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Abstract In this paper, we propose a causal analog to the
purely observational dynamic Bayesian networks, which we
call dynamic causal networks. We provide a sound and com-
plete algorithm for the identification of causal effects in
dynamic causal networks, namely for computing the effect
of an intervention or experiment given a dynamic causal net-
work and probability distributions of passive observations
of its variables, whenever possible. We note the existence
of two types of hidden confounder variables that affect in
substantially different ways the identification procedures,
a distinction with no analog in either dynamic Bayesian
networks or standard causal graphs. We further propose a pro-
cedure for the transportability of causal effects in dynamic
causal network settings, where the result of causal experi-
ments in a source domain may be used for the identification
of causal effects in a target domain.

Keywords Causal analysis - Dynamic modeling - Do-
calculus - Graphical models - Confounding

1 Introduction

Bayesian networks (BN) are a canonical formalism for rep-
resenting probability distributions over sets of variables and
reasoning about them. A useful extension for modeling phe-
nomena with recurrent temporal behavior is the dynamic
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Bayesian networks (DBN). While regular BN is directed
acyclic graphs, DBN may contain cycles, with some edges
indicating dependence of a variable at time # + 1 on another
variable at time 7. The cyclic graph in fact compactly rep-
resents an infinite acyclic graph formed by infinitely many
replicas of the cyclic net, with some of the edges linking
nodes in the same replica, and others linking nodes in con-
secutive replicas.

BN and DBN model conditional (in)dependences, so they
are restricted to observational, noninterventional data or,
equivalently, model association, not causality. Pearl’s causal
graphical models and do-calculus [20] are a leading approach
to modeling causal relations. They are formally similar to
BN, as they are directed acyclic graphs with variables as
nodes, but edges represent causality. A new notion is that of
a hidden confounder, an unobserved variable X that causally
influences two variables Y and Z so that the association
between Y and Z may erroneously be taken for causal influ-
ence. Hidden confounders are unnecessary in BNs since the
association between Y and Z represents their correlation,
with no causality implied. Causal graphical models allow
to consider the effect of interventions or experiments, that
is externally forcing the values of some variables regardless
of the variables that causally affect them, and studying the
results.

The do-calculus is an algebraic framework for reasoning
about such experiments: an expression Pr(Y|do(X)) indi-
cates the probability distribution of a set of variables Y upon
performing an experiment on another set X. In some cases,
the effect of such an experiment can be obtained given a
causal network and some observational distribution only; this
is convenient as some experiments may be impossible, expen-
sive, or unethical to perform. When Pr(Y |do(X)), for a given
causal network, can be rewritten as an expression containing
only observational probabilities, without a do operator, we
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say thatitis identifiable. Huang and Valtorta [ 13] and Shpitser
and Pearl [25] showed that a do-expression is identifiable if
and only if it can be rewritten in this way with a finite number
of applications of the three rules of do-calculus, and Shpitser
and Pearl [25] proposed the ID algorithm which performs this
transformation if at all possible, or else returns fail indicating
non-identifiability.

In this paper, we use a causal analog of DBNs to model
phenomena where a finite set of variables evolves over time,
with some variables causally influencing others at the same
time ¢ but also others at time ¢ 4+ 1. The infinite DAG rep-
resenting these causal relations can be folded, when regular
enough, into a directed graph, with some edges indicating
intra-replica causal effects and other indicating effect on vari-
ables in the next replica. Central to this representation is
of course the intuitive fact that causal relations are directed
toward the future, and never toward the past.

Existing work on causal models usually focuses on two
main areas: the discovery of causal models from data and
causal reasoning given an already known causal model.
Regarding the discovery of causal models from data in
dynamic systems, Iwasaki and Simon [14] and Dash and
Druzdzel [7] propose an algorithm to establish an ordering
of the variables corresponding to the temporal order of prop-
agation of causal effects. Methods for the discovery of cyclic
causal graphs from data have been proposed using indepen-
dent component analysis [15] and using local d-separation
criteria [17]. Existing algorithms for causal discovery from
static data have been extended to the dynamic setting by
Chicharro and Panzeri [2] and Moneta and Spirtes [18].
Dahlhaus and Eichler [3], White et al. [33] and White and
Lu [34] discuss the discovery of causal graphs from time
series by including granger causality concepts into their
causal models.

Dynamic causal systems are often modeled with sets of
differential equations. However, Dash [4] and Dash and
Druzdzel [5,6] show the caveats of the discovery of causal
models based on differential equations which pass through
equilibrium states, and how causal reasoning based on the
models discovered in such way may fail. Voortman et al. [32]
propose an algorithm for the discovery of causal relations
based on differential equations while ensuring those caveats
due to system equilibrium states are taken into account.
Timescale and sampling rate at which we observe a dynamic
system play a crucial role in how well the obtained data may
represent the causal relations in the system. Aalen et al. [1]
discuss the difficulties of representing a dynamic system with
a DAG built from discrete observations, and Gong et al. [12]
argue that under some conditions the discovery of temporal
causal relations is feasible from data sampled at lower rate
than the system dynamics.

Our paper does not address the discovery of dynamic
causal networks from data. Instead, we focus on causal rea-
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soning: given the formal description of a dynamic causal
network and a set of assumptions, our paper proposes algo-
rithms that evaluate the modified trajectory of the system
over time, after an experiment or intervention. We assume
that the observation timescale is sufficiently small compared
to the system dynamics, and that causal models include the
non-equilibrium causal relations and not only those under
equilibrium states. We assume that a stable set of causal
dependencies exist which generate the system evolution
along time. Our proposed algorithms take such models (and
under these assumptions) as an input and predict the system
evolution upon intervention on the system.

Regarding reasoning from a given dynamic causal model,
one existing line of research is based on time series and
granger causality concepts [9—11]. The authors in [24] use
multivariate time series for identification of causal effects
in traffic flow models. The work [16] discusses interven-
tion in dynamic systems in equilibrium, for several types
of time-discreet and time-continuous generating processes
with feedback. Didelez [8] uses local independence graphs to
represent time-continuous dynamic systems and identify the
effect of interventions by re-weighting involved processes.

Existing work on causality does not thoroughly address
causal reasoning in dynamic systems using do-calculus. The
works [9-11] discuss back-door and front-door criteria in
time series but do not extend to the full power of do-calculus
as a complete logic for causal identification. One of the
advantages of do-calculus is its nonparametric approach so
that it leaves the type of functional relation between vari-
ables undefined. Our paper extends the use of do-calculus
to time series, while requiring less restrictions than exist-
ing parametric causal analysis. Parametric approaches may
require to differentiate the intervention impacts depending
on the system state, non-equilibrium or equilibrium, while
our nonparametric approach is generic across system states.
Our paper shows the generic methods and explicit formulas
revealed by the application of do-calculus to the dynamic set-
ting. These methods and formulas simplify the identification
of time-evolving effects and reduce the complexity of causal
identification algorithms.

Required work is to precisely define the notion and seman-
tics of do-calculus and hidden confounders in the dynamic
setting and investigate whether and how existing do-calculus
algorithms for identifiability of causal effects can be applied
to the dynamic case.

As a running example (more for motivation than for its
accurate modeling of reality), let us consider two roads join-
ing the same two cities, where drivers choose every day to
use one or the other road. The average travel delay between
the two cities at any given day depends on the traffic dis-
tribution among the two roads. Drivers choose between a
road or another depending on recent experience, in particu-
lar how congested a road was last time they used it. Figure 1
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Fig. 1 Dynamic causal network. The weather w has an effect on traffic
flows tr1, ¢tr2, which in turn have an impact on the average travel delay
d. Based on the travel delay, car drivers may choose a different road
next time, having a causal effect on the traffic flows

Fig. 2 Compact representation
of the dynamic causal network
in Fig. 1 where +1 indicates an
edge linking a variable in G,
with a variable in G4

indicates these relations: the weather (w) has an effect on
traffic conditions on a given day (¢r1, tr2) which affects the
travel delay on that same day (d). Driver experience influ-
ences the road choice next day, impacting 771 and ¢r2. To
simplify, we assume that drivers have short memory, being
influenced by the conditions on the previous day only. This
infinite network can be folded into a finite representation as
shown in Fig. 2, where +1 indicates an edge linking two con-
secutive replicas of the DAG. Additionally, if one assumes
the weather to be an unobserved variable then it becomes a
hidden confounder as it causally affects two observed vari-
ables, as shown in Fig. 3. We call the hidden confounders
with causal effect over variables in the same time slice sta-
tic hidden confounders, and hidden confounders with causal
effect over variables at different time slices dynamic hidden
confounders. Our models allow for causal identification with
both types of hidden confounders, as will be discussed in
Sect. 4.

