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Abstract Spectral clustering has recently become one of the
most popular modern clustering methods for conventional
data. However, applied to geostatistical data, the general
spectral clustering method produces clusters that are spa-
tially non-contiguouswhich is certainly undesirable formany
geoscience applications. In this paper, a spectral clustering
approach is proposed, allowing to discover spatially con-
tiguous andmeaningful clusters in multivariate geostatistical
data, in which spatial dependence plays an important role.
The proposed spectral clustering approach relies on a sim-
ilarity measure built from a nonparametric kernel estimator
of the multivariate spatial dependence structure of the data,
emphasizing the spatial correlation among data locations. It
integrates existing methods to find the relevant number of
clusters and to assess the contribution of variables in the for-
mation of the clusters. The results from both synthetic and
real-world datasets demonstrate that the proposed spectral
clustering approach can effectively provide spatially contigu-
ous and meaningful clusters.
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1 Introduction

The study and understanding of spatial phenomena in geo-
sciences often depends on the analysis of multivariate geo-
statistical data, namely multivariate spatially indexed data
where the indexing is continuous across space. However,
such type of data poses substantial analysis challenges. One
of them is the clustering of data locations into spatially con-
tiguous clusters so that data locations in the same cluster are
similar to each other and different from those in other clus-
ters. Some applications in geosciences are [42]: (i) defining
climate zones, (ii) defining coastal zone environments, (iii)
defining ore typologies, (iv) identifying areas of similar land
use, and (v) identifying hazardous waste sites.

In recent years, spectral clustering has become one of
the most popular modern clustering methods for classi-
cal data [15,31,35,36,41]. This clustering method relies on
the eigen-decomposition of a feature similarity matrix to
partition observations into disjoint clusters, while consider-
ing observations in the same cluster having high similarity
and observations in different clusters having low similarity.
Advantages of using spectral clustering include its flexibility
in terms of incorporating diverse types of similarity mea-
sures, the superiority of its clustering solution compared to
traditional clustering methods such as k-means, and its well-
established theoretical properties [9,25,32,33,49].

However, the application of the general spectral cluster-
ing method to geostatistical data has a tendency to produce
spatially scattered clusters, which is certainly undesirable
for many geoscience applications. By assuming the inde-
pendence of observations, this clustering method is not able
to produce spatially contiguous clusters. This fundamen-
tal assumption, however, is no longer valid in the realm of
geostatistical data. Geostatistical data differs from conven-
tional data because they often exhibit properties of spatial
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dependency over the study spatial domain. This means that
observations located close to one another in the geographical
domain tend to have similar characteristics. In addition, the
mean, the variance, and the spatial dependence structure can
be different from one spatial subdomain to another.

A rangeof clustering approaches for geostatistical data has
been proposed over the years. They are adaptations of non-
spatial clustering methods. They can be classified into four
groups. The first group incorporates the spatial information
by treating each observation as a point in a dimensional space
formed by the geographical space and the attribute space,
and a non-spatial clustering method is used subsequently.
The second group uses existing non-spatial clustering meth-
ods by modifying the dissimilarity and/or similarity measure
between two observations to take explicitly into account the
spatial dependence [6,17,19,37]. The third group enforces
the spatial contiguity during the clustering process [38,39].
The latest group relies on the assumption that observations
are drawn from a particular distribution like a mixture of
Gaussian or Markov random fields [1–4,14,21].

The problem of dealing with spatial correlation in spa-
tial data mining has also been addressed in other tasks
such as in predictive problems and descriptive problems.
Methods to account for spatial correlation in a predic-
tive modelling task (classification or regression) have been
proposed, for instance, in references [5,16,30,43,44,50].
Approaches accounting for spatial correlation in a descriptive
problem have proposed, for example, in references [29,45].

In the present paper, a spectral clustering approach
designed for multivariate geostatistical data, in which spa-
tial dependence plays an important role, is proposed. The
basic idea is to include the spatial information in the cluster-
ing procedure through a nonparametric kernel estimator of
themultivariate spatial dependence structure of the data. This
kernel estimator is used to build a similarity measure at pairs
of data locations, emphasizing the spatial correlation among
data locations. The proposed spectral clustering approach is
model-free, adapted to irregularly spaced data, and can pro-
duce spatially contiguous and meaningful clusters without
including any geometrical constraints. It incorporates exist-
ing methods to determine the relevant number of clusters
and to evaluate the contribution of variables to the cluster-
ing. The proposed spectral approach is illustrated using both
multivariate synthetic and real-world datasets.

