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Abstract The explosion of available positioning informa-
tion associated with the inferred or user-declared seman-
tics of the respective locations has contributed in what is
called the Big Data era by posing new challenges to the
mobility data management and mining research commu-
nity. Motivated by a series of challenges posed in Pelekis
et al. (SIGKDD Explor 15(1):23–32, 2013), in this paper,
we present a unified framework for the management and the
analysis of LifeSteps, i.e., data objects about human mobil-
ity including both (raw) spatio-temporal trajectories and their
semantic counterpart. In particular, we provide solutions for
developing real-world semantic-aware moving object data-
base and trajectory data warehouse systems and we devise
respective query processing algorithms. Our experimental
study on realistic synthetic data including synchronized raw
(i.e.,GPS log) and semantic (i.e., diaries) information verifies
the effectiveness and efficiency of the proposed framework.

This paper is an extended version of the DSAA’2015 Long
Presentation paper “Hermessem: a Semantic-aware Framework for the
Management and Analysis of our LifeSteps” [14].
Source code, datasets etc. for Hermessem and Hermoupolis are
available at http://infolab.cs.unipi.gr/{hermes|hermoupolis}.
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1 Introduction

Ubiquitous positioning devices enable the generation of
huge volumes of location information on a continuous basis.
The trend in modern Location-based Services (LBS) and
Location-based Social Networking (LBSN) applications that
make use of such data is not only to focus on raw move-
ment information collected by those devices, but also to target
at the behavioral rationale and motivation of movement, in
order to provide added value and enriched services.

A semantically annotated trajectory, hereafter called in
short semantic trajectory, is an alternative representation of
the (raw) spatio-temporal motion path of a moving object
as this is logged by the positioning device. Instead of a
sequence of space-time information, in a semantic trajec-
tory the motion is represented as a sequence of semantically
meaningful episodes, typically stops (e.g., at home, at office,
for shopping) and moves (walking, driving, etc.), a repre-
sentation which results in detecting homogenous fractions
of movement [9]. Extracting and managing semantics from
(raw) trajectory data is a promising channel that leads to sig-
nificant storage savings. Of course, as already declared in
[13], it is not only a matter of the database size; maintaining
semantic (textual, for the purposes of this paper) informa-
tion turns out to be quite useful in terms of context-aware
movement analysis. In fact, semantic-aware abstractions of
motion enable applications to better understand and exploit
on human mobility: for instance, identify those locations
where some activity (work, leisure, relax, etc.) takes place,
infer how long does it take to get from one place of interest
(POI) to another (e.g., from home to office) using a spe-
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cific transportation means, conclude about the frequency of
an individual’s outdoor activities, calculate indices related
to environmentally friendly or sustainable mobility, and so
on. Given such analytics, future semantic-aware LBS/LBSN
applications can be established, including location shar-
ing and ranking, recommendation according to travel and
socio-demographic similarity (e.g., for dynamic ridesharing
purposes).

Services that take advantage of the knowledge that is
hidden in spatio-temporal-textual sequences are already
available (e.g., Foursquare check-ins). However, there are
other emerging application domains and tools that could
benefit from such analytics. For instance, in the maritime
and aviation domain there are recent efforts aiming at novel
mobility forecasting, based on semantically re-constructed
synopses of raw data collected by surveillance data sources
[5,6].

More specifically, in the maritime domain, raw AIS
(Automatic Identification System) signals transmitted by
vessels and collected by AIS receivers are transformed to
semantic trajectories where episodes in this domain cor-
respond to identified critical phenomena in the vessels’
routes (‘stop,’ ‘turn,’ ‘drift,’ ‘move slowly,’ etc.), or more
complex events (‘suspicious delay,’ ‘possible rendezvous,’
‘approach fast,’ ‘pick package’, etc.) [10,11]. Respectively,
in the aviation domain, surveillance Automatic Dependent
Surveillance–Broadcast (ADS-B) signals are processed in
order for aircrafts’ routes to be transformed to sequences of
characteristic points where certain events take place (‘push-
back/towing,’ ‘taxiing,’ ‘take-off,’ ‘initial climb,’ ‘landing,’
etc.). In both of the above application domains, semantics can
be further enriched if linked with external data sources, such
as weather reports and static geographic databases (seaports,
airports, protected regions, etc.).

Transportation experts can benefit greatly by exploiting
all this information in a unified and easy to use frame-
work. For example, areas of unusual vessel behavior or
passages through areas of special interest (like biodiver-
sity zones) could be identified and so appropriate actions
could be taken. Analogous study would be possible for air-
ways. Evenmovement prediction in near real time is possible
where the framework extensibility allows the implementa-
tion of advanced prediction algorithms. Traffic scientists,
already using frameworks to analyze spatio-temporal move-
ment, would additionally have the ability to semantically
connect movement patterns and behaviors and come to cru-
cial conclusions regarding, for instance, the traffic policy of
either a small- or a large-size city.

Finally, recent advances in the simulation domain make
use of mining analytics that extract collective behavioral
patterns which are synthetically re-played so as to allow real-
istic simulation of moving objects mobility [15]. Using this
technique, experts or companies are able to apply various

movement scenarios andmake appropriate decisions (e.g., to
prioritizing some pathways over other or advertiser to place
their advertisement in congestion areas).

Although conceptually strong, such a representation of
mobility lacks a robust DBMS support in order to realize the
above model and give life to novel applications and services
based on this. In this paper, we present a unified framework
that provides efficient and effective storage, indexingmecha-
nisms, and query language able to support SemanticMobility
Databases (SMD). More specifically, the merits and contri-
butions of our proposal are summarized below:

• Following the successful MOD engine paradigm, we
design a datatype system and its associated query lan-
guage, coined Hermessem, for the representation and
management of SMD engine into an extensible DBMS
architecture. Furthermore, we present a design for mod-
eling Semantic Mobility Databases Cubes (SMDC).

• We propose efficient access methods for semantic trajec-
tories, called SemTB-tree and Sem3DR-tree (extensions
of the well-known TB-tree [17] and 3DR-tree [19],
respectively, designed for (raw) trajectory data), for the
hybrid indexing of both the spatio-temporal and the
semantic (i.e., textual) component.

• We develop efficient query processing algorithms upon
the proposed indices in order to support a useful query
type at the SMD level, called spatial-temporal-textual
pattern (ST2P) query, as well as algorithms for efficiently
feeding SMDC from SMD.

The paper is structured as follows: Sect. 2 presents related
work. Section 3 provides background information. Sections 4
and 5 present the core of the paper, namely the realization
of the proposed SMD and SMDC, respectively. Section 6
evaluates Hermessem. Finally, Sect. 7 concludes this paper.

