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Abstract Much recent research in wind power forecasting
has been focused on predicting large, sudden changes in
wind power output, called wind ramps. State-of-the-art wind
ramp prediction methods estimate future wind ramps from
forecast power time series. We suggest that, by analyzing
the weather associated with wind ramps, their forecasting
can be improved. In particular, we propose a new method
for wind ramp forecasting based on the analysis of forecast
atmospheric pressure fields. Feature vectors relating to the
pressure gradient are extracted from the pressure fields using
an image texture extraction technique, called Gabor filtering.
Numerical experiments show that these Gabor feature vec-
tors are well correlated with power generation. They are used
as inputs to a new wind power forecasting model. Compared
with a basic state-of-the-art wind power forecasting model
that does not use Gabor features as input, the proposedmodel
exhibits better performance for power prediction, for two of
the three wind farms chosen for this study. However, the abil-
ity of the model to forecast actual wind ramps is worse than
that of the basicmodel, as measured by ramp capture rate and
forecast accuracy. We also describe a second method to pre-
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dict the magnitude of a sudden power change (wind ramp),
using several input variables, in addition to Gabor features.
Numerical experiments show that this second approach has
better performance than the basicmodel,with respect to ramp
capture rate and forecast accuracy. We suggest that it could
be used operationally to supplement a current state-of-the-art
ramp prediction model. We present an example of using this
approach to provide a warning of a potential ramp.
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1 Introduction

During the last decade, wind power has become one of the
fastest-growing forms of renewable energy use. Because of
the variable nature of wind, accurate wind power forecasting
is essential for the integration of wind energy into the electric
power grid. More recently, a growing interest has emerged
in forecasting the sudden and large variations in wind power
production, calledwind ramps [2]. Ramps present significant
operational obstacles to wind energy integration. In response
to sudden increases or decreases in the generatedwind power,
energy system operators must take actions to keep the sys-
tem balanced. For example, if an upward ramp event occurs,
the system operator may have to shut down wind turbines
to avoid over-generation. The more accurate the wind ramp
predictions, the more effective the proactive interventions by
the operators can be.

State-of-the-art ramp prediction methods generally detect
ramp events from the predicted wind power generation, i.e.
using the output of a wind power forecasting system. A
state-of-the-art forecasting system consists of a numerical
weather prediction (NWP) model that produces wind speed
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and direction forecasts, and statistical or machine learning
methods thatmodel the relationships between thewind speed
forecasts and actual wind power generation [3–5]. However,
wind ramp events are not well predicted by existing wind
power forecasting systems: their prediction performance is
worse during ramp events, compared to periods with steady
or gradually changing winds. Improvement of wind ramp
forecasting performance is the main contribution of the pre-
sented approach.

Analysis of weather patterns associated with ramps can
add substantial value to ramp prediction [6]. Grant et al. [7]
stated that human intervention can greatly improve ramp
forecasts in practical operations, by examining the weather
situations accompanying the ramps. Of the many meteoro-
logical variables, the pressure field is most frequently used
as an indicator of weather type [8,9]. The strong association
between pressure gradient and wind [10] makes air pressure
a suitable candidate to examine for its potential to improve
wind ramp prediction.

In this paper, we describe improvements towind ramp pre-
diction, using the near-surface pressure field and the texture
extraction technique of Gabor filtering [11], commonly used
in image processing. The extractedGabor features are used as
inputs to a ramp forecasting system. The performance of the
resulting system is compared with a current state-of-the-art
ramp forecasting method.

This paper is organized into five sections. Previous work
related to the use of weather patterns to improve wind ramp
prediction is summarized in Sect. 2, while Sect. 3 provides
details of the new prediction approach. The application of
the proposed approach using real meteorological and power
production data is described in Sect. 4. Finally, Sect. 5 gives
the major conclusions and indicates possible directions for
future work.

2 Related work

Most existing ramp prediction methods detect ramps from
wind power forecasts, obtained using state-of-the-art wind
power forecasting systems. Such forecasting systems con-
vert wind data from an NWP model into power generation
forecasts. This conversion is usually facilitated by statistical
or machine learning methods, which approximate the power
curves of wind farms [3–5].

Apart from occurrence prediction of ramp events, several
studies have also investigated the uncertainty of ramp pre-
dictions obtained using state-of-the-art forecasting systems.
Bossavy et al. [12] used NWP ensembles (with 51 NWP
members provided by the European Centre for Medium-
Range Weather Forecasts model, ECMWF) to improve the
estimation of the temporal uncertainty of ramp predictions.
Greaves et al. [13] analyzed the temporal uncertainty of pre-

dicted ramp occurrences, by calculating a probability density
function based on the phase error of ramp predictions from
training data sets. Cui et al. [14] detected ramp event prob-
ability characteristics from statistical scenarios produced by
a neural network (NN) probability generating model. The
parameters of the NNmodel were optimized by an improved
genetic algorithm based on multi-objective fitness functions.
Ferreira et al. [15] generated statistical scenarios by using
a Monte Carlo sampling process given a probability den-
sity function (PDF) for the wind power forecasts and then
output a histogram of the probability of having a ramp event
above a certain magnitude for each prediction horizon. Cui et
al. [16] derived the probabilistic distribution of ramps using
stochastical scenarios of wind power generation, which were
generated by an NN model trained using cumulative density
function (CDF)- and auto-correlation function (ACF)-based
objective functions. A thorough review of ramp forecasting
can be found in [6,17].

