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Abstract This article presents an overview of several known
approaches to causal discovery. It is organized by relating the
different fundamental assumptions that the methods depend
on. The goal is to indicate that for a large variety of different
settings the assumptions necessary and sufficient for causal
discovery are now well understood.
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1 Introduction

Like many scientific concepts, causal relations are not fea-
tures that can be directly read off from the data but have to
be inferred. The field of causal discovery is concerned with
this inference and the assumptions that support it. We might
have measures of different quantities obtained from, say, a
cross-sectional study, on the amount of wine consumption
(for some unit of time) and the prevalence of cardiovascular
disease, and be interested in whether wine consumption is
a cause of cardiovascular disease (positivey or negatively),
and not just whether it is correlated with it. That is, we would
like to know whether the observed dependence between wine
consumption and cardiovascular disease (suppose there is
one) persists even if we change, say, in an experiment, the
amount of wine that is consumed (see Fig. 1). The observed
dependence between wine consumption and cardiovascu-
lar disease may, after all, be due to a common cause, such
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as socio-economic-status (SES), where those people with a
higher SES consume more wine and are able to afford better
health care, whereas those with a lower SES do not consume
as much wine and have poorer healthcare!. The example
illustrates the common mantra that “correlation does not
imply causation” and suggests that causal relations can be
identified in an experimental setting, such as a randomized
controlled trial where each individual in the experiment is
randomly assigned to either the treatment or control group
(in this case, to different levels of wine consumption) and the
effect on cardiovascular disease is measured. The random-
ized assignment makes the wine consumption independent
of its normal causes (at least in the large sample limit) and
thereby destroys the “confounding” effect of SES. Naturally,
there are many concerns about such an analysis, starting
from the ethical concerns of such a study, the compliance
with treatment, the precise treatment levels, the representa-
tiveness of the experimental population with respect to the
larger population, etc., but the general methodological rea-
son, explicitly emphasized in Fisher’s [6] well-known work
on experimental design, of why randomized controlled trials
are useful for causal discovery becomes evident: random-
ization breaks confounding, whether due to an observed or
unobserved common cause.

Causal relations are of interest because only an under-
standing of the underlying causal relations can support
predictions about how a system will behave when it is subject
to intervention. If moderate wine consumption, in fact, causes
the reduction in the risk of cardiovascular disease (this article
takes no stand on the truth of this claim), then a health policy
that suggests moderate wine consumption can be expected
to be effective in reducing cardiovascular disease (with due
note to all the other concerns about implementation). But if

1 See a discussion of this example in Scientific American [22].
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Fig. 1 a and c are two possible causal models that would explain an
observed dependence between wine drinking and heart disease. But
only in the case of (a) would that dependence persist if one were to

the observed dependence is only due to some common cause,
such as SES, then a policy that changes wine consumption
independently of SES would have no effect on cardiovascular
disease.

A purely probabilistic representation of these relations is
ambiguous with respect to the underlying causal relations:
That is, if we let wine consumption be X and cardiovascular
disease be Y, then, without further specification, P(Y|X),
the conditional probability of cardiovascular disease given
a particular level of wine consumption, is ambiguous with
regard to whether it describes the relation in an experimen-
tal setting in which the wine consumption was determined
by randomization or whether it describes observational rela-
tions, such as in the initial example of a cross-sectional study.
Pearl [31] introduced the do(.)-operator as a notation to dis-
tinguish the two cases. Thus, P(Y|X) is the observational
conditional probability describing how the probability of ¥
would change if one observed X (e.g., in a cross-sectional
study) while P(Y|do(X)) is the interventional conditional
probability, describing the probability of ¥ when X has been
set experimentally. Of course, not all data can be classi-
fied cleanly as observational vs. interventional, since there
might well be experiments that do not fully determine the
value of the intervened variable. But for the sake of this arti-
cle, the distinction will suffice (see [28] and [5] for further
discussion).

In light of the general underdetermination of causal
relations given any probability distribution, it is useful
to represent the causal structure explicitly in terms of a
directed graph. Unlike other graphical models with directed
or undirected edges, which merely represent an indepen-
dence structure, causal graphical models support a very a
strong interpretation: For a given set of variables V =
{X1,..., Xy}, a causal graph G = {V, E} represents the
causal relations over the set of variables V, in the sense that
for any directed edge ¢ = X; — X inE, X; is a direct cause
of X j relative to variables in V. So the claim of an edge in G is
that even if you randomize all other variablesin V\ {X;, X},
thereby breaking any causal connection between X; and X ;
through these other variables, X; still has a causal effect on
X ;. Moreover, the causal graph characterizes the effect of
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intervene on wine drinking in an experiment (b). In the intervention
would destroy the dependence and make wine drinking independent of
heart disease (d)

an intervention on X; on the remaining variables precisely
in terms of the subgraph that results when all directed edges
into X; are removed from G. Thus, a causal graph not only
makes claims about the causal pathways active in an observa-
tional setting, but also indicates which causal pathways are
active in any experiment on a set of variables in V. Natu-
rally, a direct cause between X; and X ; may no longer be
direct once additional variables are introduced—hence the
relativity to the set V.

