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Abstract
Domain-driven data mining of health care data poses unique challenges. The aim of this paper is to explore the advantages
and the challenges of a ‘domain-led approach’ versus a data-driven approach to a k-means clustering experiment. For the
purpose of this experiment, clinical experts in heart failure selected variables to be used during the k-means clustering,
whilst during the ‘data-driven approach’ feature selection was performed by applying principal component analysis to the
multidimensional dataset. Six out of seven features selected by physicians were amongst 26 features that contributed most
to the significant principal components within the k-means algorithm. The data-driven approach showed advantage over the
domain-led approach for feature selection by removing the risk of bias that can be introduced by domain experts. Whilst
the ‘domain-led approach’ may potentially prohibit knowledge discovery that can be hidden behind variables not routinely
taken into consideration as clinically important features, the domain knowledge played an important role at the interpretation
stage of the clustering experiment providing insight into the context and preventing far fetched conclusions. The “data-driven
approach” was accurate in identifying clusters with distinct features at the physiological level. To promote the domain-led
data mining approach, as a result of this experiment we developed a practical checklist guiding how to enable the integration
of the domain knowledge into the data mining project.
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1 Introduction

In recent years, there has been a growing interest in the
application of advanced analytics and machine learning to
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healthcare data. This growing interest has been sparked
by opportunities to analyse anonymised health care data
and the advancement in the contemporary hardware and
software technology [1]. The benefits of healthcare data ana-
lytics cannot be underestimated. The access to electronic
health records (EHR), population-based registries, disease
registries and data from clinical trials can lead to knowl-
edge discovery once the clinical problem is well-defined
and the target dataset is analysed in collaboration with clin-
ical teams. The domain knowledge and clinical experience
enables researchers to identify knowledge gaps and formu-
late clinically important research questions which advanced
analytics can address during the data science process. Analo-
gous to other fields, the domain knowledge plays a role with
a varying degree at every stage of the data science project [2].

2 Aims and objectives

The aim of this paper is firstly to explore how domain knowl-
edge influences the data mining process during a clustering

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s41060-022-00346-9&domain=pdf
http://orcid.org/0000-0002-3603-5999
http://orcid.org/0000-0002-1078-2232
http://orcid.org/0000-0002-5908-6334
http://orcid.org/0000-0002-3865-0792
http://orcid.org/0000-0002-5371-2242
http://orcid.org/0000-0003-0443-4730
http://orcid.org/0000-0002-1734-0736


50 International Journal of Data Science and Analytics (2023) 15:49–66

experiment. We chose clustering analysis because this is a
popular unsupervisedMLusedpreviously to definenew ‘sub-
groups’ of patients with heart failure (HF) [3] [4] [5] [6].
Research has demonstrated that ML can result in improved
phenotyping of patients with HF, leading to discovery of new
clinical taxonomies [7] and the design of clinical trials testing
new treatments combinations that were never used before in
specific clusters of patients with HF [8].

Secondly, we will attempt to address the gap which exists
between academic data scientists and health practitioners by
introducing a framework to enable the integration of domain
knowledge into the clustering analysis process. The main
motivation to close this gap is to promote effective dialogue
between domain experts and theoretical data scientists which
will generate mutual gains. The prospect of discovering new
patterns that could lead to the development of practical solu-
tions for the medical industry should meet the needs of the
domain experts, whereas the opportunity for the publication
of the detailed report includingdataminingprocess and trans-
lation of the experimental work into industrymay bring gains
to academics. The interaction and effective dialogue between
academia and medical industry starts with the mutual respect
of the contributions of both parties.

3 Background

Over a decade ago, Cao et al. (2006) [9] identified the differ-
ences between data-driven data mining and domain-led data
mining process leading to knowledge discovery. The most
striking differences in the approaches to data mining were
seen between academia and business [10]. According to Cao
et al. [10], traditional data-driven data mining is focused on
developing innovative approaches with the algorithm at the
centre. This approach lets the data create research innova-
tion and perhaps novel algorithms,whilst domain-driven data
mining includes humans as a central part of the process and
brings solutions to real-world business problems. Following
this observation, there was a justified call from the organisers
and participants of the 2007 ACM SIKGKDD International
Workshop on Domain Driven Data Mining for a paradigm
shift from “interesting hidden pattern mining” to “actionable
knowledge discovery in varying data mining domains” [11].

A similar pattern of discrepancies in the goals of data min-
ing performed by technologists versus clinicians has been
presented by Jasinska et.al. (2021) in the extensive system-
atic literature of studies using ML on heart failure data sets
[12]. There was observed tendency to overclaim the useful-
ness and applicability of the predictive models to real-world
clinical problems, as well as there seem to be an ’unwritten’
race in achieving better than previous authors AUC of the
designed model. This systematic literature review provided
examples of high-quality data science projects co-authored

by domain experts and data scientists resulting in sound pre-
dictive models and novel clinical phenotypes [8] [13] [14]
[15] [16] [17] [18] [19]. There were studies, where authors
affiliated purely with information technology engaged with
clinicians (domain experts) at various stages of the data min-
ing process [20] [21] [22]. Inmost of those studies, clinicians
were involved either at the stage of data extraction when
the candidate features from data sets were being assessed as
suitable for consideration in the prediction model or at inter-
pretation of the results stage [22] [23] [19]. For example, Sun
et al. (2012) [22] performed a series of interviews with car-
diologists to search for clinically meaningful additional risk
factors to be used in their predictive model. Saqlain at al.
[20] asked cardiac specialists to make sure that chosen fea-
tures were sufficient to get valuable results for the model and
claimed that by that approach theywere providedwith a deep
knowledge of cardiology and it helped them to understand
the domain of the problem.

However, one key result of this review showed that a
quarter of included papers (22 papers out of 81) were
authored exclusively by researchers affiliated with either
computer science, IT, business administration, translational
research, health informatics, bio-medical informatics, quan-
titative health sciences, statistics or a related area [12].
Moreover, none of those 22 papers mentioned the incorpo-
ration of domain knowledge in the design and execution of
the data science project [12]. This is a concerning pattern,
illustrating that in the pure data-driven approach to data min-
ing there was very limited (if any) integration of the domain
knowledge into the data science process.

Undoubtedly, in the era of BigData and digital transforma-
tion, more than ever before, there is a need for the paradigm
shift from the data-driven data mining to domain-driven
knowledge discovery, particularly in the field of healthcare
data.

4 Structure

In this paper, we explore a domain-led approach and a
data-driven approach to performing k-means clustering. We
compare the insights deducted from both approaches. Dur-
ing the domain-led approach, the variables (features) used
for clustering were agreed and selected by clinical experts in
heart failure management. These clinicians are co-authors of
this paper (AJP, DM, PC, R. Brisk). The justification for the
choice of feature is described in theMethods section. During
the second approach, referred to as the data-driven approach,
the variables (features) for clustering were determined using
a ‘pure’ data-driven feature extraction process using princi-
pal component analysis (PCA) to reduce the dimensionality
of the dataset whilst maintaining a degree of variance in the
dataset. In the Methods section, we describe two approaches
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to the feature selection stage. In Sect. 5.3, we describe the
methods that were used in the domain-led feature selection
and clustering experiment, whilst in the Sect. 5.4, we present
the data-driven approach to feature extraction and clustering
analysis. The Results section is divided into two subsections
to provide the results from the two approaches. In the Discus-
sion section, we synthesise the results of both approaches and
present the advantages and disadvantages of data-driven and
domain-led clustering analysis. We present flowcharts illus-
trating both of the approaches used in this experiment. We
go beyond the synthesis of the results from both approaches
and we propose a practical checklist that could be used by
data scientists to ensure that domain knowledge is embedded
in the data mining project focused on healthcare data.

