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Abstract The accurate estimation of students’ grades in
future courses is important as it can inform the selection
of next term’s courses and create personalized degree path-
ways to facilitate successful and timely graduation. This
paper presents future course grade predictionsmethods based
on sparse linear and low-rank matrix factorization mod-
els that are specific to each course or student–course tuple.
Thesemethods identify the predictive subsets of prior courses
on a course-by-course basis and better address problems
associated with the not-missing-at-random nature of the
student–course historical grade data. Themethodswere eval-
uated on a dataset obtained from theUniversity ofMinnesota,
for two different departments with different characteristics.
This evaluation showed that focusing on course-specific data
improves the accuracy of grade prediction.

Keywords Learning analytics ·Next-term grade prediction ·
Course-specific models

1 Introduction

Data mining and machine learning approaches are being
increasingly used to analyze educational- and learning-
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related datasets toward understanding how students learn and
improving learning outcomes. These efforts express the need
of the modern higher educational system for meaningful and
useful tools to support students’ decisions throughout their
studies. The reliable performance prediction can be an essen-
tial part of these tools.

Our work focuses on developing methods that utilize
historical student–course grade information to accurately
estimate how well students will perform (as measured by
their grade) on courses that they have not yet taken. Being
able to accurately estimate students’ grades in future courses
is important as it can be used by them (and/or their academic
advisers) to identify the appropriate set of courses to take
during the next term and create personalized degree path-
ways that enable them to successfully and effectively acquire
the required knowledge to complete their studies in a timely
fashion.

In this paper, we develop various future course grade pre-
dictionmethods that utilize approaches based on sparse linear
models and low-rank matrix factorizations. Regression and
matrix factorization have been applied before in related work
with a variety of data, but our methods rely entirely on the
performance that the students achieved in previously taken
courses. A unique aspect of many of our methods is that
their associated models are either specific to each course or
specific to each student–course tuple. This allows them to
identify and utilize the relevant information from the prior
courses that are associated with the grade for each course and
better address problems associated with the reliable estima-
tion of the low-rank models and the not-missing-at-random
nature of the student–course historical grade data.

We experimentally evaluated the performance of our
methods on a dataset obtained from the University of Min-
nesota that contained historical grades that span 12.5years.
Our results showed that the course-specific models outper-
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formed various competing schemes. Another conclusion was
that the performance can significantly vary across different
departments.

The remainder of the paper is organized as follows. Sec-
tion 2 discusses the related work in this area of performance
prediction. Section 3 introduces the notation and definitions
used. Section 4 describes the methods developed, and Sect. 5
provides information about the experimental design. Sec-
tion 6 presents an extensive experimental evaluation of the
methods and compares them against existing approaches.
Finally, Sect. 7 provides some concluding remarks.

2 Related work

In recent years, there has been a lot of research activity in
using data analysis approaches to understand, support, and
enhance student learning. This research addresses a variety
of problems at different environment settings, such as “early
warning systems”, systems that optimize the educational
material to meet the student’s learning (e.g., the tutoring
systems), systems that are designed to identify additional
educational material or the traditional classroom environ-
ment. The key problems include student modeling and
student’s performance prediction at tasks, course activities,
homework questions, examinations, and final grades, either
during a course or after its completion. Some studies target
the prediction of students’ term and final GPA [1,16,17].

The need of tools that understand and support student
learning has led to the development of the intelligent “early
warning systems” that monitor the students’ performance
during the term [2,14,24]. The data collected by learning
management systems (LMS) have also been exploited [21,
22]. Text mining of written comments has been applied for
performance prediction by [13,23], while [15,20] apply clas-
sification and genetic algorithms with features about student
interaction and the use of the LMS. In order to analyze the
student’s past performance and interaction with the LMS and
predict how well he/she will perform in course activities,
multi-regressionmodels have alsobeenproposed [9].Various
approaches for modeling and predicting the success or fail-
ure of students in the context of intelligent tutoring systems
have been developed. In that case, we predict the correct-
ness of a student’s attempt to solve a single or a sequence of
problems/tasks/exercises. These approaches include regres-
sionmodels [3,5,10], HMMs and bagged decision trees [18],
collaborative filtering techniques and their combination (k-
NN, SVD, RBM) [30], matrix completion [11,27,28], and
tensor factorization [29].