We use intuitive (and standard) terminology to refer to
particular features of the graph: A path between two variables
X and Y in G is defined as a non-repeating sequence of edges
(oriented in either direction) in G where any two adjacent
edges in the sequence share a common endpoint and the first
edge “starts” with X and the last “ends” with Y. A directed
path is a path whose edges all point in the same direction.
A descendent of a vertex Z is a vertex W € V, such that
there is a directed path Z — --- — W in the graph G.
Correspondingly, Z is ancestor of X. The parents of a vertex
X are the vertices in V with a directed edge oriented into X,
similarly for the children of a vertex.> A collider on a path
p is a vertex on p whose adjacent edges both point into the
vertex, i.e., > Z <. A non-collider on p is a vertex on p
that is not a collider, i.e., it is a mediator (— Z —) or a
common cause (<— Z —). Note that a vertex can take on
different roles with respect to different paths.

2 Basic assumptions of causal discovery

Given the representation of causal relations over a set of
variables in terms of causal graphs, causal discovery can be
characterized as the problem of identifying as much as pos-
sible about the causal relations of interest (ideally the whole
graph G) given a dataset of measurements over the variables
V. To separate the causal part from the statistical part of the
inference it is—at least for an introduction—useful to think
of causal discovery as the inference task from the joint dis-

2 In a somewhat counter-intuitive usage of terms, a vertex is also its
own ancestor and its own descendent, but not its own parent or child.
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tribution P (V) to the graph G, leaving the task of estimating
P (V) from the finite data to the statistician.? In principle,
there is no a priori reason for the joint distribution P (V)
to constrain the possible true generating causal structures at
all. We noted earlier that correlation does not imply causation
(and similarly, the converse is not true either, though that may
not be as obvious initially). Yet, we do take both dependen-
cies and independencies as indicators of causal relations (or
the lack thereof). For example, it seemed perfectly reasonable
above to claim that if a dependence between X and Y was
detected in arandomized controlled trial where X was subject
tointervention, then X isacause of Y (again modulo the many
other assumptions about successful experiment implementa-
tion). Similarly, in the observational case, the dependence
between X and Y, if it was not a result of a direct cause, was
explained by a common cause. Consequently, there seem to
be principles we use—more or less explicitly—that connect
probabilistic relations to causal relations.

Two such principles that have received wide application in
the methods of causal discovery are the causal Markov and
the causal faithfulness conditions. The high-level idea is that
the causal Markov and faithfulness conditions together imply
a correspondence between the (conditional) independences
in the probability distribution and the causal connectivity
relations within the graph G. Causal connectivity in a graph
is defined in terms of d-separation and d-connection [30]:
A path p between X and Y d-connects X and Y given a
conditioning set C C V\ {X, Y} if and only if (i) all colliders
on p are in C or have a descendent in C and (ii) no non-
colliders of p arein C. X and Y are d-separated if and only if
there are no d-connecting paths between them. D-separation
is often denoted by the single turnstile ‘1.

The causal Markov and the causal faithfulness assump-
tions (defined and discussed below) together ensure that
(conditional) d-separation corresponds to (conditional) prob-
abilistic independence, i.e.,

X1lY|IC & X L1Y|C (D

For causal discovery, this type of correspondence is enor-
mously useful as it allows inferences from the (conditional)
independence relations testable in data to the underlying

3 In order to separate out limitations and sources of error in the overall
inference it can be helpful to make the following three-way distinction:
Statistical inference concerns the inference from data to the generating
distribution or properties of the generating distribution, such as param-
eter values or (in)dependence relations. Causal discovery concerns the
inference of identifying as much as possible about the causal structure
given the statistical quantities, such as a probability distribution or its
features. Causal inference concerns the determination of quantitative
causal effects given the causal structure and associated statistical quan-
tities. Of course, these three inference steps are not always completely
separable and there are plenty of interesting approaches that combine
them.

causal structure. It can now be seen in what sense the claim
that “correlation does not imply causation” still holds true,
while a nonzero correlation can still provide an indication
about existing causal relations: In particular, for two vari-
ables, a nonzero correlation would imply that the variables
are d-connected given the empty set, i.e., that one causes the
other or vice versa, or that there is a third variable that causes
both. So while no specific causal relation can be determined,
a subset of possible causal relations—an equivalence class
of causal structures—can be identified. The correspondence
also implies that two independent variables are causally dis-
connected (d-separated). So in the case of a linear Gaussian
model, where no correlation implies independence, it follows
that no correlation implies no causation.