The remainder of the paper is arranged as follows: Sec-
tion 2 describes the proposed spectral clustering approach
through its basic ingredients. Section 3 presents a simu-
lation study carried out to assess the performance of the
proposed spectral clustering approach. Section 4 illustrates
using a real-world dataset, the capability of the proposed
spectral clustering method to providing spatially contigu-
ous and meaningful clusters. Section 5 outlines concluding
remarks.

2 Methodology

Consider a set of p standardized variables of interest{
Z1, . . . , Z p

}
defined on a fixed continuous spatial domain

of interest G ⊂ R
d , d ≥ 1 and all measured at a set of

distinct locations {xt ∈ G}nt=1. The goal is to partition these
data locations into spatially contiguous and meaningful clus-
ters so that data locations belonging to the same cluster have
a certain degree of homogeneity, while data locations in the
different clusters have to be as different as possible. This sec-
tion describes the different ingredients required to implement
the proposed spectral clustering approach.

2.1 Similarity measure

One of the key ingredients in spectral clustering as well as
in other clustering methods is the similarity measure. The
traditional spectral clustering typically uses the well-known
Gaussian kernel function based on the Euclidean distance
in the attribute space. However, in the geostatistical frame-
work, this type of similaritymeasure cannot reflect the spatial
dependence structure of the data, even if geographical coor-
dinates are also considered as attributes. The core idea is to
build a similarity measure that takes into account the spatial
dependency of data.

The multivariate spatial dependence structure of data is
commonly described using direct and cross-variograms [47]
{γi j (u, v) = Cov(Zi (u) − Zi (v), Z j (u) − Z j (v))}pi, j=1 de-

fined at any pair of locations (u, v) ∈ G2. Direct and cross-
variograms at pair of locations can be estimated as follows:

γ̂i j (u, v) =
∑n

l,l ′=1 K
�
λ ((u, v), (xl , xl ′)) Δi j (xl , xl ′)

2
∑n

l,l ′=1 K
�
λ ((u, v), (xl , xl ′))

1{u �=v}

(1)

where Δi j (xl , xl ′)= (Zi (xl) − Zi (xl ′))
(
Z j (xl) − Z j (xl ′)

) ;
K �

λ ((u, v), (xl , xl ′)) = Kλ(‖u − xl‖)Kλ(‖v − xl ′ ‖), with
Kλ(·) a nonnegative kernel functionwith constant bandwidth
parameter λ > 0; 1{u �=v} takes the value 1 for u �= v and 0
for u = v.

The nonparametric kernel estimator of the direct and
cross-variograms defined in Eq. (1) has previously been
employed in references [17,19]. It is the analogue of the
nonparametric kernel estimator of the direct and cross-
covariance functions proposed in reference [27]. It is defined
at any pair of locations and not only at a pair of data
locations. As highlighted in reference [27], second-order
non-stationarity in data can be well captured by this type
of estimator. The role of the kernel function Kλ(·) in Eq. (1)
is to weight data locations according to a target location so

123



Int J Data Sci Anal (2017) 4:301–312 303

that data locations close to the target location receive more
weight than remote data locations.

The nonparametric kernel estimator of direct and cross-
variograms defined in Eq. (1) is now used to build a similarity
measure that takes into account the spatial dependency of
data. The similarity between two data locations xt ∈ G and
xt ′ ∈ G (t, t ′ = 1, . . . , n) is defined as follows:

s(xt , xt ′) = 1 − 1

�

p∑

i, j=1

|γ̂i j (xt , xt ′)|, (2)

with � = max(t,t ′)∈{1,...,n}2
∑p

i, j=1|γ̂i j (xt , xt ′)| a normaliz-
ing factor. The resulting similarity matrix at all data locations
is denoted S = [s(xt , xt ′)]t,t ′=1,...,n . Thus, contrary to the
traditional spectral clustering, here the construction of the
similarity matrix takes into account the spatial dependency
of the data.