5 Methods

5.1 Materials

For the purpose of this experiment, we chose an open access
heart failure dataset available from the Physionet data repos-
itory curated by Zhang et al. (2021) [24] [23]. This dataset
was collected with the goal of developing a predictive model
for classifying emergency readmission of patients with heart
failure using data from electronic health records (EHR). The
data were collected during the time period of 2016–2019 in
the Sichuan Hospital in China. This dataset contains 2008
instances (i.e. patient cases) and 168 variables (i.e. demo-
graphic and clinical features) describing the characteristics
of patients with HF. Curators of the dataset, when identifying
patients with HF, used the definition of the HF according to
the European Society of Cardiology (ESC) [25], i.e. the pres-
ence of symptoms and/or signs of HF and the presence of (1)
raised Brain Natriuretic Peptide (BNP) >35 pg/mL or NT–
proBNP >125 pg/mL or (2) objective evidence of underlying
functional or structural cardiac abnormalities evidenced by
(3) stress test or (4) invasively measured elevated left ventri-
cle (LV) filling pressure.

The data analysis in this paper was performed using
MATLAB (version 2021b), with functions included in the
Statistics and Machine Learning Toolbox [26].

5.2 Exploratory data analysis and data
pre-processing

There are several limitations of the dataset [23] [24] used for
this experiment. The dataset does not offer time series data
over the hospitalisation period.Whilst there are 2008 patients
in the dataset with 167 variables, there are several miss-
ing fields for variables that are considered important from
a clinical domain perspective. As shown in Table 1 where
we provide the percentage of missing values for selected

Table 1 Number of missing instances for each variable in the dataset.
% out of 2008 instances. LVEF—left ventricle ejection fraction,
LVEDD—left ventricle end diastolic dimension, BNP—brain natri-
uretic peptide, GFR—glomerular filtration rate, CK—creatinine kinase

Variable Missing % Missing value

LVEF 1373 68%

LVEDD 679 33.80%

BNP 35 1.70%

Troponin 79 3.90%

Coagulation (7 variables) 34 1.70%

Haemoglobin 28 1.40%

Lipid Profile (4 variables) 198 10%

Total protein 102 5%

Electrolytes (5 variables) 11 0.50%

Creatinine/Urea 23 1%

GFR 63 3%

Lactate 241 12%

CK 241 12%

features, only as little as 32% of patients included in this
study, have data about their left ventricular ejection fraction
(LVEF). LVEF is an important characteristic that is provided
by an echocardiogram, anultrasoundheart scan (ECHO).The
severity of the HF is defined by the range of the LVEF. Cur-
rent international guideliness distinguish three types of HF.
This includes, 1) HF with reduced ejection fraction (HFrEF)
for LVEF <40%, 2) HF with mildly reduced ejection frac-
tion (HFmrEF) with LVEF between 41–49%), and HF with
preserved ejection fraction (HFpEF) with LVEF >50% [27].
LVEF range is used to categorise patients into the type of
HF as well as to prescribe appropriate HF treatment. LVEF
cut-off points are also used in selecting patients to partici-
pate in clinical trials. For the above reasons, we decided to
perform the clustering analysis using only the data that con-
tains patient records with known LVEF value and this was
available for 635 patients (635 instances in the dataset).

Thedataset provides information about the re-hospitalisation
due to HF and reports patient mortality. This dataset consists
of 50 categorical and 117 numerical variables. Out of 117
numerical variables, only 68 variables had less than 10%
missing values for pre-selected patients with known LVEF.
Onlynumerical variableswere used in the clustering analysis,
because the k-means algorithm performs best on numerical
data.

To assess data distributions, we used visual and statistical
methods. Each variable was plotted on a quantile–quantile
plot (qqplot), which displays the quantiles of the sample data
versus the theoretical quantiles from a normal distribution
[28]. On visual inspection, it was clear that the numeri-
cal variables did not follow a normal distribution in this
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dataset. In addition to visual inspection, we used a one-
sample Kolmogorov–Smirnov test (p-value < 0.05) to check
if the data were normally distributed [29]. The null hypoth-
esis of the normal distribution of the data was rejected for
each variable.

Following the findings of the exploratory data analysis
(EDA), in the pre-processing stage, we addressed missing
values in the dataset by imputing the median value for 10%
ofmissing data points. Due to not normally distributed nature
of variables, we used the single imputation technique with
median value for missing 10% values of each variable. We
normalised the dataset by scaling all feature values to the
range 0:1.We did not remove outliers from the dataset as this
could potentially lead to the loss of important information
about groupings in the data. The final dataset consisted of
635 instances with 68 variables.

5.3 Experiment 1: Domain-led approach to feature
selection

The main difference between domain-led approach and the
data-driven approach is the feature selection stage. In order
to agree on variables to be passed into the k-means cluster-
ing algorithm, the clinical co-authors reviewed the variables
and decided upon using the following features: “brain natri-
uretic peptide (BNP)”, “haemoglobin”, “mean corpuscular
volume” (MCV), “creatinine enzymatic method”, “sodium”,
“albumin” and “left ventricle ejection fraction (LVEF)”. The
decision to select these particular features was driven by clin-
ical experience and knowledge of the outcomes of previous
randomised controlled trials (RCTs) as well as observational
studies in HF [30] [31]. Based on experience, those variables
accurately characterise the severity of heart failure. More-
over, it has been shown that these features carry a prognostic
value in the course of HFwith regard to diagnosis, prognosis,
quality of life and hospitalisation.

From the available variables, the clinicians selected brain
natriuretic peptide (BNP) as the current standard for diag-
nosis and monitoring of HF. BNP levels correlate with the
New York Heart Association (NYHA) classification of HF.
BNP is a test of high specificity and sensitivity. BNP levels
greater than 100 pg/mL have a specificity greater than 95%
and a sensitivity greater than 98% when comparing patients
without HF to all patients with HF [27]. It was a strong argu-
ment to choose BNP as one of the features for the clustering
experiment.

Haemoglobin was chosen as indicator of anaemia in gen-
eral and MCV as indicator of iron deficiency anaemia. It
is known that up to 50% of patients with HF suffer from
iron deficiency [32]. Using the variables “haemoglobin” and
“mean corpuscular volume” we could potentially capture
the severity of iron deficiency anaemia during the cluster-
ing experiment. Iron deficiency anaemia is evidenced by

low haemoglobin level, low mean corpuscular volume of the
red cell (MCV) and low iron serum level. Iron deficiency
anaemia is associated with a lower quality of life, reduced
exercise tolerance and increased mortality in HF patients
[27]. RCTs (IRONMAN – NCT02642562, AFFIRM-AHF
– NCT02937454, FAIR-HF2 – NCT03036462, HEART-FID
—NCT03037931, FAIR-HFpEF – NCT03074591) [32] and
meta-analyses [33] [34] have demonstrated that intravenous
iron supplementation in HF patients with iron deficiency
improves symptoms, quality of life and exercise tolerance
(as measured by VO2 peak and 6minute walk test (6MWT)),
with an observed trend to reduction of hospitalisation rates.
Creatinine was chosen as an indicator for the possible pres-
ence of cardio-renal syndrome. During the natural history
of HF, patients develop cardio-renal syndrome which is the
result of the poor renal perfusion secondary to low cardiac
output present in HF. Patients with severe HF continue to
develop chronic kidney disease that gradually progresses to
irreversible renal failure [35]. Cardio-renal syndrome has a
negative impact on HF patients’ outcomes, and the stage of
the kidney disease carries a prognostic value [35].

