CCM) [5]
and cluster sequence mining (CSM) [6]. Both algorithms
can extract relation between a spatial cluster in the spatio-
temporal point process data. By using a spatial cluster, a
similar concept is grouped together. CCM is designed to
extract a non-directional occurrence correlation from the
spatio-temporal event sequence by trying to first cluster the
data spatially and then evaluate the co-occurrence coefficient
of each pair of clusters. CSM extends the CCM algorithm by
adding a directional requirement (so that one cluster con-
tains a prior event and another the posterior event) and using
a probability inference of the time difference. However, both
CCM and CSM algorithms were for occurrence correlation,
and not causal relations.

2.3 Time-series causality detection

Detection of actual causality from time-series data is a chal-
lenging problem. For a causality with the relation on the
temporal domain, a well-adopted way of measuring causal-
ity is based on the predictability of one event from another,
which is known as Granger causality [3].

Definition 1 Granger Causality A causes B if it is easier to
predict B using all available data than to predict B with all
available data except A.

When A is said to cause B according to Granger causality
definition,we said thatA granger-cause (g-cause)B. Since in
real data, no one knows the true causality, henceforth we will
use the word causality to refer to Granger causality. Granger
causality has been used especially intensively in the neuro-
science field [24].

There were another similar method called transfer entropy
[25]; however, it reduced to the samemodel for vector autore-
gressive model [26]. The transfer entropy was also further
developed to Causation entropy [27]. Convergent Cross-
Mapping [28] was a similar approach based on predictability,
but use attractor manifolds to model the history and check
whether such model can predict the target time series. These
model was designed to overcome one of the main limita-
tion of Granger causality: it does not perform well when the
causation graph is complex.

Meanwhile, there was the adaption of Granger causality
to work with temporal point process data. Kim et al. [29]
applied the Granger causality to a spike train of neuron acti-
vation to analyze causal relationships between brain neural
activities. This was further extended by Casile et al. [30] by
also taking background activities into account during causal-
ity estimation. We have chosen to use Granger causality in
this work for it is widely used especially in neuroscience and
its simplicity.

2.4 Spatio-temporal clustering

Spatio-temporal clustering [31] is a process of clustering a
spatio-temporal data. They are difference fromnormal spatial
clustering algorithms in a sense that there are needs to han-
dle the temporal parts, either by also considering temporal
proximity such as temporal closeness, movement behav-
ior/trajectory, or parameter changes over time.

On the other hand, out work are trying to detect causality
over time between events within the two spatial clusters. We
do not require temporal similarity within each cluster; hence,
regular spatio-temporal clustering does not fit our objective.
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3 Methodology

3.1 Granger cluster sequence pattern

The proposed Granger cluster sequence mining (G-CSM)
algorithm is based on the original CSM algorithm. It takes an
input of amulti-dimensional event sequence and outputs a list
of cluster sequence patterns. Each event is an n-dimensional
vector, which is considered to be a point in n-dimensional
spatial space.

Definition 2 AMulti-dimensionalEvent Sequence is a sequence
of length N of n-dimensional vectors of real numbers repre-
senting events, each with an associated timestamp, ordered
sequentially:

X = {x(i) ∈ R
n} (|X | = N ) (1)

(X) = 〈t(x(1)), t(x(2)), . . . , t(x(N ))〉
s.t. t(x(1)) ≤ t(x(2)) ≤ · · · ≤ t(x(N )). (2)

The objective of the G-CSM algorithm is to identify a set
of prior event clusters, along with the respective posterior
event clusters, that fit the following conditions:

1. Causality The occurrence of the prior event A must
have a causal relation with the posterior event B accord-
ing to a causality measure.

2. Frequency The more number of pairs of prior events
x(a) ∈ A with respective posterior events x(b) ∈ B, the
better the cluster sequence. The number of pairs of events
in the cluster sequence pattern must be larger than some
hyperparameter Suppmin.

3. Spatial proximity The variance of the event within
each cluster A or B must be low. This was evaluated
using SSW (sum of square within) measure. A and B
were evaluated independently.

Conditions (2) and (3) are the same as the original CSM
algorithm. Thus, cluster sequence pattern can be defined by
the following:

Definition 3 A Cluster Sequence Pattern is a pair of spatial
clusters of the event sequence, called prior cluster and poste-
rior cluster, that satisfy the three conditions outlined above.

SA→B = 〈A = {x(i)|Ai = 1},B = {x(i)|Bi = 1}〉,
(A ∩ B = ∅), and must satisfy the 3 conditions, (3)

where A and B are an assignment vector for the setA and B,
respectively. The set A is a prior cluster, while the set B is a
posterior cluster.