Of course, (in)dependence features are only one set of
features that a distribution P (V) may exhibit, and to the
extent that one is able to characterize other principles that
connect other features of the distribution to the underly-
ing causal structure, they can also be exploited for causal
discovery—as we shall see below. Causal Markov and causal
faithfulness only provide one set of what one might call
“bridge principles”, and they underlie many methods of so-
called “constraint-based causal discovery”.

Before proceeding, it is worth making explicit what causal
Markov and causal faithfulness claim, and under what cir-
cumstances they may be false. The causal Markov condition
states that every vertex X in the graph G is probabilistically
independent of its non-descendents given its parents, i.e.,
X 1 NonDesc(X) | Pa(X). The causal Markov assump-
tion appears to be a very fundamental assumption of our
understanding of causality, since it is quite difficult to come
up with situations that we consider to be causal and yet vio-
late causal Markov. There are many ways in which a system
may appear to violate causal Markov. For example, if one
only considers two variables X and Y, but in fact there is an
unmeasured common cause Lof X andY,ie., X < L — Y,
then Y is a non-descendent of X but X and Y will be depen-
dent. Naturally, this situation is quickly remedied once L is
included in the model and L is conditioned on (as a parent of
X). Similar cases of “model-misspecifications” can lead to
apparent violations of the Markov conditions when we have
mixtures of different populations, there is sample selection
bias, misspecified variables or variables that have been exces-
sively coarse-grained (see [13] for more discussion). But in
all these cases an appropriate specification of the underlying
causal model will provide a causal system that is consistent
with the Markov condition. To my knowledge, only in the
case of quantum mechanics do we have systems for which we
have good reasons to think they are causal and yet there does
not appear to be a representation that respects the Markov
condition. It is not entirely clear what to make of such cases.
As Clark Glymour puts it, “[The Aspect experiments (that
test the Einstein-Podolski-Rosen predictions)] create asso-
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Fig. 2 The Markov equivalence
classes for all directed acyclic
graphs over three variables
without latent variables: Graphs

in the same equivalence class @ @

R

share the same (conditional)
independence structure

@®@ ©®
®

YN Y

ciations that have no causal explanation consistent with the
Markov assumption, and the Markov assumption must be
applied [...] to obtain that conclusion. You can say that there
is no causal explanation of the phenomenon, or that there is a
causal explanation but it doesn’t satisfy the Markov assump-
tion. I have no trouble with either alternative.” [10].

The situation is quite different with regard to causal faith-
fulness. It states the converse of the Markov condition, i.e.,
if a variable X is independent of Y given a conditioning set
C in the probability distribution P (V), then X is d-separated
from Y given C in the graph G. Faithfulness can be thought
of as a simplicity assumption and it is relatively easy to
find violations of it—there only have to be causal connec-
tions that do not exhibit a dependence. For example, if two
causal pathways cancel out each other’s effects exactly, then
the causally connected variables will remain independent.
A practical example is a back-up generator: Normally the
machine is powered by electricity from the grid, but when the
grid fails, a back-up generator kicks in to supply the energy,
thereby making the operation of the machine independent
of the grid, even though of course the grid normally causes
the machine to work or when it fails it causes the genera-
tor to switch on, which causes the machine to work.* While
such failures of faithfulness require an exact cancelation of
the causal pathways, with finite data two variables may often
appear independent despite the fact that they are (weakly)
causally connected (see [47]).

To keep the present introduction to causal discovery sim-
ple initially, we can add additional assumptions about the
underlying causal structure. Two commonly used assump-
tions are that the causal structure is assumed to be acyclic,
i.e., that there is no directed path from a vertex back to itself
in G, and causal sufficiency, i.e., that there are no unmea-

4 This example is taken from [12].

@ Springer

sured common causes of any pair of variables in V. Both of
these assumptions are obviously not true in many domains
(e.g., biology, social sciences, etc.) and below we will see
how methods have been developed that do not depend on
them. For now, they help to keep the causal discovery task
more tractable and easy to illustrate.’

With these conditions in hand (Markov, faithfulness,
acyclicity and causal sufficiency), we can now ask what one
can learn about the underlying causal relations given the (esti-
mated) joint distribution P (V) over a set of variables V. Can
we learn anything about the causal relation at all without per-
forming experiments or having information about the time
order of variables?