This setting enables the resolution of causal effect iden-
tification problems where causal relations are recurrent over
time. These problems are not solvable in the context of clas-
sic DBNs, as causal interventions are not defined in such
models. For this we use causal networks and do-calculus.
However, time dependencies cannot be modeled with static
causal networks. As we want to predict the trajectory of the
system over time after an intervention, we must use adynamic
causal network. Using our example, in order to reduce travel
delay traffic controllers could consider actions such as limit-
ing the number of vehicles admitted to one of the two roads.
We would like to predict the effect of such action on the travel
delay a few days later, e.g., Pr(d;4q|do(tr1;)).

Our contributions in this paper are:

Fig. 3 Dynamic causal
network where 771 and tr2 have
a common unobserved cause, a
hidden confounder. Since both
variables are in the same time
slice, we call it a static hidden
confounder

— We introduce dynamic causal networks (DCN) as an ana-
log of dynamic Bayesian networks for causal reasoning in
domains that evolve over time. We show how to transfer
the machinery of Pearl’s do-calculus [20] to DCN.

— We extend causal identification algorithms [25-27] to the
identifiability of causal effects in DCN settings. Given the
expression P(Y;yq|do(X;)), the algorithms either com-
pute an equivalent do-free formula or conclude that such
a formula does not exist. In the first case, the new for-
mula provides the distribution of variables Y at time 7 4+«
given that a certain experiment was performed on vari-
ables X attime ¢. For clarity, we present first an algorithm
that is sound but not complete (Sect. 4), then give a com-
plete one that is more involved to describe and justify
(Sect. 5).

— Hidden confounder variables are central to the formalism
of do-calculus. We observe a subtle difference between
two types of hidden confounder variables in DCN (which
we call static and dynamic). This distinction is genuinely
new to DCN, as it appears neither in DBN nor in stan-
dard causal graphs, yet the presence or absence of hidden
dynamic confounders has crucial impacts on the post-
intervention evolution of the system over time and on the
computational cost of the algorithms.

— Finally, we extend from standard Causal Graphs to DCN
the results by Pearl and Bareinboim [22] on transporta-
bility, namely on whether causal effects obtained from
experiments in one domain can be transferred to another
domain with similar causal structure. This opens up the
way to studying relational knowledge transfer learning
[19] of causal information in domains with a time com-
ponent.

2 Previous definitions and results

In this section, we review the definitions and basic results
on the three existing notions that are the basis of our work:
DBN, causal networks, and do-calculus. New definitions
introduced in this paper are left for Sect. 3.

All formalisms in this paper model joint probability dis-
tributions over a set of variables. For static models (regular
BN and causal networks), the set of variables is fixed. For
dynamic models (DBN and DCN), there is a finite set of
“metavariables,” meaning variables that evolve over time.
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For a metavariable X and an integer 7, X; is the variable
denoting the value of X at time ¢.

Let V be the set of metavariables for a dynamic model.
We say that a probability distribution P is time-invariant if
P(V,41]V;) is the same for every . Note that this does not
mean that P(V;) = P(V;41) for every ¢, but rather that the
laws governing the evolution of the variable do not change
over time. For example, planets do change their positions
around the Sun, but the Kepler—Newton laws that govern
their movement do not change over time. Even if we per-
formed an intervention (say, pushing the Earth away from
the Sun for a while), these laws would immediately kick in
again when we stopped pushing. The system would not be
time-invariant if, e.g., the gravitational constant changed over
time.

2.1 Dynamic Bayesian networks

Dynamic Bayesian networks (DBN) are graphical mod-
els that generalize Bayesian networks (BN) in order to
model time-evolving phenomena. We rephrase them as
follows.

Definition 1 A DBN is a directed graph D over a set of
nodes that represent time-evolving metavariables. Some of
the arcs in the graph have no label, and others are labeled
“4-1.” It is required that the subgraph G formed by the nodes
and the unlabeled edges must be acyclic, therefore forming a
directed acyclic graph (DAG). Unlabeled arcs denote depen-
dence relations between metavariables within the same time
step, and arcs labeled “4-1” denote dependence between a
variable at one time and another variable at the next time
step.

Definition 2 A DBN with graph G represents an infinite
Bayesian network G as follows. Timestamps ¢ are the integer
numbers; G will thus be a biinfinite graph. For each metavari-
able X in G and each time step ¢, there is a variable X; in G.
The set of variables indexed by the same ¢ is denoted G; and
called “the slice at time ¢.” There is an edge from X; to Y; iff
there is an unlabeled edge from X to Y in G, and there is an
edge from X; to Y4 iff there is an edge labeled “+1” from
X to Y in G. Note that G is acyclic.

The set of metavariables in G is denoted V (G), or simply
V when G is clear from the context. Similarly V;(G) or V;
denote the variables in the 7th slice of G.

In this paper, we will also use transition matrices to model
probability distributions. Rows and columns are indexed
by tuples assigning values to each variable, and the (v, w)
entry of the matrix represents the probability P(V;1; =
w|V; = v). Let T; denote this transition matrix. Then we
have, in matrix notation, P(V;+1) = T; P(V;) and, more in
general, P (Vi) = (T2 T;) P(V;). In the case of time-

1=t

@ Springer

invariant distributions, all 7; matrices are the same matrix 7,
$0 P(Viye) = T*P (V).

2.2 Causality and do-calculus

The notation used in our paper is based on causal models and
do-calculus [20,21].

Definition 3 (Causal model) A causal model over a set of
variables V is atuple M = (V, U, F, P(U)), where U is a
set of random variables that are determined outside the model
(“exogenous” or “unobserved” variables) but that can influ-
ence the rest of the model, V = {V1, V,,...V,} is a set of
n variables that are determined by the model (“endogenous”
or “observed” variables), F is a set of n functions such that
Vie = fk(pa(Vk), Uk, 6r), pa(Vy) are the parents of Vi in
M, O are a set of constant parameters and P(U) is a joint
probability distribution over the variables in U.

In a causal model, the value of each variable V is assigned
by a function f; which is determined by constant parameters
Ok, a subset of V called the “parents” of Vi (pa(Vy)), and a
subset of U (Uy).

A causal model has an associated graphical representa-
tion (also called the “induced graph of the causal model”)
in which each observed variable V. corresponds to a vertex;
there is one edge pointing to Vi from each of its parents,
i.e., from the set of vertex pa(Vk), and there is a doubly-
pointed edge between the vertex influenced by a common
unobserved variable in U (see Fig. 3). In this paper, we call
the unobserved variables in U “hidden confounders.”

Causal graphs encode the causal relations between vari-
ables in a model. The primary purpose of causal graphs is to
help estimate the joint probability of some of the variables in
the model upon controlling some other variables by forcing
them to specific values; this is called an action, experiment,
or intervention. Graphically this is represented by remov-
ing all the incoming edges (which represent the causes) of
the variables in the graph that we control in the experiment.
Mathematically, the do() operator represents this experiment
on the variables. Given a causal graph where X and Y are sets
of variables, the expression P(Y|do(X)) is the joint proba-
bility of ¥ upon doing an experiment on the controlled set
X.

A causal relation represented by P (Y |do(X)) is said to be
identifiable if it can be uniquely computed from an observed,
non-interventional, distribution of the variables in the model.
In many real-world scenarios it is impossible, impractical,
unethical or too expensive to perform an experiment, thus
the interest in evaluating its effects without actually having
to perform the experiment.

The three rules of do-calculus [20] allow us to transform
expressions with do() operators into other equivalent expres-
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sions, based on the causal relations present in the causal
graph.
For any disjoint sets of variables X, Y, Z and W:

1. P(Y|Z,W,do(X)) = P(Y|W,do(X))
if (Y L Z|X, W)gy

2. P(Y|W,do(X),do(Z)) = P(Y|Z, W,do(X))
if (Y L ZIX, WGy,

3. P(Y|W,do(X),do(Z2)) = P(Y|W,do(X))
if (Y L Z|X, W)GW

G+ is the graph G where all edges incoming to X are
removed. Gz is the graph G where all edges outgoing from Z
are removed. Z(W) is the set of Z-nodes that are not ancestors
of any W-nodes in G.

Do-calculus was proven to be complete [13,25] in the
sense that if an expression cannot be converted into a do-free
one by iterative application of the three do-calculus rules,
then it is not identifiable.

2.3 The ID algorithm

The ID algorithm [25], and earlier versions by Tian and
Pearl [29] and Tian [28] implement an iterative applica-
tion of do-calculus rules to transform a causal expression
P(Y|do(X)) into an equivalent expression without any do()
terms in semi-Markovian causal graphs (with hidden con-
founders). This enables the identification of interventional
distributions from non-interventional data in such graphs.

The ID algorithm is sound and complete [25] in the sense
that if a do-free equivalent expression exists it will be found
by the algorithm, and if it does not exist the algorithm will
exit and provide an error.