3.2 Algorithm overview

To extract the cluster sequence patterns from the input
event sequence, this paper substantially modified the cluster
sequence mining (CSM) algorithm [6]. Specifically, the time
proximity evaluation of the original CSM was replaced with
a Granger causality-based measure. Pairwise point-process
Granger causality was adapted from [29] to determine the
Granger causality between the prior and posterior event
cluster.

The original CSM algorithm works in 3 steps, as shown
in Fig. 1.

1. Candidates Generation: Potential pattern candidates
were generated from all pairs of clusters as identified by
using the agglomerative hierarchical clustering (AHC)
algorithm over the spatial space X . Only pairs of clus-
ters that contained at least Suppmin (the patternminimum
support) pairs of correspondence eventswere considered.

2. Evaluation: The candidates were evaluated using both
the temporal and spatial proximity measures.

3. Elimination of Inclusive Relation: Eliminate patterns
that have inclusion relation with other patterns, keeping
only the pattern with the best score.

The evaluation of the original CSM was based on spa-
tial proximity (using SSWmeasure) and temporal proximity
(based on the likelihood function of the time interval). The
final evaluation must be higher than Lmin (a minimum
sequence threshold) to be considered for the final output.

In this work, the temporal proximity is modified to use the
Granger causality measure instead of the original Bayesian
inference method. The process is detailed in the next section.

3.3 Pairwise point-process Granger causality

Traditionally, the Granger causality works on time series or
spectral data (data that is in the form of frequency spectrum).
We adopted a temporal point process Granger causality [29]
to evaluate causality of pattern candidates of cluster pair. The
main difference from the original work is that we simplified
the algorithm to work with pairwise event sequence only.

Basically, a Granger causality of the cluster sequence pat-
tern SA→B is whether A g-causes B or not. A cumulative
incidence function (CIF) for the point process of occurrence
of event B can be defined as:

λb(t |Hb(t)) = lim
�→0

Pr [(Nb(t + �) − Nb(t)) = 1]
�

, (4)

where Nb(t) is a counting measure of event b within the
time of (0, t], and Hb(t) is an occurrence history of all event
occurrences up to time t for event b. The probability of the
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Fig. 1 The overview of cluster sequence mining algorithm [6]
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Fig. 2 Simplified view of the GLM model for point-process Granger
causality

event b occurring in a small time window [t, t + �) can be
written as λb(t |Hb(t))�.

Since it is not feasible to consider the entire history, only
the history from time [t − MbW , t] was considered. The
time range was divided into Mb equal windows of lengthW .
The number of occurrences of event q in the time window
[t−mW , t−(m−1)W ] is denoted as Rq,m(t) for q ∈ {A,B},
a prior or posterior event. m = 1, . . . , Mb is the window
number.

To model the predictor for the event occurrence, a gener-
alized linear model (GLM) framework was used tomodel the
CIF. In GLM, the logarithm of the CIF was modeled using
a linear combination of the occurrence history. We currently
assume linearity of the data by setting a small window size;
however, extension to nonlinear model is currently a future
work. The simplified model is shown in Fig. 2. In this case,
the log-CIF is modeled as:

log λb(t |θb, Hb(t)) = θb,0 +
∑

q∈{A,B}

Mb∑

m=1

θb,q,m Rq,m(t), (5)

where θb,0 is a background activity, and θb,q,m is the effect of
Rq,m(t) to the event b. The parameter vector, θb, is defined
as:

θb = {θb,0, θb,a,1, . . . , θb,a,Mb , θb,b,1, . . . , θb,b,Mb } (6)

A point process likelihood function [10] was used to fit the
GLM model. As [10] shows that for the point process, both
the Binomial and Poisson estimation in GLM are equivalent;
this work chose the former.

To make the calculation easier, the entire timeline [0, T ]
was divided into K equal non-overlapping windows, each
with the length ofW . The timewindow k would represent the
time window (tk−1 = (k−1)W , tk = kW ]. To represent this
discretized time, the history Hb(t) is written as Hb[k], and
Rq,m(t) is written as Rq,m[k]. �Nb[k] = Nb[k]− Nb[k − 1]
is the number of event occurrences within the time (tk−1, tk],
and theCIF inEq. (4) iswritten asλb(tk |θb, Hb[k]).W should
be chosen to be very small so that �Nb[k] can only be either
0 or 1.