In fact, substantial information can be learned about the
underlying causal structure from an observational proba-
bility distribution P (V) given these assumptions alone. In
1990, Verma and Pearl [32] and Frydenberg [7] indepen-
dently showed that any two acyclic causal structures (without
unmeasured variables) that are Markov and faithful to the
same distribution P (V) share the same adjacencies (the same
undirected graphical skeleton) and the same unshielded col-
liders. An unshielded collider is a collider whose two parents
are not adjacent in G. Thus, Markov and faithfulness imply
an equivalence structure over directed acyclic graphs, where
graphs that are in the same equivalence class have the same
(conditional) independence structure, the same adjacencies
and the same unshielded colliders. For three variables, the
Markov equivalence classes are shown in Fig. 2. Note that
the graph X — Z <« Y is in its own equivalence class.

5 Especially with regard to the assumption of acyclicity it is worth
noting that very subtle issues arise both about what exactly we mean
when we allow for causal cycles, and how one may infer something
about a system in which there are such feedback loops. The interested
reader is encouraged to purse the references on cyclic models mentioned
below.
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That means that independence constraints alone are suffi-
cient to uniquely determine the true causal structure G if it
is of the form X — Z <« Y (given the conditions stated).
This is rather significant, since it implies that sometimes no
time order information or experiment is necessary to uniquely
determine the causal structure over a set of variables. More
generally, knowing the Markov equivalence class of the true
causal structure substantively reduces the underdetermina-
tion. In general, no closed form is known for how many
equivalence classes there are or how many graphs there are
per equivalence class, but large scale simulations have been
run [9,11]. It is worth noting that for any number of variables
N, there will always be several singleton equivalence classes
(e.g., the empty graph, or those containing only unshielded
colliders), but that there will also always be at least one
equivalence class that contains N! graphs, namely the class
containing all the graphs for which each pair of variables is
connected by an edge—the set of complete graphs.

Algorithms have been developed that use conditional inde-
pendence tests to determine the Markov equivalence class
of causal structures consistent with a given dataset. For
example, the PC-algorithm [41] was developed on the basis
of exactly the set of assumptions just discussed (Markov,
faithfulness, acyclicity and causal sufficiency) and uses a
sequence of carefully selected (conditional) independence
tests to both identify as much as possible about the causal
structure and to perform as few tests as possible. In a certain
sense, the PC-algorithm is complete: it extracts all informa-
tion about the underlying causal structure that is available in
the statements of conditional (in)dependence. Or more for-
mally, this bound can be characterized in terms of a limiting
result due to Geiger and Pearl [8] and Meek [26]:

Theorem 1 (Markov completeness) For linear Gaussian
and for multinomial causal relations, an algorithm that iden-
tifies the Markov equivalence class is complete.

That is, if the causal relations between the causes and effects
in G can be characterized either by a linear Gaussian relation
of the form x; = Zj#i ajxj+e withe; ~ N(u;, gl_2) or by
conditional distributions P (X; | pa(X;)) that are multino-
mial, then the PC-algorithm, which in the large sample limit
identifies the Markov equivalence class of the true causal
model, identifies as much as there is to identify about the
underlying causal model.

One can see such a result as a success in that there are
methods that reach the limit of what can be discovered about
the underlying causal relations, or one can be disappointed
about the underdetermination one is left with given that at
best this only allows the identification of the Markov equiv-
alence class. Moreover, one might have reason to think that
even some of the assumptions required to achieve this limit
are unreasonably optimistic about real world causal discov-
ery. Consequently, there are a variety of ways to proceed:

1. One could weaken the assumptions, thereby (in general)
increasing the underdetermination of what one will be
able to discover about the underlying causal structure. For
example, the FCI-algorithm [41] drops the assumption
of causal sufficiency and allows for unmeasured com-
mon causes of the observed variables; the CCD-algorithm
[36] drops the assumption of acyclicity and allows for
feedback, and the SAT-based causal discovery methods
discussed below can drop both assumptions. Alterna-
tively, Zhang and Spirtes [49] have worked on weakening
the assumption of faithfulness, with corresponding algo-
rithms presented in a paper in this issue. In all cases, the
aim of these more general approaches is to develop causal
discovery methods that identify as much as possible about
the underlying causal relations.

2. The limits to causal discovery described in Theorem 1
apply to restricted cases—multinomials and linear Gaus-
sian parameterizations. One can exclude these cases and
ask what happens when the distributions are not linear
Gaussian or not multinomial. We consider several such
approaches below.

3. One could consider more general data collection set-ups
to help reduce the underdetermination. For example, one
could consider the inclusion of specific experimental data
to reduce the underdetermination or use additional “over-
lapping” datasets that share some but perhaps not all the
observed variables (see [44] for an overview).

We will start by pursuing the second option in Sects. 3,
4 and 5, and return to consider the first and third option in
Sect. 6.