The algorithm specifications are as follows. Inputs: a
causal graph G, variable sets X and Y, and a probability
distribution P over the observed variables in G; Output: an
expression for P(Y|do(X)) without any do() terms, or fail.

Remark In our algorithms of Sects. 4 and 5, we may
invoke the ID algorithm with a slightly more complex input:
P(Y|Z,do(X)) (note the “extra” Z to the right of the con-
ditioning bar). In this case, we can solve the identification
problem for the more complex expression with two calls to
the ID algorithm using the following identity (definition of
conditional probability):

P(Y|Z,do(X)) = w
P(Z|do(X))
Therefore, the expression P(Y|Z, do(X)) is identifiable
ifand only if both P(Y, Z|do(X)) and P(Z|do(X)) are [25].
Another algorithm for the identification of causal effects
is given in [26].

The algorithms we propose in this paper show how to
apply existing causal identification algorithms to the dynamic
setting. In this paper, we will refer as “ID algorithm” any
existing (non-dynamic) causal identification algorithm.

3 Dynamic causal networks and do-calculus

In this section, we introduce the main definitions of this paper
and state several lemmas based on the application of do-
calculus rules to DCNs.

In the Definition 3 of causal model, the functions fj are left
unspecified and can take any suitable form that best describes
the causal dependencies between variables in the model. In
natural phenomenon, some variables may be time indepen-
dent while others may evolve over time. However, rarely does
Pearl specifically treat the case of dynamic variables.

The definition of dynamic causal network is an extension
of Pearl’s causal model in Definition 3, by specifying that the
variables are sampled over time, as in [30].

Definition 4 (Dynamic causal network) A dynamic causal
network D is a causal model in which the set F of functions is
such that Vi ; = fi(pa(Vk.1), Uk,1—a, Ok); where Vi ; is the
variable associated with the time sampling ¢ of the observed
process Vi; Uk.r—q 1S the variable associated with the time
sampling ¢ — o of the unobserved process Uy; t and « are
discreet values of time.

Note that pa(Vj ;) may include variables in any time sam-
pling previous to ¢ up to and including ¢, depending on the
delays of the direct causal dependencies between processes
in comparison with the sampling rate. Uy ;—, may be gen-
erated by a noise process or by a hidden confounder. In the
case of noise, we assume that all noise processes Uy, are inde-
pendent of each other and that their influence to the observed
variables happens without delay, so that « = 0. In the case
of hidden confounders, we assume o > ( as causes precede
their effects.

To represent hidden confounders in DCN, we extend to
the dynamic context the framework developed in [23] on
causal model equivalence and latent structure projections.
Let’s consider the projection algorithm [31], which takes a
causal model with unobserved variables and finds an equiv-
alent model (with the same set of causal dependencies),
called a “dependency-equivalent projection,” but with no
links between unobserved variables and where every unob-
served variable is a parent of exactly two observed variables.

The projection algorithm in DCN works as follows. For
each pair (V,,,, V,,) of observed processes, if there is a directed
path from V,, ; to V,, ;4 through unobserved processes then
we assign a directed edge from V,, ; to V, ;1o; however, if
there is a divergent path between them through unobserved
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processes then we assign a bidirected edge, representing a
hidden confounder.

In this paper, we represent all DCN by their dependency-
equivalent projection. Also we assume the sampling rate to be
adjusted to the dynamics of the observed processes. However,
both the directed edges and the bidirected edges represent-
ing hidden confounders may be crossing several time steps
depending on the delay of the causal dependencies in com-
parison with the sampling rate. We now introduce the concept
of static and dynamic hidden confounder.

Definition 5 (Static hidden confounder) Let D be a DCN.
Let B be the maximal number of time steps crossed by any
of the directed edges in D. Let o be the maximal number of
time steps crossed by a bidirected edge representing a hidden
confounder. If « < g then the hidden confounder is called
“static.”

Definition 6 (Dynamic hidden confounder) Let D,  and o
be as in Definition 5. If « > S then the hidden confounder
is called “dynamic.” More specifically, if 8 < o < 28 we
call it “first-order” dynamic hidden confounder; if « > 28
we call it “higher-order” dynamic hidden confounder.

In this paper, we consider three case scenarios in regards
to DCN and their time invariance properties. If a DCN D
contains only static hidden confounders, we can construct
a first-order Markov process in discrete time, by taking B
(per Definition 5) consecutive time samples of the observed
processes Vi in D. This does not mean the DCN generat-
ing functions fj in Definition 4 are time-invariant, but that a
first-order Markov chain can be built over the observed vari-
ables when marginalizing the static confounders over 8 time
samples.

In a second scenario, we consider DCN with first-order
dynamic hidden confounders. We can still construct a first-
order Markov process in discrete time, by taking 8 consecu-
tive time samples. However, we will see in later sections how
the effect of interventions on this type of DCN has a different
impact than on DCN with static hidden confounders.

Finally, we consider DCN with higher-order dynamic hid-
den confounders, in which case we may construct a first-order
Markov process in discrete time by taking a multiple of B
consecutive time samples.

As we will see in later sections, the difference between
these three types of DCN is crucial in the context of identifi-
ability. Dynamic hidden confounders cause a time-invariant
transition matrix to become dynamic after an intervention,
e.g., the post-intervention transition matrix will change over
time. However, if we perform an intervention on a DCN
with static hidden confounders, the network will return to
its previous time-invariant behavior after a transient period.
These differences have a great impact on the complexity of
the causal identification algorithms that we present.

@ Springer

Considering that causes precede their effects, the associ-
ated graphical representation of a DCN is a DAG. All DCN
can be represented as a biinfinite DAG with vertices Vi ;;
edges from pa(Vy ;) to Vi ,; and hidden confounders (bi-
directed edges). DCN with static hidden confounders and
DCN with first-order dynamic hidden confounders can be
compactly represented as B time samples (a multiple of S
time samples for higher-order dynamic hidden confounders)
of the observed processes Vi ;; their corresponding edges
and hidden confounders; and some of the directed and bi-
directed edges marked with a “+1” label representing the
dependencies with the next time slice of the DCN.

Definition 7 (Dynamic causal network identification) Let D
beaDCN, and ¢, 4+« be two time slices of D. Let X be asub-
set of V; and Y be a subset of V4. The DCN identification
problem consists of computing the probability distribution
P(Y|do(X)) from the observed probability distributions in
D, i.e., computing an expression for the distribution contain-
ing no do() operators.

In this paper, we always assume that X and Y are dis-
joint and we only consider the case in which all intervened
variables X are in the same time sample. It is not difficult to
extend our algorithms to the general case.

The following lemma is based on the application of do-
calculus to DCN. Intuitively, future actions have no impact
on the past.

Lemma 1 (Future actions) Let D be a DCN. Take any sets
X CViandY C Vi_y, with « > 0. Then for any set Z the
following equalities hold:

1. P(Y|do(X),do(Z)) = P(Y|do(Z))

2. P(Y|do(X)) = P(Y)

3. P(Y|Z,do(X)) = P(Y|Z) whenever Z C V,_g with
B > 0.

Proof The first equality derives from rule 3 and the proof
in [25] that interventions on variables which are not ancestors
of Y in D have no effect on Y. The second is the special case
Z = (). We can transform the third expression using the
equivalence

P(Y|Z,do(X)) = P(Y, Zldo(X))/P(Z|do(X));

since Y and Z precede X in D, by rule 3 P(Y, Z|do(X)) =
P(Y,Z) and P(Z|do(X)) = P(Z), and then the above
equals P(Y, Z)/P(Z) = P(Y|Z). O

In words, traffic control mechanisms applied next week
have no causal effect on the traffic flow this week.

The following lemma limits the size of the graph to be
used for the identification of DCNGs.
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Lemma 2 Let D be a DCN with biinfinite graph G. Lett,, ty
be two time points in G. Let Gy be subgraph ofé consisting
of all time slices in between (and including) G, and G, Let
Gx be graph consisting of all time slices in between (and
including) G, and the left-most time slice connected to G,
by a path of dynamic hidden confounders. Let G4y be the
graph consisting of all time slices that are in Gy or Gyy.
Let G 45— be the graph consisting of the time slice preceding
Ggy. Let Gig be the graph consisting of all time slices in
Gax— and Ggy. If P(Y|do(X)) is identifiable in G then it is
identifiable in Gig and the identification provides the same
result on both graphs.

Proof Let Gpayt be the graph consisting of all time slices
preceding Giq, and Gyre be the graph consisting of all time
slices succeeding Giq in G. By application of do-calculus rule
3, non-ancestors of Y can be ignored from G for the iden-
tification of P(Y|do(X)) [25], so Gfuwre can be discarded.
We will now show that identifying P (Y |do(X)) in the graph
including all time slices of Gpast and Giq is equal to identi-
fying P(Y|do(X)) in Giq.