In Eq. (2), the term 1
�

∑p
i, j=1|γ̂i j (xt , xt ′)| represents the

normalized dissimilarity between data locations xt ∈ G and
xt ′ ∈ G. Thus, the dissimilarity between two data locations is
defined as the normalized sum of absolute values of all direct
and cross-variograms at these two data locations. The simi-
larity measure defined in Eq. (2) satisfies requirements of a
similarity measure [46]: (i) s(xt , xt ′) ≥ 0, (ii) s(xt , xt ′) =
s(xt ′ , xt ), (iii) s(xt , xt ) = 1 > 0, and (iv) s(xt , xt ′) ≤ 1. It is
important to highlight the use of cross-variograms instead of
cross-covariance functions to describe the multivariate spa-
tial dependence structure of data, because cross-variograms
have the property of symmetry, γi j (u, v) = γi j (v,u). Cross-
covariance functions do not satisfy the property of symmetry
in general,

(
Cov(Zi (u), Z j (v)) �= Cov(Zi (v), Z j (u))

)
. The

symmetry property is one of the requirements for a similarity
measure.

As can be noted, the similarity measure defined in Eq. (2)
relies on the kernel function Kλ(·) used in the estimation
of the multivariate spatial dependence structure of the data
(Eq. (1)). It is well known that the choice of the shape of the
kernel function is less important than its bandwidth parameter
[48]. The kernel function Kλ(·) is taken as the Epanechnikov
kernel whose support is compact and showing optimality
properties in density estimation [48]. The use of a ker-
nel function with compact support considerably reduces the
computational complexity of the similarity matrix between
all data locations.

Concerning the bandwidth parameter, if its value is too
small, there will not be enough data locations inside the
support of the kernel function Kλ(·) to estimate the spatial
dependence structure reliably. Thus, one will obtain an under
smoothed estimator, with high variability. On the contrary, if
the value of bandwidth parameter is too large, the resulting
estimatorwill be over smooth and farther from the underlying
spatial dependence structure of the data. An empirical rule
of thumb in geostatistics is used to choose the value of the

bandwidth parameter λ [12,22,24]. The bandwidth param-
eter λ is chosen so that the support of the kernel function
Kλ(·) centred at each data location contains, at least, 35 data
locations. Thus, for each data location its distance to the 35th
neighbour is computed; then, the maximum of resulting dis-
tances is taken as the value of the bandwidth parameter λ.
The rationale behind this choice is to have a sufficient mini-
mum number of neighbouring data locations to estimate the
spatial dependence structure reliably.

2.2 Similarity graph

In order to perform spectral clustering, data locations with
pairwise similarities must be transformed into an undirected
weighted graph G = (V, E). Here, V is the set of vertices
representingdata locations.E is the set of edges betweenpairs
of vertices, and each edge between two vertices vt and vt ′
carries a nonnegative weight wt t ′ ≥ 0 representing strength
of association between vertices. Thus, the graph G can be
described by a nonnegativeweighted n by n adjacencymatrix
(or affinity matrix) W = [wt t ′ ]t,t ′=1,...,n

, where wt t ′ equals 0
if the vertices vt and vt ′ are not connected. There are several
ways to construct such an affinity matrix given a similarity
measure. The most common are:

– the ε-neighbourhood graph [28,31]: any two vertices for
which the similarity is greater than ε are connected. After
connecting the appropriate vertices, the edge weights are
assigned uniformly;

– the k-nearest neighbour graph [28,31]: two vertices vt
and vt ′ are connected if vt is among the k most similar
vertices to vt ′ or (and) vice versa. After joining the appro-
priate vertices, the edge weights are assigned according
to the similarity measure;

– the fully connected graph [28,31]: all vertices having
non-null similarities are connected each other. The edge
weights are assigned according to the similarity measure.