Thus, the likelihood function for the binomialGLMmodel
is given as:

Lb(θb) =
K∏

k=1

[λb(t |θb, Hb[k])�]�Nb[k]

[1 − λb(t |θb, Hb[k])�]1−�Nb[k] . (7)

As per the Granger causality in Definition 1, event A is
considered to Granger-cause event B if there was a reduc-
tion in the likelihood of predicting the occurrence using the
history of only B instead of using the history of both A and
B. The log-likelihood ratio, �(SA→B), is defined as:

�(SA→B) = log
Lb(θ

a
b )

Lb(θb)
, (8)

where the likelihood Lb(θb)was obtained frommodel fitting
Eq. (5), and the likelihood Lb(θ

a
b ) was obtained using new

CIF with history of A cut:

log λab(t |θab , Ha
b (t)) = θab,0 +

Mb∑

m=1

θab,b,m Rb,m(t). (9)
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The log-likelihood ratio�(SA→B) in Eq. (8) is considered
to be a Granger causality strength for pattern SA→B .

3.4 Significant testing using false discovery rate

The Granger causality strength from Eq. (8) cannot tell us
whether the relation is significant enough to be considered a
causality. Thus, the following null and alternative hypotheses
were formed:

H0 : θ ′ = θab (the limited predictor is better), (10)

H1 : θ ′ = θb (the full predictor is better). (11)

To test H0 against H1, we use a likelihood-ratio test [29,
32]. The likelihood-ratio test evaluated the difference of
deviance �D flowing the χ2 distribution, which is given
by:

�D = −2�(SA→B) ∼ χ2
w, (12)

wherew is the degree of freedom; in this case, the difference
in dimensionality of the two predictors is equal to the history
length of Granger causality Mb.

Because we were performing tens of thousands of signif-
icant testings over the course of the algorithm, we also need
a way of controlling the type-I error rate. We utilized the
false discovery rate (FDR) procedure [33], specifically the
Benjamini–Hochberg procedure, which can be summed up
as:

1. Perform all significant testings and calculate the p-
values.

2. Rank all p-values from low to high. So that p1 ≤ p2 ≤
p3 ≤ · · · ≤ pn

3. Find maximum k such that pk ≤ k
nα, where α is the

acceptable ratio of type-I error.
4. Accept first k testings.

In our algorithm,we appliedFDRover all cluster sequence
pattern candidates. The p value of each candidate was calcu-
lated according to Eq. (12). We calculated the threshold �0

for the Granger causality strength such that:

P(�(SA→B) ≥ �0) = pk, (13)

where pk is the highest p-value accepted by the FDR algo-
rithm above, meaning �0 is the likelihood ratio of the kth

candidate pattern, sorted by the likelihood ratio.

3.5 Evaluation using Granger causality

The evaluation is separated into two parts: temporal and
spatial evaluation. The temporal evaluation is based on the

strength and significance of the Granger causality of the
sequence. We proposed two different methods of temporal
evaluation: threshold strength and scaled strength.

1. Threshold strength. Use the significant threshold as a
cutoff, resulting in the sequence that is deemed to have
significant causality to be evaluated using spatial features
only.

FT H (SA→B) =
{
0 (�(SA→B) < �0)

1 (�(SA→B) ≥ �0)
. (14)

2. Scaled strength. The strength is scaled from 0 to 1

FSC (SA→B) = max

(
0, 1 + �0

�(SA→B)

)
. (15)

The final evaluation score,L, in Eq. (17) use the same for-
mula as the original CSM (with original temporal evaluation
F replaced by proposed Granger causality-based F). G, in
Eq. (16), is a spatial evaluation using SSW, also the same as
the original CSM.

G(A,B) = exp

(
−SSW(A)2 + SSW(B)2

2σ 2

)
, (16)

L(SA→B) = Fi (SA→B)γ · G(A,B)(1−γ ), i ∈ {T H , SC}.
(17)

The candidates were ranked and eliminated in the same
manner as in the original CSM as described in Sect. 3.2.
The entire G-CSM algorithm is also detailed in Algorithm 1.
PatternInclusive(SA→B, SC→D) is true if (A ⊂ C∨C ⊂
A) ∧ (B ⊂ D ∨ D ⊂ B), and ‖X‖ is the cardinality of set
X .

4 Experiments

To validate our algorithm, we performed multiple exper-
iments with synthetic data and semi-real data. First, we
compared the performance between our proposed G-CSM
algorithm with and without FDR, and the original CSM
algorithm. We also tested against various patterns of syn-
thetic data. Second, we analyzed the hyperparameters of our
proposed algorithm. Lastly, we tested the algorithm against
semi-real data. To the best of our knowledge, no othermethod
can be compared other than CSM as discussed in Sect. 2.