Hyponatraemia (low sodium level) is a strong predictor of
the severity of HF and is strongly correlated with increased
mortality [30] [31]. Hypoalbuminaemia (low albumin level)
is commonly a sign of cachexia—malnutrition—which is
frequently described in patients with HF despite normal or
above normal BodyMass Index (BMI) [36]. Out of variables
obtained by ECHO, left ventricle ejection fraction (LVEF)
was selected as themost representative feature to characterise
the severity of heart failure. We provided argument and jus-
tification for selecting LVEF in Sect. 5.2 on exploratory data
analysis and data pre-processing.

In addition to above reasons for selecting specific vari-
ables, by having a prior knowledge of variables, clinicians
intuitively avoided choosing the variables that are either the
ratio of other variables or highly correlated variables. For
example ‘INR’ is an International Normalised Ratio, which
is derived from prothrombin time (PT) which is calculated
as a ratio of the patient’s PT to a control PT standardised for
the potency of the thromboplastin reagent. This formula was
developed by the World Health Organization [37]:

INR = PatientPT ÷ ControlPT (1)

Haematocrit is another example of the ratio calculated
from the full blood count—it is a ratio between cell
concentration-to-blood serum volume ratio.

Some of those variables (not all at once, or in one
study) have been commonly chosen in previous studies using
machine learning to perform clustering or classification tasks
[3] [4] [5] [6]. Amhad et al. (2018) for example used 8 vari-
ables with k-means clustering, including the variables: age,

123



International Journal of Data Science and Analytics (2023) 15:49–66 53

creatinine, haemoglobin, weight, heart rate, systolic blood
pressure, mean arterial pressure, and income [8].

5.4 Experiment 2: data-driven approach to feature
selection

High-quality clustering produces a number of clusters, which
are typically characterised by high within-cluster similarity
but high between cluster dissimilarity. This objective of high
within-cluster similarity whilst maintaining high between
cluster dissimilarity is particularly difficult to achieve whilst
applying clustering to a highly dimensional dataset. In the
data-driven approach, principal component analysis (PCA)
was used to reduce the dimensionality of the dataset whilst
maintaining a high degree of the variance in the dataset. The
final dataset (635-by-68)was passed through aPCA function.
PCA used singular value decomposition (SVD) algorithm
based on a variance-covariance matrix. The algorithm cen-
tred the X (n-by-p matrix) by subtracting column means
before computing SVD. PCA used all of the observations
for the matrix n-by-p (635-by-68) and returned all 68 princi-
pal components. In the results section, we present the scree
plot that shows the explained variance of each PC that was
studied and we present the loadings that were considered the
most important for each principal component.

In next step, we needed to decide how many PCs were
to be used for the k-means clustering algorithm. We decided
to use the first 22 PCs which were informed by the method
described byTabachnick et al. [38]. It has been suggested that
while dealing with moderate size data and a large amount of
variables, the number of PCs to be selected for further analy-
sis could be decided based on a simple calculation by taking
into account the number of variables. The range was chosen
between number of variables divided by 5 and divided by 3.
This way the analyst can decide on the optimal number of
PCs out of the range: (p/5, p/3), where p is number of vari-
ables of the n-by-p data matrix. Tabachnick et al. describes
the visual method of deciding upon the number of PCs to be
considered; however, this method may not be accurate and
might be prone to variability due to the subjectivity of the
plot assessment [38].

Holland [39] proposed another method for selecting the
principal components with the assumption that all variables
contributed the same variance to the PC. In this case, it is
recommended to select all PC that are equal or greater than
1/p, where the p is the number of variables used in the dataset.
In our experiment, the cut-off point is 1.47. Figure 1 shows
all 68 PCs with the horizontal line that is used as the cut-
off point to accept the first 22 PCs. Beyond this point, the
remaining PCs do not carry high enough loadings in the new
environment, and hence they were not taken to the next stage
of the experiment.

Fig. 1 Scree plot where each PC is represented as a bar in descending
order of the percentage of the total variance explained by each principal
component. PC after passing dataset consisting of 68 numerical vari-
ables for 635 patients. Horizontal line is a cut-off point equalled 1/68
(1.47)

Fig. 2 Biplot of 26 variables with highest loadings (loading> 0.32) in
each of the contributing to first 22 principal components

To further investigate the first 22PCs,weused the loadings
from the coefficientmatrix to identify variableswith loadings
that are greater than 0.32. The decision to explore eigenvalues
with loadings that are greater than 0.32 was supported by the
rule of thumb described by Tabachinck et al. [38]. Tabach-
nick et al. state that variables with loadings greater than 0.32
contribute the most to a given PC. Using this rule of thumb,
we identified 26 variables that had the highest contribution to
the first 22 principal components. Figure 2 presents a biplot
showing these 26 variables.

In the next stage, we used the 22 PCs to pass into the
k-means clustering algorithm. Whilst we chose PCs that
retained 81% of the variance in the dataset, we were able

123



54 International Journal of Data Science and Analytics (2023) 15:49–66

Fig. 3 Data-Driven approach. Graph shows the “elbow method” repre-
senting number of clusters when the algorithm is applied to 635-by-22
matrix (22 columns are representing first 22 PC). Vertical purple line
identifies optimal number of clusters

to reduce the dimensionality from 68 features to new 22 fea-
tures represented by PCs.

5.5 k-means clustering: optimal number of clusters

To identify the optimal number of clusters for k-means clus-
tering in both approaches, we used a visualisation technique
knownas the ‘elbowmethod’ (Fig. 3, 4).Wedecided to divide
the dataset into four clusters in both approaches. To assess
the inter-cluster separation,we also used a silhouette criterion
and silhouette graph for both methods [40], which confirmed
that four clusters were to be optimal number of good quality
clusters.

6 Results

6.1 Results of experiment 1: domain-led approach

Figure 5 shows a summary of the characteristics of each
cluster derived by using the domain-led approach. Table 2
provides median value for each of seven variables used in the
clustering experiment. Table 3 provides summary of comor-
bidities observed in each cohort. Utilising the domain-led
approach, we identified the following clusters: Cluster 1was
the cluster with the second most impaired heart function, as
per median BNP of 1591 and median LVEF of 39% with
the range (17–49%). This cluster was similar to Cluster 2 in
terms of the prevalence of kidney disease, with the second
lowest prevalence of lung disease.

Fig. 4 Domain-led approach. The graph shows the “elbow method”
which can be applied to chose the optimal number of clusterswhen the k-
means clustering algorithm is applied to the 635-by-7matrix (7 columns
are representing variables chosen by domain experts to the domain-led
clustering experiment). Vertical purple line identifies optimal number
of cluster

Cluster 2was the largest cluster and had the least impaired
heart function as defined by the highest median LVEF 59%
and the lowest median BNP level (308). This cluster had the
highest albumin level and the lowest creatinine level, indicat-
ing overall least impaired heart function and least impaired
kidney function. In terms of comorbidities, Cluster 2 has the
lowest prevalence of myocardial infarction and chronic kid-
ney disease (15%).

Cluster 3 had most severely impaired heart function with
the highest BNP 4486 and the lowest range of the LVEF
43% (5–65%). Cluster 3 had the highest prevalence of lung
disease, liver disease and dementia.