In practice, the first two construction methods lead to a
sparse graph and therefore an affinity matrix containing a
high proportion of zero entries (sparse matrix). Operations
on sparse matrices take up less computer memories and run
faster. However, under these two construction methods, the
resulting sparse affinity matrix will not reflect the spatial
dependence structure of the data. Indeed, a high proportion
of not necessarily zero pairwise similarities were replaced
by zero, inducing a loss in the structure of the data. The
third construction method is suited according to reference
[31] since the similarity measure defined in Eq. (2) itself
already encodes local neighbourhoods (through the kernel
function Kλ(·) in Eq. (1)). Also, by connecting all data loca-
tions between them, the third construction method has the
advantage to be able to produce a same cluster in different
parts of the study spatial domain.
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2.3 Spectral clustering algorithm

By representing data locations as a similarity graph, the
clustering problem is equivalent to a graph partitioning prob-
lem, where we identify connected components with clusters.
Using the normalizedLaplacianmatrix of the graph, the spec-
tral clustering solution relies on the following constrained
optimization problem [28,31]:

min
F∈Rn×k

Tr (FTLF) subject to FTF = I, (3)

where F ∈ R
n×k is a (n × k) real matrix consisting of

orthogonal vectors; L = I − D−1/2WD−1/2 is the normal-
ized (symmetric) graph Laplacian matrix, with W = S
(the affinity matrix); D is a diagonal matrix whose elements
are the degrees of the nodes of the graph and correspond-
ing to dtt = ∑n

t ′=1 wt t ′ ; I is the identity matrix; Tr (·)
denotes the trace of the matrix; and T denotes the matrix
transposition.

The solution of the optimization problem defined in Eq.
(3) is the matrix with the first k eigenvectors of the graph
Laplacian matrix L arranged as columns of F [28,31]. For
a given number of clusters k, spectral clustering algorithm
finds the top k eigenvectors. These k eigenvectors define a
k-dimensional projection of the data. Then, a standard clus-
tering algorithm such as k-means is applied to the matrix
whose columns are the k eigenvectors, in order to derive the
final clusters of data locations. Given the classical spectral
clustering algorithm [36], the proposed geostatistical spectral
clustering performs the following steps:

1. Compute the similarity matrix S and take the affinity
matrixW = S;

2. Compute the degree matrix D;
3. Compute the graph Laplacian matrix D−1/2WD−1/2;
4. Compute the k largest eigenvalues ofD−1/2WD−1/2 and

form the matrix F ∈ R
n×k whose columns are the asso-

ciated k first eigenvectors of D−1/2WD−1/2;
5. Normalize the rows of F to norm 1;
6. Cluster the rows of F with the k-means algorithm into

clusters C1, . . . ,Ck ;
7. Assign data location xt to the same cluster the t-th row

of F has been assigned.

2.4 Optimal number of clusters

The determination of the most appropriate number of clus-
ters is carried out using an internal cluster validity index.
Various internal cluster validity indexes have been proposed
in the literature [23]. We choose the Caliński–Harabasz
index [8], which relies on the between-cluster variation and
within-cluster variation. Given various number of clusters

k = 2, 3, . . . , n − 1, the optimal number of clusters is the
one that maximizes the Caliński–Harabasz index:

CH(k) = B(k)/(k − 1)

W (k)/(n − k)
, (4)

where B(k) = ∑k
m=1 nm‖ȳm − ȳ‖2 is the overall between-

cluster variance, and W (k) = ∑k
m=1

∑
t∈Cm

‖yt − ȳm‖2
is the overall within-cluster variance; yt ∈ R

k is the vec-
tor corresponding to the t-th row of the matrix F; ȳm =
1
nm

∑
t∈Cm

yt is the average of points in cluster Cm ; and

ȳ = 1
n

∑n
t=1 yt is the overall average; nm is the number

of points in cluster Cm .
It is important to highlight that the determination of the

optimal number of clusters does not require to repeat all
steps of the proposed geostatistical spectral clustering for
each value of the predefined number of clusters k. Two of
the three main steps (construction of the similarity matrix
and computation of the eigen-decomposition of the graph
Laplacian matrix) are performed only once and regardless
the predefined number of clusters k. The only step which
is carried out for each value of k is the k-means clustering
which is quite fast.