3 Linear non-Gaussian models

One way of avoiding the limitation of causal discovery to
only identifying the Markov equivalence class of the true
causal model is to exclude the restrictions of Theorem 1. We
will first consider the case of linear non-Gaussian models,
that 1s, we will consider causal models where each variable
is determined by a linear function of the values of its parents
plus a noise term that has a distribution that is anything (non-
degenerate) except Gaussian:

Xj = Zajxj + ¢ with ¢ ~ non-Gaussian 2)
J#

The remarkable result for causal discovery, shown by

Shimizu et al. [39], is that this rather weak assumption about

the error distribution is sufficient to uniquely identify the true
causal model. Thus,

Theorem 2 (Linear Non-Gaussian) Under the assumption
of causal Markov, acyclicity and a linear non-Gaussian

@ Springer
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x = 0y + €,
y L €,

€x €y

Yy =P+ ¢,
z 1 €,

Fig. 3 In the “forwards” model (left) we have x 1L €y and y A ey,
while in the “backwards” model (right) we have x A €y and y I é,.
Assuming a linear non-Gaussian parameterization, it is not possible that
both the forwards and the backwards model can be fit to the data; hence,
this assumption can aid the identifiability of causal direction

parameterization (Eq. 2), the causal structure can be
uniquely determined.

Not even faithfulness is required here. Thus, merely the
assumption that the causal relations are linear and that the
added noise is anything but Gaussian guarantees in the large
sample limit that the true causal model can be uniquely iden-
tified.

It helps to gain some intuition regarding this result from
the two variable case: If we find that x and y are depen-
dent and we assume acyclicity and causal sufficiency, then
the Markov equivalence class contains two causal structures,
x — yand x < y. Consider the “forwards” model in Fig. 3,
in which the (unobserved) noise terms are represented in
terms of explicit variables:

y=px+e 3)

D-separation implies that in this model x is independent
of the residuals on y, i.e., x L €. The “backwards” model
would take the form:

x =0y +é “

We can rewrite the equation for the backwards model, and
substituting the forwards model for y, we get

& = (1—0B)x —Oe, (5)

Note that Eqs. 3 and 5 are linear in terms of the random
variables x and €, which are both non-Gaussian, but—if the
forwards model is true— independent of one another. We can
now apply the Darmois-Skitovich theorem that states:

Theorem 3 (Darmois-Skitovich) Let X, ..., X, be inde-
pendent, non-degenerate random variables. If for two linear
combinations
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h=aX1+...+a, X, with a; #0
bL=bX1+...+b,X, with b; #0

are independent, then each X; is normally distributed.

Taking the contrapositive and substituting the variables of the
above example, if x and €, are independent, non-degenerate
random variables that are not normally distributed, then the
two linear combinations y and €x (Eqs. 3 and 5) are not inde-
pendent. That is, if we mistakenly fit a backwards model to
data that in fact came from a forwards model, then we would
find that y and the residuals on x would be dependent, i.e.,
y ML €, despite the fact that the independence is required
by d-separation on the backwards model. In other words,
we would notice our mistake and would be able to correctly
identify the true (in this case, forwards) model. Of course,
this only proves the point for two variables, but the more
general proofs can be found in [39] with also some alter-
native graphical demonstrations that may help the intuition
underlying this identifiability result. It should also be noted
that the Darmois-Skitovich theorem underlies the method of
Independent Component Analysis [20].

These powerful identifiability results have been imple-
mented in causal discovery algorithms that go by the acronym
of LinGaM, for Linear non-Gaussian Models, and have been
generalized (with slight weakenings of the identifiability) to
settings where either causal sufficiency [15] or acyclicity [23]
is dropped, or where the data generating process satisfies the
LinGaM assumptions, but the actual data is the result of an
invertible nonlinear transformation, resulting in the so-called
post-nonlinear model [50,51].

4 Nonlinear additive noise models

Alternatively, in the continuous case the restrictions of The-
orem 1 can be avoided by considering nonlinear causal
relations, i.e., when each variable x; is determined by a
nonlinear function f; of the values of its parents plus some
additive noise

xj = fi(pa(xj)) +e€; (6)

We know (from the previous section) that when the f; are
linear, then identifiability requires that the error distributions
are non-Gaussian. But one can ask what the conditions for
unique identifiability of the causal structure are when the f;
are nonlinear (and there are no restrictions other than non-
degeneracy on the error distributions). Identifiability results
of this kind are developed in Hoyer et al. [14] and Mooij et
al. [27]. The authors characterize a very intricate condition
— I will here only refer to it as the Hoyer condition—on the
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(a) (b) (c)
5
p(y | z) p(z|y)
yO
-5
5 0 5 3 0 3
y X
(d) (e) )]
5
p(y | z) p(z | y)
y0
-5
5 0 5 3 0 3
x y x

Fig. 4 a Linear Gaussian model with x = €, and y = x + €, with
€y, €y distributed according to independent Gaussians. Both a “for-
wards” model (x — y) and a “backwards” model (x < y) can be fit to
the data (b, ¢). However, in the case of a nonlinear Gaussian model as in
(d), where x = €, but y = x + x> + €y with €y, €, distributed accord-

relation between the function f, the noise distribution and
the parent distribution®, and provide the following theorem:

Theorem 4 (nonlinear additive noise) Under the assumption
of Markov, acyclicity and causal sufficiency and a non-
linear additive noise parameterization (Eq. 6), unless the
Hoyer condition is satisfied, the true causal structure can be
uniquely identified.