Cluster 4 is the cluster with the highest prevalence of dia-
betes and chronic kidney disease. This cluster has the highest
prevalence of cerebrovascular disease (stroke) (7.6%).

6.2 Results of experiment 2: data-driven approach

In Tables, 4, 5, 6 and in Fig. 6, we present themost distinctive
features that characterise each of the clusters. In the supple-
mentarymaterial,weprovide additionalTable 9whichbreaks
down all the remainder of the characteristics for all 4 clusters
that resulted from the data-driven clustering approach.

Cluster 1 has the highest value of MCV, MCHC, Mean
PLT Volume, Eosinophil Count and Eosinophil Ratio. This
cluster has the highestmedianvalue ofAlbumin,white globu-
lin, sodium, prothrombin activity and CO2-binding capacity.
Cluster 1 BNP and LVEF: the lowest BNP level and the sec-
ond highest LVEF. In terms of 42 variables that were used
to clustering, but with less contribution to the first 22 PC
taken into the k-means clustering, Cluster 1 has the high-
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Table 2 Domain-led approach. Median value (Minimum -Maximum) of 7 variables selected by domain experts to be used in the k-means clustering
of HF cohort

Cluster 1 (n = 179 ) Cluster 2 (n = 256) Cluster 3 (n = 69 ) Cluster 4 (n = 131 )

LVEF 39 (17–49) 59.5 (39–82) 43 (5–65) 58 (22–76)

Creatinine Enzymatic Method 82 (38–293) 70.6 (35–308) 101 (43–553) 89 (32–963)

Brain Natriuretic Peptide 1591 (172–3134) 308 (2–2400) 4486 (2971–5000) 519 (36–3191)

Sodium 139 (115–148) 140 (122–148) 137 (123–144) 138 (120–148)

Albumin 36 (17–49) 38 (24–49) 36 (22–43) 33 (17–42)

Mean Corpuscular Volume 93 (69–111) 94.3 (52–117) 91 (69–107) 85 (58–108)

Haemoglobin 125 (78–181) 123 (86–163) 116 (123–144) 87 (31–136)

Table 3 Domain-led approach, characteristics of clusters, prevalence of clinical conditions in the cluster

Cluster 1 (n = 179 ) Cluster 2 (n = 256) Cluster 3 (n = 69 ) Cluster 4 (n = 131 )

Myocardial Infarction 6.1% 5.9% 13% 6.1%

Congestive Heart Failure 100% 100% 100% 99.2%

Peripheral Vascular Disease 5% 5.5% 2.9% 9.9%

Cerebrovascular Disease 5% 5.9% 5.8% 7.6%

Dementia 6.7% 8.2% 11.6% 8.4%

COPD 9.5% 8.2% 14.5% 11.5%

Connective Tissue Disease 0.6% 0% 0% 0.8%

Peptic Ulcer Disease 1.7% 0.8% 1.4% 7.6%

Diabetes 24% 20.7% 20.3% 33.6%

Moderate To Severe CKD 17.9% 15% 33.3% 36.6%

Hemiplegia 1.1% 0.8% 1.4% 1.5%

Leukaemia 0% 0% 0% 0%

Malignant Lymphoma 0.6% 0% 0% 0%

Solid Tumour 1.7% 1.2% 2.9% 4.6%

Liver Disease 4.5% 1.2% 7.2% 2.3%

COPD chronic obstructive pulmonary disease, CKD chronic kidney disease Percentages in bold face indicate the highest prevalence of particular
condition in the Cluster, when compared to other Clusters. High prevalence of this condition makes this a distinctive feature of the Cluster

Table 4 Data-driven approach. This table shows the prevalence of medical history documented for patients in each cluster

Cluster 1 (n = 287) Cluster 2 (n = 104) Cluster 3 (n = 100) Cluster 4 (n = 144)

Myocardial Infarction 6% 11% 3% 8%

Peripheral Vascular Disease 7% 5% 10% 3%

Cerebrovascular Disease 7% 6% 7% 4%

Dementia 7% 9% 8% 10%

COPD 7% 14% 11% 12%

Connective Tissue Disease 0% 0% 2% 0%

Peptic Ulcer Disease 1% 0% 11% 1%

Diabetes 21% 24% 27% 30%

Moderate To Severe CKD 14% 34% 40% 20%

Hemiplegia 1% 3% 0% 1%

Malignant Lymphoma 0% 0% 0% 1%

Solid Tumour 1% 2% 6% 2%

Liver Disease 1% 9% 3% 3%

COPD chronic obstructive pulmonary disease, CKD chronic kidney disease Percentages in bold face indicate the highest prevalence of particular
condition in the Cluster, when compared to other Clusters. High prevalence of this condition makes this a distinctive feature of the Cluster
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Table 5 Characteristics of clusters from the data-driven approach. Top 26 variables contributing the most to the first 22 PC passed through the
k-means algorithm. Median (Minimum - Maximum) value provided for each cluster

Cluster 1 (n = 287) Cluster 2 (n = 104) Cluster 3 (n = 100) Cluster 4 (n = 144)

Pulse 80 (32–158) 86 (40–180) 82 (42–156) 91 (38–165)

Weight 51 (30–96) 50 (30–84) 50 (30–83) 50 (8–95)

Height 1.6 (1.4–1.8) 1.6 (1.4–1.7) 1.6 (1.2–1.7) 1.6 (1.4–1.8)

FiO2 33 (21–41) 33 (21–100) 33 (21–100) 33 (21–100)

LVEF 54 (19–82) 40 (5–68) 58 (22–76) 52 (20–75)

WBC 5.9 (2.4–11.3) 6.5 (2.9–16.6) 5.8 (2.4–25.4) 10.1 (4.4–26.3)

Monocytes Ratio 0.065 (0.03–0.2) 0.07 (0–0.1) 0.0675 (0–0.2) 0.06 (0–0.1)

RBCDW-SD 47 (34–65.3) 48.95 (38.3–77.8) 50.2 (36.3–83.2) 46.6 (34.4–71.2)

Mean Corpuscular Volume 94 (63–118) 93 (69–111) 86 (59–108) 92 (64–106)

Mean Hb Volume 31 (20–39) 31 (21–37) 27 (16–35) 31 (20–35)

Mean PLT Vol. 13 (9–17) 13 (9–16) 11 (8–16) 12 (8–17)

Eosinophil Ratio 0.017 (0–0.2) 0.005 (0–0.1) 0.009 (0–0.1) 0.003 (0–0.1)

Eosinophil Count 0.1 (0–1.2) 0.03 (0–0.3) 0.05 (0–0.4) 0.03 (0–0.4)

Haemoglobin 120 (82–163) 120 (69–164) 79 (31–119) 128 (65–181)

Neutrophil Ratio 0.7 (0.3–0.9) 0.8 (0.6–0.9) 0.8 (0.5–1) 0.8 (0.6–1)

Neutrophil Count 4 (1–7) 5 (2–14) 5 (1–21) 8 (3–24)

Prothrombin Activity 74 (9–142) 57 (12–91) 65 (8–98) 72 (12–131)

CO2-Binding Capacity 25 (11–37) 21 (12–32) 23 (10–39) 24 (11–43)

Potassium 4 (3–6) 4 (3–7) 4 (3–7) 4 (2–7)

Sodium 141 (132–148) 138 (124–145) 139 (121–148) 137 (116–144)