Ramp prediction can benefit from an analysis of the under-
lyingweather situation [6,7]. Improvements in the prediction
of wind power and ramps can also be achieved using other
meteorological variables, in addition to wind speed [18,19].
Kamath [20,21] used a feature selection technique to evalu-
ate the influence of several meteorological variables on the
identification of ramp occurrences. Vladislavleva et al. [22]
analyzed the correlation of important meteorological vari-
ables with wind power generation and then obtained a model
with some selected meteorological variables, which gave a
reliable wind power prediction. Couto et al. [23] classified
weather regimes on surface level atmospheric data and iden-
tified most representative weather regimes using principal
component analysis (PCA) by applying K-means cluster-
ing. Strong associations between certainweather regimes and
ramps were found.

The atmospheric pressure field is an important indicator of
weather situations or weather types. It has been widely used
in weather type recognition schemes [9,24]. The geostrophic
wind speed and vorticity, which can be derived from gridded
pressure data, are employed in a widely used weather clas-
sification system, the Lamb system [8,25]. This system has
been applied to analyze the influence of weather types on
surface meteorological observations [26,27]. In addition to
their strong association with weather types, pressure fields
are also directly related to surface wind speed [10]. Gutier-
rez et al. [28] used pressure data to reconstruct historicalwind
speed for a wind farm area. Cutler [29] analyzed ramp events
by classifying them into several synoptic weather classes
using atmospheric pressure data.

In this paper, a quantitative analysis of atmospheric pres-
sure fields is used to support the prediction of wind ramps.
First, coherent features are extracted from gridded pres-
sure fields using the image texture processing technique
of Gabor filtering [11,30]. These features, which iden-
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tify the occurrence of strong pressure gradients, and hence
strong winds, are then used as input to ramp prediction
models.

3 Methodology

3.1 Wind ramp definition

Wind ramps are typically defined as changes in wind power
generation, which exceed a certain percentage of the rated
power, within a short period of time [7,13]. A basic ramp
definition uses the difference between the maximum and
minimum values of power generation within a specified time
period. In recent years,many researchers havedetected ramps
using filtering techniques [31] that reduce noise in the power
signal. Here we use the definition proposed by Bossavy et
al. [12]. In this approach, the original power time series P (t)
is first transformed into a filtered representation P f (t) that
is then limited by a threshold. Ramp identification is thus
performed as follows

P f (t) = mean {P (t + h) − P (t + h − n) ; h = 1, . . . , n} ,
∣
∣
∣P f (t)

∣
∣
∣ > Pth, (1)

where n is the number of time steps for which the power dif-
ferences are considered, and Pth is the magnitude threshold
of the filtered signal P f (t). Figure 1 illustrates the use of this
ramp event definition. The ramp time is usually specified as
the central time of the event.
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If the wind power series has length N , then A is an N × N
matrix, and the power generation and power change series are
both vectors of length N . The absolute value of the power
change signal,

∣
∣P f (t)

∣
∣, is called the “power change magni-

tude” hereafter and used in this work to describe the intensity
of wind ramps.

3.2 State-of-the-art method (SOA)

Typical state-of-the-art wind ramp predictionmethods detect
ramp events in the predicted power generation time series.

Fig. 1 Example of a wind ramp identified using Eq. 1 for n = 3. Solid
line is the hourly power generation time series, dashed line corresponds
to filtered signal. The plotted points on each curve indicate the hours
when the filtered signal exceeds the specified power magnitude thresh-
old. The time of the ramp is taken to be at the 24 h mark (the central
time of the event)

Hence, it is essential to forecast first the wind power for
a wind turbine, wind farm, or cluster of wind farms. Most
current wind power forecasting systems consist of an NWP
model, which forecasts wind speed and other meteorologi-
cal variables, and a mathematical model of the relationship
between the NWP model output variables and actual wind
power generation. Current and recent power generation val-
uesmay also be included in thismodel, since they can provide
trend information for extrapolating power generation into the
near future.

The power prediction process can be formally expressed
as follows:

P̂(t0 + T ) = f (Ws(t0 + T ),Wd(t0 + T ), P(t0),

P(t0 − 1), P(t0 − 2), . . . , P(t0 − n)), (3)

where P̂ (t0 + T ) is the predicted wind power generation at
time t0 + T , Ws, and Wd represent, respectively, the wind
speed and direction forecast, P (t0) is the recorded wind
power generation at time t0, and P (t0 − n) is the recorded
wind power generation at time (t0 − n). The function f rep-
resents a statistical or machine learning algorithm modeling
the power conversion. The parameters of these algorithms are
typically estimated by minimizing a predefined error metric,
such as the root mean square error (RMSE) or mean absolute
error (MAE) between predicted and observed power gener-
ations, during the course of training on historical data.

