
International Journal of Data Science and Analytics (2022) 14:243–259
https://doi.org/10.1007/s41060-022-00327-y

REGULAR PAPER

RASCL: a randomised approach to subspace clusters

Sandy Moens1,2 · Boris Cule3,4 · Bart Goethals2,5

Received: 3 May 2021 / Accepted: 15 April 2022 / Published online: 11 May 2022
© The Author(s) 2022

Abstract
Subspace clustering aims to discover clusters in projections of highly dimensional numerical data. In this paper, we focus on
discovering small collections of highly interesting subspace clusters that do not try to cluster all data points, leaving noisy
data points unclustered. To this end, we propose a randomised method that first converts the highly dimensional database to
a binarised one using projected samples of the original database. Subsequently, this database is mined for frequent itemsets,
which we show can be translated back to subspace clusters. In this way, we are able to explore multiple subspaces of different
sizes at the same time. In our extensive experimental analysis, we show on synthetic as well as real-world data that our method
is capable of discovering highly interesting subspace clusters efficiently.

Keywords Subspace clusters · High-dimensional data · Sampling · Maximal itemsets

1 Introduction

Clustering is an important field within data mining research.
The main task of clustering is to group similar objects
together, while keeping sufficiently different objects apart
[1]. However, due to the well-known curse of dimensionality
[2], traditional clustering methods struggle when encounter-
ing high-dimensional data. In short, with high-dimensional
data, the distances between pairs of objects, measured over
all dimensions, become increasingly similar. As a result,
no proper clusters can be formed, as all objects end up
almost equally distant from each other. In other words,
while clustering attempts to find localised neighbourhoods
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of objects, there can be no talk of such neighbourhoods
in high-dimensional space. In a time when companies and
organisations collectmore andmore data about its customers,
suppliers, operational processes, etc., avoiding the curse of
dimensionality is becoming more and more important.

For example, a companymay keep track of over a hundred
attributes to describe their customers, and, while many cus-
tomers may share some of these attributes, there will always
be enough attributes that make them sufficiently different
from each other to be considered similar. However, it is cru-
cial that the company groups its customers into segments in
order to, for example, apply targeted marketing campaigns,
or conduct meaningful surveys.

Subspace clustering attempts to solve this problem by try-
ing to discover clusters of objects that are similar in a limited
number of dimensions [3]. However, given the exponen-
tial complexity of the search space, identifying the relevant
set of dimensions is computationally demanding: with m-
dimensional data, there are 2m−1 possible sets of dimensions
within which clusters could be found, which is why existing
subspace clustering methods suffer from long run-times [4].
Furthermore, some existing approaches produce full cluster-
ings, thereby ensuring that each data object is assigned to
exactly one cluster. This is not always desirable, for two rea-
sons. First, the data may contain a lot of noise that should
ideally not be assigned to any cluster. Second, there is no rea-
sonwhy a particular object should not be assigned tomultiple
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clusters, especially if the sets of dimensions that define these
clusters are entirely different.

For example, a customer could be part of a group targeted
by one advertising campaign based on gender, income and
marital status, and of another group targeted by an entirely
different campaign based on location, being a parent, and
having an interest in sports.

In this paper, we take a similar approach to the problem
as the CartiClus[5] method: we first convert a numeric
database to a transactional one and subsequently use frequent
pattern mining to extract subspace clusters. Our method
can efficiently produce highly interesting subspace clusters,
along with the dimensions that define them. Moreover, we
allow objects to be part of multiple clusters, and we leave
objects that are not similar to any other objects in any set of
dimensions unclustered. We avoid the computational com-
plexity of existing subspace clusteringmethods by deploying
a randomised algorithm. In the first step, we take a large num-
ber of samples from the original data, such that each sample
consists of a number of objects in a fixed (random) set of
dimensions. (Other dimensions are discarded.) In each sam-
ple, we then cluster the objects and subsequently assign all
objects in the original data to the nearest cluster centroid. This
produces a set of objects per centroid, which we interpret as
a transaction. By merging the transactions produced for all
different samples, we obtain a transaction database. This pro-
cess is called binarisation of the data. Note that by using a
large number of samples, this method will produce relatively
many highly similar transactions. We then randomly sam-
ple maximal frequent itemsets from this database to obtain
potential subspace clusters. Finally, we identify the relevant
dimensions for each discovered cluster.

We perform an extensive experimental evaluation on a
variety of datasets. First of all, we compare two variants
of our algorithm to see whether additional computational
effort results in better clustering performance. We evalu-
ate the performance on two aspects—first, object quality,
that measures whether objects that belong together are, in
fact, placed into the same clusters, and, second, dimen-
sion quality, which measures to which extent the relevant
dimensions are correctly identified for the discovered clus-
ters. Furthermore, we perform experiments to evaluate how
various parameter settings affect the performance of our algo-
rithm, and provide the reader with guidance on how to set
sensible parameter values without any knowledge of clus-
ters that may or may not be present in the data. Finally, we
compare our algorithm to CartiClus and ProClus, two
state-of-the-art techniques for subspace clustering. We con-
clude that, while these methods produce comparable results
with optimal parameter settings, our algorithm is much less
susceptible to producing poor results if the parameter values
are changed. In an unsupervised learning setting, where no
ground truth is available to the end user, this can be crucial.

Without accidentally stumbling upon the correct parameter
settings, CartiClus and ProClus will produce dramati-
cally poorer results, while our method remains relatively
robust with a variety of settings.

A preliminary version of this paper was published as A
Sampling-based Approach for Discovering Subspace Clus-
ters at the 2019 Discovery Science Conference [6]. Here, we
extend our work with new material, both in terms of the the-
oretical analysis and the experimental evaluation. We now
elaborate on the description of our own method by including
the pseudocode, as well as by adding examples to illustrate
the discussed concepts. Additionally, Sect. 3.3, discussing
how our method could be generalised to using any cluster-
ing and classification algorithm, is entirely new. Similarly,
the experimental section of our paper has been significantly
expanded and now contains more than 20 new sets of exper-
iments, comparing our algorithm to existing methods on a
variety of evaluation metrics, as well as a thorough discus-
sion of the achieved results.