2 Related work

Modeling, management, and knowledge discovery aspects
on (raw) spatio-temporal trajectories of moving objects have
been exhaustively researched in the past two decades [16],
including plenty of algorithms and systems, spreading from
data management [3] to data mining [1]. On the other hand,
semantic mobility data management is a relatively new entry
in the research agenda. Models for semantic trajectories
include [9,13], while techniques for extracting semantic tra-
jectories from raw ones have been also proposed recently
[22]. In [16], the interested reader may find a survey of rele-
vant models and techniques.

According to the state-of-the-artmodel [9], a semantic tra-
jectory is defined as a sequence of episodes, labeled either as
‘Stops’ or ‘Moves’, each associated with appropriate meta-
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data (tags). Technically, Stops are places (points or regions)
where the object remains static (whatever definition is used to
realize this behavior) and Moves are the parts of the object’s
trajectory in between two Stops, i.e., where the object ismov-
ing. This model was extended in [13] in order to enable the
management of such data to extensible database architec-
tures, as well as to support their modeling and analysis at
various scales and/or spatio-temporal granularities.

Traditionally, aggregated information from DBs is stored
in aDataWarehouse (DW), in the formof data cubes [2].Data
cubes are views of a DW, used for multi-dimensional analy-
sis, the so-called OnLine Analytical Processing (OLAP).
The data cube paradigm has been extended to support
spatial [4] and (raw) trajectory DWs [7,8,18], involving spa-
tial, temporal, and thematic dimensions as well as spatial,
spatio-temporal, and numerical measures. A DW model for
semantically-enrichedmobility data, calledMob-warehouse,
was proposed in [20] to enrich trajectory data with domain
knowledge by following the so-called 5W1H model (Who,
Where, When, What, Why, How). In [5], another semantic
model tailored to open, linked data were proposed. In [13],
a graph-based representation of mobility-aware data cubes
was proposed.

Apart from the inclusion of semantics at the conceptual
level, one of the challenges raised in [13] was the necessity
to efficiently support the management and analysis of such
data. Thus, [13] sketched the big picture of an envisioned
three-tier framework, as follows: (i) at the bottom-layer, a
traditional MOD lies, being in charge of the raw mobility
data and supported bywell-known access methods and query
functionality [8,16]; (ii) at themiddle-layer, it is theSMDthat
provides novel datatypes, indexing methods, and operators
extendingMOD query languages for querying and analyzing
mobility data from a semantic perspective; (iii) at the top
layer, the application interface provides users with querying
and analysis functionality on eitherMODorSMD, via simple
SQL.

This paper presents a data management and analysis
framework, which is a realization of that vision. To the best
of our knowledge, this approach is novel and provides a valu-
able tool in the hands of the researchers in the field.

3 Background

Formally, the (raw) trajectory τ of amoving object is defined
as a tuple (o-id, traj-id,T ),whereo-id (traj-id) is the identifier
of the moving object (the specific trajectory of the moving
object, respectively) and T is a 3D polyline consisting of
a sequence of N+1 pairs (pi, ti), 0 ≤ i ≤ N , where pi
is a 2D point (xi, yi) in the plane and ti is a timestamp,
assuming linear interpolation between two consecutive pairs
(pi, ti) and (pi+1, ti+1). In turn, a (raw) trajectory defined

Home (breakfast) Office (work) Market (shopping) Home (relax)

Road 
(bus)

Train
(metro)

Sideway
(walk)

[~, 8am]

[6pm,6:30am] [7:30pm, 8pm]

[9am,6pm] [6:30pm, 7:30pm] [8pm,~]

[8am,9pm]

Fig. 1 A mobility timeline consisting of 7 LifeSteps

as above can be partitioned into a sequence of (raw) sub-
trajectories; formally, a (raw) sub-trajectory τ ’ of a (raw)
trajectory τ is defined as a tuple (o-id, traj-id, subtraj-id,
T ′), where o-id (traj-id, subtraj-id) is the identifier of the
moving object (the specific trajectory and sub-trajectory of
the moving object, respectively) and T ′ is the portion of T
between two timestamps, ti and tj, ti < tj. We are now able
to define their semantic variants, namely mobility timelines
(for trajectories) and LifeSteps (for sub-trajectories, respec-
tively). As an example, Fig. 1 illustrates a mobility timeline
consisting of seven (7) LifeSteps.

Definition 1 (LifeStep) A LifeStep ls corresponds to a
sub-trajectory τ ’ and is defined as a tuple (LifeStepID,
LifeStepFlag, MBB, tags, T-link), where LifeStepID is the
identifier of the LifeStep, LifeStepFlag is a flag taking values
from set {‘Move’, ‘Stop’},MBB is a tuple (MBR, tstart , tend )
corresponding to the 3D approximation of τ ’, with MBR
being the 2D enclosing rectangle of the spatial projection of
τ ’ in 2D plane and [tstart , tend ] being the 1D temporal projec-
tion of τ ’ in 1D timeline, tags is a set of keywords, describing
the corresponding activities and semantic annotations related
to this portion of movement, T-link is a link to τ ’.

Definition 2 (Mobility timeline) Amobility timeline τ sem of
a moving object is defined as a triple (o-id, timeline-id, TL S),
where o-id (timeline-id) is the identifier of the moving object
(the mobility timeline of the moving object, respectively)
and TL S is a sequence of LifeSteps belonging to the same
trajectory τ and being successive in time, i.e., lsi [tend ] =
lsi+1[tstart ].

Looking at the above definitions, it is clear that the content
of a MOD (raw trajectories) and the respective of a SMD
(mobility timelines) do not share much in common. This
means that existing MOD engines, such as Hermes [16] and
Secondo [8], cannot be used as-is in order to handle a SMD.
For instance, queries like “Find people crossing the city cen-
ter on their way from office back to home” or “Find people
drivingmore than 20km on their way from home to office” or
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“Find people spending more than 1 hour daily for bring-get
activities of their children at schools” cannot be easily sup-
ported by the aboveMODengines since theymake strong use
of semantics. Nevertheless, these queries are typical exam-
ples of “what-if” analysis in the transportation domain and,
as such, they ask for efficient support in DBMS.

The above discussion results in a categorization of queries
over MOD/SMD in at least three types [13]. Q1-type queries
like range, nearest-neighbor, enter, crossover raw trajecto-
ries have been extensively studied in the MOD literature.
On the other hand, Q2-type queries (that involve seman-
tic trajectories only) and Q3-type queries (that involve both
raw and semantic trajectories) are innovative and they can-
not be considered as straightforward variations of Q1-type
ones. Moreover, Q4-type queries include advanced opera-
tions, such as pattern queries, over SMD. A typical example
is the following: “Find people who follow the home–office–
*–gym pattern”, where we search for LifeSteps including the
specific sequence (with the wildcard ‘*’ denoting ‘any’).