By C-component factorization [25,27], the set V of vari-
ables in a causal graph G can be partitioned into disjoint
groups called C-components by assigning two variables to
the same C-component if and only if they are connected by
a path consisting entirely of hidden confounder edges, and

P(Yldo(X)) = > []PSildo(V\S))

VA\(YUX) i

where S; are the C-components of G 4,(y)\X expressed as
C(GA,,(Y)\X) = {S1,..., S} and GAn(Y) is the subgraph
of G including only the variables that are ancestors of Y.
If and only if every C-component factor P (S;|do(V\S;)) is
identifiable then P (Y |do(X)) is identifiable.

C-component factorization can be applied to DCN. Let
VGpusis VGa, and Vg, bethe setof variables in Gpast, Gax—
and G gy, respectively. Then (Vg U Vg, )N(YUX) =0
and it follows that V\(YUX) = Vg, UVg,, U(Vg, \(YU
X)).

If S; € C(G an(s;)) the C-component factor P (S;|do(V'\
Si)) is computed as [25]:

PSildoVAS) = [ Py
{Jlvjesi}

Therefore there isa P(v; |vj(,j _1)) factor for each variable
v; in the C-component, where vfrj -b is the set of all vari-
ables preceding v; in some topological ordering 7 in G. stop
Let vj be any variable v; € Vg, U Vg,, . There are no
hidden confounder edge paths connecting v; to X, and so

vj € §; € C(Gancs;))- Therefore the C-component factors

QVGpaStUVGdr— of VG Y VG, can be computed as (chain
rule of probability):

H P;lvy~)

{] | vje VGpast U Vdef }

= P(VGpasl U Vde—)

QVGpastUVdef =

We will now look into the C-component factors of Vg, .
Asthe DCNiis a first-order Markov process, the C-component
factors of Vi, can be computed as [25]:

Ove, =12 1 P (nd™)

i Si\Y {jlvjeSi}
IS TT P (o0, uve,)
i Si\Y {jlvjeSi}

So these factors have no dependency on Vg, and
therefore, P(Y|do(X)) can be marginalized over VGPast and
simplified as:

P(Yldo(X) = D []PSildo(V\Si)

VA\(YUX) i

- >

V6 past WVG 4, - WV 4, \(YUX)

= > P(VGy, ) Qv

Ve U(VG,, \(YUX))

Q VGpast U Vde— Q Vde

We can now replace Vg, U Vg,, by Vi, and define S,
as the C-component factors of Vg, which leads to

> TP (Siidov\s))

Vo, \(YUX) i

P(Y|do(X)) =

Therefore the identification of P(Y|do(X)) can be com-
puted in the limited graph Giq. Note that if a DCN contains no
dynamic hidden confounders, then Giq consists of G, and
the time slice preceding it. In a DCN with dynamic hidden
confounders, Gjg may require additional time slices into the
past, depending on the reach of hidden dynamic confounder
paths. Note that Gig may include infinite time slices to the
past, if hidden dynamic confounders connect with each other
cyclically in successive time slices. However, in this paper
we will consider only finite dynamic confounding. O

This result is crucial to reduce the complexity of identi-
fication algorithms in dynamic settings. In order to describe
the evolution of a dynamic system over time, after an inter-
vention, we can run a causal identification algorithm over
a limited number of time slices of the DCN, instead of the
entire DCN.
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4 Identifiability in dynamic causal networks

In this section, we analyze the identifiability of causal effects
in the DCN setting. We first study DCNs with static hid-
den confounders and propose a method for identification of
causal effects in DCNs using transition matrices. Then we
extend the analysis and identification method to DCNs with
dynamic hidden confounders. As discussed in Sect. 3, both
the DCNss with static hidden confounders and with dynamic
hidden confounders can be represented as a Markov chain.
For graphical and notational simplicity, we represent these
DCN graphically as recurrent time slices as opposed to the
shorter time samples, on the basis that one time slice contains
as many time samples as the maximal delay of any directed
edge among the processes. Also for notational simplicity, we
assume the transition matrix from one time slice to the next to
be time-invariant; however, removing this restriction would
not make any of the lemmas, theorems or algorithms invalid,
as they are the result of graphical nonparametric reasoning.

Consider a DCN under the above assumptions, and let T’
be its time-invariant transition matrix from any time slice
Vi to Vi+1. We assume that there is some time 7y such that
the distribution P (Vj,) is known. Fix now ¢, > fy and a set
X C V; . We will now see how performing an intervention
on X affects the distributions in D.

We begin by stating a series of lemmas that apply to DCNs
in general.

Lemma 3 Lett besuchthatty <t < ty, withX C V; . Then
P(Vi|do(X)) = T'~"0 P(Vy). Namely, transition probabili-
ties are not affected by an intervention in the future.

Proof By Lemma 1, (2), P(V;|do(X)) = P(V;) for all such
t. By definition of T, this equals 7 P(V;_1). Then induct on
t with P(V,) = T°P(V},) as base. o

Lemma 4 Assume that an expression P (V44| V:, do(X)) is
identifiable for some o > 0. Let A be the matrix whose entries
Ajj correspond to the probabilities P(Vi1q = v;|V, =
Vi, do(X)). Then P(Viyqldo(X)) = A P(V;|do(X)).

Proof Case by case evaluation of A’s entries. O
4.1 DCNs with static hidden confounders

DCNs with static hidden confounders contain hidden con-
founders that impact sets of variables within one time slice
only, and contain no hidden confounders between variables
at different time slices (see Fig. 3).

The following three lemmas are based on the applica-
tion of do-calculus to DCNs with static hidden confounders.
Intuitively, conditioning on the variables that cause time-
dependent effects d-separates entire parts (future from past)
of the DCN (Lemmas 5, 6, 7).
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Lemma 5 (Past observations and actions) Let D be a DCN
with static hidden confounders. Take any set X. Let C C V;
be the set of variables in G, that are direct causes of variables
inGiyy.LetY C Viysqand Z C V;_g, witha > Oand B > 0
(positive natural numbers). The following distributions are
identical:

1. P(Y|do(X), Z, C)
2. P(Y|do(X),do(Z), C)
3. P(Y|do(X), C)

Proof By the graphical structure of a DCN with static hidden
confounders, conditioning on C d-separates ¥ from Z. The
three rules of do-calculus apply, and (1) equals (3) by rule 1,
(1) equals (2) by rule 2, and also (2) equals (3) by rule 3. O

In our example, we want to predict the traffic flow Y in two
days caused by traffic control mechanisms applied tomorrow
X, and conditioned on the traffic delay today C. Any traffic
controls Z applied before today are irrelevant, because their
impact is already accounted for in C.

Lemma 6 (Future observations) Let D, X and C be as in
Lemma 5. Let Y C Vi_q and Z C Viig, with a > 0 and
B > 0, then:

P(Y|do(X), Z,C) = P(Y|do(X), C)

Proof By the graphical structure of a DCN with static hidden
confounders, conditioning on C d-separates ¥ from Z and
the expression is valid by rule 1 of do-calculus. O

In our example, observing the travel delay today makes
observing the future traffic flow irrelevant to evaluate yester-
day’s traffic flow.

Lemma 7 Ift > t, then P(Vi+1|do(X)) = T P(Vi|do(X)).
Namely, transition probabilities are not affected by interven-
tion more than one time unit in the past.

Proof P(Vi+ildo(X)) = T' P(V;|do(X)) where the ele-
ments of T’ are P(V;41|V;,do(X)). As V; includes all
variables in G, that are direct causes of variables in G4 1,
conditioning on V; d-separates X from V,; ;. By Lemma 5
we exchange the action do(X) by the observation X and so
P(Vit11Vi, do(X)) = P(Vi41l Vi, X).

Moreover V; d-separates X from V;1, so they are statis-
tically independent given V;. Therefore

P(Vig1lVi, do(X)) = P(Vig1 Vi, X) = P(Vi1I Vi)

which are the elements of matrix 7 as required. O

Theorem 1 Let D be a DCN with static hidden confounders,
and transition matrix T. Let X C V; and Y C V,, for two
time points ty < ty.
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If the expression P (Vi 41|Vi,—1,do(X)) is identifiable
and its values represented in a transition matrix A, then
P(Y|do(X)) is identifiable and

P(Y'd()(X)) — Z Tl‘)-—(l‘x'f‘l)ATtx—l—toP(‘/IO).
V/y\Y

Proof Applying Lemma 3, we obtain that
P(Vi,—1ldo(X)) = T" "' P (V).

We assumed that P(V; 11|V;, —1, do(X)) is identifiable, and
therefore Lemma 4 guarantees that

P(V,,111do(X)) = A P(V; _1|do(X)) = AT""'"0P(V).