In particular, this theorem has the following corrolaries:

— If the (additive) error distributions are all Gaussian, then
the only functional form that satisfies the Hoyer condition
is linearity, otherwise the model is uniquely identifiable.

— Ifthe (additive) error distributions are non-Gaussian, then
there exist (rather contrived) functions that satisfy the
Hoyer condition, but in general the model is uniquely
identifiable.

— If the functions are linear, but the (additive) error dis-
tributions are non-Gaussian, then there does not exist a

6 An explicit statement of the condition is omitted here as it requires
a fair bit of notation and no further insight is gained by just stating
it. The intrigued reader should refer to the original paper, which is a
worthwhile read in any case.

ing to independent Gaussians, we see that when fitting the “backwards”
model (f), the distribution of the residuals on x are dependent on the
value of y, while the residuals on y are independent of x when fitting
the (correct) “forwards” model (e) (Graphics taken from [14])

linear backwards model (this is the result of the LinGaM
approach of the previous section), but there exist cases
where one can fit a nonlinear backwards model [51].

The basic point of these identifiability results is that—
although somewhat more complex than the linear non-
Gaussian case—as soon as the functional relation between
cause and effect becomes nonlinear, and as long as the noise is
additive, then (except for the rather special cases that satisfy
the Hoyer condition), the true model is uniquely identifiable.

Again, an understanding of these results may be aided
with a simple example of two variables (taken from [14]).
Fig. 4a—c show first the data from a linear Gaussian model.
As the “cuts” through the data indicate, no matter whether
one fits the forwards or the backwards model, a Gaussian
distribution of the residuals can be found that is independent
of the value of the respective cause (x in the forwards, and
y in the backwards model). However, panels d-f show that
this no longer is true if the true model is in fact a nonlinear
Gaussian (forwards) model: While the error distribution is
independent of the value of the cause in the (correct) forwards
model, the error distribution on x is dependent on the value
of y if one attempts to construct a backwards model, i.e., we
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have y AL €., when in fact an independence is required for
the backwards model to be true.

Causal discovery algorithms have been developed for
these settings (see the papers) and the identifiability results
have been generalized [35], including to certain types of
discrete distributions (see next section). There have—to my
knowledge— not been extensions to the causally insufficient
or cyclic case.

In light of the identifiability results of this section and
the previous one it is ironic that so much of structural equa-
tion modeling has historically focused on the linear Gaussian
case. The identifiability results mentioned here indicate that
this focus on computationally simple models came at the
expense of the identifiability of the underlying causal model.
So in cases when the true causal model is known, then linear
Gaussian parameterizations make the computation of causal
effects very easy, but for the identifiability of the model in
the first place, the linear Gaussian case is about as bad as it
could be.

5 Restrictions on multinomial distributions

Naturally, one can also consider the possibilities of avoiding
the limitations placed on causal discovery by Theorem 1 with
respect to discrete distributions. This has been a much less
explored direction of inquiry, possibly due to the difficulty
of estimating specific features of discrete distributions, espe-
cially when the state space is finite. Alternatively, the domain
of application of discrete distributions may provide only
much weaker grounds for the justification of assumptions
that pick out specific discrete distributions. The multinomial
distribution therefore provides a useful unconstrained model,
yet causal identifiability is limited to the Markov equivalence
class.

However, in a couple of papers by Peters et al. [33,34],
the authors extend the additive noise approach discussed in
the previous section to the discrete case. While the variables
take on discrete values, the causal relations follow the formal
restrictions of the continuous case:

Y=fX)+N 7

where the noise term N and the variable X are probabilistic
and the addition now is in the space of integers Z or some
“cyclic” space of values Z/mZ for some integer m. The asso-
ciated identifiability results under the assumption of causal
sufficiency and acyclicity of the causal structure show that
only for very specific choices of functions f and distributions
over N is it possible to fit both a forwards model X — Y and
backwards model X <« Y to the data. In the generic case,
the causal direction is identified.
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Instead of considering additive noise models, Park &
Raskutti [29] consider discrete variables with Poisson dis-
tributions. Again, the causal structure can be identified as
long as the variables have nonzero variances in specific set-
tings (see their Theorem 3.1 for the precise condition). The
key idea that drives the identifiability result in this case is
overdispersion. For a variable X that is marginally Poisson
distributed, we have E(X) = Var(X), but for a variable
Y | X that is conditionally Poisson distributed, we have
Var(Y) > E(Y). The argument is nicely illustrated with
the simple bivariate example on p. 3 in [29].