As a step forward, we introduce the notion of Semantic
Mobility Data Cube (SMDC), where aggregated data should
not only expose interesting measures with respect to the cho-
sen dimensions via a relational format, but they should also
encapsulate the spatial topology and its intrinsic relation-
ships. To succeed this ambitious goal, we exploit on the
so-called Semantic Mobility Network (SMN) [13], a dynamic
graph representation of the semantic mobility timelines. A
nice interesting characteristic of a SMN, which we consider
as a novel characteristic of our approach in the mobility man-
agement and analysis domain, is that this graph-based design
is data-driven and unifies all the mobility-related dimensions
(space, time, and semantics). Below, we provide formal defi-
nitions of a SMN and an aggregate SMN, while the reader is
referred to [13] for several examples that illustrate the merits
of this representation:

Definition 3 (Semantic Mobility Network—SMN) A seman-
tic mobility network N is a graph denoted by N =
(V, E, M), where V is a set of vertices, E ⊆ V × V is a
set of edges and M = {M1, M2, . . ., Mn} is a set of mea-
sures applicable to vertices and edges, i.e., ∀v ∈ V and
∀e ∈ E , there is a tuple M(v) of v and M(e) of e, respec-
tively, denoted as M(v) = (M1(v), M2(v), . . ., Mn(v))

and M(e) = (M1(e), M2(e), . . ., Mn(e)), where Mi (v) and
Mi (e) is the value of v and e on i-th measure, 1 ≤ i ≤ n.
The set V of vertices corresponds to the union of all distinct
LifeSteps that are of ‘Stop’ type, of all mobility timelines
τ sem , while the set E of edges corresponds to the union of
the ‘Move’ type LifeSteps. The set M of measures is a set of
scalars quantifying properties of vertices and edges.

Definition 4 (Aggregate Semantic Mobility Network—AS-
MN) Given a semantic mobility network N , a set of dimen-
sions D = {D1, D2, . . ., Dm} with their corresponding hier-

archies, an aggregation Da = {Da
1 , Da

2 , . . ., Da
m} along these

hierarchies, with Da(v) = (Da
1 (v), Da

2 (v), . . ., Da
m(v))

denoting a tuple of values Da
j (v) of v on j-th dimension,

1 ≤ j ≤ m (Da(e) is defined similarly), upon which mea-
sure Mi can be aggregated, an aggregate semantic mobility
network with respect to Da is a semantic mobility network
N a = (V a, Ea, Ma), where:

i V a is the set of aggregate vertices va ∈ V a , each of
which is constructed by a unification process UV ([v])
upon a non-empty equivalence class [v] of V , where
[v] = {v|Da

j (v) = Da
j (u), v, u ∈ V, j = 1, . . ., m},

ii Ea is the set of aggregate edges ea ∈ Ea , each ofwhich is
constructed by a unification processUE (E(va, ua)) upon
a non-empty edge set (i.e., ‘Move’ LifeSteps), where
E(va, ua) = {(v, u)|v ∈ [v], u ∈ [u], (v, u) ∈ E}, and

iii Ma is the set of aggregate measures, each of which is
computed by applying an aggregate function A(·) on
the measure values Mi (v), v ∈ [v] and Mi (e), e ∈
E(va, ua), respectively, 1 ≤ i ≤ n.

Note that the set of measures may be different for ver-
tices and for edges (e.g., average stop vs. move duration)
depending on the application, while A(Y) aggregate func-
tion may differ from measure to measure (e.g., count(Y) or
average(Y)). Of course, spatial or spatio-temporal measures
may requiremore sophisticated aggregate functions (e.g., the
‘mean’ LifeStep), which are out of the scope of the current
work. The key issue for the aggregate function is to avoid
being holistic, because in that case, super-aggregates cannot
be computed from sub-aggregates, even if we employ auxil-
iary measures [2]. Note also that the unification process UV

(UE ) operates on the spatio-temporal and semantic proper-
ties of the ‘Stop’ (‘Move’) LifeSteps, respectively.

In Fig. 2, we visualize a 3-days semanticmobility timeline
the derived semantic mobility network and its corresponding
aggregate semantic mobility network over a period of time.
Notice how natural is the passage from one model to the
next, thus allowing implementing analytics and extracting
valuable information.

Definition 5 (Semantic Mobility Data Cube—SMDC)Given
a semantic mobility network N= (V, E, M) and a set of
dimensions D = {D1, D2, . . ., Dm} with their correspond-
ing hierarchies, the semantic mobility cube is the lattice of
the aggregate semantic mobility networks produced by all
possible aggregations in D.

The above definition implies that given a SMN N , each
aggregation Da of D, called a semantic mobility cuboid, is
itself a graph. To the best of our knowledge, this model-
ing approach is novel for the mobility domain, since it has
been studied only for non-spatial, vertex-specific multidi-
mensional networks of traditional datatypes [23].
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Fig. 2 a The abstract sequence of a 3-days semantic mobility timeline,
b its mobility network, and c its aggregate network over a period of time

It is interesting to note a few example operations that can
be applied to this framework for progressive analysis pur-
poses. For instance, after we “extract the aggregate semantic
mobility network A of user Bob during a period of time”, we
could “restrict it at a particular region of interest”, by using
a range query. Assuming this network is at the base cuboid
level,we could then join itwith “the aggregated (over a period
of time) network B of a set of users (e.g., Bob’s friends and
co-workers according to a social network)”, as such ASMN
B resides at a higher level in the lattice than ASMN A. The
join result (which obviously is a novel cross-SMN operation)
could identify Bob’s mobility network wherein he performs
similar activities at similar places following similar routes
with his friends.

Given the above discussion, and following the typology
of query types proposed in [13], Q5- and Q6-type queries
involve SMN, perhaps with the aid of crossover operations
that link MOD and SMD. Clearly, both types of queries are
innovative and have not been addressed in the related work
on semantic trajectories [9].

Before we proceed to the discussion about Hermessem

framework, in Fig. 3 we present its big picture.

4 Modeling mobility timelines and semantic
mobility networks

This section presents our proposal for modeling the concepts
defined in Sect. 3, namely mobility timelines (Sect. 4.1) as
well as SMN and SMDC (Sect. 4.2).