Brain Natriuretic Peptide 488 (3–2987) 3435 (668–5000) 571 (36–5000) 667 (17–4192)

Albumin 38 (23–49) 36 (24–45) 33 (17–43) 37 (18–50)

White Globulin Ratio 1.4 (1–2.6) 1.3 (0.8–2.4) 1.2 (0.4–2.1) 1.2 (0.6–2)

Total Cholesterol 3.8 (1.7–7.2) 3.5 (1.8–8.4) 3 (1.6–5.7) 4.5 (2–8.4)

LDL 1.83 (0.4–4.3) 1.78 (0.7–5.1) 1.3 (0.4–2.8) 2.36 (0.7–5.2)

Glasgow Coma Scale 15 (13–15) 15 (3–15) 15 (3–15) 15 (3–15)

Variables in bold face are the 6 out of 7 variables selected by clinicians to be passed through the clustering algorithm during the domain-driven
approach. “creatinine enzymatic method” is not amongst variables contributing the most to the top 22 PCs, despite being selected by clinicians
as important variable. “creatinine enzymatic method” did not show either high correlation with other variables nor high variance in contrast to
variables that are presented in this table

Fig. 5 Domain-led approach. Summary of most distinctive features in
each cluster

Fig. 6 Data-driven approach. Summary of most distinctive features of
each cluster
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Table 6 Data-driven Approach. This table shows demographic char-
acteristics including age and gender as well as reported symptoms
according to NYHA class (New York Heart Association Functional
Classification) and Killip classification

Cluster 1 Cluster 2 Cluster 3 Cluster 4
(n = 287) (n = 104) (n = 100) (n = 144)

Female % 64.1% 42.3% 61% 56.9%

Male % 35.9% 57.7% 39% 43.1%

Age group

21–29 0.3% 1% 0% 0.7%

30–39 0.7% 1% 0% 0%

40–49 1.7% 2.9% 0% 4.9%

50–59 5.6% 5.8% 4% 7.6%

60–69 22% 18.3% 9% 21.5%

70–79 37.6% 39.4% 38% 29.2%

80–89 27.9% 29.8% 38% 29.2%

90–110 4.2% 1.9% 11% 6.9%

NYHA

I

II 10.5% 0% 3% 2.1%

III 62.7% 41.3% 56% 43.1%

IV 26.8% 58.7% 41% 54.9%

Killip

I 43.2% 20.2% 26% 22.2%

II 46.7% 64.4% 56% 49.3%

III 8.7% 11.5% 15% 25%

IV 1.4% 3.8% 3% 3.5%

est systolic and diastolic BP, resulting with the highest mean
arterial pressure (MAP). This cluster has the highest BMI,
lymphocyte count, monocyte count, basophil count, basophil
ratio and the lowest platelet count with the highest platelet
width distribution (PLT-WD) and the highest chloride. This
cluster has the highest glomerular filtration rate (GFR), with
the lowest creatinine (68), urea (6.2) and the lowest uric acid
(386), and the lowest ALP, direct bilirubin and the lowest
globulin. Cluster 1 has the lowest INR, prothrombin time
ratio with the lowest high sensitivity troponin. In summary,
this cluster has the best kidney function and the best heart
function when compared to the other clusters.

Cluster 2 has the lowest prothrombin activity and the low-
est CO2-binding capacity. Cluster 2 BNP and LVEF: the
highest BNP (3435) and the lowest LVEF (40%) Cluster 2
has the lowest systolic and diastolic BP,with the lowestMAP.
This cluster has the highest left ventricle end diastolic dimen-
sion LVEDD (62mm). This cluster has the highest urea and
uricacod levels with the second highest creatinine level. This
cluster has the highest Ddimer level, INR (1.36), APTT, pro-
thrombin time and PT ratio, with the lowest fibrinogen level.
IN terms of liver enzymes, Cluster 2 has the highest GGT
(59), ALT (34), and the highest total bilirubin (27.2), indi-

rect bilirubin (15.6), and direct bilirubin (10.3). In summary,
Cluster 2 has the worst heart function with the highest BNP,
LVEDD and the lowest LVEF and the poorest liver function.

Cluster 3 has the lowest albumin (33), the lowest total
cholesterol LDL adwhite globulin levels. This cluster has the
lowest haemoglobin (79) and the lowest MCV (86). Cluster
3 BNP and LVEF: second lowest BNP and the highest LVEF
(54%). Cluster 3 has the highest creatinine level with the
lowest GFR. This cluster has the lowest red blood cell count,
lowest hematoctrit, monocyte count, lymphocyte count and
the lowest PLT hematocrit and the lowest PLT -DW. This
Cluster has the lowestGGT,ALT, total bilirubin, total protein,
triglycerides and HDL. In summary, this cluster comprises
patients that have the worst kidney function, with severe
anaemia evidenced by low haemoglobin and MCV, with the
some stigmata f malnutrition evidenced by the lowest total
protein, cholesterol and HDL.

Cluster 4 has the highest haemoglobin, white blood cell
count, neutrophil count, total Hb volume, total cholesterol
and the highest LDL. Cluster 4 BNP and LVEF: the sec-
ond highest BNP (667) and the second lowest LVEF (52%) .
Cluster 4 has the highest red blood cell count with the highest
monocyte count and hematoctrit. This cluster has the highest
APTT and thrombin time with the highest fibrinogen. This
cluster has the highest globulin level, total protein, triglyc-
eride and HDL. This cluster has mostly moderate values for
LVEDD, creatinine , urea, uric acid and GFR. In summary,
this cluster has good heart function with normal kidney func-
tion.

7 Discussion

This experiment demonstrates that domain knowledge sig-
nificantly reduces the data dimensionality of the feature set
and plays important role in the interpretation of the clustering
results.

Our aimwas to explore howdomain knowledge influences
the stages of data science project and how it can help solve
challenges posed by domain specific issues. Moreover, by
example of this experiment we wanted to bring attention to
the need of active involvement of domain experts in data
mining process. The goal of this experiment was an attempt
to address some of the gaps identified in domain-led data
mining process [10].

7.1 Challenges of working with healthcare data

The healthcare sector produces one third of the globally
stored digital data; hence, it seems obvious that clinical
experts need to be involved in key stages of data science
projects to unlock new insights and to integrate layers of
clinical knowledge [41]. In the case of the healthcare sector,
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governments have recognised the need to train the clinical
workforce in data analytics to help improve the integration
of domain knowledge into the data science process and to
prepare clinical teams to embrace the opportunities arising
from digital transformation [42]. There is an expectation that
clinical teams become skilled in data analytics that is beyond
their already acquired knowledge of biostatistics, which is
an existing curriculum requirement in medical schools and
postgraduate training programmes [42] [43]. The involve-
ment of domain experts is expected at various stages of the
data science project. Starting with (1) the problem definition,
(2) proposing and curating a target dataset, (3) data cleaning,
pre-processing and data transformation, (4) feature set and
algorithm selection, (5) the evaluation and interpretation of
learned knowledge and suggestion of practical use of the
new knowledge to improve processes within the specialist
domain.

Skills in the practical application of advanced analytics
including artificial intelligence (AI) and machine learning
(ML) togetherwith the ability to critically appraise the results
will enhance knowledge discovery and provide innovations
for the healthcare sector [12]. Education and training in AI
and ML will increase the uptake of modern technologies
that still suffer from the ‘black box’ stigma. Explainable ML
methodsmust be understandable to the end users, i.e. the clin-
icians; moreover, clinicians and analysts must use a common
language and have a comparable set of analytical skills.