Finally, P(V, |do(X)) = TO=GFD PV, 4i]ldo(X)) by
repeatedly applying Lemma 7. P(Y|do(X)) is obtained by
marginalizing variables in V; \Y in the resulting expression
Th=GAD AT py, ). O

As a consequence of Theorem 1, causal identification
of D reduces to the problem of identifying the expression
P (Vi 411Vt —1,do(X)). The ID algorithm can be used to
check whether this expression is identifiable and, if it is, com-
pute its joint probability from observed data.

Note that Theorem 1 holds without the assumption of tran-
sition matrix time- invariance by replacing powers of 7" with
products of matrices T;.

4.1.1 DCN-ID algorithm for DCNs with static hidden
confounders

The DCN-ID algorithm for DCNs with static hidden con-
founders is given in Fig. 4. Its soundness is immediate from
Theorem 1, the soundness of the ID algorithm [25], and
Lemma 2.

Theorem 2 (Soundness) Whenever DCN-ID returns a dis-
tribution for P(Y|do(X)), it is correct. O

Observe that line 2 of the algorithm calls ID with a graph
of size 4|G|. By the remark of Sect. 2.3, this means two
calls but notice that in this case we can spare the call for
the “denominator” P (V;, _1|do(X)) because Lemma 1 guar-
antees P (Vi —1ldo(X)) = P(V; —1). Computing transition
matrix A on line 3 has complexity O ((4k)®*2), where k is
the number of variables in one time slice and b the number
of bits encoding each variable. The formula on line 4 is the
multiplication of P(Vy,) by n = (¢, — o) matrices, which has
complexity O(n - b?). To solve the same problem with the
ID algorithm would require running it on the entire graph of
size n|G| and evaluating the resulting joint probability with
complexity O ((n-k)®+2) compared to O ((4k)?*2 +n-b?)
with DCN-ID.

Function DCN-ID(Y',ty, X ,to, G,C,T,P(V4,))
INPUT:

— DCN defined by a causal graph G on a set of variables V' and a
set C C V x V describing causal relations from V; to V;41 for
every t

— transition matrix 7" for G derived from observational data

- aset Y included in V

— aset X included in V,{T

- distribution P(V%,) at the initial state,

OUTPUT: The distribution P (Y |do(X)), or else FAIL

1. let G’ be the acyclic graph formed by joining G, —2, G¢, -1,
Gy, ,and G¢ 11 by the causal relations given by C;

2. run  the standard ID  algorithm  for  expression
P(Vi,+1|Ve,—1,do(X)) on G'; if it returns FAIL, return
FAIL;

3. else, use the resulting distribution to compute the transition matrix
A, where Aij = P(V}Jﬁ.l = Uin/tz—l = Uj,dO(X));

4. return ZVW v Tty Gatl) ATta=1=% P(V;,);

Fig. 4 DCN-ID algorithm for DCNs with static hidden confounders

If the problem we want to solve is evaluating the trajectory
of the system over time

(P(Vies1)s P(Vig12), P(Vip43), -« P(Viein))

after an intervention at time slice ¢,, with ID we would need
to run ID n times and evaluate the n outputs with overall com-
plexity O ((k)CT2 4+ 2k) b+ 4 3k) O+ 4. . .4 (n-k)P+2)),
Doing the same with DCN-ID requires running ID one time to
identify P(V; 1), evaluating the output and applying suc-
cessive transition matrix multiplications to obtain the joint
probability of the time slices thereafter, with resulting com-
plexity O ((4k)b+2 4 n - b?).

4.2 DCNs with dynamic hidden confounders

We now discuss the case of DCNs with dynamic hidden
confounders, that is, with hidden confounders that influence
variables in consecutive time slices.

The presence of dynamic hidden confounders d-connects
time slices, and we will see in the following lemmas how this
may be an obstacle for the identifiability of the DCN.

If dynamic hidden confounders are present, Lemma 7 does
no longer hold, since d-separation is no longer guaranteed. As
aconsequence, we cannot guarantee the DCN will recover its
“natural” (non-interventional) transition probabilities from
one cycle to the next after the intervention is performed.

Our statement of the identifiability theorem for DCNs with
dynamic hidden confounders is weaker and includes in its
assumptions those conditions that can no longer be guaran-
teed.

Theorem 3 Let D be a DCN with dynamic hidden con-
founders. Let T be its transition matrix under no interven-
tions. We further assume that:
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1. P(Vi,41|Vi,—1, do(X)) is identifiable and its values rep-
resented in a transition matrix A

2. Forallt > ty+1, P(V;|Vi_1,do(X)) is identifiable and
its values represented in a transition matrix M;

Then P(Y|do(X)) is identifiable and computed by

ty

H M, | ATH"10 P (V).
t=ty+2

P(Y|do(X)) = D

Vi, \Y

Proof Similar to the proof of Theorem 1. By Lemma 3, we
can compute the distribution up to time ¢, — 1 as

P(Vi,—1ldo(X)) = T*"'"0 P (V).

Using the first assumption in the statement of the theorem,
by Lemma 4 we obtain

P(Vi 11ldo(X)) = AT""170P (V).

Then we compute the final P(V;,|do(X)) using the matri-
ces M, from the statement of the theorem that allows us to
compute probabilities for subsequent time slices. Namely,

PV, 12ldo(X)) = My 42 AT 710 P(V,),
PV 43ldo(X)) = My, 43 My, 12 AT*7170P(V,),

and so on until we find

Iy
P(Vy,|do(X)) = H M, | AT p(y,).
t=ty+2

Finally, the do-free expression of P(Y|do(X)) is obtained
by marginalization over variables of V;, notin Y. O

Again, note that Theorem 3 holds without the assumption
of transition matrix time invariance by replacing powers of
T with products of matrices 7;.

4.2.1 DCN-ID algorithm for DCNs with dynamic hidden
confounders

The DCN-ID algorithm for DCNs with dynamic hidden con-
founders is given in Fig. 5.

Its soundness is immediate from Theorem 3, the soundness
of the ID algorithm [25], and Lemma 2.

Theorem 4 (Soundness) Whenever DCN-ID returns a dis-
tribution for P(Y|do(X)), it is correct. m]

Notice that this algorithm is more expensive than the
DCN-ID algorithm for DCNs with static hidden confounders.
In particular, it requires (¢, — t,) calls to the ID algorithm
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Function DCN-ID(Y ¢, X to, G.C.C"T,P(V4,))
INPUT:

— DCN defined by a causal graph G on a set of variables V" and a set
C C V x V describing causal relations from V; to V41 for every
t,and a set C’ C V x V describing hidden confounder relations
from V4 to Vz41 forevery ¢

— transition matrix 7" for G derived from observational data

— aset Y included in Vty

— aset X included in V¢

— distribution P(V%,) at the initial state,

OUTPUT: The distribution P(Y |do(X)), or else FAIL

1. let G’ be the graph consisting of all time slices in between (and
including) G'¢, +1 and the time slice preceding the left-most time
slice connected to X by a hidden confounder path or, if there is no
hidden confounder path to X, Gt —2;

2. run  the standard ID  algorithm  for  expression
P(Vi,+1|Vi,—1,do(X)) on G’; if it returns FAIL, return
FAIL;

3. else, use the resulting distribution to compute the transition matrix
A, where Aq;j = P(‘/t1+1 = Uil‘/tz—l = ’Uj,dO(X));

4. foreacht fromt, + 2 up to ty:

(a) let G”" be the graph consisting of all time slices in between
(and including) G+ and the time slice preceding the left-most
time slice connected to X by a hidden confounder path or, if
there is no hidden confounder path to X, G, —1;

(b) run the standard ID algorithm on G’/ for the expression
P(Vi|Vi—1,do(X)); if it returns FAIL, return FAIL;

(c) else, use the resulting distribution to compute the transi-
tion matrix My, where (My);; = P(V: = v;|Vio1 =

vj, do(X));
ty
S.return 3oy oy | [T Me| AT =170 P(Vy,);
v t=t,+2

Fig. 5 DCN-ID algorithm for DCNs with dynamic hidden con-
founders

with increasingly larger chunks of the DCN. To identify a
single future effect P(Y|do(X)), it may be simpler to invoke
Lemma 2 and do a unique call to the ID algorithm for the
expression P(Y|do(X)) restricted to the causal graph Giq.
However, to predict the trajectory of the system over time
after an intervention, the DCN-ID algorithm for dynamic
hidden confounders directly identifies the post-intervention
transition matrix and its evolution. A system characterized
by a time-invariant transition matrix before the intervention
may be characterized by a time-dependent transition matrix,
given by the DCN-ID algorithm, after the intervention. This
dynamic view offers opportunities for the analysis of the time
evolution of the system, and conditions for convergence to a
steady state.

To give an intuitive example of a DCN with dynamic
hidden confounders, let’s consider three roads in which the
traffic conditions are linked by hidden confounders from
trl to tr2 the following day, and from #r2 to tr3 the day
after. After applying control mechanisms to 7r1, the traffic
transition matrix to the next day is different than the transi-
tion matrix several days later, because it is not possible to
d-separate the future from the controlling action by just con-
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ditioning on a given day. As a consequence, the identification
algorithm must calculate every successive transition matrix
in the future.