4.1 Modeling mobility timelines

Toward the realization of the concepts of LifeSteps and
mobility timelines presented in Sect. 3, we follow the object-
relational (OR) approach and extend the type system of
HermesMOD engine [12] and its associated query language.
In detail, we follow the abstract data type (ADT) paradigm
and define the so-called LifeStep and timeline datatypes (the
former being subtype of the latter) that support Definitions
1 and 2, respectively (see Sect. 3). Upon these datatypes,
we register a rich palette of object methods; some indicative
examples appear in Table 1. More advanced methods include
confinement of a timeline in spatial-temporal-textual cube,
calculating the distance between two LifeSteps or between
two timelines in each spatial-temporal-textual dimension,
and more. The interested reader is referred to [13] and [12]
for more details.

The resulted query language, i.e., the well-known SQL
extendedwithmethods and operators over the new datatypes,
is appropriate for such complex (spatial-temporal-textual)
objects, which can actually be considered as synchronized
GPS traces along with diary information. Later, in Sect. 7,
we present real examples of the query language in SQL
syntax.

4.2 Designing efficient SMDC over SMN for OLAP
purposes

Defining aggregations over mobility networks is a prob-
lem related to the graph cube problem [23]. Recalling the
idea of Trajectory DW (TDW) [18], we propose a SMN
to be a constellation scheme consisting of five dimen-
sions (namely, space, time, user-profile, STOP-type-activity,
MOVE-type-activity) and two fact tables (namely, STOPS-
fact and MOVES-fact). Intuitively, this approach allows the
support of several kinds of analysis:

• STOPS-Fact-table: who made a stop? when and where?
what was the activity during the stop?

• MOVES-Fact-table: who made a movement? when and
from/to where? How was the movement made and what
was the activity during the movement?

Figure 4 provides a relational scheme of an effective
modeling of SMN, where the measures of the fact tables
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Fig. 3 An overview of
Hermessem framework

Table 1 Methods over LifeStep and timeline datatypes

Method name Description

Q1-type queries

moving_point.at_instant(timestamp) return point Returns point geometry where moving object were at
given timestamp

moving_point.at_period(time_period) return moving_point Returns moving_point restricted at given period

moving_point.f_direction(timestamp) return number Returns the angle of the moving object at given
timestamp

moving_point.f_avg_speed return number Returns the average speed of the moving object in its
lifespan

moving_point.f_enter(geometry) return timestamp Returns the timestamp when moving object enters a
given geometry

moving_point.f_leave(geometry) return timestamp Returns the timestamp when moving object leaves a
given geometry

moving_point.f_max_speed return number Returns the max speed of the moving object in its
lifespan

moving_point.f_duration return number Returns the duration of the moving objects’ lifespan

moving_point.potential_activity_area return geometry Returns the potential activity area of a moving object

range(geometry, time_period, root) return moving_point_array Returns moving_points restricted in a spatiotemporal
window using index

Q2-type queries

sem_mbb.intersects(sem_mbb) return boolean Returns TRUE if LifeStep’s MBB intersects with
given MBB

sem_mbb.duration return number Returns the duration of a LifeStep

sem_mbb.area return number Returns the area of the Lifestep’s MBB

sem_episode.duration return number Returns the lifespan of a LifeStep
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Table 1 continued

Method name Description

sem_episode.sim_episodes( sem_episode) return number Returns the similarity (distance) of the LifeStep with
given LifeStep in spatio-temporal-textual terms

sem_episode.tlink return moving_point Returns the raw sub-trajectory of the LifeStep

sem_trajectory.getMBB return MBB Returns the MBB of a Timeline

sem_trajectory.num_of_stops return integer Returns the number of STOP LifeSteps contained in
a Timeline

sem_trajectory.num_of_moves return integer Returns the number of MOVE LifeSteps contained in
a Timeline

sem_trajectory.episodes_with (tag varchar2) return sem_episode_tab Given a string ‘tag’ that is a concatenation of tags,
returns the set of LifeSteps of a Timeline that match
with the content of ‘tag’

sem_trajectory.confine_in(geometry, time_period, tag) return sem_trajectory Returns the Timeline restricted in given spatio-
temporal-textual window

sem_trajectory.sim_trajectories( sem_trajectory) return number Returns the similarity (distance) of the Timeline with
given Timeline in spatio-temporal-textual terms

range_episodes(sem_episode) return sem_episode_array Returns LifeSteps that intersect with the given
LifeStep using the index

range_episodes(geometry, time_period) return sem_episode_array Returns LifeSteps of type ‘STOP’ that intersect with
the given spatio-temporal window using the index

from-to-via(from_episode, to_episode, via_episode) return sem_episode_array Returns LifeSteps of type ‘MOVE’ that began and end
to given LifeSteps and obey constraints imposed by
the ‘via’ LifeStep, using the index

Q3-type queries
range_episodes(geometry, time_period).tlink.
at_period(time_period) return sem_episode_array
range_episodes(geometry, null) .tlink.f_duration return number

Returnsmoving objects restricted in given time period
from ‘STOP’ LifeSteps that intersecting a given
spatio-temporal window
Returns durations of ‘STOP’ LifeSteps that intersect-
ing a given spatial window

Q4-type queries

od_matrix(SMD) return table Returns the Origin-Destination matrix given an SMD
(either on LifeSteps or on Timelines)

pattern(sem_episode_array, wildchars) return o-id Returns objects identifiers the follow givenmovement
pattern

correspond to the weight vectors of a SMN. These measures
are similar with the ones used for TDW [18], but here they
are trivially customized for ‘Stops’ and ‘Moves’. Also note
that these measures are subject to the distinct count problem
when computing super-aggregates by sub-aggregates. This
issue is tackled with a similar manner as in [18].

Adopting the relational model is in order for the pro-
posed framework to be fully compatible with our approach
of extending a real MOD engine with semantic functionality.
This actually allows us to use the extended query language
when feeding the SMDC during the ETL process. Deriv-
ing a SMN from a SMD is a computational challenging
task. For instance, the SMN is built at a very refined spa-
tial granularity (namely, at the level of the POIs and not at
the region level, as in the case of TDW [18]). In the follow-
ing section, we provide alternative approaches for feeding a
SMDC.

5 Indexing and query processing over SMD and
SMDC

The realization of the above-described framework raises a
natural question: how would a SMD be developed to provide
efficiency in storage and querying, as well as effectiveness in
analytics? In this direction, we first propose access methods
for indexing mobility timelines (Sect. 5.1). Then, we pro-
vide algorithms for the efficient processing of the so-called
spatial-temporal-textual pattern query (Sect. 5.2) and the effi-
cient feeding of SMDC (Sect. 5.3).