Recently, research efforts aim to predict the grade that a
student will obtain in a future course, which is the problem
addressed in this paper. Within the context of develop-
ing methods to predict the next-term grades, most existing

approaches [4,7,8,19] rely on neighborhood-based collabo-
rative filtering methods. For each student whose grade needs
to be predicted, a set of similar students are identified that
have already taken that course and their grades are used
to estimate the desired grade via some similarity-weighted
aggregation function. Despite their relative simplicity, the
estimations obtained by these methods are reasonably accu-
rate indicating that there is sufficient information in the
historical student–course grade data to make the estimation
problem feasible. Influencedby the area of recommender sys-
tems, the authors of [25,26] examine grading prediction as
ratingpredictionusing amatrix completion approach. In [26],
the features are about the student, course, and instructor,
while in [25] (and most relevant to our problem), the matrix
contains information about the grades of past courses. The
matrix will be estimated by the product of lower-rank matri-
ces. The authors also point out that bias terms are important
and quite informative for the models.

The models developed in this paper are based on linear
regression and matrix factorization, but they utilize only
a course and student-course-specific subset of the data.
According to our results, focusing on specific models per
course improves the prediction accuracy and enables more
reliable model estimation, while models are capable to fit the
data better.

3 Definitions and notations

Throughout the paper, bold lowercase letters will denote col-
umn vectors (e.g., y) and bold uppercase letters will denote
matrices (e.g.,G). Individual elements will be denoted using
subscripts (e.g., for a vector yi , and for a matrix gs,c). A sin-
gle subscript on a matrix will denote its corresponding row.
The sets will be represented by calligraphic letters.

The historical student–course grade information will be
represented by a sparsematrixG ∈ R

n×m , where n andm are
the number of students and courses, respectively, and gi, j is
the grade in the range of [0,4] that student i achieved in course
j . If a student has not taken a course, the corresponding entry
will be missing. The course, semester, and student, whose
grades need to be predicted, will be called target course,
target semester, and target student, respectively.

4 Methods

In this section, we describe various classes of methods that
we developed for predicting the grade that a student will
obtain on a course that he/she has not yet taken.

4.1 Course-specific regression (CSR)

Undergraduate degree programs are structured in such a way
that courses taken by students provide the necessary knowl-
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edge and skills for them to do well in future courses. As a
result, the performance that a student achieved in a subset of
the earlier courses can be used to predict howwell he/shewill
perform in future courses. Motivated by this, we developed
a grade prediction method, called course-specific regression
(CSR) that predicts the grade that a student will achieve in a
specific course as a sparse linear combination of the grades
that the student obtained in past courses.

In order to estimate theCSRmodel for course c, we extract
from the overall student–course matrixG the set of rows cor-
responding to the students that have taken c. For each of these
students (rows), we keep only the grades that correspond to
courses taken prior to course c. Let Gc ∈ R

nc×m be the
matrix representing that extracted information, where nc is
the number of students that took course c. In addition, let
yc ∈ R

nc be the grades that the students in Gc obtained in
course c (yci is the grade that was obtained by the student of
the i th row of Gc). Given this, the CSR model wc ∈ R

m+ for
c is estimated as:

minimize
wc�0

∥
∥yc − 1wc

0 − Gcwc
∥
∥2
2 + λ1

∥
∥wc

∥
∥2
2 + λ2

∥
∥wc

∥
∥
1 ,

(1)

where wc
0 is a bias term, 1 ∈ R

nc is a vector of ones, and
λ1, λ2 are regularization parameters to control overfitting
and promote sparsity. The model is nonnegative because we
assume that prior courses can only provide knowledge to
future courses. The individual weights of wc indicate how
much each prior course contributes to the prediction and rep-
resent a measure of the importance of the prior course within
the context of the estimated model. Using this model, the
grade that a student will obtain in course c is given by:

ŷc = wc
0 + sTwc, (2)

where s ∈ R
m is the vector of the student’s grades in the

courses he/she has taken so far.
In this approach, prior to estimating themodel using Eq. 1,

we first subtract from each gci, j grade the GPA of the i th stu-
dent (GPA is calculated based on the information in Gc).
This centers the data for each student and takes into consid-
eration a notion of student bias as it predicts the performance
with respect to the current state of a student. Note that in
the case of GPA-centered data, we remove the nonnegativity
constraint on wc. We found that by centering each student’s
grades around his/hers GPA leads to more accurate predic-
tions (see Sect. 6.1).

4.2 Student-specific regression (SSR)

Depending on the major, the structure of different under-
graduate degree programs can be different. Some degree

programs have limited flexibility as to the set of courses that a
student has to take and at which point in their studies they can
take them (i.e., specific semester). Other degree programs are
considerably more flexible and are structured around a fairly
small number of core courses and a large number of elective
courses.