4.1 Data generation

In many of our experiments, synthetic data with embedded
true relation and noise were used. The synthetic data con-
tain an embedded relation, which is a pair of spatial clusters
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Algorithm 1 G-CSM algorithm
Input List of event X and timestamps Xt
Output List of cluster sequence patterns

1: # Step 1: Candidate Generation
2: Perform AHC on X
3: C ← ∅ � Set of candidates
4: for all A ∈ AHC(X) do
5: for all B ∈ AHC(X) do
6: if A = B then
7: Continue.
8: end if
9: T ← min(‖A‖, ‖B‖)
10: if T ≥ Suppmin then
11: Append 〈A, B〉 to C
12: end if
13: end for
14: end for
15: # Step 2: Evaluation
16: D ← ∅ � Set of preliminary sequence patterns
17: for SA→B ∈ C do
18: L = L(SA→B) � Eq. (17)
19: if L ≥ Lmin then
20: Append SA→B to D
21: end if
22: end for
23: # Step 3: Elimination of Inclusive Relation
24: Sort D by evaluation score, high to low.
25: for i from 1 to ‖D‖ do
26: for j from i + 1 to ‖D‖ do
27: if PatternInclusive(D[i], D[j]) then
28: Remove D[ j] from D
29: end if
30: end for
31: end for
32: return D

that has the time interval between the corresponding event in
prior and posterior event clusters following an exponential
distribution. The synthetic data also have noise added. This
process is similar to the synthetic data used in the CSM paper
[6].

The embedded relation is generated as:

1. Generate N data points from a normal distribution for
two clusters: x(i) ∈ X ∼ N (mA, 
A) and y(i) ∈ Y ∼
N (mB, 
B).

2. For each pair of 〈x(i), y(i)〉, generate a t (i) ∼ Exp(λ).
3. Set tGap = ((t1− t0)−∑

t (i))/(N −1), the gap between
each event. The input parameter t0, t1, and λ should be
set such that t (i) � tGap.

4. Each pair of 〈x(i), y(i)〉 are allocated a timestamp such
that t(x(i)) = t0 + (i − 1)tGap +∑i−1

j=0 t
( j) and t(y(i)) =

t0 + (i − 1)tGap + ∑i
j=0 t

( j).

The noise is generated as a uniform spatial noise uniformly
over the timeline:

1. Generate N data points from a uniform distribution:
x(i) ∼ U[a,b].

2. For an event x(i), set t(x(i)) ∼ U[t0, t1]

In this experiment, the embedded relation was generated
using the parameters N = 300, mA = (−2, 0), 
A =
(0.5, 0.5), mB = (2, 0), 
B = (0.5, 0.5), t0 = 0, and
t1 = 100, 000. Noises were generated using the parameters:
a = (−4,−4), b = (4, 4), t0 = 0, t1 = 100, 000. This cre-
ated a single cluster sequence pattern,with noise directly over
the event cluster, to test the basic accuracy of the algorithm.
The number of noise, Nnoise, is varied by each experiment.

The example spatial view of the data with Nnoise = 1000
and the histogram of interval between each relation with λ =
2 (average interval = 0.5) are shown in Fig. 3.

4.2 Evaluationmeasure

We measured the precision, recall, and F-score of the iden-
tified prior and posterior clusters, and of the relation itself.
The equation for these scores is as follows:

Prec(C) = ‖C ∩ X‖
‖C‖ , (18)

Rec(C) = ‖C ∩ X‖
N

, (19)

where Prec(C) and Rec(C) are the precision and recall score
of the clusterC given the ground-truth cluster X . ‖·‖ denoted
the cardinal of the event set. F-scores were calculated as the
harmonic mean between the precision and recall score.

We also define relation-based precision and recall as fol-
lows:

Prec(SA→B) = ‖{i |x(i) ∈ A ∧ y(i) ∈ B}‖
0.5 × (‖A‖ + ‖B‖) , (20)

Rec(SA→B) = ‖{i |x(i) ∈ A ∧ y(i) ∈ B}‖
N

, (21)

where x(i) ∈ X and y(i) ∈ Y are ground-truth prior and
posterior event cluster, with x(i) and y(i) being the associated
event pair as generated in Sect. 4.1, and N is the number of
event pairs in the ground-truth relations. The precision and
recall score of each relation was calculated using the number
of pairs of events that were actually related to each other in
that relation.

We also counted how many relations were outputted. The
number of relations in our generated data is one. However,
the algorithm may output more than one relation, whether
because it detected more than one relation in the input, or
because multiple subsets of the same relation were detected.
In such cases, the prior clusters of all relations were merged,
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Fig. 3 Example of the input
data

Table 1 AIC value at different history lengths

History
Noise 2 3 5 8 15

100 2928 2856 2781 2760 2771

500 3333 3269 3206 3191 3202

1000 3722 3675 3632 3625 3637

2000 4644 4621 4603 4603 4616

3000 5344 5333 5326 5330 5344

Bold is the lowest

and the posterior clusters were also similarly merged for the
purpose of evaluation only.

4.3 Performance validation

In this section, we compared the accuracy of the original
CSM algorithm with our proposed G-CSM algorithm with
and without FDR.