Various machine-learning methods have been applied to
wind power prediction [5,32,33]. For example, Gan and
Ke [34] used least square support vector machine (LSSVM)

123



240 Int J Data Sci Anal (2017) 4:237–250

to predictwindpower ramps. Themostwidely usedmethod is
themultilayer–perceptron (MLP) neural network [18,19,35–
38]. Kusiak et al. [19] used five different algorithms to
forecast wind power: support vector machine regression
(SVM-R), an MLP neural network, a radial basis function
(RBF) network, a classification and regression tree, and a
random forest. The accuracy of these models was then esti-
mated and compared. It was found that the model generated
by the MLP neural network outperformed the other models
for both 12-h-ahead and 84-h-ahead wind power forecasts.

MLP is a feed-forward, artificial neural network. It has
been successfully used to solve a number of regression and
pattern recognition problems. Its typical configuration con-
sists of a single hidden layer of neurons with a sigmoidal
transfer function. Theoretically, this configuration is a uni-
versal approximator, given a sufficiently large number of
neurons in the hidden layer [35]. The network learns to asso-
ciate pairs of patterns from a training data set. The most
common learning algorithm forMLP is the back-propagation
algorithm, based on gradient descent.

In this study, we formulate a state-of-the-art wind ramp
prediction model, in order to establish a baseline and
allow subsequent comparison with the proposed improved
approaches to wind ramp prediction. This model predicts
wind power generation from NWP-based wind speed and
direction forecasts, augmented by recent values of power
generation (see Eq. 3). The MLP neural network with back-
propagation was used to develop the wind power prediction
model. Ramp predictions are then made by applying a ramp
definition to the predicted power series (see Eq. 1). Detailed
parameters regardingMLPneural network setting and thresh-
old for defining ramps can be found in Sect. 4. For conve-
nience, we will call this procedure State-Of-the-Art (SOA).

3.3 Gabor filtering

In this paper, we augment the wind power prediction model
by analyzing the forecast pressure field to identify strong
pressure gradients. Specifically, we assess the pressure gra-
dient field using Gabor filtering, a technique commonly
applied in image processing. Gabor features are extracted
from the two-dimensional pressure field produced by the
NWPmodel. The pressure field can be regarded as an image,
with individual pixels corresponding to pressure values on a
two-dimensional array of grid points.

Gabor filtering is a common texture extraction technique
used in image processing [11,29], with applications such
as object identification and detection. In our proposed wind
power forecasting system, it is used to extract features associ-
ated with strong pressure gradients (and hence strong winds)
from gridded pressure data. AGabor filter consists of a Gaus-
sian kernel function modulated by a sinusoidal plane wave
[11]. It has the following general form:

g(x, y) = exp

(
x ′2 + γ 2y′2

2σ 2

)

cos

(

2π
x ′

λ
+ ϕ

)

, (4)

with

x ′ = x cos θ + y sin θ,

y′ = −x sin θ + y cos θ,

σ = λ

π

√

ln 2

2
· 2

b + 1

2b − 1
,

where x and y represent two perpendicular axes (in our
case parallels of latitude and meridians of longitude). The
parameters θ, λ, ϕ, γ and b determine the characteristics of
the Gabor filter support: θ specifies the orientation of the
support (the normal to the parallel stripes of the Gabor func-
tion and hence an indication of the direction of the extracted
pressure gradient); λ represents the wavelength of the cosine
factor of the Gabor filter kernel and thus determines the scale
(and hence strength) of the extracted pressure gradient; ϕ, the
phase offset, determines whether the support is symmetric,
ϕ = 0, or not, ϕ = π/2 (in order to allow for a differ-
ence between the pressure fields on opposite sides of a target
location, asymmetric support is used); γ is the spatial aspect
ratio, specifying the ellipticity of the support or equivalently
the shape of the identified region with high pressure gradi-
ent, and b is the bandwidth, related to the ratio of σ (the
standard deviation of the Gaussian function) to λ (the scale
of the pressure gradient). It represents the smoothing effect
of the Gabor filter.

Features (regions of strongpressure gradient) are extracted
(identified) by convolving the Gabor filter with the two-
dimensional pressure field p:

G (x, y) =
∫ ∫

p (ξ, η) g (x − ξ, y − η) dξdη (5)

When used for the identification of forecast wind ramps, the
parameters of the Gabor filter must be chosen in such a way
as to facilitate the identification of extended regions of strong
pressure gradient. In order to select the parameter values for
the Gabor filter, we first conduct a morphological assess-
ment to choose values of ϕ, γ , and β that best characterize
the nature of the strong atmospheric pressure gradients asso-
ciated with strong and rapid wind changes. In particular, we
are looking for quasi-linear features/structures with a weak
gradient along one direction and a strong gradient perpendic-
ular to it. Based on several empirical tests, an asymmetric,
elongated filter support with a single parallel strip has been
selected, as illustrated in Fig. 2. Following morphological
selection, two more parameters remain to be determined:
scale λ and direction θ . Using the four scales (λ = 2, 4, 6, 8)
and four directions (0, 1/4π, 1/2π, 3/4π), 16 distinct com-
binations of Gabor parameters can be obtained. Using
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Fig. 2 Illustration of morphological parameter tuning of Gabor filters.
Symbols × denote rejected candidates, while ∨ denote accepted can-
didates. The exact value of the parameter used is determined based on
the correlation between particular feature and wind power generation,
as discussed in Sect. 4.3