5 Complete DCN identifiability

In this section, we show that the identification algorithms
as formulated in previous sections are not complete, and we
develop complete algorithms for complete identification of
DCNs. To prove completeness, we use previous results [25].
Itis shown there that the absence of a structure called “hedge”
in the graph is a sufficient and necessary condition for iden-
tifiability. We first define some graphical structures that lead
to the definition of hedge, in the context of DCNSs.

Definition 8 (C-component) Let D be a DCN. Any maxi-
mal subset of variables of D connected by bidirected edges
(representing hidden confounders) is called a C-component.

Definition 9 (C-forest) Let D be a DCN and C one of its C-
components. If all variables in C have at most one child, then
C is called a C-forest. The set R of variables in C that have
no descendants is called the C-forest root, and the C-forest
is called R-rooted.

Definition 10 (Hedge) Let X and Y be sets of variables in
D. Let F and F’ be two R-rooted C-forests such that F’' C
F.FNX#£0, FFNX =0, RC An(Y)p,. Then F and
F’ form a Hedge for P (Y |do(X)) in D.

Notice that An(Y) Dy refers to those variables that are
ancestors of Y in the causal network D where incoming edges
to X have been removed. We may drop the subscript as in
An(Y) in which case we are referring to the ancestors of Y
in the unmodified network D (in which case, the network
we refer to should be clear from the context). Moreover we
overload the definition of the ancestor function and we use
An(Z, V) to refer to the ancestors of the union of sets Z and
V., thatis, An(Z, V)= An(Z U V).

The presence of a hedge prevents the identifiability of
causal graphs [25]. Also any non-identifiable graph neces-
sarily contains a hedge. These results applied to DCNs lead
to the following lemma.

Lemma 8 (DCN complete identification) Let D be a DCN
with hidden confounders. Let X and Y be sets of variables
in D. P(Y|do(X)) is identifiable iif there is no hedge in D
for P(Y|do(X)).

We can show that the algorithms presented in the previous
section, in some cases, introduce hedges in the sub-networks
they analyze, even if no hedges existed in the original
expanded network.

Vi Vi Vi 7V,

Ix+1

Fig. 6 Identifiable dynamic causal network which the DCN-ID algo-
rithm fails to identify. F and F’ are R-rooted C-forests, but since R
is not an ancestor of Y there is no hedge for P(Y|do(X)). However R
is an ancestor of V; ;| and DCN-ID fails when finding the hedge for
P(V,411Vi, 1. do(X))

Lemma 9 The DCN-ID algorithms for DCNs with static hid-
den confounders (Sect. 4.1) and dynamic hidden confounders
(Sect. 4.2) are not complete.

Proof Let D be an DCN. Let X be such that D contains two
R-rooted C-forests Fand F', F/ C F, FNX #0, F/NX =
0. Let Y be such that R ¢ An(Y)p. The condition for ¥
implies that D does not contain a hedge and is therefore
identifiable by Lemma 8. Let the set of variables at time slice
tx+1of D, V; 41, besuchthat R C An(Vi,+1)p; . By Det-
inition 10, D contains a hedge for P(V; 4+1|V; -1, do(X)).
The identification of P (Y |do(X)) requires DCN-ID to iden-
tify P (Vi +1|Vi, -1, do(X)) which fails. O

The proof of Lemma 9 provides the framework to build a
complete algorithm for identification of DCNGs.

Figure 6 shows an identifiable DCN that DCN-ID fails to
identify.

5.1 Complete DCN identification algorithm with static
hidden confounders

The DCN-ID algorithm can be modified so that no hedges
are introduced if none existed in the original network. This
is done at the cost of more complicated notation, because the
fragments of network to be analyzed do no longer correspond
to natural time slices. More delicate surgery is needed.

Lemma 10 Ler D be a DCN with static hidden confounders.
LetX €V, andY C V,y for two time slices ty < ty. If there
is a hedge H for P(Y|do(X)) in D then H C V; .

Proof By definition of hedge, F and F’ are connected by
hidden confounders to X. As D has only static hidden con-
founders F, F’ and X must be within . O

Lemma 11 Ler D be a DCN with static hidden confounders.
Let X € V; and Y < V,), for two time slices t, < ty.
Then P(Y|do(X)) is identifiable if and only if the expression
P(Vi.41 N An(Y)| Vi, —1, do(X)) is identifiable.

@ Springer



142

Int J Data Sci Anal (2017) 3:131-147

Proof (if) By Lemma 8, if

P(Vi1 NAR(Y)| Vi —1, do(X))
_ P10 AR(Y), Vi —1ldo(X))
P(Vi,—1)

is identifiable then there is no hedge for this expression in D.
By Lemma 10 if D has static hidden confounders, a hedge
must be within time slice ¢,. If time slice ¢, does not contain
two R-rooted C-forests F and F' suchthat F/ C F, FNX #
0, F' N X = 0, then there is no hedge for any set Y so there
is no hedge for the expression P(Y|do(X)) which makes
it identifiable. Now let’s assume time slice #, contains two
R-rooted C-forests F and F’ such that F' C F, FN X #
0, FNX =0,then R ¢ An(V; 11 N An(Y), Vie—1)Dg- As
R is in time slice t,, this implies R ¢ An(Y)DX and so there
is no hedge for the expression P(Y|do(X)) which makes it
identifiable.

(only if) By Lemma 8, if P(Y|do(X)) is identifiable then
there is no hedge for P(Y|do(X)) in D. By Lemma 10 if D
has static hidden confounders, a hedge must be within time
slice z,. If time slice t, does not contain two R-rooted C-
forests F and F' suchthat F' C F, FNX #0, FFNX =0,
then there is no hedge for any set Y so there is no hedge for
the expression

P (Vi1 N An(Y)| Vi, -1, do(X))
_ PVi1 N AR(Y), Vi, —1ldo(X))
P(Vi,—1)

which makes it identifiable. Now let’s assume time slice ¢,
contains two R-rooted C-forests F and F’ such that F’ C
F,FNX #0, FFNX =0,then R ¢ An(Y)p; (if R C
An(Y)p; D would contain a hedge by definition). As R is
in time slice t,, R ¢ An(Y)DX implies R ¢ An(V; 41 N
An(Y))D),( and R ¢ An(Vi,41 N An(Y), Vtx—l)Dg( so there
isno hedge for P (V; +1NAn(Y)|V;,—1, do(X)) which makes
this expression identifiable. O

Lemma 12 Assume that an expression P(V/,,|V;, do(X))
is identifiable for some o > 0 and V/,, € V;14. Let A be
the matrix whose entries A;j correspond to the probabilities
P(V/ o = vjlVi = vi,do(X)). Then P(V/ ,ldo(X)) =
A P(V;|do(X)).

Proof Case by case evaluation of A’s entries. O

Lemma 13 Let D be a DCN with static hidden confounders.
Let X C Vi andY C Vi, for two time slices t, < ty. Then

P(YIdo(X)) = [[1iL;, 22 M:| P(Vii1 0 An(Y)ldo(X))

where M, is the matrix whose entries correspond to the prob-
abilities P(V; N An(Y) = v;|Vi_1 N An(Y) = v;).
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Proof For the identification of P(Y|do(X)), we can restrict
our attention to the subset of variables in D that are ancestors
of Y. Then we repeatedly apply Lemma 7 on this subset from
t =1ty +2tot =ty until we find P(V,y NAn(Y)|do(X)) =
P(Y|do(X)). O

Theorem 5 Let D be a DCN with static hidden confounders
and transition matrix T. Let X C V; and ¥ C Vly
for two time slices t, < ty. If P(Y|do(X)) is identifi-
ty

I1 Mt:| ATH=I=0p (V)
t=t,+2

where A is the matrix whose entries A;; correspond to
PV 1N An(Y)|Vi, 1, do(X)) and M; is the matrix whose
entries correspond to the probabilities P(V; N An(Y) =
vilVici N An(Y) = v;).

able then P(Y|do(X)) = |:

Proof Applying Lemma 3, we obtain that
P(Vy,_1ldo(X)) = T""""0P(V;).

By Lemma 11 P(V; 41 N An(Y)|V;,—1,do(X)) is identifi-
able. Lemma 12 guarantees that P (V; +1NAn(Y)|do(X)) =
APV, _1ldo(X)) = ATx"'=00P(V,). Then we apply
Lemma 13 and obtain the resulting expression

Iy

[T M| AT P(vy).
t=ty+2

P(Y|do(X)) =

O

The cDCN-ID algorithm for identification of DCNs with
static hidden confounders is given in Fig. 7.