5.1 Indexing mobility timelines

As usual in ADT, the introduced query operators call for
efficient index support. Motivated by solutions already pro-
posed in the field of geographic information retrieval [21], we
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Fig. 4 A data cube for SMN; a
constellation scheme consisting
of two fact- and
five-dimensional tables

Fig. 5 Hybrid indexing of
spatial-temporal-textual
information combining
3-dimensional indices for (raw)
trajecotries and inverted files

propose hybrid access methods that extend the well-known
TB-tree [17] and 3DR-tree [19] access methods, proposed
for (raw) trajectory data, by combining them with an appro-
priate text index (inverted file). The architecture of our hybrid
indexing scheme is illustrated in Fig. 5.

In particular, Fig. 5 exhibits how the LifeSteps of a single
timeline are indexed. Let us consider a timeline consisting
of nine LifeSteps (the 3D MBBs of which are illustrated
in the middle of Fig. 5). The right part of Fig. 5 illus-
trates a three-dimensional index for (raw) trajectories, could
be a TB-tree or a 3DR-tree, constructed by these MBBs,
enhanced at the leaf level with the textual information
assigned to each LifeStep. Thus, the entries of the leaves
contain the tags of the LifeSteps, as well as the MBBs of the
LifeSteps’ sub-trajectories (in Fig. 5 the latter are pointed by

the arrows). This choice allows for queries with combined
spatio-temporal and textual constraints. At the left part of the
architecture, we adopt a typical inverted file organizing the
tags that appear at the LifeSteps. We call the overall scheme
SemTB-tree or Sem3DR-tree, depending on the respective
trajectory index adopted at the right part.

Whatever is the choice, note that such a spatio-temporal
index is different from the one we would have, if we decided
to index the initial trajectories. This is due to the segmentation
of trajectories to sub-trajectories that produces a more effec-
tive partitioning of the space-time with less dead space, as
‘Stop’ sub-trajectories (intuitively, they correspond to long
MBBs in the time dimension with small spatial footprint)
are not mixed with ‘Move’ sub-trajectories (intuitively, they
have large spatial extent). Thismixing is a source of inclusion

123



Int J Data Sci Anal (2016) 2:29–44 37

of dead space in the structure, and state-of-the-art indexing
methods have been proposed to tackle this issue. Here, we
implicitly tackle it via the prior segmentation of the initial
raw trajectories with respect to their semantics.

It follows that a comparative performance assessment
between TB-tree (3DR-tree) and SemTB-tree (Sem3DR-
tree, respectively) is not fair or even meaningful. TB-tree
indexes segments of raw trajectories, while SemTB-tree
indexes approximations of sub-trajectories (which corre-
spond to a number of segments), thus the structures of the
two constructed indexes are quite different in terms of both
the number of nodes and the height of the trees. Moreover,
SemTB-tree incorporates semantics (i.e., textual data in the
form of keywords) that the original TB-tree does not take
into account. Exploiting the indexing of semantics, SemTB-
tree can filter out candidate solutions faster than TB-tree.
Likewise for 3DR-tree and Sem3DR-tree.

5.2 Querying mobility timelines

In a SMD, an interesting operation is searching for mobil-
ity timelines that follow a specific sequence pattern. Of
course, the challenge that arises is that LifeSteps com-
posing timelines impose textual as well as spatio-temporal
constraints. Thus, the query “Find people who follow the
home–office–*–gym pattern” implies that the user may add
spatio-temporal constraints at each of the textual constraints
(i.e., search for “home” in region r during temporal period p).
A Spatial-Temporal-Textual Pattern (ST2P) query in a SMD
is essentially a (simplified) regular expression consisting of
LifeStep objects. In particular, it is defined as a sequence of
LifeSteps that forms a search pattern in a SMD. Formally:

Q:=< p∗| p is either a LifeStep l si or

a wildcard w∈{>, ∗} > (1)

For ease of exposition, Q is represented as an array of
LifeSteps L along with an array of wildcards W . The array
of wildcards consists of either ‘>’ or ‘*’ (or the empty
symbol ∅), which may be placed in between consecutive
LifeSteps. The existence of ‘>’ between two LifeSteps lsi
and lsi+1 implies that lsi is immediately followed by lsi+1,
while ‘*’ means that there may exist an arbitrary number of
other LifeSteps in between lsi and lsi+1. Thus, the array of
wildcards W is consistent with the array of LifeSteps L . For
instance, for L = [ls1, ls2, ls3, ls4] and W = [∅,>, ∗,>],
the pattern

Q(L , W ) = [ls1 > ls2 ∗ ls3 > ls4]

conforms to timelines that start from ls1, immediately fol-
lowed by ls2, then followed by an arbitrary number of
LifeSteps of any type, then followed by ls3, immediately

followed by ls4, which is the ending LifeStep of the time-
line.

Algorithm ST2P provides the pseudocode for process-
ing ST2P queries using the hybrid indexing scheme (either
SemTB-tree or Sem3DR-tree) proposed in the previous sub-
section. Before providing the details of the algorithm, we
should note that pattern_tags() searches the index starting
from the inverted file (Fig. 5, left), while pattern_mbb()
searches the index starting from the spatio-temporal index
(Fig. 5, right).

The algorithm iterates through the LifeSteps of the query
pattern (lines 3–9) and finds candidate solutions that satisfy
textual constraints (using the pattern_tags() function), which
are used to prune the spatio-temporal space (using the pat-
tern_mbb() function). In each of the following iterations, the
algorithm moves on to the next input LifeStep and retrieves
a corresponding set of LifeSteps from SMD. During each
iteration, candidate solutions must also constitute a ‘contin-
uation’ with the solutions found in the previous step.
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In detail, Algorithm pattern_tags examines the wildcard
w and either retrieves solutions (i.e., LifeSteps) from the
index satisfying the textual constraints of the input LifeStep
or combines this result with current solutions found from a
previous step. The combine function ensures the continuation
of previous step’s solutions with the currently found from the
index, as we described earlier.

More specifically, given two sets of solutions and a wild-
card (i.e., ‘>’ or ‘*’), the combine function joins the two sets
on o_id, timeline_id fields and then based on the wildcard,
it imposes the continuation by using the node_id, entry_id
and numOfEntries fields. A LifeStep of the second set is the
continuation of a LifeStep of the first set if, in case having a
‘>’ wildcard, both belong to the same leaf and their entries
differing by one, or they belong to different leaves (neigh-
boring leaves of the same timeline) and the first LifeStep is
the last entry in its leaf, while the second LifeStep is the first
entry in its leaf. In case having a ‘*’ wildcard, both should
belong to the same leaf and their entries differing by at least
one or they should belong to different leaves (of the same
timeline). Obviously, the resulting solutions come from the
second set, so the algorithm is progressing one step further.