Fig. 3 Illustrations of Gabor filter support with different orientations
(x-axis, from left to right θ = 0, 1/4π, 1/2π, 3/4π) and scales (y-axis,
from top to bottom λ = 2, 4, 6, 8). The ID numbers established in this
figure are used throughout the text

these combinations, the 16-dimensional Gabor feature vec-
tor (Fig. 3) is defined to be the corresponding 16 values
of G = (x, y) at the grid point corresponding to the loca-
tion of interest (e.g. a wind farm). These feature vectors are
evaluated and then selected, based on their correlation with
power generation and wind ramp occurrence, as described in
Sect. 4.3.

3.4 Proposed approach

Based on the SOAmethod described in Sect. 3.2, we propose
two approaches to improve the SOA wind ramp forecasting.
The first approach, which we call Gabor 1, uses features
extracted from the pressure field as additional inputs to the
MLP predictor of the power generation time series. As in
SOA, ramps are then identified in the power generation time
series. The second approach, which we call Gabor 2, uses the
same input to the MLP predictor, but it directly forecasts the
magnitude of the power change, without going through the
intermediate step of forecasting the power series. Threshold-
ing the magnitude of the power change allows the detection
of wind ramp events. The three models are summarized in
Table 1.

4 Experiments

4.1 Data

Hourly wind power generation data for three wind farms in
southern Alberta (c.f. Fig. 4 and Table 2), were obtained
from the Alberta Electric System Operator (AESO)—web
site (http://www.aeso.ca).

NWP data were hindcast using the Weather Research
and Forecasting (WRF) model [39]. WRF was used to
perform regional atmospheric simulations, based on ini-
tial and boundary conditions provided by the National
Centers for Environmental Prediction (NCEP) operational
Global Forecast System (GFS) (http://www.nco.ncep.noaa.
gov/pmb/products/gfs/).

The parameters of the WRF physics settings [39] were
configured as follows: Lin et al. scheme for microphysics
[40]; the Rapid Radiative Transfer Model for longwave radi-
ation [41]; the Dudhia scheme for shortwave radiation [42];
the MM5 similarity surface layer model [43,44]; the Noah
land surfacemodel [45]; a boundary layermodel based on the
Yonsei University scheme [46]; and the Kain-Fritsch scheme
for cumulus parameterization [47].

The WRF simulations were performed using two co-
centric, nested domains with resolutions of 18 and 6 km,
respectively, both on a 39 × 39 grid. The outer domain
(Domain 1) provided the pressure data for a larger region,
while the higher-resolution inner domain (Domain 2) pro-
vided the wind speed forecast for the target wind farms. Note
that there are two grid points between farm 1 and the left edge
of the inner domain; this alleviates possible reliability issues
of numerical solutions for grid points located at the edges
of the modelling domain. The region covered by the outer
domain has an area of 492,804 km2; it is centered on southern
Alberta, Canada (Fig. 4). Located east of the Rocky Moun-
tains, southern Alberta is a great location for wind energy
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Table 1 Essentials of the three ramp forecasting models

Model Input variables Output variable Description

SOA Wind speed and direction forecasts,
recent power generation (current
and previous 3 h)

Power generation State-of-the-art model

Gabor 1 Wind speed forecasts, recent power
generation, selected Gabor
features

Power generation Based on SOA, but Gabor features
added to the input

Gabor 2 Wind speed forecasts, recent power
generation, selected Gabor
features

Magnitude of power change Similar to Gabor 1, but predicts
power change magnitude

Fig. 4 Terrain height of the nested domains of interest (the square box
in the center indicates the inner domain). Three black dots indicate the
locations of the three target wind farms

Table 2 Wind farm characteristics

No. Name Latitude (◦) Longitude (◦)

1 Castle river 49.49 −113.97

2 Blue train wind 49.55 −113.45

3 Enmax taber 49.78 −112.14

production. It is dominated by subsiding, westerly mountain
flows over the lee of the mountains and frequented by strong
Chinooks.

In the presented study, WRF was run in hindcast mode,
that is, forecasts were made starting from an initial point in
the past [48]. TheWRF runs provided forecastswith horizons
of up to 24 h. The temporal resolution of theWRF output was

30 min for the outer domain and 5 min for the inner domain.
Forecasts were issued at 00:00, 6:00, 12:00, and 18:00 GMT
each day, for 24 h ahead (see Fig. 5). A few hours of model
spin-up is usually required to generate cloud, precipitation
and high-resolution atmospheric features. Therefore, a 6-h
spin-up was performed for each “six-hourly” forecast. The
entire simulation period covered 1 year from August 2011 to
July 2012. The outputs of the WRF model have been val-
idated by comparing with observations made at a nearby
weather station. Overall, five variables (wind speed, wind
direction, surface pressure, 2 m temperature, and pressure at
9thWRF layer) were extracted from the simulation results, at
all grid points and for each time step, over the 1 year period.
The total volumeof analyzed datawas approximately 3.7GB.