2.5 Variable importance

After the elaboration of a clustering, it is important to know
the contribution of each variable in the formation of the
resulting clusters. This information can greatly improve the
interpretation of these clusters. By considering variables
{Z1, . . . , Z p} as predictors and cluster labels {C1, . . . ,Ck} as
the response, the random forest classifier [7] offers a mech-
anism for assessing the importance of variables. Random
forest consists of a number of decision trees. Every node in
the decision trees is a condition on a single variable, designed
to split the dataset into two so that similar response values
end up in the same set. The splitting is based on a measure of
impurity. For a forest, the impurity reduction from a variable
Z j ( j = 1, . . . , p) can be averaged and used as a measure of
importance [7]:

Imp(Z j ) = 1

M

M∑

m=1

∑

t∈ϕm

1 jt= j [p(t)Δi(t)] , (5)

where ϕm denotes an ensemble of M randomized decision
trees; jt is the variable used at node t ; p(t) is the proportion
nt/n of samples reaching t and Δi(t) is the impurity reduc-
tion at node t : Δi(t) = i(t) − ntL

nt
i(tL) − ntR

nt
i(tR), where

i(t) is an impurity measure (e.g. Gini index) and tL and tR
are the child nodes. 1 jt= j takes the value 1 for jt = j and 0
for jt �= j .
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Equation (5) indicates the contribution of each variable
to the homogeneity of the nodes and leaves in the resulting
forest. Every time a split of a node is made on a specific
variable; the impurity measure for the child nodes is calcu-
lated and compared to that of the parent node. Thus, the more
the child nodes have lower impurity, the more the impurity
reduction is higher. The changes in impurity are summed for
each variable and normalized at the end of the calculation.
When the Gini index is chosen as an impurity measure, the
measure provided in Eq. (5) is known as the Gini importance.

3 Simulation study

A simulation study is carried out to evaluate the effectiveness
of the proposed spectral clustering method to take advantage
of the spatial dependence to produce spatially contiguous and
meaningful clusters of data locations. Synthetic data con-
taining known spatial clusters produced by simulation are
considered. The results provided by the proposed spectral
clustering method are compared with some baseline cluster-
ing methods.

3.1 Baseline clustering methods

The first baseline method (M1) is the classical k-means
clustering [11]. The second baseline method (M2) is the
traditional spectral clustering based on the fully connected
graph [36]. The third baseline method (M3) is the spectral
clustering based on k-nearest spatial neighbour graph [39].
The fourth baseline method is the spectral clustering (M4)
based on the Delaunay graph [39]. In all these benchmark
clustering methods, geographical coordinates are considered
as attributes. For methods M2, M3, and M4, the similarity
measure used for computing the graph edge weights is the
Gaussian kernel function based on the Euclidean distance in
the attribute space. The bandwidth parameter of the Gaussian
kernel function is taken in the order of the mean distance of
a point (in the attribute space) to its k-th nearest neighbour
(k ∼ log(n) + 1) as suggested in reference [31].

3.2 Data generation

Consider the bivariate Matérn stationary covariance function
model defined in reference [20]:

Cii (h) = σ 2
i M(h|νi , ai ), for i = 1, 2, and

Fig. 1 a–c Complete data and d–f sampling data
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C12(h) = C21(h) = ρ12σ1σ2M(h|ν12, a12), (6)

where σ 2
i > 0, νi > 0, and ai > 0 are, respectively, the

variance parameter, the smoothness parameter, and the scale
parameter; ρ12, ν12, a12 are, respectively, the co-located
correlation coefficient, smoothness, and scale parameters;

M(h|ν, a) = 21−ν

�(ν)
(a‖h‖)νKν(a‖h‖), with Kν(·) a modi-

fied Bessel function of the second kind of order ν.
Three variables Z1, Z2, and Z3 are simulated on the spatial

domain [−10, 10]×[−10, 10] as follows. On the spatial sub-
domains [−10, 0]× [−10, 0] and [0, 10]× [0, 10], (Z1, Z2)

is generated according to a Gaussian stationary bivariate
random function with mean vector (0, 0) and bivariate spa-
tial dependence structure given by Eq. (6) with parameters
(σ1, σ2, ν1, ν2, a1, a2, ρ12, ν12, a12) = (6, 6, 0.5, 0.5, 1.4,
1.4, 0.7, 0.5, 1.4). On the spatial subdomains [−10, 0] ×
[0, 10] and [0, 10] × [−10, 0] (Z1, Z2) is generated with
respect to a Gaussian stationary bivariate random function
with mean vector (5, 5) and bivariate spatial dependence
structure given by Eq. (6) with parameters (σ1, σ2, ν1, ν2, a1,
a2, ρ12, ν12, a12) = (8,8,0.5,0.5,1,1,0.7,0.5,1). Z3 is simu-
lated independently of the other two variables, and according
to a Gaussian stationary univariate random function defined
on the global spatial domain [−10, 10] × [−10, 10], with

mean 2, variance 1, and Matérn stationary correlation func-
tion with smoothness 0.5, and scale parameter 0.6.