The main contributions of this paper can be summarised
as follows:

– we propose a randomised sampling algorithm that effi-
ciently identifies localised clusters and their relevant
dimensions,

– we simultaneously explore multiple subspaces, thus sig-
nificantly reducing the required effort,

– we allow data objects to be part of multiple clusters, and
we leave noise objects unclustered,

– we perform a theoretical evaluation to show the efficiency
of our method and an extensive experimental evaluation
to show the quality of the output.

The remainder of the paper is organised as follows. In
Sect. 2, we introduce the necessary notations and describe
the problem. Section 3 provides a thorough description of
our algorithm, which we experimentally evaluate in Sect. 4.
We discuss the related work in Sect. 5, before concluding the
paper in Sect. 6.

2 Background

In this section, we introduce the necessary definitions and
notations from the fields of subspace clustering and frequent
itemsetmining.We also discuss and formally define the qual-
ity measures used to evaluate our experimental results.

2.1 Subspace clustering

Let D = {D1, . . . , Dm} be a set of m dimensions. Each
dimension Di comes equipped with a domain dom(Di ). An
m-dimensional data point p = (d1, . . . , dm) is a tuple of val-
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ues overD, such that di ∈ dom(Di ) for each i = {1, . . . , m}.
The input database P = (p1, . . . , pq) contains a collec-
tion of q such m-dimensional data points. Furthermore,
each dimension Di comes equipped with a distance func-
tion δDi : dom(Di ) × dom(Di ) → R

+. Additionally, we
assume that for any subset of dimensions D = {D1, . . . ,Dl},
with 1 ≤ l ≤ m and D ⊆ D there exists a distance func-
tion δD : (dom(D1) × . . . × dom(Dl)) × (dom(D1) × . . . ×
dom(Dl)) → R

+. All used distance functions must satisfy
the usual conditions (non-negativity, identity, symmetry, and
the triangle inequality). In our examples we use R as the
domain for all the dimensions and we use the Euclidean dis-
tance as a distance function. Given a subset of dimensions
D ⊆ D, we denote by pD a data point, and by PD a set of
data points, projected onto the given dimensions. We define
a subspace cluster as follows.

Definition 1 (Subspace cluster) A subspace cluster is a tuple
containing a subset of data points and a subset of dimensions,
formally

S = (P,D), with P ⊆ P and D ⊆ D.

This definition forms a logical extension of a traditional clus-
ter by incorporating the relevant dimensions inwhich the data
points form a cluster. Even more, this definition leans itself
towards our itemset-based algorithm described in the next
section. However, for some of the measures described in the
next section, the following, alternative, set based definition
of tuples is more natural and easier to use [7,8]. We denote
this set based representation as:

ST = {(pi , D j
) |pi ∈ P ∧ D j ∈ D ∧ (P,D) ∈ S}.

Furthermore, let T be a mapping from a tuple-based repre-
sentation of a subspace cluster to a set-based representation,
i.e., T(S) = ST.

In this work, we are interested in clusters for which the
data points P lie in close proximity to one another in D. Given
the definition of a subspace cluster, the problem we tackle
is to discover a concise collection of subspace clusters that
have a high precision on both the discovered data points and
on the set of dimensions.

2.2 Subspace clusteringmeasures

For the sake of completeness, we add the definitions of the
quality measures used throughout the experiments. We refer
to the original paper [8] for an in depth study of these mea-
sures.

There are 3 flavours of quality measures depending on
the type of information of a subspace cluster they operate
on: measures taking into account only object (data point)

information are sub-scripted with Obj, measures taking into
account only dimension information are sub-scripted with
Dim, and measures taking into account information of both
objects and dimensions are sub-scripted with SC.

Given SR = (PR,DR) a random subspace cluster and
SG = (PG ,DG) the ground truth subspace cluster, the fol-
lowing measures are defined over the objects:

recallObj(SR, SG) = |PR ∩ PG |
|PG |

= precisionObj(SG , SR).

Given the same two subspace clusters the following mea-
sures are defined on the dimensions:

recallDim(SR, SG) = |DR ∩ DG |
|DG |

= precisionDim(SG , SR).

Finally, given the same two subspace clusters the fol-
lowing measures are more easily defined on the set based
representation of the subspace cluster ST. We use the map-
ping T to switch between the representations:

recallSC(SR, SG) = |T(SR) ∩ T(SG)|
|T(SG)|

= precisionSC(SG, SR).

The F1 measure is the harmonic mean between precision
and recall and is defined as:

F1∗(SR, SG)

= 2 × recall∗(SR, SG) × precision∗(SR, SG)

recall∗(SR, SG) + precision∗(SR, SG)

with ∗ ∈ {Obj,Dim,SC}.
Given a set of clustersSR and a set of ground truth clusters

SG the precision∗, recall∗ and F1∗ can be defined on
set level by assigning each cluster from SR to the closest
cluster SG given the quality measure. A set quality measure
QS ∈ {precisionS∗ , recallS

∗ ,F1S∗} on set level is formally
defined as

QS(SR,SG) = 1

|SG |
∑

SR∈SR

argmax
SG∈SG

Q(SR, SG)

with Q the non-set counterpart.
Finally, the subspace clusteringmeasureME4SC [8] on set

level is formally defined as

ME4SC (SR,SG) = 2 × F1S
SC(SR,SG) × F1S

SC(SG ,SR)

F1S
SC(SR,SG) + F1S

SC(SG,SR)
.
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2.3 Frequent itemset mining

Let I = (i1, ...in) be a finite set of n items. A transaction t
is a subset of items.We denote byT = (t1, ..., to) a database
of o transactions. An itemset I is also a subset of items. A
transaction t is said to support an itemset I if I ⊆ t. The set
of all transactions in T that support an itemset is called the
cover of that itemset, i.e., cov(I) = {t | t ∈ T ∧I ⊆ t}. The
support of an itemset is the size of its cover, i.e., sup(I) =
|cov(I)|. Frequent itemsets and maximal frequent itemsets
are defined as follows.

Definition 2 (Frequent itemset) Given a minimal support
threshold σ ≥ 0, an itemset I is frequent if its support is
larger than or equal to σ , i.e., sup(I) ≥ σ .