For the latter type of degree programs, a drawback of
the CSR method is that it requires the same linear regres-
sion model to be applied to all students. However, given
that the set of prior courses taken by students in such flex-
ible degree programs can be quite different, there can be
cases in which many of the most important courses that were
identified by the CSR model were simply not be taken by
some students, even though these students have acquired the
necessary knowledge and skills by taking a different set of
courses. To address this limitation, we developed a different
method, called student-specific regression (SSR), which esti-
mates course-specific linear regression models that are also
specific to each student.

The student-specific model is derived by creating a
student-course-specific grade matrixGs,c for each target stu-
dent s and each target course c from the Gc matrix used in
the CSR method.Gs,c is created in two steps. First, we elim-
inate from Gc any grades for courses that were not taken by
the target student. Second, we eliminate from Gc the rows
that correspond to the students that have not taken a suffi-
cient number of courses that are in common with the target
student s. Specifically, if Cs and Ci are the set of courses for
student s and i , respectively, we compute the overlap ratio
(OR) = |Cs ∩ Ci |/|Cs | and if OR< t , then student i is not
included in Gs,c. The value of t is a parameter of the SSR
method, and high values ensure that the set of students form-
ingGs,c have takenmany courses in commonwith s and have
followed similar degree plans. Given Gs,c, the SSR method
proceeds to estimate the model using Eq. 1 (withGs,c replac-
ing Gc) and uses Eq. 2 for prediction.

4.3 Methods based on matrix factorization

Low-rank matrix factorization (MF) approaches have been
shown to be very effective for accurately estimating ratings in
the context of recommender systems [12]. These approaches
can be directly applied to the problem of predicting the grade
that a student will achieve on a particular course by treating
the student–course grade matrix G as the user-item rating
matrix.

The use of such MF-based approaches for grade predic-
tion is postulated on the fact that there is a low-dimensional
latent feature space that can jointly represent both students
and courses. Given the nature of the domain, this latent space
can correspond to the space of knowledge components. Each
course vector is the set of components associated with a
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course, and each student vector represents the student’s level
of knowledge across these knowledge components.

By applying the common approaches of MF-based rating
prediction to the problem of grade prediction, the grade that
student i will obtain on course j is estimated as

ĝi, j = μ + sbi + cb j + piq j
T , (3)

whereμ is a global bias term, sbi and cb j are the student and
course bias terms, respectively, and pi and qj are the latent
representations for student i and course j , respectively. The
parameters of the MF method (μ, sb ∈ R

n, cb ∈ R
m,P ∈

R
n×l , andQ ∈ R

n×l ) are estimated following a matrix com-
pletion approach that considers only the observed entries in
G as

minimize
μ,sb,cb,P,Q

∑

gi, j∈G
(gi, j − μ − sbi − cb j − piqTj )

2

+λ(‖P‖2F + ‖Q‖2F + ‖sb‖22 + ‖cb‖22),
(4)

where λ is a regularization parameter and l is the dimension-
ality of the latent space, which is a parameter to this method.

The accurate recovery of the low-rank model (when such
a model exists) from a set of partial observations depends on
having a sufficient number of observed entries and on these
entries be randomly sampled from the entries of the target
matrix G [6]. However, in the context of student grade data,
the set of courses that students take is not a random subset of
the courses being offered as they need to satisfy their degree
program requirements. As a result, such anMFapproachmay
lead to suboptimal prediction performance.

In order to address this problem, we developed a course-
specificmatrix factorization (CSMF) approach that estimates
an MF model for each course by utilizing a course-specific
subset of the data that is denser (in terms of the number of
observed entries and the dimensions of the matrix). As a
result, it contains a larger number of randomly sampled sub-
sets of sufficient size. The denser course-specific matrix will
allow a more reliable estimation of the low-rank models. At
the same time, the sub-matrix will be more homogeneous, as
the students included are likely to be more similar (i.e., with
more common prior courses) compared to all the students.
That will allow the model to fit the data better.

Given a course c and a set of students Sc for which we
need to estimate their grade for c (i.e., the students in Sc have
not taken this course yet), the data that CSMF utilizes are the:

(i) the students and grades of the Gc matrix and yc vector
of the CSR method (Sect. 4.1), and

(ii) the students in Sc and their grades.

These data are used to form a matrix Xc ∈ R
(nc+nt )×(mc+1),

where nc is the number of students in Gc, nt = |Sc|, and

mc is the number of distinct courses that have at least one
grade inGc or Sc. The values stored inXc are the grades that
exist in Gc and Sc. The last column of Xc stores the grades
yc for the course c that were obtained from the students in
Gc. Thus,Xc contains all the prior grades associated with the
students who have already taken course c and the students
for which we need to have their grade on c predicted. Matrix
Xc is then used in place of matrix G in Eq. 4 to estimate
the parameters of the CSMF method, which are then used to
predict the missing entries of the last column of Xc, which
are the grades that need to be predicted.