4.3.1 Parameter settings

The hyperparameters were set with σ = 0.5, γ = 0.5,
Lmin = 0.8. These parameters were set to balance the effect
of the spatial and temporal scores.

For the Granger causality, we set the window sizeW = 1.
The history length, Mb, was set using Akaike information
criteria (AIC) [34] on the Granger causality model according
to Table 1.α for significant testing is set to 0.05, whichmeans
we accepted 5% error rate for causality detection.

4.3.2 Result with varying noise level

First, we tested the algorithms with various amount of noise
(Nnoise) and λ = 0.5. The G-CSM using FT H (Eq. (14)) is
denoted with FDR-TH, while the one using FSC (Eq. (15))
is denoted with FDR-SC. The result is shown in Table 2. All
results were an average of 20 runs.

The example of relations extracted by each algorithm is
shown in Fig. 4. The G-CSM without FDR and G-CSM with
FDR-SC result are similar, but G-CSM with FDR-SC result
has a slightly bigger posterior cluster, which better matches
the generated data. The G-CSM with FDR-TH has a lower
precision cluster and sometimes identified an erroneous rela-
tion as shown.

Meanwhile, the original CSM failed to extract any rela-
tions at all even with noise = 100. We believe the main
reason is that the original CSM tried to match each event
pair together, so by having noise without matching pair in
the spatial cluster, it failed to detect anymeaningful relations.
In contrast, G-CSM is using window-based event counting
in the time-space; therefore, G-CSM is more robust against
noise in the time domain than CSM.

In Table 2, the FDR-TH algorithm is also uniformly bad,
havingworse results than theG-CSMwithout FDRandFDR-
SC in almost all measurements. We believe that because the
temporal score becomes either 0 or 1, the score relies entirely
on the spatial evaluation. The spatial evaluation prefers com-
pact clusters; thus, FDR-THhas high precision but low recall.
FDR-TH also has a tendency to detect erroneous relations,
especially at a higher noise level.

G-CSMwith FDR-SC has better recall score than G-CSM
without FDR, especially as the noise increased. This result
shows the robustness ofG-CSMwith FDR-SC against spatial
noise. G-CSM with FDR-SC also maintains the relational
precision score better than G-CSM without FDR.

Note that for all algorithms, the number of extracted rela-
tion (Cnt. in Table 2) also increased along with the noise.
This is because the algorithm finds multiple relations that
are a subset of the ground-truth relation, resulting in more
coverage of the ground-truth data. In turn, this increases the
recall score.

4.3.3 Analysis of the spatial and temporal score

We plotted the temporal evaluation score against the spatial
evaluation score of all candidates as a scatter plot in Fig. 5.We
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Table 2 CSM and G-CSM at
various noise levels

Algo. P (1) R (1) F (1) P (2) R (2) F (2) P (R) R (R) F (R) Cnt.

Noise = 100

G-CSM 0.987 0.540 0.693 0.987 0.548 0.701 0.534 0.297 0.381 1.050

FDR-TH 0.987 0.355 0.512 0.989 0.327 0.485 0.324 0.116 0.169 1.250

FDR-SC 0.989 0.495 0.654 0.988 0.492 0.649 0.473 0.242 0.319 1.050

Noise = 500

G-CSM 0.940 0.556 0.695 0.936 0.537 0.678 0.510 0.301 0.377 1.100

FDR-TH 0.921 0.389 0.507 0.912 0.362 0.504 0.318 0.143 0.187 1.450

FDR-SC 0.941 0.536 0.678 0.937 0.513 0.658 0.490 0.277 0.352 1.100

Noise = 1000

G-CSM 0.885 0.551 0.674 0.888 0.549 0.673 0.484 0.305 0.373 1.100

FDR-TH 0.771 0.428 0.519 0.772 0.416 0.503 0.318 0.192 0.227 1.900

FDR-SC 0.883 0.560 0.681 0.887 0.555 0.678 0.491 0.314 0.382 1.100

Noise = 2000

G-CSM 0.783 0.550 0.637 0.791 0.571 0.655 0.436 0.320 0.365 1.300

FDR-TH 0.662 0.476 0.516 0.675 0.473 0.522 0.309 0.245 0.257 2.450

FDR-SC 0.784 0.560 0.643 0.788 0.604 0.679 0.449 0.341 0.385 1.300

Noise = 3000

G-CSM 0.679 0.595 0.623 0.705 0.609 0.643 0.407 0.366 0.381 1.850

FDR-TH 0.500 0.497 0.467 0.530 0.634 0.542 0.272 0.322 0.281 4.050

FDR-SC 0.683 0.611 0.635 0.701 0.631 0.657 0.423 0.389 0.402 1.700

P = Precision, R = Recall, F = F-score, (1) = Prior cluster, (2) = Posterior cluster, (R) = Relation, Cnt. =
Number of relations identified. Bold indicated the best result

Fig. 4 Example of relation(s) extracted by each algorithm with noise = 3000. CSM cannot identify any relation

definepossibly correct relation as a relation that the both prior
and posterior event clusters is a subset of the ground-truth
prior/posterior event clusters, excluding noise. The black and
green dots indicated possibly correct relation, shaded by the
F-score of the relation fromblack (lowF-score) to green (high
F-score). The red dots indicated wrong relations. The scores
of the orange mark, which is the relation with the highest
evaluation score, are shown in Table 3.