Definition 3 (Maximal frequent itemset) A frequent itemset
I is called maximal if there exists no strict superset of I that
is also frequent with respect to σ .

The anti-monotonic property of the support of itemsets
guarantees that all subsets of a frequent itemset are also fre-
quent.

3 Randomised subspace clusters

Existing methods for discovering subspace clusters from
numeric data often focus on the complete raw dataset to
compute subspace clusters using a bottom-up [4,9,10] or a
top-down approach [11]. In this paper we introduce Rascl,
which takes a different approach to the problem by using
randomised subsets of the data (both in the data points and
in the dimensions) as a starting point for detecting subspace
clusters. The discovered clusters are then checked for occur-
rence in multiple subsamples of the data. If a cluster occurs
frequently enough in the set of samples we output it as a sub-
space cluster. Our algorithm relies on two simple premises:
1) higher-dimensional subspace clusters also form subspace
clusters in lower dimensions, which is also the basis for other
bottom-up approaches to subspace clustering [9]; 2) if we
take enough random samples and use them to detect clusters,
a lot of similar subclusters of the same true cluster will be
found in different projections. Moreover, by repeating such
a randomised procedure many times we end up with a stable
solution.

In a nutshell, our proposed algorithm consists of three
consecutive steps:

1) convert a numerical database to a transactional one using
K-means clustering (Section 3.1),

2) extract interesting subspace clusters from the transac-
tional database using frequent itemset mining (Sec-
tion 3.2),

3) heuristically select the most interesting subspace clusters
(Section 3.4).

3.1 Randomised data transformation

3.1.1 Data binarisation

To binarise a numeric databaseP into a transaction database
T we use the indices of data points as the items forT , result-
ing in |P| items. In addition, we obtain a mapping between
data points and items. Ideally, a transaction contains data
points that are close to each other in some set of dimensions.
In that case, an itemset (essentially a set of data points) that
occurs in a large fraction of transactions can be seen as a
subspace cluster over some set of dimensions.

We define a randomised process for constructing a single
transaction database. We repeat this process n times and con-
catenate all transactions into a single database T ∗. We first
sample a small subset of data points P and a small subset of
dimensions D. (The sampling strategy is explained below.)
The data points are projected onto the subset of dimensions
and used as input for the K-means clustering algorithm. The
resulting cluster centroids are used to partition the original
data points, assigning each data point to the closest centroid.
As such, each centroid represents one transaction in the trans-
actional database and its items are the data points assigned
to it. Formally, for a set of centroids C D found by K-means,
the closest centroid for a projected data point pD is given by

cpD = argmin
cD∈C D

(δD(p
D, cD)).

In the unlikely event that multiple centroids are the closest,
we take the first one that was encountered.

Example 1 An example conversion from a numerical
database to a binarised one is shown in Fig. 1. The figure
shows a toy database of 11 data points in a 2D space. A
red circle represents a synthetic cluster centroid and the sur-
rounding square visually shows data points closest to that
centroid.When constructing the binarised database, the index
of a data point is added to the transaction of the nearest clus-
ter centroid. The resulting transaction database is shown in
Fig. 1b. For example, for p1, p2 and p3 the closest centroid
is c1 resulting in the first transaction.

3.1.2 Generating data samples

Asmentioned previously, our binarisation strategy requires a
sample of data points and a sample of dimensions. The main
question now is how we can bias the sampling procedure to
obtain samples that will have a higher potential to contain
cluster structures.
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Fig. 1 a A fictitious example dataset with 2 dimensions, 11 data points
(black dots) and 4 centroids (red circles). b Binarised dataset in short
format for the toy dataset

For the data points, we can sample k data points uniformly
at random. By repeating this a large number of times, we
expect each cluster to be represented by a sufficient number
of data points in a high enough number of samples.

For the dimensions, a naive solution would be to sample
uniformly at random a subset of dimensions of size x , with
1 ≤ x ≤ |D|. However, since the number of combinations
larger than 2 can blow up, a random sample of dimensions
will likely be too large to contain a meaningful cluster (e.g.,
if there are 100 dimensions, there are many more subsets of
size 50 than of size 2, and a subspace cluster is, on the other
hand, more likely to be found in low-dimensional space).
The probability that such a uniformly sampled set contains
a subspace cluster will decrease rapidly when the size of D
increases. On the other hand, sampling just one dimension
may result in discovering cluster structures that do not span
multiple dimensions. Therefore, at this stage, we sample a set
of two dimensions, and, if a cluster spans over more than two
dimensions, the relevant set of dimensions will be identified
at a later stage (see Sect. 3.2). We apply weighted sampling
to boost the probability of sampling dimensions that contain
cluster structures. Similar to Moise et al. [4], we assume that
uniformly distributed dimensions do not contain any cluster
structure. As such, to detect non-uniformity of a dimension
we create a histogram using the Freedman–Diaconis’ rule
[12] to compute an appropriate number of bins for the data.
This rule is robust to outliers and does not assume data to
be normally distributed. Let us denote by BD the bins for a
given dimension using the Freedman–Diaconis’ rule and let
|b| denote the number of data points falling in bin b. The
unnormalised sampling potentialW of a dimension is given
by

W(D) =

√√
√√ |{b ∣∣ b ∈ BD ∧ |b| ≤ |P |

|BD| }|
|BD| . (1)

The logic behind this formula is that we wish to prioritise
those dimensions in which the points are not uniformly dis-
tributed, as they are more likely to contain clusters. Note that

Algorithm 1: BinariseDataset(P , k, K)
Input: P database of data points, k number of data points to

sample, K number of clusters
Result: Transaction dataset T

1 T ←− [];
2 P ←− k random i.i.d. samples from P;
3 D ←− 2 different dimensions sampled from D with sampling

potential cfr. Eq. 1;
4 C D ←− K centroids using K-means given projected data points

PD;
5 for cD ∈ C D do
6 T ←− T + [{p|p ∈ P, cpD = argmin

cD∈C D
(δD(pD, cD))}];

7 end
8 return T ;

if the points are uniformly distributed, the expected number
of points in each bin would be |P |

|BD| . However, if a large
number of points was clustered in a single bin, with the
remaining points uniformly distributed across the remaining
bins, then all those remaining bins would contain fewer than
|P |
|BD| points. We therefore compute how many bins contain
fewer than the number of expected data points under uni-
form data distribution. The larger the number of such bins
in a given dimension D, the higher the value of W(D). The
resulting distribution thus favours dimensions with a larger
clustering potential.