A representation of simulated variables over a 100 × 100
regular grid is given in Fig. 1a–c. As one can see, variables
Z1 and Z2 depict two spatially contiguous clusters with rel-
atively high and low values (Fig. 1a, b), whereas variable Z3

does not present spatial clusters (Fig. 1c). From the real-
ization of these variables, a dataset of 1000 observations
sampled randomly is obtained as shown in Fig. 1d–f. The
goal is to recover the two intrinsic spatial clusters using this
dataset. We will also check whether the variable importance
measure defined in Eq. (5) will give a small contribution
to variable Z3 compared to variables Z1 and Z2. Before
performing each clustering method, all variables have been
standardized. For baseline clustering methods, geographical
coordinates have also been standardized.

3.3 Experimental results

The clustering results for each method are presented in
Fig. 2. It appears that all baseline clustering methods (M1,
M2, M3, and M4) are not able to recover the underlying
spatially contiguous clusters. Under methods M1 and M2,
clusters were formed by discrimination between low and
high values of variables without really accounting for any
spatial correlation. The failure of methods M1 and M2 for

Fig. 2 a–d baseline clustering methods M1, M2, M3, and M4; e proposed spectral clustering method M5; f ground-truth clustering. The colour
of dots identifies the cluster membership
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Fig. 3 Proposed spectral clustering method: selection of the optimal
number of clusters through a Caliński–Harabasz index, b Silhouette
index, and c Davies–Bouldin index

providing spatially contiguous clusters is relative to the non-
distinction between the geographical space and the attribute
space. Although methods M3 and M4 provide spatially con-
tiguous clusters, they do not correspond to the underlying
spatial clusters as shown in Fig. 2c, d. The inability of meth-
ods M3 and M4 for providing meaningful spatial clusters
is because they are based on sparse similarity graphs which
do not reflect the spatial structure of the data although they
ensure the spatial contiguity. Moreover, by connecting only
neighbour data locations, methods M3 and M4 are not able
to detect a same cluster in different parts of the study spatial
domain as is the case of this synthetic dataset. In Fig. 2e,

Fig. 4 Proposed spectral clustering method: contribution of each vari-
able in the formation of the resulting clusters

Fig. 5 Rand index between the true partition and the partition obtained
for each clustering method over 100 simulated datasets

it can be seen that the proposed spectral clustering is able
to recover the two underlying spatially contiguous clusters.
There are few misclassified data locations which are located
at the boundaries of different spatial clusters; thereby, they
are difficult to classify correctly.

Figure 3a plots the number of clusters versus the Caliński–
Harabasz index defined in Eq. (4). In addition to the
Caliński–Harabasz index, two other well-known internal
validity indexes are plotted (Fig. 3b, c), namely silhouette
index [26,40] and Davies–Bouldin index [13]. The silhou-
ette index relies on the pairwise difference of between-cluster
distances and within-cluster distances. In turn, the Davies–
Bouldin index is based on a ratio of within-cluster and
between-cluster distances. The maximum in the plot of
the Caliński–Harabasz index (or the silhouette index) ver-
sus number of clusters is taken to indicate the underlying
number of clusters. The minimum in the plot of the Davies–
Bouldin index versus the number of clusters is an indication
of the relevant number of clusters. As it can be noted, the
Caliński–Harabasz index provides the correct number of spa-
tial clusters as well as the two other indexes.
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Fig. 6 Performance of the
proposed clustering method
under: a minimum numbers of
neighbours and b sample sizes

Fig. 7 Log-transformed and standardized variables for clustering purpose

As one can be noted in Fig. 2e, the presence of the non-
informative variable Z3 did not prevent the proposed spectral
clustering method to retrieve the two underlying spatial clus-
ters. The contribution of each variable in the formation of
clusters is given in Fig. 4. It can be seen that the variable Z3

has a small contribution (13%) compared to variables Z1 and
Z2, which have relatively the same contribution (43 and 44%,
respectively). Thus, the proposed spectral clustering method
is robust to irrelevant variables.