In this case, ‘continuation’ means that LifeSteps retrieved
by searching the textual and the spatio-temporal space must
belong to the same timeline and that the second LifeStep
comes after the first with respect to time and according to
the wildchar between them. This process guarantees that at
the end curr_sol holds LifeSteps of timelines following the
whole pattern (line 10).

Candidate solutions found to satisfy textual constraints
help in pruning the search space in pattern_mbb function.
The pattern_mbb algorithm in line 2 checks the existence of
input LifeStep’s mbb. If not, then solutions found by pat-
tern_tags (i.e., curr_sol) are the only candidate solutions so
far.Otherwise, solutions are foundby retrieving theLifeSteps
from the index by traversing it with respect to the spatio-
temporal constraints of the mbb of the LifeStep. Note that
when we reach a leaf this may be pruned, by checking its
existence within the solutions found from pattern_tags, thus
saving searching its entries. This is represented by the func-
tion get_LifeSteps (line 5). Solutions found are returned to
main algorithm in line 8 as the combine for current iteration
is already executed in pattern_tags (that is the reason why the
main algorithm passes an empty set for parameter prev_sol).

5.3 Feeding semantic mobility networks

Feeding data cubes from databases is not a straightforward
approach due to the dimensionality and the eventual com-
plexity of the measures in the data cube as well as the size of
the database. Therefore, there have been proposed appropri-
ate Extract-Transform-Load (ETL) operations for this task.
In the case of SMDC proposed in Sect. 4, while loading data

into the dimension tables is straightforward, feeding the fact
tables is not so. In this subsection, we provide three alterna-
tive approaches:

(i) The so-called LifeStep-based approach scans the SMD
sequentially without taking advantage of the index; this
decision is based on the rationale that using access meth-
ods for sequential data may not be efficient, as it was
experimentally shown for the case of TDW [18].

(ii) The so-called cell-based approach does make use of
the index by following a cell-oriented methodology: for
each (spatial-temporal-textual) cell of the data cube, it
searches for the LifeSteps that partially match the cell by
applying spatial-temporal-textual queries then calculates
measures over these LifeSteps.

(iii) The so-called text-based approach is based on the intu-
ition that the semantics (i.e., the textual domain) is usually
more selective than the spatio-temporal domain, so again
an index-based search is followed but, this time, the index
is propagated according to the textual constraints and then
the result is refined according to the spatio-temporal con-
straints.
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In order to materialize the above approaches for feeding
the Stops-Fact table in SMDC, we propose the respective
algorithms, called LifeStepStopsLoad, CellStopsLoad, and
TextStopsLoad, respectively.

Rather than calculating measures for each cell of the
SMDC, Algorithm LifeStepStopsLoad first finds valid cells
for each LifeStep of the SMD and then calculates measures
for these cells only. Valid cells are those SMDC cells that
spatially-temporally-textually match a LifeStep. In detail,
for each LifeStep in the SMD (line 2), valid periods are
found by checking the matching of the LifeStep’s lifespan
with the Period_Dim (line 4). Then, for each period found
(line 4), stop_sems set is found by spatio-textually matching
the LifeStep’s MBR and tags with the Stop_Sems_Dim. For
these cells, measures in Stops-Fact table are calculated (lines
6–7).

On the other hand, Algorithm CellStopsLoad and Algo-
rithm TextStopsLoad take advantage of the SMD indexing
scheme. Algorithm CellStopsLoad applies a spatio-temporal
range query (line 4) that returns LifeSteps falling inside
cells (i.e., query ranges), constructed by combining the
Period_Dim and Stop_Sems_Dim dimensions (lines 2–4).
Textual constraints are imposed at the leaf level of the index.
Again, for each LifeStep, measures in Stops-Fact table are
calculated (lines 5–6). In turn, Algorithm TextStopsLoad
utilizes pattern_tags (i.e., inverted file) to find candidate
solutions based on the textual constraints of each value in
Stop_Sems_Dim (line 2). Then, these candidate solutions
are passed to a spatio-temporal range query (line 5) to prune
search space. The remaining steps are the same as in the
CellStopsLoad algorithm.

In the same fashion, in order to materialize the above
approaches for feeding the Moves-Fact table, we propose
the respective algorithms, called LifeStepMovesLoad, Cell-
MovesLoad, and TextMovesLoad, respectively.

Algorithm LifeStepMovesLoad scans the SMD for each
‘Move’ LifeStep and finds its tags (line 3) and time periods
(line 4). Then, for each time period, it tries to find match-

ing cells in the Stop_Sems_Dim dimension with its previous
‘Stop’ LifeStep (line 6). Similarly, it tries to find matching
cells with its next ‘Stop’ LifeStep (line 8). Finally, for each
returned cell, measures in Moves-Fact table are calculated
(lines 9–10).
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In turn, Algorithm CellMovesLoad in its core calls an
ST2P query, restricting the result to the ‘Move’ LifeSteps
that follow query pattern Q := [from_ls > via_ls > to_ls]
consisting of three LifeSteps (lines 9–10). These LifeSteps
are constructed by all triplet combinations of values from
the dimensions, which textually match ‘Move’ LifeSteps
created form the Move_Sems_Dim (lines 7–8) and also
match spatially-temporally-textually their previous and next
‘Stop’ LifeSteps, created from the Stop_Sems_Dim and
Period_Dim dimensions (lines 2–6). Thus, Q is a Stop-
Move-Stop- like pattern. For each ‘Move’ LifeStep found,
measures in Moves-Fact table are calculated (line
11–12).

Finally, Algorithm TextMovesLoad tries to find in a step-
by-step fashion ‘Move’ LifeSteps that conform to values
of the Move_Sems_Dim (note that this dimension includes
only textual values), also having the respective previous
and next ‘Stop’ LifeSteps textually conforming to values
in Stop_Sems_Dim (namely, we ignore the spatial part
of this spatio-textual dimension). Thus, the algorithm first
uses the inverted file to deal with textual constraints (lines
2–8).

Note the successive application of pattern_tags algorithm,
where at each step we combine with the results found before
the step to prune the search space. Then, the algorithm pro-
ceeds to apply spatio-temporal constraints to the (already
found) previous and next ‘Stop’ LifeSteps, with respect to
the candidate ‘Move’ LifeSteps found by the textual filtering
(lines 9–12). For each qualifying ‘Move’ LifeStep measures
in Moves-Fact table are calculated (lines 13–14).