Note that randomly sampling sets of dimensions also
makes our algorithm robust to missing values. Since we
explore various sets of dimensions, missing values have very
limited impact on our method. Concretely, a missing value
in a particular dimension would only prevent a point from
being included in a cluster that is defined by that dimension.
Such a missing value would play no part at all in evaluating
whether the point belongs to a cluster that is not defined by
that dimension.

3.1.3 Pseudocode

The procedure for binarisation is given in Algorithm 1. It
takes as input a database of data points, a number k of
data points to sample and parameter K used for clustering.
Line 1 initialises the list of transactions, line 2 samples the
data points and line 3 samples the dimensions. Line 4 runs
K-means on the projected data points and stores the projected
centroids. Lines 5 to 7 create single transactions per cluster
centroid, by adding all data point indices to whichever clus-
ter centroid is closest. The binarised database is returned on
line 8.

3.1.4 Time complexity

The worst case complexity of our binarisation method is
mostly dependent onK-means. However, we use only a small
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subset of data points, typically |P| � |P|, to compute cluster
centroids. For this small subset the complexity for clustering
isO(n×(|P|×|D|×K×i))withn the number of database sam-
ples and i the number of iterations. The generation of samples
for data points can be done inO(|P|) and for dimensions can
be done in O(|D|). The assignment of data points to cluster
centroids is done in a single sweep, i.e., O(K × |P|). The
total time complexity for generating samples and binarising
the database isO(K × |P| + |D| + n × (|P| × |D| × K × i)).

3.2 Extracting subspace clusters

We previously constructed a binarised database T ∗ by con-
catenating n binarised ones built using random samples of
data points and dimensions. The premise for each database
is that its transactions represent cluster centroids and their
items are indices of data points in their close proximity for
the set of dimensions. Since we generated n samples, we
know that each index occurs n times within T ∗. If then a
set of items occurs often together in the database, i.e., it is
a frequent itemset with high support, then we know that in
many sets of dimensions the same set of data points occur in
close proximity, which is exactly the objective for a subspace
cluster. This means essentially that every frequent itemset
I for which sup(I) ≥ σ , with 0 < σ ≤ n, represents a
subspace cluster in a currently unknown set of dimensions.
However, the number of frequent itemsets is typically huge,
largely because all subsets of frequent itemsets are frequent.
To alleviate this problemwe use maximal itemsets and, more
particularly, our algorithm samplesμmaximal frequent item-
sets from the binarised database. The resulting itemsets are
the data points for subspace clusters.

An effective method for sampling maximal frequent item-
setswas introducedbyMoens andGoethals [13]. It iteratively
extends an itemset with new items, until the set is found to be
maximal given a threshold τ and a monotonic quality mea-
sure (e.g., support). In each step a probability distribution
is computed over the remaining items (i.e., augmentations
that result in a score ≥ τ ) given a quality function (e.g.,
the support of the itemset augmented with the item). After
sampling a single item from the distribution, the itemset is
updated and remaining items that result in a score ≤ τ are
discarded. Next, the distribution is recomputed and the pro-
cess is repeated until the list of remaining items is empty.
The resulting itemset is maximal by construction.

After extracting a collection of data points, the next step
is to discover the dimensions in which the data points form
a cluster. In contrast to some existing methods [4,11], we do
not require to go back to the data itself to check each dimen-
sion individually, since our binarisation process preserved
some essential information that can guide us here. That is,
our algorithm previously sampled collections of dimensions
which can be reused to determine a valid subset of dimen-

Algorithm 2: FindSubspaceClusters(T , σ , μ)
Input: T transactional database, σ minimum support, μ

number of subspace clusters to find
Result: List of μ subspace clusters

1 C ← [];
2 for i ∈ [1, ..., μ] do
3 I ← random maximal itemset from T

with minimum support σ [13];
4 P ← data points determined by I;
5 D ← dims(I);
6 C ← C + (P,D);
7 end
8 return C ;

sions. We denote by dims(t) a map that for a transaction
returns its linked dimensions, i.e., the dimensions that were
used for its construction in the binarisation process. For a
maximal itemset I we can use the transactions in its cover
to determine its relevant dimensions, i.e., the set containing
all linked dimensions for transactions in cov(I). Formally,
dims(I) = {d|d ∈ D∧d ∈ dims(t)∧t ∈ cov(I)}. An item-
set I, mapped to the data points P, forms together with its
relevant dimensions the subspace cluster S = (P, dims(I)).

3.2.1 Pseudocode

The pseudocode for extracting subspace clusters is given in
Algorithm 2. Line 1 initialises the list of subspace clusters.
Lines 2 to 7 extract μ subspace clusters by first sampling a
maximal itemset from T (line 3) and mapping the itemset to
the real data points (line 4). Then the relevant dimensions are
computed in line 5 and the subspace cluster is added to the
list of clusters in line 6. Finally, line 8 returns all extracted
subspace clusters.

3.3 General approach to binarisation

Above, we described the binarisation stage of our algorithm.
In short, we transform the multi-dimensional dataset into a
transaction database by first selecting a number of random
points from the data, then using K-means to cluster those
points, and, finally, assigning all the other original points
to the nearest cluster centroid. This final step could also be
seen as a 1-nearest neighbour classification of those remain-
ing points. More generally, our algorithm is an instance of a
procedure where clustering is performed on a small subset
of points, and those clusters are then used as class labels to
classify the remaining points.