The performance of the benchmark clustering methods
(M1, M2, M3, and M4) and the proposed spectral cluster-
ing method are assessed using an external cluster validity
index, namely the Rand index [11]. This index measures the
fraction of point pairs where the resulting clustering and the
ground-truth clustering agree that they belong together or do
not belong together. The highest value of the statistic is one,

where the clustering is perfect. Repeating independently the
data generation process described in Sect. 3.2, 100 datasets
of 1000 observations are formed. Each clustering method
is performed to each of these 100 sampling datasets. The
distribution of the Rand index computed for each cluster-
ing method is given in Fig. 5. It emerges that the baseline
clustering methods (M1, M2, M3, andM4) and the proposed
spectral clustering method (M5) differ notably, the latter giv-
ing the best performance. In particular, methods M1 and M2
have similar performances. Methods M3 and M4 also have
similar performances, and they are the worst. These findings
have been confirmed statistically by an analysis of variance
with one factor (clusteringmethod), following by theTukey’s
honestly significant difference test [34].

In order to check whether the empirical rule of thumb for
the selection of the bandwidth parameter turns out to be a
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Fig. 8 Proposed spectral clustering method: a 2 clusters, b 3 clusters, c 4 clusters, d 5 clusters, e 6 clusters, and f 7 clusters. The colour of dots
identifies the cluster membership

reasonable choice, a sensitivity analysis is carried out. The
100 sampling datasets obtained previously are considered.
For each dataset, the proposed spectral clustering method is
performed with different minimum numbers of neighbours
(from 5 to 100 in steps of 5), and the Rand index of each
resulting clustering is calculated. Then, for each minimum
number of neighbours, the average of these 100 Rand index
values is computed as presented in Fig. 6a. It appears that to
take the bandwidth parameter as the maximum distance of
the 35th neighbour is a reasonable choice. Indeed, as it can
be seen in Fig. 6a, globally the performance of the proposed
spectral clustering is highest between 20 and 35.

The performance of the proposed spectral clustering
method is investigated under different sample sizes (from
100 to 1000 in steps of 100). For each sample size, 100 ran-
dom samples are generated from the realization of variables
Z1, Z2, and Z3 presented in Fig. 1a–c; for each sample, the
Rand index of the resulting clustering is computed; then, the
average of these 100 Rand index values is calculated. The
average Rand index for different sample sizes is given in
Fig. 6b. It can be seen that globally, the performance of the
proposed spectral clustering method increases with the sam-
ple size. This result makes sense because the more data we
have, the more reliable the nonparametric kernel estimator
of the multivariate spatial dependence structure defined in
Eq. (1) will be, and so the affinity matrix.

4 Application

The proposed spectral clustering is applied to a real-world
dataset from the National Geochemical Survey of Australia
(NGSA) database [10]. The dataset of interest comprises
six variables which are concentration elements (heavy met-
als) for 1314 collection sites from topsoil (0–10 cm depth)
and coarse grain-size fraction (<2 mm). These six variables
(concentration elements) include arsenic (As), chromium
(Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn). The
admissible range for each variable is [0;+∞[. Prior to the
clustering, all variables are log-transformed because distri-
butions of the variables are skewed and then standardized.
This preliminary processing also allows to have comparable
scales and identify a spatial pattern in the variables quickly.
Moreover, the relative order is maintained such high trans-
formed values correspond to high raw values and vice versa.
A representation of log-transformed and standardized vari-
ables is given in Fig. 7.