6 Evaluation

We have developed the proposed Hermessem framework
extending Hermes MOD engine [12]. In this section, we
present the results of an evaluationmethodology that we have
applied to Hermessem . Hermessem can be evaluated by fol-
lowing two directions; a quantitative approach and a more
qualitative one. More specifically, in Sect. 6.1, we study the
performance of the framework in terms of processing time.
(Note that Hermessem main purpose is to efficiently store
andmanage semantic trajectories and as such its functionality
is deterministic; thus, measuring accuracy is not applicable.)
Then, in Sect. 6.2, we present real SQL queries correspond-
ing to a real-world case study, so that the reader can have a
solid understanding from these experiments of the analytical
power and usefulness of the framework.

All experiments were performed in a PC of i7 CPUwith 4
cores at 1.73 GHz and of 8Gb RAM. Input SMDs were sim-
ulations of mobility scenarios by the Hermoupolis semantic
trajectory generator [15]. We simulated two mobility scenar-
ios: The first scenario is a 7-days movement in the city of
Athens for four different profiles (movement behaviors); the
second scenario is a 1-day movement in the city of Athens,
again for four different profiles. For both scenarios we cre-
ated 4 SMDs consisting of 50, 100, 150, and 200 timelines.
The average number of LifeSteps for each scenario is 58
and 10, respectively. We used the first scenario for ST2P
query experiments (i.e., in order to evaluate the performance
of the algorithm proposed in Sect. 5.2) and the second for
SMDC feeding experiments (i.e., in order to evaluate the
performance of the algorithms proposed in Sect. 5.3).

6.1 Performance study

We start our performance study by calculating the time
required to build the two alternative indexing structures. Fig-
ure 6 illustrates the results for either one-by-one insertion or
bulk loading of the SMD content into the index. The signif-
icant gain when performing bulk loading on Sem3DR-tree
is due to the fact that the loading task can be parallelized by
partitioning the SMD timelines. (In our implementation that
is found behind the numbers in Fig. 6, we used 4 parallel
processes.) On the other hand, we provide a single series for
Sem3DR-tree since it exploits on the DBMS built-in R-tree
index. To measure processing time on ST2P queries, we set
up queries of 2, 4, 6, 8, and 10 input LifeSteps with various
wildcards in between them. Figure 7 depicts the performance
of our algorithm in all datasets using both types of indices,
i.e., Sem3DR-tree and SemTB-tree. We note that increased
query complexity does not increase significantly processing
time,while in all cases the Sem3DR-tree performs better than
SemTB-tree. This is rather expected, as the ST2P query can
be considered as a sequence of coordinate-based (i.e., range)

123



Int J Data Sci Anal (2016) 2:29–44 41

0

20

40

60

80

100

120

140

160

180

50 100 150 200

se
co

nd
s

SMD size (in number of Mobility Timelines)

SemTB-tree 
(original)
SemTB-tree 
(parallel)
Sem3DR-tree

Fig. 6 Sem-TB-tree versus Sem-3DR-tree construction time

0

5

10

15

20

25

2 4 6 8 10

se
co

nd
s

Query length (in number of LifeSteps)
50-SMD (SemTB-tree) 50-SMD (Sem3DR-tree)
100-SMD (SemTB-tree) 100-SMD (Sem3DR-tree)
150-SMD (SemTB-tree) 150-SMD (Sem3DR-tree)
200-SMD (SemTB-tree) 200-SMD (Sem3DR-tree)

Fig. 7 ST2P query processing time

queries, which have been shown in the literature to be sup-
ported more efficiently using 3DR-trees rather than TB-trees
[17].

Next, we provide the results for feeding the SMDC
Stops-Fact table and Moves-Fact table, in Figs. 8 and 9,
respectively. Regarding Stops (Fig. 8), the three approaches
do not appear to have significantly different performance (lin-
ear with respect to the number of timelines). On the other
hand, Moves (Fig. 9) are much more expensive to process; in
this case, the LifeStep-based approach appears to be the only
one that performs in acceptable time (therefore, the other two
are omitted from the chart).

6.2 Hermessem in action

In this section, we present a qualitative evaluation of the
Hermessem framework providing several queries using the

0 

50

100

150

200

250

50 100 150 200

m
in

ut
es

SMD size (in number of Mobility Timelines)

CellStopsLoad

TextStopsLoad

LifestepStopsLoad

Fig. 8 SMDC feeding processing time (Stops-Fact table)

0 

100

200

300

400

500

600

50 100 150 200

m
in

ut
es

SMD size (in number of Mobility Timelines)

LifestepMovesLoad

Fig. 9 SMDC feeding processing time (Moves-Fact table)

extended SQL query language in one of the application areas
that we highlighted in the introduction. More specifically,
we provide a list of SQL queries (presented in Table 2) that
consists of a set of representative Q2-, Q3-, and Q4-type
queries applied to the Hermessem framework that a LBSN
analyst could apply to gain insight in such datasets.

In detail, Query Q2.1 returns the number of STOP
LifeSteps, number of MOVE LifeSteps and the total number
of LifeSteps of all timelines in the SMD. Q2.2 first selects all
STOPLifeSteps of all timelines and thengroups themby their
activity tag while measuring their duration per activity. Q2.3
applies the ‘confine_in’ method on a specific timeline and
restricts it inside given spatio-temporal window also keeping
only LifeSteps according to given tags.

Q3.1 is a crossover query in that it uses the semantic along
with the rawmobility layer. It first selects LifeSteps that obey
to given spatio-temporal-textual constraint in a filter-like step
using the index and then it retrieves through the link the
corresponding raw sub-trajectory part in which a temporal
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Table 2 Benchmarking the
Hermessem framework Q2-type queries

Q2.1 Select o_id, t.num_of_stops(), t.num_of_moves, (t.num_of_stops() +
t.num_of_moves()) as num_of_episodes from SMD t order by 4
desc;

Q2.2 Select activity_tag, sum(s.duration()) duration from table (select
t.episodes_with(’STOP’) from SMD t) s group by activity_tag;

Q2.3 Select t.confined_in(sdo_geometry(2003,2100,null,
sdo_elem_info_array(1,1003,3),
sdo_ordinate_array(469115,4200000, 472377,4206200)),
timeperiod(timestamp(2013,5,8,8,0,0),
timestamp(2013,5,8,23,59,0)), ’stop+working’).episodes from SMD
t where t.o_id = 3125 and t.semtraj_id = 3125;

Q3-type queries

Q3.1 Select o_id, deref(tlink).sub_mpoint.at_period(
timeperiod(timestamp(2013, 5, 8, 7, 50, 00), timestamp(2013, 5, 8,
14, 10, 00))) restricted from std.range_episodes(
sem_episode(’MOVE’, ’CAR’, null, sem_mbb(
sem_st_point(470000, 4200000,timestamp(2013, 5, 8, 7, 50, 0)),
sem_st_point(474000, 4205000, timestamp(2013,5,8,14,10, 0))),
tlink),SemTB-tree);