In our case, we chose K-means clustering and 1-nearest
neighbour classification as they are the simplest and the most
efficient clustering and classification algorithms, respec-
tively. However, in principle, there is no reason not to use
any clustering algorithm for the first step or any classifica-
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Table 1 An overview of the main characteristics of the synthetic datasets that have been used throughout the experiments

#rows #dimensions #clusters #objects/cluster (avg) #dimensions/cluster (avg)

dbsizescales1500 1,595 20 10 166.3 14.0

dbsizescales2500 2,658 20 10 276.5 14.0

dbsizescales3500 3,722 20 10 385.8 14.0

dbsizescales4500 4,785 20 10 496.2 14.0

dbsizescales5500 5,848 20 10 608.5 14.0

dimscaled05 1,595 5 10 182.6 3.5

dimscaled10 1,595 10 10 181.5 6.7

dimscaled25 1,595 25 10 180.9 16.9

dimscaled50 1,595 50 10 181.6 33.5

dimscaled75 1,595 75 10 181.9 50.4

noisescalen10 1,611 20 10 166.5 14.6

noisescalen30 2,071 20 10 166.1 14.6

noisescalen50 2,900 20 10 166.3 14.6

noisescalen70 4,833 20 10 166.8 14.6

tion algorithm for the second step. Obviously, an advantage
of K-means is that it produces natural centroids, with which
the coordinates of the remaining points can easily be com-
pared. Clusters produced by other clustering algorithms may
require different characterisation techniques, just as other
classification algorithmsmay rely on different ways to assign
class labels to the remaining points. It is beyond the scope
of this paper to analyse how combinations of various clus-
tering and classification algorithms would perform in our
problem setting, but this does remain a potential avenue of
future research.

Additionally, in the interest of efficiency, it is even possi-
ble to skip the clustering step altogether. In the extreme case,
the chosen values for k (the number of randomly selected
points) and K (the desired number of clusters) could be the
same. In this case, each of the points would represent an ini-
tial centroid forK-means, and the clustering algorithmwould
end after one iteration, resulting in each cluster containing
exactly one point—namely, its original centroid. Naturally,
in this case, it would make no sense to even call the clus-
tering algorithm. In short, this method boils down to simply
selecting K random points and then building a transaction
database by assigning all other points to the nearest point. In
Sect. 4, we experimentally compare this approach to using
K-means on k random points and refer to this version of the
algorithm as RasclR.

3.4 Selecting the best subspace clusters

After discovering a large number of subspace clusters
(depending on parameter μ), we finally select a small col-
lection of r clusters that can be deemed the most interesting
subspace clusters. The number of data points that is present
in the subspace cluster is an indication that the same set

of data points are often related even in different subsets
of dimensions. That is, even though the different samples
have different dimension sets, the data points in the resulting
binarised database occur in transactions for similar cluster
centroids. In our method we will employ this heuristic (i.e.,
the larger the cluster, the better) for sorting discovered sub-
space clusters. In Sect. 4.3, we experimentally demonstrate
that this sorting strategyworkswell. Finally, to reduce redun-
dancy in the cluster results, we sequentially evaluate each
cluster and select those clusters that have less than 25% clus-
ter overlap with previously selected ones. Note that when
sorting the clusters using the number of objects, this results
in smaller clusters as r increases. Finally, we exclude very
small clusters with fewer than 10 data points.

4 Experiments

We implemented Rascl in Python, but depend on a Java
library for sampling maximal frequent itemsets. Our source
code and all accompanying experiments have been made
available online1. In our experiments, we use synthetic
benchmark data provided by Günnemann et al. in their
overview paper on subspace clustering [8]. This data is used
to evaluate the performance of subspace clustering tech-
niques with respect to their invariance to size, dimensionality
and noise. The characteristics of the datasets are shown in
Table 1. To evaluate the performance of the various tech-
niques we measure precisionObj and recallObj scores on
object (data point) level, as well as their harmonic mean
F1Obj. Thesemeasures evaluate the correctness of the objects

1 Source code and experiments are available via https://gitlab.com/
adrem/rascl
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defined by the subspace clusters with respect to some ground
truth. Additionally we use their dimensionality aware coun-
terparts which are indicated by the subscriptsDim (for scores
about the dimensions) and SC (for scores about the combi-
nation of objects and dimensions) [8]. Finally, we also use
ME4SC [8], a measure to assess the quality of clusterings.
Note that unless stated otherwise, we assign just one discov-
ered cluster to each ground truth cluster.

We compare two variants of our algorithm: Rascl sets
k > K and RasclR sets k = K which essentially skips the
clustering step (i.e., we randomly pick k points and allocate
the remaining points to the nearest point). For each datasetwe
use the ground truth and select the ground truth cluster with
the largest overlap (highest precisionSC) with the cluster
being evaluated to compute its quality. We run each exper-
iment 10 times and report the average results for the first r
subspace clusters. Note that based on the overlap parameter,
less than r clustersmay be reported. Finally, unless stated oth-
erwise, we fix the following parameters: n = 1000, k = 100,
K = 20, σ = 200,μ = 100 and r = 10.As a general rule, we
provide the following guidance: n should be set high enough
to obtain a representative sample, k should be sufficiently
larger than K for the clustering to make sense, r should be
set to the desired number of discovered clusters, μ should be
high enough so no information is lost due to randomisation.
K and σ are more difficult to set, but we show that the per-
formance of Rascl is not overly sensitive to changes in their
values (as long as σ is low enough to find some itemsets,
otherwise no clusters at all can be found).

4.1 Cluster quality

We first compare our methods to CartiClus [5] and
ProClus [11]. We used different setups of Rascl and
RasclR by varying K and σ (indicated by the superscript).
For CartiClus we use the parameter settings as selected by
the authors of the original paper [5] as basis for this experi-
ment. For ProClus we set parameters following the ground
truth.

The object quality results in terms of precisionObj and
recallObj are shown in Fig. 2. We can observe that all
algorithms perform very well with respect to precisionObj
except for ProClus. Moreover, using K = 20 and σ = 200
our algorithms slightly outperform CartiClus. Turning to
recallObj, we see that RasclK10σ100

R , RasclK10σ100 and
RasclK20σ200 outperform the competitors on recallObj,
while RasclK20σ200

R often fails to deliver good results. This
is due to the randomness introduced by our algorithm: using
random centroids leads to fewer completely similar trans-
actions and more partially similar transactions. Combined
with a high support this results in small subclusters of the

true ground truth clusters, leading to very high precisionObj
with a low recallObj.