Figure 8 shows the resulting spatial clusters provided by
the proposed spectral clustering method for different pre-
defined number of clusters (from 2 to 7). One can see that
the proposed spectral clustering method is able to produce
disconnected clusters of similar data locations. The opti-
mal number of clusters through the Caliński–Harabasz index
defined in Eq. (4) is equal to two (Fig. 9a). The plots of num-
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Fig. 9 Proposed spectral clustering method: a selection of the optimal number of clusters through a Caliński–Harabasz index, b Silhouette index,
and c Davies–Bouldin index

Table 1 Proposed spectral
clustering method: means and
standard deviations of the
variables (log-transformed and
standardized) corresponding to
the two optimal spatial clusters

Spatial cluster 1 (n1 = 701) Spatial cluster 2 (n2 = 613)
Mean Std. Mean Std.

As 0.32 0.95 −0.36 0.93

Cr 0.42 0.90 −0.48 0.89

Cu 0.36 0.85 −0.42 0.99

Ni 0.37 0.92 −0.42 0.92

Pb 0.29 0.84 −0.33 1.06

Zn 0.43 0.79 −0.49 0.98

Fig. 10 Boxplot of the variables (log-transformed and standardized) corresponding to the two optimal spatial clusters

ber of clusters versus silhouette and Davies–Bouldin indexes
(Fig. 9b, c) also suggest two as a suitable number of clusters.

Table 1 reports the main descriptive statistics of the vari-
ables (log-transformed and standardized) corresponding to

the two optimal spatial clusters. Figure 10 depicts the box-
plots of the variables corresponding to the two optimal spatial
clusters. One can note that the contrast between the two spa-
tial clusters is substantial. It appears that the spatial cluster
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Fig. 11 Proposed spectral clustering method: contribution of each
variable in the formation of the two optimal spatial clusters

1 (green points in Fig. 8a) is characterized by the highest
concentrations, whereas the spatial cluster 2 shows lowest
concentrations (red points in Fig. 8a). The group of lower val-
ues contains 613 observations located primarily in Northern
Territory, SouthAustralia, andSouthWestWesternAustralia.
The group of high values contains 701 observations located
primarily in Queensland, New South Wales, Victoria, Tas-
mania, and a part of Western Australia.

Figure 11 shows the contribution of each variable in the
formation of two optimal spatial clusters. It appears that the
two most important variables are chromium (Cr) and zinc
(Zn), with a relative contribution of 24 and 21%, respectively.
The representation of variables such as chromium (Cr) and
zinc (Zn) given in Fig. 7b, f reveals that the partition induced
by the two optimal spatial clusters (Fig. 8a) is consistent with
the spatial variation of these variables.

5 Concluding discussion

A spectral clustering approach aimed to discover spatially
contiguous andmeaningful clusters inmultivariate geostatis-
tical data has been proposed. It relies on a similarity measure
built from a nonparametric kernel estimator of the multivari-
ate spatial dependence structure of the data. As a result, it
is able to produce spatially contiguous and meaningful clus-
ters. It also incorporates existing methods to find the optimal
number of clusters and to assess the contribution of variables
to the clustering.

The proposed spectral clustering approach is model-free;
there is no distributional assumptions or spatial dependence
structure assumptions. It is adapted to irregularly spaced data
and canproduce spatially contiguous andmeaningful clusters
without including any geometrical constraints. The empirical
evaluation of the proposed spectral clustering method shows

that it is robust to irrelevant variables and may produce dis-
connected clusters of similar data locations.

The proposed spectral clustering method exploits the spa-
tial dependence structure of the data through a nonparametric
kernel estimator of this latter. Given the well-known vari-
ability of empirical estimates for small size data or sparse
data, it will be difficult to estimate the multivariate spatial
dependence structure reliably. In those cases, the resulting
clustering could not reflect the underlying spatial clusters.
When dealing with large datasets, the proposed spectral
clustering method is computationally intensive. In fact, the
computation of the similarity measure is more complex than
calculating the sum of squared deviations, thereby increasing
the overall computational complexity.

A geostatistical empirical rule of thumb has been used
to choose the bandwidth parameter associated with the
nonparametric kernel estimator of the multivariate spatial
dependence structure of the data. Although this heuristic
approach proved successful on synthetic data, it would be
interesting to have an automatic bandwidth selection proce-
dure. There exists several versions of the graph Laplacian
matrix. In this paper, the normalized (symmetric) graph
Laplacian matrix has been used, but a different graph Lapla-
cian matrix may prove useful.
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