The wind speed and direction forecasts used in the power
prediction model were extracted by interpolating the grid-
ded WRF wind output to the farm location and hub height
(60 m). The 5-min wind data were averaged into hourly
forecasts, in order to match the temporal resolution of the
power generation data. Pressure field data for the Gabor-
based method were extracted from the outermost domain
every hour, in order to cover a large region and thereby detect
strong,mesoscale pressure gradients. These hourly data were
then input into Eq. 3, in order to predict wind power at each
wind farm separately by using MLP neural network.

In order to detect a ramp from the power forecast, the
predicted hourly power values were assembled into a time
series. Wind power predictions are typically issued at a cer-
tain time of day, for several hours ahead. In our case, power
predictions were issued every 6 h for 24 h ahead. These val-
ues can be assembled into time series in two different ways.
First, if only coarse power predictions are available, they can
be interpolated to obtain hourly predictions. Ramp identi-
fication can then be tested using forecast power values for
the same horizon. While this approach may well represent
the ramp prediction performance for each prediction hori-
zon, it neglects the fine fluctuations contained in the original
predicted power generation.

In order to take into account hourly variability, the pre-
dicted wind power generation (for a 6-h interval from each
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Fig. 5 Illustration of how we
assembled the power prediction
time series used for ramp
detection. Every 6-h long wind
power prediction is connected to
single time series, for future
ramp detection

forecast) can be combined to form a consecutive series of
hourly predicted power generation. For example, forecasts
updated every 6 h with horizons from 19 to 24 h, can be con-
nected to form a single time series for ramp detection. The
timing of the various simulations/forecasts is illustrated in
Fig. 5.

4.2 Evaluation metrics

The performance of wind power forecasts can be evaluated
using a suitable error measure, e.g. the root-mean-square-
error (RMSE). However, wind ramp predictions require an
event-based evaluation framework. For this purpose, two
metrics were selected: ramp capture rate and forecast accu-
racy. These metrics are commonly used for evaluating event
predictions [13,49,50].

Each forecast of a ramp event can be classified as a true
positive (TP), a false positive (FP), a false negative (FN)
or a true negative (TN). Based on these categories, “ramp
capture rate” indicates the fraction of actual events that were
predicted correctly:

ramp capture rate = TP

TP + FN
,

while “forecast accuracy” indicates what fraction of pre-
dicted events actually occurred:

forecast accuracy = TP

TP + FP
.

Ramp predictions can be affected by phase errors, mean-
ing that ramp events are predicted hours before or after their

actual occurrence. To allow for moderate timing errors, a tol-
erance time is typically used to link predicted ramp events
with actual ones [12,13]. The tolerance time is a temporal
range around the timing of observed ramps. For instance,
if the tolerance time is set to 8 h, a predicted ramp event
whose timing is up to 8 h earlier or 8 h later than the actual
one is still considered to be a correct forecast. This tolerance
time is short enough to separate neighboring ramps, but long
enough to associate corresponding forecast and observed
ramps. When the tolerance time allows two or more forecast
ramps to be associated with a single observed ramp, only the
ramp whose timing is closer to the observation is taken to be
a correct forecast.

4.3 Feature selection

Gabor features were extracted from the forecast pressure
fields. As a result of our choice of Gabor parameters, these
features are associated with extended, contiguous regions of
strong pressure gradient (Figs. 2, 3). Mean sea level pressure
(SLP) data are commonly used in the literature for weather
pattern classification.However, usingSLP inwesternCanada
may introduce extrapolation errors, due to the substantial ter-
rain height exceeding 1000 m above mean sea level (Fig. 4).
To avoid these errors, various isobaric and geopotential sur-
faces were considered alternatives to SLP and tested. These
included SLP itself, the 700 hPa geopotential height surface
and several WRF co-ordinate levels. Each WRF co-ordinate
layer corresponds to a specific ratio of the actual pressure
to surface pressure, σ , representing the fraction of the total
air mass above it (e.g. σ = 1 represents the terrain surface,
while σ = 0 is the top of the model atmosphere).
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Fig. 6 Absolute value of Spearman’s rank correlation coefficient
between observed power generation and various input variables (three
Gabor features, forecast wind speed, forecast wind direction and recent
power generation P(t0), P(t0 − 1), forecast surface pressure, forecast
2-m temperature, and meridional, and zonal pressure gradient compo-
nents), for Farm 1 (color figure online)

In order to minimize the effects of random initialization,
MLP training was performed five times for each choice of
vertical coordinate surface. There were no substantial dif-
ferences among the layers. However, WRF level 9 with
σ = 0.84, provided overall best results. This level was, there-
fore, used for all subsequent experiments. Gabor features
were extracted based on the pressure on this sigma level.