The results for the dimension quality are shown in Fig. 3.
We see that our algorithms generally outperform the competi-
tors by quite a margin and we see that our simple solution of
using linked dimensions (Sect. 3.2) works really well. This
holds when the sampled cluster truly defines a subspace clus-
ter. For smaller subspace clusters with lower precisionObj,
the dimension quality decreases as a result. Comparing (K =
10, σ = 100) to (K = 20, σ = 200), the latter produces
better results, mostly because there are more linked dimen-
sions tied to the cover of the maximal itemset, substantially
boosting recallDim.

4.2 Runtime experiment

We tested the time required to run various algorithms on
each one of the synthetic datasets. Our aim here is not to
show that our algorithm is faster than existing methods such
as ProClus, but rather that our method can handle datasets
with different, growing characteristics well.

We used the optimal parameter settings for all different
methods tested and ran 10 trial runs to account for fluctu-
ations in runtimes. The averaged timing results are shown
in Fig. 4. In Fig. 5 we show the same runtimes for grow-
ing datasets characteristics but relative to the runtime of the
baseline settings, i.e., for sizescale compared to the dataset
with 1500 data points, for dimscale compared to the dataset
with 5 dimensions and for noisescale compared to the dataset
with 10 noise dimensions.

A first thing to notice is that ProClus runs very fast for
each of these datasets. RasclR and Rascl behave very sim-
ilarly in general, but RasclR requires significantly less time
because it skips the clustering step to create cluster centroids.
CartiClus runs fast for smaller sized datasets, but tends to
blow up quickly once the characteristics of the data increase.

In addition to the full runtimes, we also show the break-
down into smaller steps within the Rascl and RasclR
algorithms in Tables 2 and 3, respectively. First, the reading
of the data is a small cost. The generation of samples is fast
and we see no impact of the increasing database size for the
dbsizescale and noisescale datasets. For the dimscale datasets
we see the time increasing because the number of dimensions
is increasing and we compute the sampling potential using a
density based approach in Eq. 1. ForRascl the generation of
transactions depends largely on the number of records in the
dataset as we useK-means to select centroids. In contrast, we
do not use this step in RasclR, but rather use voronoi alloca-
tion using randomly selected centroids, which decreases the
runtimes of the generation of transactions a lot. Sampling
of clusters is tied to the number of items in the transaction
dataset, which ultimately depends on the number of data
objects in the original dataset. Therefore, we see the time
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Fig. 2 Object quality scores for synthetic datasets grouped by the type
of datasets. The graphs on the left show the precision scores on object
level, the graphs on the right show the recall scores on object level. For
Rascl and RasclR we use default parameters and fixed parameters

indicated in superscript. For CartiClus we used the settings from the
original paper and for ProClus parameters are set following the ground
truth

increase with the size of the data for dbsizescale and nois-
escale. In addition, comparing Rascl and RasclR, we see
that the former runs longer, which can be assigned to the fact
that it finds longer/better itemsets because the formed clusters
are inherently better than in the fully randomised approach.
Finally, the post-processing (final cluster selection) is aminor
task in the algorithms.

4.3 Sorting strategy

In Sect. 3.4, we introduced a heuristic for sorting the sampled
clusters. To evaluate our heuristic, we sampled a collection
of clusters using default parameters and setting μ = 10000
for Rascl. The results are shown in Fig. 6: the upper chart
shows a histogram of the length of sampled clusters, the
lower chart shows the relationship between the object length
and the F1SC-score for dbsizescales5500. (Other datasets pro-
duce similar figures.) The colours indicate the cluster to
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Fig. 3 Dimension quality scores for synthetic datasets grouped by the
type of datasets. The graphs on the left show the precision scores on
dimension level, the graphs on the right show the recall scores on dimen-
sion level. For Rascl and RasclR we use default parameters and fixed

parameters indicated in superscript. ForCartiClusweused the settings
from the original paper and for ProClus parameters are set following
the ground truth

which the subspace cluster is assigned when computing
F1SC. To the left we show the results using all sampled
clusters and to the right we show the results when retain-
ing only non-overlapping cluster allocations. Our algorithm
mostly produces large clusters, i.e., our randomised process
generates many highly similar transactions, resulting in large
maximal itemsets with high F1SC-scores: good object quality
results in good dimension quality. An interesting observation
is the nod at object size 572 in Fig. 6a, which is an artefact
of the data creation process including overlapping clusters:

subclusters of overlapping clusters are assigned to the wrong
ground truth cluster resulting in lower cluster scores. More
precisely, the data contains a cluster C1 of object size 572
that is fully contained in another cluster C2 of size 1101, but
with a slightly modified dimension set. What we observe for
sampled clusters with an object size larger than 572 is that
our algorithm finds a subset of objects that is a subset of C2.
However, our dimension strategy finds the dimension set for
cluster C1, because there is not enough evidence that some
dimensions are irrelevant for a C2 subspace cluster. Conse-
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Fig. 4 Timing experiment showing the runtimes of various algorithms on synthetic datasets

Fig. 5 Relative timing experiment showing the runtimes on synthetic datasets. Timings are relative to the runtime of the smallest dataset of that
group. We show how the algorithms behave with the increasing dataset certain characteristics

quently, the precisionObj of the cluster goes down, which
is reflected in the F1SC-score. Different quality scores show
similar effects. Indeed, retaining only non-overlapping clus-
ter allocations, our algorithm mostly produces full clusters.
Note that the low score for the orange cluster is due to ran-
domisation in the transaction dataset creation and other runs

could produce much better results for this cluster (see also
Fig. 6d).