Q3.2 Select activity_tag, count(o_id) from std. from_to_via(
sem_episode(’STOP’, ’HOME’, null, null, null),
sem_episode(’STOP’, null, null, null, null), sem_episode(’MOVE’,
null, null, sem_mbb( sem_st_point(470000, 4200000,
timestamp(2013,5,8,7,50,0)), sem_st_point(474000, 4205000,
timestamp(2013,5,8,9,50,0))), null), SemTB-tree) group by
activity_tag;

Q3.3 Select episode from SMD where SDO_ANYINTERACT(t.geom,
sdo_geometry(3008, 2100, null, sdo_elem_info_array(1, 1007, 3),
sdo_ordinate_array(450000, 4210000,
timestamp(2013,11,10,7,0,0).toSpatial, 480000, 4230000,
timestamp(2013,11,10,17,0,0).toSpatial))) = ’TRUE’ and
defining_tag = ’STOP’ and episode_tag = ’UNIVERSITY’ and
activity_tag = ’STUDYING’;

Q3.4 Select std.range_episodes( sem_episode(’STOP’, ’UNIVERSITY’,
’STUDYING’, sem_mbb(
sdo_geometry(2003,2100,null,sdo_elem_info_array(1,1003,3),
sdo_ordinate_array(450000, 4210000,480000,4230000)),
timeperiod(timestamp(2013,11,10,7,23,18),
timestamp(2013,11,10,9,24,12))), null), SemTB-tree);

Q4-type queries

Q4.1 Select std.patterns(sem_episode_tab( sem_episode(’STOP’, ’HOME’,
’RELAXING’, sem_mbb( sem_st_point(473600,
4200700,timestamp(2013,11,10,3,0,0)),
sem_st_point(473700,4200800, timestamp(2013,11,10,6,0,0))),
null), sem_episode(’STOP’, ’GYM’, ’SPORTING’,null, null)),
varchar_ntab(null, ’*’), ’SMD’);

Q4.2 Select tab1.TL1.sim_trajectories(tab2.TL2) from (select value(b) TL1
from SMD b where b.o_id=5238) tab1, (select value(b) TL2 from
SMD b where b.o_id=9021) tab2;

Q4.3 declare eps = 0.05; minPts = 15; λ =0.5;, wd=[1/3, 1/3, 1/3] begin
SemT-OPTICS(SMD, eps, minPts, DMT (λ, wd )); end;

restriction is applied. Q3.2 finds MOVE LifeSteps that are
alive inside a spatio-temporalwindowand start fromaSTOP-
HOME LifeStep and ends up in another STOP LifeStep. It
uses a special structure build inside the index, which allows
combining results fromdescending the tree andmoving along

its leaves. Finally, it computes the distribution of objects per
transportation mode. Q3.3 returns all LifeSteps of the SMD
that match (at all spatial, temporal and textual dimensions)
a given LifeStep, namely a Stop at a university for studying,
located in MBR (450,000, 4,210,000, 480,000, 4,230,000),
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Fig. 10 Queries’ execution times

between 7a.m. and 5p.m. on Nov. 10th, 2013. This query
exploits on the built-in R-tree (hence, it uses Sem3DR-tree).
The same result, this time using the SemTB-tree index, is
achieved by delivering Q3.4.

Q4.1 implements the ST2P query; in particular, it searches
for timelines in SMD including LifeSteps that follow a
given pattern (starting from home/ relaxing and ending at
gym/sporting, where the starting LifeStep is spatially and
temporally constrained within an MBR and period, respec-
tively). A very basic function for mining operations is the
implementation of a similarity function on timelines and
LifeSteps objects. As described in Table 1, the similarity
between timelines or between LifeSteps objects consider all
spatio-temporal-textual domains [15]; Q4.2 is an implemen-
tation of the similarity function on timelines. The immediate
usage of the above similarity function is in clustering. In
Hermessem framework SemT-OPTICS [15] algorithm uses
this similarity function to cluster timelines; Q4.3 clusters the
timelines of the given SMD.

Concluding, in Fig. 10, we present the boxplots of the
average execution times and the corresponding variability of
the above queries. In detail, we execute each query ten times,
every time selecting randomly 200 timelines from the 1-day
SMD consisting of 1000 timelines. This experiment provides
an overview of the performance of the proposed query lan-
guage and it clearly shows that the user of can simply use the
extended SQL of Hermessem with the same or better per-
formance than the legacy SQL exhibits. Moreover, it turns
out that SemTB-tree takes advantage of its textual part and
thus filters out candidate results faster than the built-in R-tree
index.

7 Summary and future challenges

Motivated by related work on semantic trajectories [9] and
an envisioned framework for their realization [13], in this

paperwe presented the Hermessem framework, an integrated
MOD / SMD / SMDC engine. In this line, we proposed
efficient access methods for the hybrid indexing of the
spatial-temporal-textual component of this type of data.

We also devised efficient query processing algorithms to
support a very interesting query type, called spatial-temporal-
textual Pattern (ST2P) query that receives as input a sequence
of LifeSteps (to be considered as a simplified regular expres-
sion) and outputs the timelines that obey to the constraints
of this sequence. To the best of our knowledge, it is the first
time that such pattern queries are discussed in the spatial-
temporal-textual domain. Moreover, we presented a data
constellation schema for modeling SMDC and devised algo-
rithms for the efficient feeding of its fact tables.

We should note that the proposed development approach
is only a first SMD and SMDC implementation and it could
only be used as a baseline in future works. For instance, the
storage layer could be physically organized according to any
data management paradigm (centralized, distributed, map-
reduce, etc.), the hybrid indexing of the spatial-temporal-
textual information as well as the ST2P query processing and
optimization challenges could find more attractive solutions,
and so on. Our goal in this work was to design a unified
framework that solves many (though not all) raised issues
better than legacy approaches can. Thus, we believe that each
of the tackled issues could be a research challenge per se. This
makes a research plan for the near future.

Finally, recent advances in data management and analy-
sis aim toward effective and efficient storage and application
of innovative analytics techniques that would make data sci-
entists able to extract valuable information from huge and
complex datasets. Already much of this kind of data reside
in cloud-based infrastructure and this trend will grow even
more in near future. Researchers can adopt the Software as a
Service (SaaS), Platform as a Service (PaaS), and Infrastruc-
ture as a Service (IaaS) models to implement their solutions
in the cloud. Although we do not deal with cloud-based solu-
tions in this paper, it is evident that a cloud-based approach
would be the next step of our approach.
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