The Gabor feature vector at the location of each farm
was extracted from the gridded pressure data on the 0.84
sigma level. In order to identify the component from the 16-
dimensional vector of Gabor features (Fig. 3) most relevant
for power prediction, absolute values of Spearman’s rank
correlation coefficient between each feature and power gen-
eration were calculated. A set of components with relatively
high correlation with power generation were chosen, to be
added to the input of the Gabor 1 and Gabor 2 models. A
similar procedure was used for the other input variables.

Figure 6 shows the correlation between power genera-
tion and several input variables, using the absolute value
of Spearman’s rank correlation coefficient, for Farm 1. The
variables include three Gabor components, selected from the
16-dimensional feature vector, basedon their correlationwith
power generation. Also, shown are the forecast wind speed
and direction and recent power generation. Other meteoro-
logical variables shown in Fig. 6 are the forecast surface
pressure, temperature at 2 m above ground, and the two com-
ponents of the local grid-wise pressure gradient (meridional
and zonal), as represented by the pressure difference between
two neighboring grid points.

Among all the input variables, forecastwind speed showed
the highest correlation with power generation, for almost
all prediction horizons. Recent power generation (current
and 1 h ago) was well correlated with power generation
for prediction horizons of less than 10 h, but the correla-
tion decreased rapidly with increasing prediction horizon.
Because the forecast wind direction had a low correlation
with power generation, it was not included in the Gabor
1 model. Forecast temperature and pressure also had low
correlation with power generation. In addition, unlike the
Gabor features, the two local grid-wise pressure gradient
components appear to be of little use for forecasting power
generation. The three selected Gabor feature components
were well correlated with power generation through all pre-
diction horizons. Consequently, they were used as additional
input into the Gabor 1 power forecasting model. In summary,
the input variables for thismodel include forecastwind speed,
recent power generation and the three selected Gabor feature
components, Gab1, Gab2, and Gab3.

An example shown in Fig. 7 illustrates the relationship
between a Gabor feature (specifically Gabor vector compo-
nent 16) and the progression of a ramp event. It is clear that
at the time of the sharpest power changes, i.e. the ramp time,
the Gabor vector component attained a local maximum.

The association between a Gabor feature (vector com-
ponent) and ramp events is also shown using Spearman’s
rank correlation coefficient in Fig. 8 (the difference in scales
between the x-axes of Figs. 6 and 8 is due to their different
nature - hourly power prediction vs. horizon interval, respec-
tively). This figure also shows the correlation between the
power change magnitude and other variables considered as
possible inputs for the Gabor 2 model (forecast wind speed
and direction and recent power generation). The forecast
wind speed had the highest correlationwith the power change
magnitude, while the forecast wind direction had a low corre-
lation. The correlation between the power change magnitude
and recent power generation decreased with increasing pre-
diction horizon. Among the potential input variables, Gabor
features had the highest correlation with the power change
magnitude. Consequently, we decided to use forecast wind
speed, recent power generation and selected Gabor vector
components as inputs to predict the power change magni-
tude directly, using the Gabor 2 model.

Since the wind speed and pressure gradient are physically
related, as expressed in the geostrophic and gradient wind
equations, Gabor features were also tested as independent
inputs to the MLP model, in addition to the forecast wind
speed. The correlation between the 16-dimensional vector
of Gabor features and forecast wind speed, wind direction
and recent power generation was also evaluated. The highest
correlation coefficient, around 0.4, was found betweenGabor
component 14 and forecast wind speed. However, this value
is not large enough to establish that the two variables are

123



Int J Data Sci Anal (2017) 4:237–250 245

Fig. 7 An example of a ramp event at wind farm 1 and the corre-
sponding Gabor feature (vector component 16). a time series of power
generation and power change signal describing the ramp event.; b pres-
sure field onWRF layer σ = 0.84 at the time corresponding to the peak

magnitude ofGabor feature values (at 20:00,May 10); c pressure profile
along the diagonal line indicated in the pressure field during both ramp
time and non-ramp time; dGabor feature (ID: 16) during the same time
period

strongly correlated. Hence, it appears that Gabor features
may be able to contribute independent, new information as
inputs to the Gabor 1 and 2 models. The merits of using
Gabor features are further demonstrated in Sect. 4.4, which
compares models SOA and Gabor 1.

4.4 Evaluation of the Gabor 1 and Gabor 2 models

Both SOA and Gabor 1 models used a MLP predictor to
make power generation forecasts for each prediction hori-

zon.When dividing the entire dataset into training, validation
and testing datasets, one method is to divide the data simply
sequentially [12]. For example, one could train the model
using data fromfirst half of the year and test it using data from
the second half. However, in our case, the pressure field is
determined byweather patterns that are specific to the time of
year. A possible way to divide datasets in this case is to break
the whole dataset into several small periods, e.g. training the
data for 3 weeks and testing it for the following 2 weeks
[29]. However, this method may introduce too much recent
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Fig. 8 Absolute value of Spearman’s rank correlation coefficient
between input variables and power changemagnitude, for Farm 1 (color
figure online)

trend information into power prediction. To avoid overfitting
the recent trend, and to allow for seasonal patterns in the
input variables, the dataset for the entire year was divided
into three consecutive, 4-month periods. Training, valida-
tion, and testing datasets were extracted sequentially within
each component as 50, 20, and 30% of available data points,
respectively. The time periods with missing GFS data were
removed from the datasets.