Figure5 indicates that FDR-SC algorithm helped to clean
up wrong relations and possibly correct relations with low
F-scores, while still keeping the possibly correct relations
with high F-scores intact. This results in a wider range of
the temporal score over the pattern candidates. As shown in
Fig. 5, the FDR-SC version has a usable range from around

0.6 to 1.0, while the without FDR is around 0.7 to 1.0. This
can also be seen in Table 3, as the relation with the highest
evaluation score also has higher recall and F-score for the
G-CSM with FDR-SC compared to G-CSM without FDR.

Therefore, the spatial score ended up having less effect
on the final evaluation score. With the noisy data tested
here—the higher the noise, the more noise were included
in the candidate clusters—having less influence from the
spatial evaluation allow the clusters to be bigger, thus a
higher recall score. This can also be seen in the table,
where FDR-SC has higher recall score than the one with-
out FDR.

123



284 International Journal of Data Science and Analytics (2024) 17:275–288

Fig. 5 Scatter plot of the
temporal and spatial score. Red
indicates the wrong relationship.
Black to green indicated
possibly correct relations,
shaded by F-score. The blue
mark is the relation with the
highest F-score, with orange
being the highest evaluation
score. Noise = 3000, λ = 2. Grey
lines represented positions with
equal final evaluation scores
(color figure online)

Table 3 Evaluation scores of
the relation with the highest
evaluation score from G-CSM

Relation Score
Algo. Prec. Rec. F-Score Temporal1 Spatial

G-CSM w/o FDR 0.334 0.243 0.282 0.952 0.954

G-CSM w/ FDR-SC 0.331 0.270 0.298 0.942 0.947

1The temporal evaluation score of G-CSM without FDR and with FDR-SC are calculated differently and
cannot be compared directly

4.4 Parameter analysis

4.4.1 Minimum sequence thresholdLmin

To analyze the effect of the minimum sequence threshold
Lmin, we plotted the histogram of the final evaluation score
of all valid cluster sequence patterns, and whether they are
considered to be correct or wrong relations. The data used
in this experiment were Noise = 100 and λ = 2. The other
hyperparameters were the same as in Sect. 4.3.1.

The resulting histogram is shown in Fig. 6, and it is clear
that G-CSM has very good separation between the evalua-
tion score for correct and wrong relations, unlike the original
CSM. We can conclude that G-CSM is less sensitive to the
Lmin parameter. Note that Lmin = 0.8 and all the generated
patterns by the CSM algorithm have scores less than 0.8, so
CSM cannot output any patterns. According to Fig. 6, the
detected relations have final evaluation score of 0.7 or less.

4.4.2 Significant threshold˛

Wealso investigatedhowchanging theα significant threshold
affected the result. Here, we used the same data as in the first
experiment (Noise = 3000, λ = 2) with different values of α.
The result is shown in Table 4. TheG-CSMuses the specified
alpha value directly to calculate the threshold in Eq. (13).

With different significant threshold settings from 0.001
(0.1%) to 0.2 (20%), G-CSM with FDR-SC can maintain
the both the cluster and relation F-score better than the other
algorithms. The result shows that G-CSM with FDR-SC is
less sensitive to the alpha setting and also has the number of

extracted relations (Cnt.) close to one, which is better in this
case.

4.5 Other type of patterns

The experiment in the previous section uses a single pair of
events cluster. In this section, we showed that our algorithm
also worked with other types of data as well.

We tested four different types of patterns as shown in
Fig. 7. First, two relations were generated using the method
described in Sect. 4.1, with Noise = 1000 and λ = 2, shown in
Fig. 7a. The second data also have two relations, but the prior
event locations were shared between two relations, shown in
Fig. 7c. Third, the posterior cluster of one relation shared the
location with the prior cluster of the second relation, shown
in Fig7e. And fourth, the variance of the prior and the pos-
terior cluster were varied, shown in Fig. 7g. The timestamps
of events are shifted by a uniform random number between
0 and 10,000, different for each relation.