Theorem 6 (Soundness and completeness) The cDCN-ID
algorithm for DCNs with static hidden confounders is sound
and complete.

Proof The completeness derives from Lemma 11 and the
soundness from Theorem 5. O

5.2 Complete DCN identification algorithm with
dynamic hidden confounders

We now discuss the complete identification of DCNs with
dynamic hidden confounders. First we introduce the concept
of dynamic time span from which we derive two lemmas.

Definition 11 (Dynamic time span) Let D be a DCN with
dynamic hidden confounders and X < V; . Let 1, be the
maximal time slice d-connected by confounders to X; t,, —t,
is called the dynamic time span of X in D.

Note that the dynamic time span of X in D can be in some
cases infinite, the simplest case being when X is connected
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Function cDCN-ID(Y ., X ,t5, G,C,T,P(V4,))
INPUT:

— DCN defined by a causal graph G on a set of variables V" and a
set C C V' x V describing causal relations from V to V;41 for
every t

- transition matrix 7" representing the probabilities P(V;41|V4) de-
rived from observational data

— aset Y included in Vty

— aset X included in V¢

— distribution P(V4,) at the initial state,

OUTPUT: The distribution P (Y |do(X)) if it is identifiable, or else
FAIL

1. let G’ be the acyclic graph formed by joining G¢, —2, G¢,—1,
Gy, ,and G¢_ 1 by the causal relations given by C;

2. run the standard ID algorithm for expression P(Vi, 41 N
An(Y)|Vi, —1,do(X)) on G'; if it returns FAIL, return FAIL;

3. else, use the resulting distribution to compute the transition ma-
trix A, where A;; = P(Vi, 41 N An(Y) = vi|Ve,—1 =
v, do(X)):

4. let M; be the matrix 7" marginalized as P(V; N An(Y) =
Uj“/t,1 n An(Y) = 7_),‘)

t
5. return l_y[ Mt} AT =17t P(V,);
t=t,+2

Fig. 7 c¢DCN algorithm for DCNs with static hidden confounders

by a hidden confounder to itself at V; ;. In this paper, we
consider finite dynamic time spans only. We will label the
dynamic time span of X as 7.

Lemma 14 Let D be a DCN with dynamic hidden con-
founders. Let X, Y be sets of variables in D. Let tgy be
the dynamic time span of X in D. If there is a hedge for
P(Y|do(X)) in D, then the hedge does not include variables
att > ty + tyy.

Proof By definition of hedge, F and F' are connected by
hidden confounders to X. The maximal time point connected
by hidden confounders to X is 7, + #4y. O

Lemma 15 Let D be a DCN with dynamic hidden con-
founders. Let X C V; and Y C Vty for two time slices
ty, ty. Let tgx be the dynamic time span of X in D and
Iy + tax < ty. P(Y|do(X)) is identifiable if and only if
P(Vi 1041 N An(Y)|V; —1, do(X)) is identifiable.

Proof Similarly to the proof of Lemma 11, but replacing
“static” by “dynamic,” V; 41 by Vi 44, +1, Lemma 10 by
Lemma 14, and “time slice 7, by “time slices #, to t, +7,.”

]

Theorem 7 Let D be a DCN with dynamic hidden con-
founders and T be its transition matrix under no interven-
tions. Let X C Vi andY C Vy, for two time slices ty, ty. Let
tqx be the dynamic time span ofX inDandty, +1tgx <ty If
P(Y|do(X)) is identifiable then:

Function cDCN-ID(Y ¢, X ,t, G,C,C’,T,P(V4,))
INPUT:

— DCN defined by a causal graph GG on a set of variables V' and a
set C' C V' x V describing causal relations from V; to Vi1 for
every t, and a set C’ C V' x V describing hidden confounders
from V; to V41 for every ¢

— transition matrix 7" for GG derived from observational data

— aset Y included in Vty

— aset X included in V¢,

— distribution P(V4%,) at the initial state,

OUTPUT: The distribution P(Y|do(X)) if it is identifiable or else
FAIL

1. let G’ be the graph consisting of all time slices in between (and
including) G'¢, 41 and the time slice preceding the left-most time
slice connected to X by a hidden confounder path or, if there is no
hidden confounder path to X, G'¢, —2;

2. run the standard ID algorithm for expression P(V; 4+, +1 N
An(Y)|Vi, —1,do(X)) on G'; if it returns FAIL, return FAIL;

3. else, use the resulting distribution to compute the transition ma-
trix A, where Aij = P(Vt,,,+t,,_,,,+1 N ATL(Y) = ’Ui|Vvt_,L_,1 =
vy, do(X));

4. foreacht fromt, + tgx +2uptoty:

(a) let G”" be the graph consisting of all time slices in between
(and including) G+ and the time slice preceding the left-most
time slice connected to X by a hidden confounder path or, if
there is no hidden confounder path to X, G'¢, —1;

(b) run the standard ID algorithm on G’/ for the expression
P(ViNAn(Y)|Vi—1 N An(Y), do(X)); if it returns FAIL,
return FAIL;

(c) else, use the resulting distribution to compute the transition
matrix M, where (M¢);; = P(Vi N An(Y) = v;|[Vi—1 N
An(Y) = v;,do(X));

t

5. return ﬁ

t=t, +tg,+2

M| AT =10 P(V,,);

Fig. 8 c¢DCN algorithm for DCNs with dynamic hidden confounders

L. P(Viqtgo+1 N An(Y)| Vi —1,do(X)) is identifiable by
matrix A

2. Fort > ty+tg+1, P(ViNAR(Y)|Vi—1NAn(Y), do(X))
is identifiable by matrix M,

3. P(Y|do(X)) = [ ;y=lx+fdx+2

M,] ATH=1=0p(V,)

Proof We obtain the first statement from Lemma 15 and
Lemma 12. Then if t > 1, + t4, + 1, then the set (V; N
An(Y), V;_1 N An(Y)) has the same ancestors than Y within
time slices #, to #, + 14 + 1, soif P(Y|do(X)) is identifiable
then P(V; N An(Y)|V;—1 N An(Y), do(X)) is identifiable,
which proves the second statement. Finally, we obtain the
third statement similarly to the proof of Theorem 3 but using
statements 1 and 2 as proved instead of assumed. O

The cDCN-ID algorithm for DCNs with dynamic hidden
confounders is given in Fig. 8.

Theorem 8 (Soundness and completeness) The ¢cDCN-ID
algorithm for DCNs with dynamic hidden confounders is
sound and complete.
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Proof The completeness derives from the first and second
statements of Theorem 7. The soundness derives from the
third statement of Theorem 7. O

6 Transportability in DCN

Pearl and Bareinboim [22] introduced the sID algorithm,
based on do-calculus, to identify a transport formula between
two domains, where the effect in a target domain can be esti-
mated from experimental results in a source domain and some
observations on the target domain, thus avoiding the need to
perform an experiment on the target domain.

Let us consider a country with a number of alternative
roads linking city pairs in different provinces. Suppose that
the alternative roads are all consistent with the same causal
model (such as the one in Fig. 3, for example) but have dif-
ferent traffic patterns (proportion of cars/trucks, toll prices,
traffic light durations...). Traffic authorities in one of the
provinces may have experimented with policies and observed
the impact on, say, traffic delay. This information may be
usable to predict the average travel delay in another province
for a given traffic policy. The source domain (province where
the impact of traffic policy has already been monitored) and
target domain (new province) share the same causal relations
among variables, represented by a single DCN (see Fig. 9).

The target domain may have specific distributions of the
toll price and traffic signs, which are accounted for in the
model by adding a set of selection variables to the DCN,
pointing at variables whose distribution differs among the
two domains. If the DCN with the selection variables is iden-
tifiable for the traffic delay upon increasing the toll price, then
the DCN identification algorithm provides a transport for-
mula which combines experimental probabilities from the
source domain and observed distributions from the target
domain. Thus the traffic authorities in the new province can
evaluate the impacts before effectively changing traffic poli-
cies. This amounts to relational knowledge transfer learning
between the two domains [19].