Figure 9 shows box plots of the observed and predicted
power generation by the SOA forecasting system. The quar-
tiles of the two variables are depicted. Comparing the first
and third quartiles (bottom and top of the boxes) of the two
variables, it is clear that the SOA forecasting model underes-
timated power generation for high winds and overestimated
it for low winds (also indicated by Bossavy et al. [12]). This
phenomenon probably led to smaller ramp magnitude pre-
dictions than the actual ones, thereby worsening the ramp
prediction results. This issue is further discussed in Sect. 4.5.

The difference between models SOA and Gabor 1 lies
in additional input variables. All potential input variables,
including Gabor features obtained, were considered and
selected through the process described in Sect. 4.3. Wind
direction was removed from the variable set, due to its low
correlation with power generation.

The performance of the two models was evaluated using
RMSE of the predicted power, for each prediction horizon,
and for each farm. Figure 10 shows the RMSE of models
SOA and Gabor 1 for Farm 1. The relatively good perfor-
mance for prediction horizons of less than 6 h was likely due
to persistence and the use of recent power trend, i.e. the inclu-
sion of recent values of power generation as the model input.
For longer forecast horizons, the error increased slightly.

Figure 10 also shows that model Gabor 1 had a lower
RMSE for most prediction horizons, thereby demonstrating

Fig. 9 Boxplots of predicted and observed (actual) power generation.
The bottom and top lines of each box represent the first and third quar-
tiles of the values, and the red line inside the box represents the median
value (color figure online)

better performance in power prediction than the SOAmodel.
Both models were also tested using data from the other wind
farms. For Farm 2, Gabor 1 also exhibited better predictive
performance than SOA, while for Farm 3, the RMSEs of the
two models were comparable.

The operational choice of parameter values for detecting
ramps is case and purpose sensitive. For example, for electric
systems with slow-started power generation, such as coal,
the ramps occurring within a short time period are of greater
concern than for systems with fast-started power generation,
such as hydro.

In this study, we have used n = 3 hours in Eq. 1, a value
used in the literature [12]. The threshold was set to Pth =
15% of the nominal power, and the tolerance time to 8 h [12,
13]. The results of the performance comparison, for various
values for the magnitude parameter, are shown in Sect. 4.5.

The ramp prediction performance of models SOA and
Gabor 1 is presented in Table 3. Based on the ramp cap-
ture rate and forecast accuracy of the two models, Gabor 1
performs poorly compared with the state-of-the-art model
(SOA). This holds for most of prediction horizons and for all
three farms. In summary, the experiments show that, although
Gabor 1 provides more accurate power predictions than SOA
(as measured by lower RMSE of predicted power genera-
tion), it performs worse for ramp prediction.

4.5 Evaluation of the Gabor 2 model

Aswe discussed in connectionwith Eq. 2, converting a power
series to a power change signal can be regarded as solving a
linear system Ax = b, where x represents power generation,
and b represents the power change signal. Since the matrix
of coefficients A is singular, this linear system has no solu-
tion. Hence, the corresponding power generation cannot be
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Fig. 10 Comparison of the RMSE of predicted power for SOA and
Gabor 1 (in percentage of the nominal power) for Farm 1 (a) and Farm
2 (b)

obtained given the predicted power change magnitude from
the Gabor 2 model. However, the power change magnitude
forecast can be used independently to detect ramp events,
since ramps can be detected directly from the power change
signal (Eq. 1).Moreover, since theSOAforecast system tends
to underestimate the magnitude of ramp events, as discussed
in Sect. 4.4, it is possible to use the Gabor 2 forecast to com-
plement the SOA ramp forecast.

In what follows, the performance of the Gabor 2 model
is tested in terms of ramp capture rate and forecast accuracy
(higher is better for both measures). An example is also pre-
sented that illustrates how forecasts produced by this model
can be used to complement the SOA forecast.

In Tables 3 and 4, the performance of Gabor 2 is compared
to the other two models. Table 3 shows individual model
comparisons for Farm 1. It is evident that Gabor 2 performed
better than SOA and Gabor 1 for both metrics, for all three
farms and for all prediction horizons.

Table 4 shows similar results to Table 3, but for a 5-h toler-
ance time. Since the tolerance time is shorter than that for the
cases in Table 3, the values of ramp capture rate and forecast
accuracy are lower overall than those in Table 3. Neverthe-
less, like Table 3, Table 4 also shows that the performance of
Gabor 2 is superior to that of SOA and Gabor 1, with respect
to ramp capture rate and forecast accuracy. This result applies
for all three farms and all prediction horizons.