The hyperparameters were the same as in Sect. 4.3.1. The
extracted relations are shown in Fig. 7. The proposedG-CSM
with FDR-SC algorithm can correctly extract relations in all
cases.

4.6 Semi-real data

In this section, we experimented using semi-real-world data.
That is, real-world data are used as the spatial component,
while the temporal component utilized the same method as
the synthetic generation.
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Fig. 6 Histogram of L, CSM
versus G-CSM. Noise = 100, λ
= 2

Table 4 CSM and G-CSM at
various alpha settings

Algo. P (1) R (1) F (1) P (2) R (2) F (2) P (R) R (R) F (R) Cnt.

alpha = 0.001

G-CSM 0.684 0.632 0.650 0.696 0.627 0.652 0.428 0.399 0.410 1.400

FDR-TH 0.657 0.499 0.537 0.679 0.555 0.594 0.329 0.279 0.295 2.950

FDR-SC 0.695 0.603 0.642 0.704 0.620 0.654 0.422 0.373 0.395 1.300

alpha = 0.005

G-CSM 0.683 0.633 0.650 0.700 0.632 0.659 0.431 0.401 0.413 1.550

FDR-TH 0.663 0.492 0.539 0.676 0.552 0.592 0.330 0.277 0.295 3.000

FDR-SC 0.685 0.625 0.645 0.698 0.632 0.657 0.428 0.398 0.410 1.450

alpha = 0.01

G-CSM 0.685 0.624 0.645 0.700 0.624 0.655 0.428 0.393 0.407 1.600

FDR-TH 0.606 0.509 0.528 0.612 0.545 0.563 0.304 0.274 0.283 3.250

FDR-SC 0.685 0.627 0.647 0.696 0.641 0.662 0.431 0.404 0.414 1.500

alpha = 0.05

G-CSM 0.682 0.611 0.635 0.703 0.625 0.654 0.422 0.386 0.400 1.700

FDR-TH 0.452 0.519 0.457 0.462 0.560 0.481 0.234 0.284 0.245 4.050

FDR-SC 0.685 0.625 0.646 0.700 0.630 0.658 0.428 0.394 0.408 1.600

alpha = 0.1

G-CSM 0.675 0.614 0.629 0.702 0.613 0.646 0.413 0.380 0.391 1.850

FDR-TH 0.375 0.612 0.426 0.400 0.639 0.455 0.222 0.392 0.264 4.950

FDR-SC 0.682 0.619 0.640 0.698 0.639 0.662 0.428 0.398 0.410 1.700

alpha = 0.2

G-CSM 0.677 0.604 0.624 0.697 0.603 0.636 0.404 0.368 0.379 1.950

FDR-TH 0.251 0.649 0.348 0.296 0.664 0.389 0.169 0.434 0.235 7.050

FDR-SC 0.682 0.611 0.635 0.701 0.629 0.657 0.423 0.388 0.401 1.700

P = Precision, R = Recall, F = F-score, (1) = Prior cluster, (2) = Posterior cluster, (R) = Relation, Cnt. =
Number of relations identified. Bold indicated the best result

We use the test data of UCI Machine Learning Opti-
cal Recognition of Handwritten Digits Data Set [35] as
the spatial data. The data contain 1797 samples divided
into 10 class. Each class has approximately 180 samples.
The data were preprocessed to normalize the mean and
variance of each dimension (z-mean normalization). The
input data with 64 dimensions were reduced to 10 dimen-
sions using neighborhood components analysis [36]. We
randomly selected 2 pairs of digits as the embedded rela-

tions, while the other 6 digits data were used as noise
with uniform distribution over the temporal component. The
interval between each embedded event pair of both rela-
tions followed exponential distribution with λ = 2. The
parameters were the same as the previous experiment in
Sect. 4.3.

The result is shown in Table 5. In this data set, as
there was no extra random noise added, even the orig-
inal CSM, which is quite weak to spatial noise, can
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Fig. 7 Generated data and
extracted relations using
G-CSM with FDR-SC for other
types of pattern

extract some relations, but it still performed worse than the
other algorithms. FDR-SC performed the best in all our
evaluation metrics. Since the spatial dimension is reason-
ably well-separated and no random noise was added, the
precision score was very high as the algorithm can eas-
ily extract the proper cluster. The recall score is limited
by the spatial evaluation score, which prefers a compact

cluster over a larger cluster. An adjustment to the hyper-
parameters of the evaluation function may be needed to
get a higher recall score, but otherwise, both the prior
and posterior cluster of the extracted relations were the
subset of those of the ground-truth relation. The scores
on the relation evaluation are also low for the similar
reason.
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Table 5 CSM and G-CSM
result from digits dataset

Algo. P (1) R (1) F (1) P (2) R (2) F (2) P (R) R (R) F (R) Cnt.