In this experiment, a particular challenge was posed by
high dimensionality of the dataset, which is not an uncom-
mon challenge when dealing with healthcare data [44] [45].
We dealt with this issue by using domain knowledge to
‘hand pick’ features to be passed through the clustering algo-
rithm. The advantage of the feature selection performed by
domain experts as opposed to feature extraction enabled by
algorithms like PCA is the immediate interpretability of the
former [46]. In order to assure that the data-driven method
could be used by other clinical teams, we aimed to improve
the explainability of the data-driven approach to physicians.
It was important to present how the PCA algorithm oper-
ates and to indicate which variables contributed the most to
the PCs passed through the k-means algorithm. When we
analysed the make up of the top 22 PCs and once the vari-
ables contributing the most were identified, we found out
that only six out of seven variables chosen by the physicians
were among the 26 variables carrying the highest value in
top 22 PCs (LVEF, MCV, haemoglobin, sodium, BNP and
albumin). Interestingly, “creatinine enzymatic method” was
not amongst variables contributing the most to the top 22
PCs, even though it is felt to be an important variable from a
clinical perspective. One possible reason why creatinine did
not appear in the top contributing features could be the fact
that PCs are aggregates of correlated variableswith high vari-
ance, whereas in this dataset “creatinine enzymatic method”

did not show either high correlation with other variables nor
high variance. On a closer look at the reminder of top 26
contributing variables, we noted that total white cell count,
eosinophil count, neutrophil count, as well as other variables
obtained during the analysis of the full blood count were
among these 26 variables. Those indices are produced by the
haematology analyser and in most cases they come from a
single blood sample. Physicians would be aware that those
indices are usually highly correlated; hence, it is not a sur-
prise to see those variables in the top PCs, as all components
in PCA represent an aggregation of the correlated variables.
The data-driven approach identified 4 clusters and was effec-
tive in identifying smaller clusters with strongly distinctive
features, in terms of comorbidity and underlying physiology.
As a result of the domain-led approach, 4 clusters were iden-
tified; however, on a closer look, the clusters had a similar
prevalence of the comorbidities. To date, in the literature,
we could not find a standard measure for evaluating cluster-
ing or standard measures for evaluating unsupervised feature
selection methods for clustering [47]. There are, however,
some commonly used internal and external measures that
can be used for the quality assessment of clusters generated
by a clustering algorithm [40]. Clustering solutions can be
assessed externally based on how much it resembles a set of
classes, commonly known as ground-truth or ‘expert classi-
fication’ [40]. This ‘expert classification’ is nothing else but
manual taggingwith class labels by human experts.As shown
in Figure 7, domain knowledge contributed significantly to
all stages of the clustering experiment.

7.1.1 Interpretability of the results

This paper shows that domain knowledge plays an impor-
tant role in providing an analysis of results obtained through
clustering. The knowledge of the physiology, pathology
and correlations between a set of variables allowed domain
experts to reduce the number of variables to be used in the
clustering experiment from 68 to 7. This approach was at
risk of bias though, as domain experts opted to use the most
commonly used variables to describe the stage of the HF in
day to day clinical work. Those variables are well known as
they carry prognostic values based on observational studies
and RCTs. Such variables have been used for many years
in clinical practice and it seemed justified to choose them to
best describe clusters of HF patients. The choice appeared
straightforward due to the fact that the variables, which are
used to describe HF patients, are akin to a distinct language
or code that is both universal and understood by clinicians.
With a similar ease, we approached the interpretation of
the clustering results. Knowing the normal range for all 68
variables by heart, it was a straightforward task to describe
clusters of patients and draw conclusions regarding under-
lying pathological processes. For example, in the case of
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Fig. 7 This figure shows
learning processes used during
clustering experiment. The
branches on the left (shown in
yellow) present stages unique to
the data-driven approach,
whereas the branches on the
right (shown in blue) present
stages unique to the domain-led
approach

Cluster 3 from the data-driven approach, this cluster had the
lowest median value of haemoglobin, with the lowest MCV,
signifying iron deficiency anaemia and features of malnutri-
tion, with the lowest total protein level and albumin. It was
not a surprise that in this cluster there have been the high-
est prevalence of the peptic ulcer disease (11% of the cluster
3) and the highest solid tumour presence (6% of the clus-

ter 3). As clinical domain experts, we would not make the
mistake of labelling this cluster of HF patients as “anaemic
andmalnourished” because due to the ability to contextualise
the provided information, we know that peptic ulcer disease
in itself, but especially presence of the malignancy—hidden
here under the term ‘solid tumour’, can cause the iron defi-
ciency anaemia and can lead to cancer related malnutrition.
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What is most important though is that we are still aware that
‘correlation is not causation’, and our interpretation may be
completely wrong either way. Another important aspect that
requires attention when working with datasets of a selected
population sample is the risk of bias that could be intro-
duced into the dataset. It is well known to physicians that the
prevalence of peptic ulcer disease is significantly higher in
South Pacific populations compared to Western populations.
Data from the Systematic Investigation of Gastrointestinal
Disease in China showed that the prevalence of the peptic
ulcer disease was substantially higher in the Shanghai pop-
ulation (17.2%) than in Western populations (4.1%) [48].
Again, domain knowledge proves critical in preventing ana-
lysts from drawing conclusions from an unbalanced dataset
or a dataset that represents disease prevalence unique to the
population in a certain geographic area.

7.1.2 “Actionability” of the results

In the previous paragraph, we discussed the significance of
the interpretability of the clustering results. Interpretabil-
ity is an excellent advantage of the domain-driven approach
that risks, however, being lost or skewed in the data-driven
approach. Even though the perceived advantage of the objec-
tivity of the data-driven approach may be tempting on using
this approach over the domain-led approach, what is impor-
tant to emphasise is the “actionability” of the clustering
results that is strongly linked with interpretability. “Action-
ability” is a natural byproduct of interpretability and they
both should go “hand in hand” during the data mining
process. The Domain Driven in Depth Pattern Discovery
(DDID-PD) framework proposed by Cao et al. in addition to
providing directions on how the domain knowledge should
be put on top of the data-driven data mining framework
emphasises how the actionability of the data mining can
be enhanced. They use the terms of technical and business
(domain) interestingness for the purpose of illustrating the
process in which the actionable knowledge can be discov-
ered. Authors of the DDID-PD framework, in a form of a
mathematical equation, provide a literal prescription for the
successful domain-driven data mining, exemplified by the
cases of mining actionable correlations in the stock mar-
ket. Following this framework, the actionable pattern can
be discovered whilst two conditions are met: the technical
interestingness and business interestingness. The DDID-PD
framework captures the essence of the successful domain-
driven data mining and is certainly general enough to be
applied to other sectors.We see the applicability of theDDID-
PD framework to the healthcare sector and the healthcare
data. In terms of actionability of the clustering results we
would like to suggest the following 3 levels of actionability:

1. Low level action is associated with the discovered tax-
onomy and labels for the clusters. For many years,
taxonomies and classification methods have played a
significant role in science and provided frameworks to
present knowledge. In practical terms, the use of labels
for representing the different types of patients (clusters)
could allow new ways for monitoring temporal changes
of these clusters/cohorts (in surveillance/epidemiology),
for example monitoring the size of those cohorts or other
characteristics and be an indicator of the population char-
acteristics of a certain healthcare facility or region.