4.4 Parameter sensitivity

We test the influence of our most important parametersK and
σ on the dimscaled05, dimscaled25 and dimscaled75 datasets

Table 2 Detailed runtime breakdown for RasclK20,σ200

Read data Generate samples Generate transactions Sample clusters Post-process Total time

dbsizescales1500 0.02 0.19 11.71 2.89 0.02 14.83

dbsizescales2500 0.02 0.18 12.93 4.03 0.03 17.19

dbsizescales3500 0.02 0.17 14.30 5.82 0.02 20.33

dbsizescales4500 0.03 0.18 15.47 7.32 0.03 23.02

dbsizescales5500 0.03 0.17 16.42 8.39 0.02 25.04

dimscaled05 0.01 0.17 12.47 2.80 0.01 15.46

dimscaled10 0.04 0.17 11.79 2.70 0.01 14.71

dimscaled25 0.02 0.20 11.51 2.93 0.02 14.68

dimscaled50 0.03 0.22 11.90 2.91 0.02 15.08

dimscaled75 0.04 0.25 11.63 2.83 0.02 14.76

noisescalen10 0.02 0.19 12.40 2.80 0.03 15.43

noisescalen30 0.02 0.19 11.71 2.97 0.03 14.92

noisescalen50 0.02 0.17 13.79 3.58 0.02 17.58

noisescalen70 0.03 0.19 15.75 5.02 0.02 21.01
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Table 3 Detailed runtime breakdown for RasclK20,σ200
R

Read data Generate samples Generate transactions Sample clusters Post-process Total time

dbsizescales1500 0.02 0.15 2.40 2.36 0.01 4.94

dbsizescales2500 0.02 0.13 3.10 3.52 0.02 6.79

dbsizescales3500 0.02 0.12 3.91 4.79 0.01 8.85

dbsizescales4500 0.03 0.12 4.69 6.04 0.02 10.90

dbsizescales5500 0.03 0.12 5.61 7.15 0.02 12.93

dimscaled05 0.01 0.12 2.33 2.28 0.01 4.76

dimscaled10 0.02 0.13 2.32 2.25 0.01 4.73

dimscaled25 0.02 0.16 2.35 2.21 0.01 4.75

dimscaled50 0.03 0.19 2.35 2.28 0.02 4.86

dimscaled75 0.04 0.21 2.30 2.18 0.02 4.75

noisescalen10 0.02 0.13 2.30 2.51 0.01 4.97

noisescalen30 0.02 0.13 2.67 2.69 0.03 5.54

noisescalen50 0.02 0.12 3.38 3.36 0.02 6.89

noisescalen70 0.03 0.12 5.03 5.17 0.02 10.38

Fig. 6 The relation between the object size and the F1SC quality score
for dbsizescales5500. The top charts show histograms of the length of
sampled clusters. The lower charts show the object size in comparison

to the F1SC quality score. Figure a and c show all discovered subspace
clusters for 2 different runs, Fig. b and d show non-overlapping clusters
for the same runs
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Fig. 7 Parameter grid search quality results for various methods on several dimscale datasets

and show theME4SC scores. Note that even though our algo-
rithm is not meant for producing full clusterings, it produces
very high-quality results on this metric. Figure 7 shows the
scores for the first 10 subspace clusters using various param-
eter settings for the algorithms. For our algorithm we use a
window around the default parameters. For CartiClus we
use a grid around the optimal parameters and for ProClus
we define sensible grids. We see that Rascl is not overly
susceptible to parameter changes and that, in general, the
default parameters produce good and stable results. In con-
trast, RasclR can still produce very good results, but the
quality diminishes quickly when the parameters are not too
far from the optimal parameters. Increasing K or σ results in
subclusters of the true clusters, thus decreasing the overall
score. We see that finding good settings for CartiClus and
ProClus is much harder. For ProClus l cannot exceed the
number of dimensions in the data, resulting in lots of 0 scores
in the figures. The experiments on other datasets produced
similar results.

We also show the impact of varying k and n, whilst keeping
the other parameters fixed at the default settings (K = 20,

σ = 200 and μ = 100). For each setting, we create 10 sets
of clusters and compute the ME4SC score. We then average
the quality scores for each parameter setting and plot the
resulting scores using a boxplot. The results on synthetic
datasets are shown in Fig. 8. To show the stabilisation of
the quality score we show three different setups. First, we
varied k starting from 800 up to 2000 (incl.) with steps of
100, while varying n between 80 and 400 (incl.) with steps
of 20 in Fig. 8a. Second, we summarise the scores when k
varies between 800 and 1200 (incl.) and n varies between 80
and 120 (incl.) in Fig. 8b. Finally, we also show the quality
when k is fixed to 1000 and n is fixed to 100 in Fig. 8c.
These results show the stability of the scores while varying
the two parameters. In addition, this shows how the fixed
setting (k = 1000, n = 100) consistently achieves one of the
highest scores for each dataset.
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Fig. 8 Boxplots of tenfold
averaged ME4SC scores for
Rascl on various datasets with
fixed parameters K = 20,
σ = 200 and μ = 100 and
varying parameters for k and n.
In a k is varied between 60 and
400 (incl.) with increments of
20 and n is varied between 600
and 2000 with increments of
100. In b k is varied between 80
and 120 (incl.) with increments
of 20 and n is varied between
800 and 1200 (incl.) with
increments of 100. In c k is fixed
to 1000 and n is fixed to 100

(a)

(b)

(c)

4.5 Real-world data

We tested our method on the pendigits dataset, a classifica-
tion dataset found in the UCI machine learning repository2.
Using Rascl with n = 1000, k = 100, K = 10, σ = 100,
μ = 100 and r = 10 we discover multiple subspace clusters
for each class. A general trend we found was that the dis-
covered clusters have a very high precisionObj of approx.
91%, but they have rather low recallObj averaging around
20%. We evaluate the largest subspace cluster in Fig. 9. The
silhouette plot shows high similarity for points in the cluster
(red) and a much lower score for points outside the cluster
(blue). A similar trend is found in the scatter plots, which are
obtained using t-SNE transformation [14] based on the rel-
evant dimensions. The left scatter plot shows all data (blue)

2 https://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+
Handwritten+Digits

together with the subspace cluster (red), while the right scat-
ter plot shows only data points not in the cluster. This shows
that using our method we do not miss many data points that
are within the region of the subspace cluster according to
this transformation. The plot on the right is the Andrews plot
[15], which can be seen as a smoothed parallel coordinates
plot, showing cluster structuresmore clearly. It shows that the
data points in the cluster are closely related in all dimensions.
Similar plots are found for the remaining clusters.