Fig. 9 DCN with selection variables s and s’, representing the differ-
ences in the distribution of variables ¢r1 and ¢r1 in two domains M
and M, (two provinces in the same country). This model can be used
to evaluate the causal impacts of traffic policy in the target domain M>
based on the impacts observed in the source domain M}

@ Springer

Function DCN-SID(Y t,,, X ,t.., G,C. Tt Par, (Vi )oIna,)
INPUT:

— DCN defined by a causal graph G (common to both source and
target domains M7 and M2) over a set of variables V' and a set
C C V x V describing causal relations from V; to V41 for
every t

— transition matrix T, for G derived from observational data in
Mo

— aset Y included in Vty

— aset X included in V¢,

— distribution Py, (V4,) at the initial state in M2

— set of interventional distributions Iz, in M1

— set S of selection variables

OUTPUT: The distribution Pz, (Y |do(X)) in M2 in terms of Thy,,
Py, (Vi) and Iy, , or else FAIL

1. let G’ be the acyclic graph formed by joining G¢, —2, G¢, —1,
Gy, ,and G, 1 by the causal relations given by C';

2. run  the standard sID  algorithm  for  expression
P(Vi,+1|Vi,—1,do(X)) on G'; if it returns FAIL, return
FAIL;

3. else, use the resulting transport formula to compute the transition
matrix A, where A;; = P(Vi_ 41 = v3|Vi, -1 = v;,do(X));

4. return thw\y Tty tatl) ATt=1=% P(Vy);

Fig. 10 DCN-sID algorithm for the transportability in DCNs with sta-
tic hidden confounders

Consider a DCN with static hidden confounders only.
We have demonstrated already that for identification of the
effects of an intervention at time 7, we can restrict our atten-
tion to four time slices of the DCN, ¢, — 2, 1, — 1, t,, and
ty + 1. Let M; and M» be two domains based on this same
DCN, though the distributions of some variables in M and
M> may differ. Then we have

Py (YIdo(X)) = Typ,

A, Ty 0P (V).
where the entry i j of matrix Ay, corresponds to the transition
probability Py, (Vi 41 = v;i|Vi,—1 = v}, do(X)).

By applying the identification algorithm sID, with selec-
tion variables, to the elements of matrix A, we then obtain
a transport formula, which combines experimental distrib-
utions in M; with observational distributions in M. The
algorithm for transportability of causal effects with static
hidden confounders is given in Fig. 10.

For brevity, we omit the algorithm extension to dynamic
hidden confounders, and the completeness results, which
follow the same caveats already explained in the previous
sections.

7 Experiments

In this section, we provide some numerical examples of
causal effect identifiability in DCN, using the algorithms pro-
posed in this paper.
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In our first example, the DCN in Fig. 3 represents how the
traffic between two cities evolves. There are two roads and
drivers choose every day to use one or the other road. Traffic
conditions on either road on a given day (¢r 1, tr2) affect the
travel delay between the cities on that same day (d). Driver
experience influences the road choice next day, impacting t7 1
and ¢r2. For simplicity, we assume variables tr1, ¢tr2 and d
to be binary. Let’s assume that from Monday to Friday the
joint distribution of the variables follow transition matrix 7
while on Saturday and Sunday they follow transition matrix
T». These transition matrices indicate the traffic distribution
change from the previous day to the current day. This system
is a DCN with static hidden confounders, and has a Markov
chain representation as in Fig. 3.

00 04 00 03 00 02 00 0.1

00 04 00 03 00 02 00 0.1
00 04 00 03 00 02 00 0.1
T = 0.0 04 00 03 00 02 00 0.1
02 00 00 01 04 00 00 03
02 00 00 01 04 00 00 03
02 0.0 0.0 0.1 04 00 00 03
02 00 00 01 04 00 00 03
0.1 0.0 03 0.1 02 02 0.0 0.1
0.1 0.0 03 0.1 02 02 0.0 0.1
0.1 0.0 03 0.1 02 02 0.0 0.1
T = 0.1 0.0 03 0.1 02 02 0.0 0.1
0.0 02 01 00 01 03 03 0.0
0.0 02 01 00 01 03 03 0.0
0.0 02 01 00 01 03 03 0.0

00 02 01 00 01 03 03 0.0

The average travel delay d during a two week period is
shown in Fig. 11.

Now let’s perform an intervention by altering the traffic on
the first road 77 1 and evaluate the subsequent evolution of the
average travel delay d. We use the algorithm for DCNs with
static hidden confounders. We trigger line 1 of the DCN-ID
algorithm in Fig. 7 and build a graph consisting of four time
slices G’ = (Gy,—2, Gt,—1, Gy,, G1,+1) as shown in Fig. 12.

7750 4

75.50 1

73.50

L . T T = E —
67.50 . - - - . . - - e

Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun

Average travel delay (minutes)

Fig. 11 Average travel delay of the DCN without intervention

Gxx -1 Gr Gtx +1

x

Fig. 12 Causal graph G’ consisting of four time slices of the DCN,
fromrt, —2tot, +1

The ancestors of any future delay at ¢+ = ¢, are all the
variables in the DCN up to £, so in line 2 we run the standard
ID algorithm for « = P (vi9, v11, V12|v4, V5, V6, do(v7)) On
G’, which returns the expression o:

Z P(v1, 02, ..012) 22, o P(v7, 08, v9|vs, s, U6)

oo orvsve P4, vs,06) 300 P(v7, v8, v9|va, v, v6)

Using this expression, line 3 of the algorithm computes
the elements of matrix A. If we perform the intervention on
a Thursday, the matrices A for v; = 0 and v;7 = 1 can be
evaluated from 77.

0.0 04 00 03 00 02 00 0.1
0.0 04 00 03 0.0 02 0.0 0.1
0.0 04 0.0 03 0.0 02 0.0 0.1
0.0 04 00 03 00 02 00 0.1

A=0=100 04 00 03 00 02 00 0.
00 04 00 03 00 02 00 0.1
00 04 00 03 00 02 00 0.1
00 04 00 03 00 02 00 0.1
02 00 00 0.1 04 00 00 03
02 00 00 0.1 04 00 00 03
02 00 00 01 04 00 00 03
02 00 00 01 04 00 00 03

Ay=1 =

02 0.0 00 01 04 00 00 03
02 00 00 01 04 00 00 03
02 00 00 01 04 00 00 03
02 0.0 00 01 04 00 00 03

In line 4, we find that transition matrices M; are the same
than for the DCN without intervention. Figure 13 shows the
average travel delay without intervention, and with interven-
tion on the traffic conditions of the first road.

In a second numerical example, we consider that the sys-
tem is characterized by a unique transition matrix 7 and the
delay d tends to a steady state. We measure d without inter-
vention and with intervention on 771 at ¢t = 15. The system’s
transition matrix 7" is shown below:

@ Springer
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7750 4

75.50 -

7350 4

7150 A T =

Average travel delay (minutes)

69.50 -

67.50 -

T T T T

8 : . L i L :
Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun

ENo Intervention B Force tri=0on first Thu O Force tri=1on first Thu

Fig. 13 Average travel delay of the DCN without intervention, and
with interventions 71 = 0 and 71 = 1 on the first Thursday

0.60 i

a:j:- AAAA.
030 +}H U,
|

0.20 T

0.10 T
1 3 5 7 911131517 1921 23 2527 29 31 33 35 37 39

LI S S S e S B B B e S e e e e

== No Intervention

0.60 i

oo LA /LA

g 0:30 \vlvv V vvv‘v‘\/\/\/\/vv

0.20 T

0.10 LI B B L N N N A N A L e e |
1 3 5 7 91113151719 2123 2527 29 31 33 35 37 39

=——=Force tr1=0at t=15

Fig. 14 Average d of the DCN without intervention and with interven-
tionontrlatr =15

002 0 003 0 026 0.13 034 022
002 0 003 0 026 0.13 034 0.22
002 0 003 0 026 0.13 034 0.22
002 0 003 0 026 013 034 022

0.34 0.1 024 0.21 0 002 00 0

034 0.1 0.24 0.21 0 002 009 0
034 0.1 024 0.21 0 002 009 0
034 0.1 024 0.21 0 002 009 0

Figure 14 shows the evolution of d with no intervention
and with intervention.

As shown in the examples, the DCN-ID algorithm calls ID
only once with a graph of size 4| G| and evaluates the elements
of matrix A with complexity O ((4k)?*+?, where k = 3 is

@ Springer

the number of variables per slice and b = 1 is the number of
bits used to encode the variables. The rest is the computation
of transition matrix multiplications, which can be done with
complexity O(n.b?), with n = 40 — 15 in example 2. To
obtain the same result with the ID algorithm by brute force,
we would require processing n times the identifiability of a
graph of size 40|G|, with overall complexity O ((k)P*? 4
)P 4+ B 4 4 (k) T,

8 Conclusions and future work

This paper introduces dynamic causal networks and their
analysis with do-calculus, so far studied thoroughly only
in static causal graphs. We extend the ID algorithm to the
identification of DCNs and remark the difference between
static versus dynamic hidden confounders. We also provide
an algorithm for the transportability of causal effects from
one domain to another with the same dynamic causal struc-
ture.

For future work, note that in the present paper we have
assumed all intervened variables to be in the same time slice;
removing this restriction may have some moderate interest.
We also want to extend the introduction of causal analysis
to a number of dynamic settings, including Hidden Markov
Models, and study properties of DCNs in terms of Markov
chains (conditions for ergodicity, for example). Finally, eval-
uating the distribution returned by ID is in general unfeasible
(exponential in the number of variables and domain size);
identifying tractable sub-cases or feasible heuristics is a gen-
eral question in the area.
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