2. Intermediate level of action could be associated with
designing new clinical research protocols looking at spe-
cific cohorts of patients derived from data by clustering
experiments. Groups of patients with specific features
could be studiedwith respect to the cause of the pathology
and potential new treatments.

3. Significant level of action can be implemented by re-
designing the healthcare services to enhance the detection
of the health condition in specific clusters of patients.
Tracking the quality of care, impact on quality of life,
comorbidities and mortality statistics of specific cohorts
of patients, with frequently occurring health problems and
with specific health needs could be used for clinical audit-
ing purposes, as an evidence for the quality improvement
interventions, clinical pathways streaming and service re-
design.

7.2 Importance of the“Domain Knowledge”

Whilst this experiment did not provide any groundbreaking
knowledge about HF itself, it is a useful case study demon-
strating how domain knowledge can help navigate analysts
through a healthcare data mining project. As far back as
2002, Kopnas et al. concluded that “ in terms of the actors
involved in the data mining process, domain experts should
be in prominent positions within data analysis, data mining,
data warehousing and data processing and should actively
participate in and guide the process” [2]. Based on available
publications [12] and voices of data science experts from the
industry [49], the importance of the first pillar of the Cross
Industry Standard Process for Data Mining (CRISP-DM)
framework, which is a “Business Understanding”, seems to
be undervalued.

As a learning point from this experiment, we would like
to propose a practical checklist to enhance the engagement
of domain experts and the application of the domain knowl-
edge in the data mining project related to healthcare data.
It is important within the healthcare industry that analysts
have an adequate understanding of the “domain” and that the
domain experts (clinicians) help to navigate the direction of
the analysis and point towards questions relevant from the
clinical perspective.
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Table 7 Proposed checklist enabling the integration of domain knowledge into the data mining project. Continuation of the checklist is provided
in Table 8

No. Checklist item: Sample answers based on the study in this paper.

1 Have you engaged with multiple domain experts, e.g.
clinicians, and what qualifies them as experts?

Yes, we engaged with two cardiology consultants. In
addition, the data scientist leading this experiment is a
cardiology resident. Cardiology consultants have over
20-year experience of managing patients with heart
failure.

2 How much of the domain problem do you understand
and howmuch do you need to understand to complete
the project?

Data scientist leading this experiment is a cardiology
resident, with over 7-year experience in general car-
diology.

3 What exactly is the domain problem to be investi-
gated?

We want to discover what specific groups of HF
patients exist according to the Physionet HF dataset.

4 Howwell do you understand the meaning of variables
included in the dataset? How will you assess the qual-
ity of the dataset?

The data scientist leading this project is a clinician;
hence, the meaning behind each variable was well
understood. The expected normal range for the vari-
able was also known. There was a significant amount
of time and effort spent by the analyst reviewing the
data to ensure that it was fit for purpose before any
approach was used. The data preparation side high-
lights the need for expertise in understanding the data
and it’s limitations at the outset. In this experiment,
we excluded variables with multiple missing values.
We had to then impute the median value for missing
data for variables with less than 10% missing values,
along with normalisation. All these approaches have
an impact on the downstream analysis and are impor-
tant to highlight the need for this understanding and
literacy. All the pre-processing was done before data
were passed to further stages of the clustering exper-
iment. Domain knowledge played important role at
this stage.

4 Have you agreed a “common ground” between
domain experts and data scientists?Are you aware that
“the common ground” can be dynamic and change
during the project? Have you prepared for multiple
conversations to find a “new common ground”?

Multiple meetings had taken place between the data
scientists and the clinical experts to ensure there were
rigorous discussions.This includes explaining the pur-
pose of clustering analysis to the domain experts,
whilst the domain experts explained the importance
of various clinical features. The common ground was
considered to categorise HF patients using Unsuper-
visedML. Feature selectionwas discussed and revised
throughout the course of the study.

5 What are the exact questions that you need to ask
domain experts, e.g. what features/variables in the
dataset best characterise these patients?

Cardiologists explained which features are important
in assessing the clinical course of a patient with heart
failure. Their view was supported by from clinical
perspective.

6 What is the purpose of the data science project and
what are the measures of the project success as set by
the domain experts? (i.e. discovery of new patterns,
delivery of detailed report, reduction of administrative
burden in the organisation?)

This was an experimental project exploring how data-
driven and domain-driven approach could influence
the result of the clustering analysis.

7 How are you planning to embed the domain knowl-
edge in this project? At what stages of the project will
you seek domain experts input?

Clinicians raised the research question to get more
information on existing clusters of HF patients. Clin-
icians were involved at the pre-processing stage—
reviewing percentage of missing values and selecting
a subgroup of patients with known LVEF for fur-
ther analysis. At the feature selection stage, clinicians
selected features carrying predictive value based on
their own domain expertise. At the results analysis
stage, clinicians interpreted the cluster centroids and
put them in context.
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Table 7 continued

No. Checklist item: Sample answers based on the study in this paper.

8 According to the domain experts, would the discovery
of new patterns or cluster labels be clinically useful?

This experiment to certain degree illustrated epi-
demiological and demographic trends observed in
cardiovascular diseases: the smallest cluster in the
domain-driven approach consisted ofmajority ofmen,
who had mostly impaired heart function with concur-
rent the highest prevalence of myocardial infarction
and lung disease. We also observed the epidemio-
logical trend that is typical for the geographic region
from which the sample was derived—the data-driven
approach identified a group of patients with a partic-
ularly high prevalence of anaemia and peptic ulcer
disease. It is debatable though if the cluster labels are
clinically useful.

Table 8 Continuation of Table 7—Continuation of the Proposed checklist enabling the integration of domain knowledge into the data mining
project

No. Checklist item: Sample answers based on the the study in this paper.

9 If dealing with multiple domain experts how will you
achieve the consensus between parties, if differences
of opinion occur at the analysis stages?

Fortunately during this experiment, we did not
encounter differences of opinion during the dis-
cussions between domain experts due to mutual
understanding of the problem and agreed “common
ground”. We debated/discussed via video conferenc-
ing over the variables that carry a prognostic value and
the variables that are useful in clinical practice.

10 Do domain experts know what will be expected of
them during this clustering/data mining project?

We wanted to find subgroups of patients with unique
features within patients included in the Physionet
Dataset.

11 Do you need to provide basic ML-awareness training
to domain experts so that they can appreciate what
clustering analysis can achieve?

It was important that data scientist leading this project
had received a training during the postgraduate pro-
gram.

12 Have you considered a formative assessment meth-
ods to ensure that the data scientist have sufficient
understanding of the domain? Put differently, how did
you validate that the data scientist has understood and
appreciated the domain knowledge?

On hindsight, more formal methods could have been
used to validate that the technical researchers actually
understood the domain knowledge being described
(for e.g. the teach-backmethod could have been used).

In Tables 7 and 8, we propose a set of questions that the
data scientist should be prepared to address prior to the initia-
tion of the datamining project. This checklist is a result of the
collaboration within our team of clinicians and data scien-
tists.We realised that opportunities brought on by advantages
in the computational abilities of current software and hard-
ware pose a great temptation to use new machine learning
(ML) techniques on healthcare data, especially those avail-
able in a public domain. Exploiting new ML techniques on
healthcare data may be more effective when performed with
the involvement of healthcare expert. Analogous to the trend
of a co-design of clinical studies with the involvement of
the public and patients representatives’ it would seem natu-
ral to talk about the co-design and then the co-production of
the domain-driven data mining. We hope that this practical
checklist for data scientists will enable better integration of

the domain knowledge into the data mining project. In addi-
tion to the set of questions in the checklist, we provide an
example how our team integrated the domain knowledge dur-
ing the clustering experiment while working on open source
heart failure dataset.