To my knowledge, there is very little work (other than
some subcases of the additive noise models referred to above)
that has developed general restrictions to enable identifiabil-
ity of the causal structure for discrete models with finite state
spaces, even though it is known that the assumption of a so-
called “noisy-OR” parameterization enables in some cases
identifiability beyond that of Markov equivalence.

6 Experiments and background knowledge

The previous several sections have considered the challenge
of causal discovery in terms of finding weak generic assump-
tions about the nature of the underlying causal system that
will enable or at least aid the identifiability of the true causal
model. But for any concrete problem of causal discovery in
application, the search space of candidate causal models will
often not include all possible causal structures over the set
of variables in the first place, but be highly constrained by
available background knowledge concerning, e.g., particular
causal pathways, time ordering, tier orderings of variables
(i.e., that some subsets of variables come before others) or
even less specific prior knowledge about, say, the edge den-
sity or the connectivity of the true causal structure. This type
of background knowledge can similarly aid the identifiability
of the causal model, possibly even without making additional
assumptions about the functional form of the causal relations.

Recent developments using general constraint satisfac-
tion solvers have enabled the integration of extraordinarily
general background information into the causal discovery
procedure. The high-level idea of these approaches is to
encode (to the extent possible) all the available informa-
tion as constraints in propositional logic on the underlying
causal graph structure. For example, if data were collected
and a conditional independence test was performed, then the
implications of that test for the d-separation relations in the
graph should be encoded in propositional logic. Similarly,
if background information concerning specific pathways is
available, it should also be translated into a logical constraint.
To do so, fundamental propositional variables have to be
defined that, if true, state that a particular directed edge is
present in the graph. Thus, we might have
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A = ‘x — yispresentin G’

B = ‘x < yispresentin G’

If there are only two variables (V = {x, y}) then an indepen-
dence can be encoded as

x1ly<s—-AA-B

When there are more than two variables, the implied logical
constraints will become larger. A pathway could be formu-
lated as a conjunction of edges or, if it is only known that there
is a causal pathway from x to y, but it is not known which
other variables it passes through, it could be formulated as
a dependence between x and y in an experiment in which
only x is subject to intervention. Such a dependence would
in turn be spelled out in terms of a disjunction of possible
d-connecting pathways. The key is to find a logical encod-
ing that enables a concise representation of such statements
so that one does not have to explicitly state all the possible
disjunctions. Hyttinen et al. [16, 18] have experimented with
various encodings for a completely general search space that
allows for causal models with latent variables and cycles. Tri-
antafillou et al. [45,46] have developed encodings restricted
to the acyclic case.

Once all the information has been encoded in con-
straints in propositional logic, one can use standard Boolean
SAT(isfiability) solvers to determine solutions consistent
with the joint set of constraints. The nice feature of using
these solvers is that they are entirely domain general and
highly optimized. Consequently, with a suitably general
encoding one can integrate heterogeneous information from
a variety of different sources into the discovery procedure.

A solver will return either one solution consistent with
the constraints—that is, one assignment of truth values to
the atomic propositional variables, which in turn specify one
graph—or it can return only the truth value for those atomic
variables that have the same truth value in all the solutions
consistent with the constraints. A so-called “backbone” of
the constraints specifies those features of the causal graph
that are determined in light of the constraints.

However, constraints may conflict, in particular if they are
the result of statistical tests. In that case a SAT-solver only
returns that there is no solution for the set of constraints. For
example, for the following set of independence constraints
there is no graph (satisfying Markov and faithfulness) that is
consistent with them:
xLly x ALz

yAz xlylz

Rejecting the first constraint would make the constraints
consistent with the graph x — y — z (and its Markov
equivalence class). Rejecting the fourth constraint makes the
constraints consistent with the graph x — z < y. But

together they are inconsistent (assuming Markov and faith-
fulness).

However, if each constraint were accompanied by a weight
representing the degree of confidence in the truth of that
constraint, then one might have a preference over which
constraint should be rejected. In particular, the following
optimization used by [16] may seem reasonable: Select a
graph that minimizes the sum of the weights of the unsatis-
fied constraints:

G € mi k
emGanw()

k:G W~k

In this formalization, the causal discovery problem has
now been converted into a weighted constrained optimiza-
tion problem for which off-the-shelf maxSAT solvers can
be applied, which guarantee to find the globally optimal
solution. We now only have to determine suitable weights
for the constraints. Hyttinen et al. [16] have experimented
with different weighting schemes, from ones that are moti-
vated by a preference for the simplest model in light of
any detected dependencies, to a pseudo-Bayesian weighting
scheme. Other weighting schemes, e.g., based on p-values,
can be found in [45] and [24]. The more general question of
how one should weight background knowledge such that it is
well calibrated with any other available information remains
an open research challenge, for which even the standard of
success remains to be formulated.