Operationally, Gabor 2 could be used to complement a
state-of-the-art ramp prediction model (SOA), as illustrated
in Fig. 11. The black lines represent the observed power
generation (solid) and observed power change magnitude
(dotted), The red lines (solid and dotted) are correspond-
ing SOA forecasts, with forecast horizons of 13 to 18 h. The
main differences are that the predicted power change magni-
tude (red dots) is not as sharp as observed (black dots), and
the predicted power generation following the ramp is higher
than observed. It would be difficult to identify a ramp based
solely on SOA’s predicted power change magnitude (red dot-
ted line). However, the predicted power change magnitude of
Gabor 2 (blue line) is closer to the observed power change
series, albeit the peak being lower and broader than actual.

In this example, Gabor 2 provides supplemental informa-
tion that supports the forecast of a ramp event during this
time period.

5 Conclusions and future work

With the increased penetration of wind energy into electric
power grids, the accuracy ofwindpower forecasting becomes
increasingly important. Wind ramps pose significant opera-

Table 3 Performance
comparison for ramp prediction
by the three models
(tolerance time = 8 h) for
Farm 1

1–6 h 7–12 h 13–18 h 19–24 h

SOA Ramp capture 0.73 0.58 0.53 0.72

Forecast accuracy 0.73 0.67 0.69 0.71

Gabor 1 Ramp capture 0.76 0.45 0.46 0.46

Forecast accuracy 0.61 0.71 0.74 0.71

Gabor 2 Ramp capture 0.77 0.78 0.68 0.74

Forecast accuracy 0.79 0.74 0.80 0.79
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Table 4 Performance
comparison for ramp prediction
by the three models
(tolerance time = 5 h) for
Farm 1

1–6 h 7–12 h 13–18 h 19–24 h

SOA Ramp capture 0.59 0.43 0.42 0.59

Forecast accuracy 0.80 0.67 0.69 0.78

Gabor 1 Ramp capture 0.62 0.38 0.37 0.36

Forecast accuracy 0.68 0.73 0.76 0.72

Gabor 2 Ramp capture 0.59 0.60 0.52 0.56

Forecast accuracy 0.83 0.79 0.83 0.82

Fig. 11 An example of ramp predictions made by SOA and Gabor 2,
for Farm 1, for prediction horizons of 13–18 h ahead. Black solid and
dotted lines represent observed power generation and power change
magnitude, respectively. Red lines represent corresponding predictions
made by SOA. The blue line indicates the power change magnitude
predicted by Gabor 2 (color figure online)

tional obstacles to wind power integration. As a result, they
have attracted much research interest. Analyzing weather
patterns associated with ramps can add value to ramp pre-
diction.

In this paper, we have introduced ramppredictionmethods
using extracted feature vectors from the near-surface pres-
sure field, using the texture extraction technique of Gabor
filtering. Two proposed methods, Gabor 1 and Gabor 2 were
illustrated and tested against a state-of-the-art model (SOA)
and observations, using case studies involving three wind
farms located in southern Alberta, Canada.

By testing the correlation of several input variables
with power generation, it became evident that certain
Gabor features are well correlated with power genera-
tion and power ramps. This correlation was weaker than
that for the forecast wind, but stronger than the correla-
tion with wind direction, temperature, pressure, and local
pressure gradient from NWP output. In order to preclude
the possibility that Gabor features provide only redundant
information for power prediction, we also tested the cor-

relation between Gabor features and other input variables
such as forecast wind speed. The results showed that they
are not highly correlated. In view of this outcome, we
concluded that Gabor features can potentially add useful,
independent information to the ramp forecast process, and
so we incorporated them into two ramp forecasting sys-
tems.

In the first approach (Gabor 1), we used Gabor features as
input to a neural network-based power prediction model. In
this model, we removed forecast wind direction as an input
variable, due to its low correlation with power generation.
Gabor 1 showed an improvement over SOA in power gener-
ation forecasting ability, as measured by RMSE. However,
its performance in ramp prediction was worse than our SOA,
which does not include Gabor features as input.

In the second approach (Gabor 2), we aimed to directly
predict the power change signal that defines a wind ramp,
i.e. power change magnitude. This variable represents the
intensity of ramp events. We also used additional input vari-
ables, including Gabor features, to predict the power change
magnitude. Ramps were detected by thresholding the pre-
dicted time series. Experimental results, based on an entire
year of simulated forecasts, have demonstrated the superior
performance of this approach, as measured by ramp cap-
ture rate and forecast accuracy, in comparison with SOA.
In addition, this method is able to provide warnings in
cases when wind ramps are missed by conventional meth-
ods. Because of the superior performance of this approach for
ramp prediction, it can also provide additional information
on ramp magnitude and timing to the end-users, signifi-
cantly enriching data important for daily operation of wind
power plants and integration of wind energy in electric power
grids.

Since the presented method uses mainly pressure gradi-
ent to improve ramp prediction, in future work, we plan to
explore the merits of other atmospheric variables in ramp
prediction and evaluate the robustness of resulting models
under different atmospheric conditions.Methods for estimat-
ing the temporal uncertainty of ramp occurrence will also
be developed, based on probabilistic wind power generation
forecasts.
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