Starting with question 1 of the checklist presented in
Tables 7 and 8, it is useful to develop a partnership with
clinicians, when working on healthcare data early on in the
project.With regards to questions 2–4 it is important to under-
stand the exact domain problem which is to be investigated.
It is important to know whether the data science project is
a part of a research project, Quality Improvement Project
(QIP), Clinical Audit, or service evaluation project. If this
project is a part of the research, it will be useful to know com-
monly occurring questions in health research. They can be
grouped into 6 main themes: (1) characterising diseases and
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describing their natural course, (2) investigating the impact
of a disease on the general population as well as assessing
correlations between diseases, (3) finding the cause of dis-
ease, (4) discovering new treatments or the best treatments
combinations out of already existing treatments, (5) assess-
ing the way to deliver the treatment to achieve best result for
the patients, (6) learning about the health systems and the
costs associated with diseases management.

With regards to question 5, domain experts provide a spe-
cific knowledge of the subject and will know aspects related
to the data itself. It is important that data scientists leading the
project takes an opportunity to find out from domain experts
(1) how the data was collected (i.e. was the data manually
imputed by clinical staff into database or was it recorded by
monitoring devices and automatically saved to patients elec-
tronic records), (2) what the data values mean and what is the
normal value range (i.e. does the low value of the variable
indicates normal state or severe pathology, or in case of time
series data, for example does the long history of a certain con-
dition has an impact on long term outcome for the patient and
could influence the accuracy of the predictive model if that
was objective of the data mining project), (3) the accuracy of
the data (is there a risk of error in the data caused by human
error whilst data were imputed manually), (4) how to inter-
pret the results of the analysis (i.e. is the result of analysis
clinically relevant, do the results make sense to clinicians),
(5) the business/domain issues, i.e. could the results alter the
current processes in the healthcare organisation.

Mao et al. [50] present factors influencing effective col-
laboration between teams of bio-medical scientists and data
scientists working in the Research IBM. “To find the right
answer or to ask the right question?” is the conclusion drawn
from interviews with 22 interviewees. It turned out that for
bio-medical scientists the original set of questions very early
on into the data mining project changes into set of differ-
ent or “better” questions. This, however, causes a challenge
for data scientists who need to adjust to the new “common
ground” that is different from the initial “common” ground
achieved at the start of the data science project. Mao et al.
illustrate the dynamics of the data science project between
domain experts (bio-medical scientists) and data scientists.
They comment as well on differences of motivations behind
the data science project for bio-medical scientists and data
scientists. As one of the participants stated, “we are always
reproducing predictive models with higher predictive capa-
bilities in the field (...) however we are more interested in
what intervention can be done rather than the prediction is
accurate” [50]. In addition to detailed analysis of dynamics
within the team, they provide an overview of technologies
used to enable co-design, communication and collaboration
between bio-medical scientits and data scientists (i.e Google
Docs, Google Sheets , GitHub, Skype, email, Slack etc.).

7.3 Limitations

Our experiment has limitations, and we will try to address
them in future work on larger datasets. To deal with missing
values, we used the single imputation method of using the
median value for missing variables. Given the fact there was
only a small percentage of missing values (only variables
with less than 10% missing values were used in experiment)
and that these variables did not follow the normal distribu-
tion, the single imputation method using the median value
would be an appropriate method. Even though Jiang et al.
[51] used mean imputation to impute missing data in fea-
tures prior to performing unsupervised clustering on heart
failure dataset, this method may be seen as limitation that
that we have not used more sophisticated methods such as
kernel density, IDW, K-nearest neighbours to deal with miss-
ing values.

In our analysis, we used PCA, which is not free from
disadvantages. According to Dormann et al. [52], PCA pre-
sumes a multinormal distribution of data and does not cope
well with outliers. Due to the nature of the clinical data, we
dealt with a dataset that has a multivariate distribution. It has
been suggested, however, that in practice, PCA is a relatively
robust technique if it is used for continuous variables that are
not strongly skewed and does not havemany outliers. [52]. In
future work, we will explore factor analysis as a method for
dimensionality reduction as in contrast to PCA, factor analy-
sis is performed on mutual variance ( i.e. shared variance) of
observed variables. In PCA, however, all the variances in the
given variables are taken into consideration and contribute to
the end result [38]. Another disadvantage of PCA is the fact
that all components in PCA are the aggregates of correlated
variables and they all co-produce a particular component.
However, in the case of factor analysis, a factor carries infor-
mation about the processes contributing to the production of
correlations between variables that contribute to each factor
[38]. Another limitation of our study is related to the ML
method that we selected to perform the clustering experi-
ment. K-means clustering is a popular method; however, we
should perhaps experiment using the k-medoids clustering
method. k-medoids is a partitioningmethod that is best suited
for domains requiring robustness to outliers, inconsistent dis-
tance metrics, or the dataset with no clear definition of mean
or median [53]. The k-medoids algorithm returns medoids
which are the actual data points in the dataset. This facili-
tates the use the algorithm in situations where the mean of
the data does not exist within the data set. This is themain dif-
ference between k-medoids and k-means where the centroids
returned by k-means may not be within the data set. Hence
k-medoids is useful for clustering categorical data where a
mean is impossible to define or interpret.
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8 Conclusions

During this experiment, we demonstrated that the k-means
clustering algorithm identified groups of HF patients with
distinct features at the physiological level (as evidenced by
median blood test results, ECHO findings and clinical obser-
vations). The findings at the physiology level were likely
to be the accurate reflection of the ‘labels’ given by medi-
cal diagnoses as documented for each patient in the dataset.
The data-driven approach that utilised PCA seemed more
accurate in identifying smaller clusters with distinct fea-
tures at the physiological level. During this experiment, we
compared how domain-led feature selection compares to the
data-driven approach. From one perspective, the data-driven
approach had the advantage over the domain-led approach
for feature extraction as it removed a risk of bias that can
be introduced by humans (domain experts). The domain-led
approach may potentially prohibit knowledge discovery that
can be hidden behind features that are not routinely taken
into consideration by physicians as important variables. The
domain knowledge played an important role at the interpreta-
tion stage of the clustering experiment providing insight into
the context and preventing far fetched conclusions. Having
carried out this experiment, we have realised the importance
of ensuring that the data scientist has appreciated the domain
knowledge and fully understood the associated concepts.
Therefore the future work may include a framework that
would ensure that the data scientist understand the domain
knowledge. For example, Delphie Technique could be used
alongside a group of experts to forma consensus onwhat con-
cepts and knowledge would need to be fully understood for
data scientist to carry out the domain-led datamining project.
Once that consensus is formed, those concepts then can be
delivered in a form of training and there will need to be some
form of assessment to ensure that knowledge exchange has
successfully taken place. This kind of work is much needed
because it would provide a consistency across domain-led
datamining andwould also help reduce the possibility of data
scientist misunderstanding concepts and knowledge from the
application area. We propose a checklist of questions that
should prompt data scientist to actively seek the involve-
ment of domain knowledge expert. This checklist can be
further improved and become an agile document, updated
when new concepts to enhancing domain-driven data min-
ing arise. Moving forward embedding domain experts in the
data analytics process will not only enhance the accuracy
of conclusions but will be core to closing gaps in between
academic data scientists and clinicians.
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