CSM 0.349 0.063 0.106 0.350 0.173 0.231 0.185 0.063 0.094 0.350

G-CSM 0.997 0.519 0.675 1.000 0.487 0.650 0.505 0.255 0.338 2.000

FDR-TH 0.997 0.495 0.658 0.989 0.457 0.622 0.476 0.228 0.308 2.050

FDR-SC 0.997 0.532 0.687 1.000 0.497 0.658 0.517 0.267 0.351 2.000

P = Precision, R = Recall, F = F-score, (1) = Prior cluster, (2) = Posterior cluster, (R) = Relation, Cnt. =
Number of relations identified. Bold indicated the best result

4.7 Complexity analysis of the G-CSM algorithm

The original CSM algorithm has a run-time complexity of
O(N 2 log N ) in the average case, where N is the number
of data points. Within the algorithm, the time proximity of
temporal evaluation is O(|A| + |B|) where |A| and |B| are
the number of events in the prior and posterior cluster of each
pattern, respectively.

For our proposed G-CSM algorithm, the time proxim-
ity algorithm uses GLM model fitting to calculate Granger
causality strength. GLMmodel-fitting has runtime complex-
ity ofO(p3+Rp2)where p is the number of predictors and R
is the number of samples. In our case, p = 2×Mi +1, which
is a constant, and R is at most (2Mi + 1) × (|A| + |B|) ∼
(|A|+ |B|); thus, the GLMmodel fitting takesO(|A|+ |B|),
which is the same as original CSM. The FDRprocedure takes
O(N 2 log N ) in the worst case. Thus, G-CSM also has the
runtime complexity ofO(N 2 log N ), which is also the same
as the original CSM.

4.8 Limitation of the G-CSM algorithm

The G-CSM algorithm inherited all the limitations of the
original Granger causality. The major point is that though
Granger causality is one of the accepted methods to detect
causality, we still cannot guarantee whether it is an actual
causality or not, just that it is causality under Granger’s def-
inition.

Since Granger measured the causality based on pre-
dictability, it is also limited by the predictor. In the case of
G-CSM, the limitation of GLMmodels used as a predictor is
the same as the traditional multivariate vector autoregressive
(MVAR) model, mainly: linearity, stationarity, and depen-
dency on observed variables. Moreover, since we were doing
pairwise causality, more data from the environment might be
missed, such as when two events are the cause another event.

5 Conclusion

We proposed an extended version of the CSM algorithmwith
Granger causality called the G-CSM algorithm. The exper-
iments with the synthetic data and semi-real data show that

the method could identify correct relations, even in a noisy
environment.

The proposed G-CSM algorithm is much better than the
original CSM algorithm in almost all cases. G-CSMhas been
shown that it is also much less sensitive to the hyperparame-
ters than the original CSM. The significant testing using FDR
method can improve the accuracy, especiallywithmore noisy
data, and also even less sensitive to the hyperparameters.

The next steps of this research include an experiment
with more semi-real data or actual real-world data, includ-
ing earthquake data and climate data. Discovering interesting
causal relations in these real-world data can lead to a new
insight for understanding and predicting natural phenomena.
There is also a need to extend the current causality detection
beyond the linearity assumption we used in this work, pos-
sibly by using nonlinear Granger causality techniques [37].
Additionally, a different distribution of the interval between
the event pairs other than exponential distributions may also
be experimented.
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37. Rosoł,M.,Młyńczak,M., Cybulski, G.: Granger causality test with
nonlinear neural-network-based methods: Python package and
simulation study. Comput. Methods Progr. Biomed. 216, 106669
(2022)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://archive.ics.uci.edu/ml

	Granger causality-based cluster sequence mining for spatio-temporal causal relation mining
	Abstract
	1 Introduction
	2 Literature review
	2.1 Spatio-temporal point process
	2.2 Relation mining
	2.3 Time-series causality detection
	2.4 Spatio-temporal clustering

	3 Methodology
	3.1 Granger cluster sequence pattern
	3.2 Algorithm overview
	3.3 Pairwise point-process Granger causality
	3.4 Significant testing using false discovery rate
	3.5 Evaluation using Granger causality

	4 Experiments
	4.1 Data generation
	4.2 Evaluation measure
	4.3 Performance validation
	4.3.1 Parameter settings
	4.3.2 Result with varying noise level
	4.3.3 Analysis of the spatial and temporal score

	4.4 Parameter analysis
	4.4.1 Minimum sequence threshold mathcalLmin
	4.4.2 Significant threshold α

	4.5 Other type of patterns
	4.6 Semi-real data
	4.7 Complexity analysis of the G-CSM algorithm
	4.8 Limitation of the G-CSM algorithm

	5 Conclusion
	References