5 Related work

Traditional clustering methods are known to be struggling
in high-dimensional space. Clustering techniques that mea-
sure distances between data objects over all dimensions
(i.e., the full data space) are hampered by irrelevant dimen-
sions and produce meaningless results. There exist two
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Fig. 9 Subspace cluster 1 for the pendigits dataset using Rascl

well-known techniques for projecting a high-dimensional
database to lower-dimensional projections—namely, dimen-
sionality reduction [16] and unsupervised feature selection
[17]. However, such projections, inevitably, suffer from
information loss. In addition, these methods produce single
views of the data, allowing for cluster detection only within a
single projection, while other projections, that may yet reveal
interesting clusters, are left unexplored.

Subspace clustering, on the other hand, attempts to find
clusters in subsets of dimensions. However, some traditional
clusteringmodels, unsuited to this setting, have been adapted
for this purpose. For example, the well-known K-means
algorithm [18] has been adapted for subspace clustering.
The resulting ProClus [11] algorithm was one of the first
methods for finding projected clusters and clusterings. The
analogy to our work is the initialisation phase, where a
two-step randomised procedure is used to obtain an approx-
imation to a piercing set, i.e., a set of points each from a
different cluster, which are refined to full clusters.

DOC [19] is an algorithm that finds subspace clusters
using aMonte Carlomethod to sample a random point from a
cluster aswell as adiscriminating set of points. It then extends
the random point to a full subspace cluster using a bounding
box around that point. Finally, it selects the subspace clus-
ter with the highest quality. The latter is a trade-off between
the number of data points and the number of dimensions. Its
extension MineClus [20] uses the same medoid points for
expanding the cluster, but it drops the randomised procedure.
Similar to our approach, it also converts the data to a binarised
dataset. As such, finding the best projected cluster for random
medoid p is transformed to the problem of finding the best
itemset given a goodness function μ. Other clustering algo-
rithms, such as DBSCAN [21], have also been adapted for
the subspace clustering task [22]. Since then, more general
techniques have been proposed for searching the subspace
[23,24], where the discovery of clusters is left to specialised
algorithms, followed by further efforts to reduce the time
complexity of such methods [25]. However, as mentioned in
Sect. 1, all of the above methods are computationally very
expensive as they search in an exponential set of subspaces.

FIRES [10] is a generic framework for finding subspace
clusters, employing existing clustering techniques to com-
pute a set of base clusters in single dimensions. These base
clusters are then merged based on their similarity, and the
resulting clusters are then pruned and refined to optimise
accuracy. The CartiClus algorithm [5], like our method,
creates a binarised dataset. However, in CartiClus, the
dimensions are defined during the construction of trans-
actions (or carts), such that all carts rely on the same
dimension sets. Finally, the carts are mined for frequent
itemsets which are then translated back to subspace clus-
ters. Bi-clustering [26] also simultaneously clusters rows and
columns of numeric matrices. However, bi-clusters allow for
more general clusters as they, for instance, group rows with
constant values for a set of columns or group columns that
decrease similarly over a set of rows. Typically, such meth-
ods are used for analysis of biological data such as gene
expression data.

Recently, as in many other fields, there has been increased
usage of deep learning methods for discovering subspace
clusters. Examples of deep learning subspace clustering algo-
rithms include StructAE, which uses deep neural networks
[27], SSC, a graph structured autoencoder [28], and SDEC
that performs semi-supervised deep embedded clustering
[29]. Kelkar et al. provide a more complete overview of the
wider subspace clustering field in a recent survey [30].

Our method addresses important problems that existing
methods suffer from. First of all, by binarising the data
in a random fashion, we can efficiently explore many dif-
ferent subspaces, of different dimensions, in one go. We
are therefore neither limited to a single projection nor, like
CartiClus, to fixed sets of dimensions defined during the
binarisation step. This flexibility increases the likelihood of
quickly discovering the correct set of dimensions for each
cluster.Moreover, by deploying a randomised itemset search,
we also avoid the computational complexity of traditional
frequent itemset mining algorithms [31]. Finally, unlike the
deep learning algorithms, our method is entirely transpar-
ent in terms of how points are allocated to clusters. If a point
belongs to a cluster, it is fairly straightforward to explainwhy,
knowing how our algorithm works. Concretely, points form
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a cluster together because they have repeatedly been found
to be similar to each other in a particular set of dimensions
during our random sampling procedure used for building a
binarised transaction database.

6 Conclusion

In this paper,we present a novelmethod for discovering inter-
esting clusters in high-dimensional data. In the first stage of
our technique, we start by converting the original data into a
transaction database by selecting a relatively small number
of random data objects, projecting them to a small number
of random dimensions, then clustering those objects, and,
finally, building transactions by assigning all data objects to
their closest cluster centroids.We repeat the above procedure
a large number of times and merge all the resulting trans-
actions into a single large transaction database. The main
idea behind this approach is that objects that form subspace
clusters will appear together in many transactions. In the sec-
ond stage, we sample maximal itemsets randomly from the
transaction database, and consider each such itemset to be a
potentially interesting cluster of objects. Finally, in the third
stage, for each discovered cluster, we identify a relevant set
of dimensions, thus defining a subspace cluster.

A major advantage of our method is that, by using the
two randomised procedures, we avoid both the combinatorial
explosion of possible dimension sets, and the computational
cost of frequent itemset mining. In addition, we do not
attempt to produce full clusterings, and we allow data objects
to be part of multiple clusters (typically in different sets of
dimensions), while noise objects will not be part of any clus-
ter at all. Experimentally, we evaluate two variants of our
algorithm and compare our technique to existing state-of-
the-art methods. We demonstrate that our method produces
quality clusters and is not overly sensitive to changes in
the parameter settings, which is crucial for an unsupervised
learning task where getting the parameters right can be very
challenging.

In Sect. 3.3, we described how the first stage of ourmethod
can be generalised to a clustering step followed by a classifi-
cation step, and even how the clustering step can be skipped
altogether. In our implementation, we have chosen the K -
means algorithm for the clustering step, and the 1-nearest
neighbour algorithm for the classification step. In future
work, we intend to analyse how combinations of different
clustering and classification algorithmswould perform in this
setting. In particular, we are interested in examining if invest-
ing additional computational effort for these two tasks would
ultimately lead to better overall results, or is keeping it simple
(as we do now) sufficient to obtain quality output.
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