While these SAT-based approaches are incredibly ver-
satile in terms of the information they can integrate into
the search procedure, and while they can achieve remark-
ably accurate results, they do not yet scale as well as other
causal discovery algorithms. But there are several comments
worth making in this regard: (1) The runtime of a constraint
optimization using standard SAT-based solvers has a very
high variance; many instances can be resolved in seconds
while some can take vastly longer. (2) The runtime is highly
dependent on the set of constraints available and the search
spaces they are applied to; for example [19] used a SAT-based
method for causal discovery in the highly constrained domain
of sub-sampled time series and were able to scale to around
70 variables. (3) We can expect significant improvements in
the scalability with the development of more efficient encod-
ings and the parallelization of the computation. (4) One can
always explore the accuracy/speed trade-off and settle for a
more scalable method with less accurate or less informative
output. And finally, (5) if one is actually doing causal dis-
covery on a specific application, one might be willing to wait
for a week for the super-computer to return a good result.

There is another aspect in which the SAT-based approach
to causal discovery opens new doors: Previous methods have
focused on the identification of the causal structure or some
general representation of the equivalence class of causal
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structures. SAT-based methods do not output the equiva-
lence class of causal structures explicitly, but rather represent
it implicitly in terms of the constraints in the solver. So
instead of requesting as output a “best” causal structure or an
equivalence class, one can also query specific aspects of the
underlying causal system. This is particularly useful if one is
only interested in a specific pathway or the relations among
a subset of variables. In that case, one need not compute the
entire equivalence class but can query the solver directly to
establish what is determined about the question of interest.
Magliacane et al. [24] have taken this approach to only inves-
tigate the ancestral relations in a causal system and Hyttinen
et al. [17] used a query-based approach to check the condi-
tions for the applications of the rules of the do-calculus [31]
when the true graph is unknown.

7 Outlook

This article has highlighted some of the approaches to causal
discovery and attempted to fit them together in terms of their
motivations and in light of the formal limits to causal discov-
ery that are known. This article is by no means exhaustive and
I encourage the reader to pursue other review articles such
as Spirtes and Zhang [42] to gain a more complete overview.
Moreover, there are many questions concerning comparative
efficiency, finite sample performance, robustness, etc. that I
have not even touched on. Nevertheless, I hope to have shown
that there is a vast array of different methods grounded on a
whole set of different assumptions such that the reader may
reasonably have some hope to find a method suitable (or
adaptable) to their area of application. One almost paradig-
matic application of a causal discovery method is illustrated
in the article by Stekhoven et al. [43]. It exemplifies how a
causal discovery method was applied to observational gene
expression data to select candidate causes of the onset of
flowering of the plant Arabidopsis thaliana. Once candidate
causes had been identified, the researchers actually planted
specimen, in which the genes, which had been determined
to be relevant by the causal discovery method, had been
knocked out—the causal hypothesis was put to the exper-
imental test. I think it is fair to say that the results were
positive.

Finally, I will highlight a few areas of causal discovery
that I think still require a significant development in under-
standing. Again, the list is not supposed to be exhaustive,
and it is certainly colored by my own interests and of course
there already exists some interesting work in each.

Dynamics and time series Many areas of scientific inves-
tigation describe systems in terms of sets of dynamical
equations. How can these results be integrated with the
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methods for causal discovery in time series? (See e.g.,
[3,4,21,40,48].)

Variable construction Standard causal discovery methods
(such as the ones discussed in this article) take as input
a statistical data set of measurements of well-defined
causal variables. The goal is to find the causal relations
between them. But how are these causal variables identi-
fied or constructed in the first place? Often we have sensor
level data but assume that the relevant causal interactions
occur at a higher scale of aggregation. Sometimes we
only have aggregate measurements of causal interactions
at a finer scale. (See e.g., [1,2,38].)

Relational data In many cases there can be in addition
to the causal relation, a dependence structure among the
causal variables that is not due to the causal relations,
but due to relational features among the causal variables,
e.g., whether an actor is in a movie, or which friend-
ship relations are present. In this case, we need methods
that can disentangle the dependencies due to the rela-
tional structure from the dependencies due to causality,
and there may be causal effects from the relations to the
individuals and vice versa. (See e.g., [25,37]).

In each of these cases, the challenge is not simply to develop
a new discovery method, but also to first characterize pre-
cisely the different concepts and what the goals of causal
discovery in these domains are. So while there is a whole
set of causal discovery algorithms ready to be applied to dif-
ferent domains, there also remain significant theoretical and
conceptual hurdles that need to be addressed.
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