5 Experimental design

5.1 Dataset

The student–course grade dataset that we used in our experi-
ments was obtained from the University of Minnesota which
has a very flexible degree program. It contains the students
that have been part of the Computer Science and Engineer-
ing (CSE) and Electrical and Computer Engineering (ECE)
programs from Fall of 2002 to Spring of 2014. Both of these
degree programs are part of the College of Science and Engi-
neering. Students have to take a common set of core science
courses during the first 2–3 semesters, but they can select
more courses from different levels and departments.

Because of the nature of these departments, the curriculum
coherence tends to be vertically aligned, i.e., what students
learn in one lesson, course, or grade level is most likely going
to be used by the next lesson, course, or grade level. Students
select courses in order to learn the knowledge and skills that
will progressively prepare them formore challenging, higher-
level topics. However, we need to point out that thismight not
always be the case, as there are departments that are more
horizontally aligned, where there do not exist such strong
dependencies across different courses and levels.

While preprocessing the dataset, we removed any courses
that are not part of those offered by departments in the col-
lege, as these correspond to various liberal arts and physical
education courses, which are taken by few students and in
general do not count toward degree requirements. Further-
more, we eliminated any courses that were taken as pass/fail.
The initial grades were in the A–F scale, which was con-
verted to the 4–0 scale using the standard letter grade to GPA
conversion. The resulting dataset consists of 2949 students,
2556 different courses, and 76,748 student–course grades.

We used this dataset to assess the performance of the dif-
ferent methods for the task of predicting the grades that the
students will obtain in the last semester (i.e., the most recent
semester for which we have data). For this reason, the dataset
was further split into two parts, one containing the students
that are still active, i.e., have taken courses in the last semester
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Table 1 Statistics for
course-specific datasets

CSE courses ECE courses

Prior courses 5 7 9 5 7 9

Average number of students in training set 386 325 258 414 377 332

Average number of students in test set 41 37 29 34 33 32

Average number of prior courses 178 176 173 158 156 155

Average number of grades 5671 5186 4484 7084 6804 6366

Courses predicted 24 24 24 25 25 25

Grades predicted 1004 910 712 858 841 800

(Dactive) and another that contains the remaining students
(Dinactive). Dactive contains 876 students, 19,089 grades,
out of which 3427 grades are for the 475 distinct classes
taken in the last semester. Dinactive contains 2073 students
and 57,659 grades.

These datasets were used to derive various training and
testing datasets for the different methods that we developed.
Specifically, for the CSR method, we extracted the course-
specific training and testing datasets as follows. For each
course c that was offered in the last semester, we extracted
course-specific training and testing sets (Dc,≥k

train and Dc,≥k
test )

by selecting from Dinactive and Dactive, respectively, the
students that have taken c, and prior to taken c, they also
took at least k other courses. The reason that these datasets
were parameterized with respect to k is because we wanted
to assess how the methods perform when different amount
of historical student performance information is available. In
our experiments, we used k in the set {5, 7, 9}. That infor-
mation creates the grade matrix Gc, where gci, j is the grade
of the i th student on the j th course from the training set
Dc,≥k
train. Table 1 shows various statistics about the various

course-specific datasets for different values of k.
For the CSMF method, the training dataset for course c

was obtained by combining Dc,≥k
train and Dc,≥k

test into a sin-
gle matrix after removing the grades that the target students
achieved in course c.

For theMFmethod, thematrixG is constructed using data
from all Xc matrices. It refers to the union of the sets Dc,≥k

train
and Dc,≥k

test for every course to be predicted, after removing
the grades that the active students achieved in the courses
we want to predict. We formulated the dataset in this way in
order to provide the same information for training and testing
to all our models. Moreover, since we predict the grades for
a specific semester, matrix G does not contain any grading
information regarding following semesters.

In the SSR, the grade matrix Gs,c is created by selecting
from Dc,≥k

train the set of courses that were also taken by student
s and the set of studentswhoseORwith s is at least t . Figure 1
shows some statistics about these datasets as a function of
t , and Fig. 2 shows only the common subsets that can be
predicted by both course specific and SSR datasets. When
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the OR is more than 0.8, we cannot predict many grades
because there are not enough students that had followed the
same degree plan as the selected student.

Finally, we did not consider the courses that have less than
20 students in their corresponding dataset, as we consider
them to have too few training instances for reliable estima-
tion, or less than 4 test students, as we might not get valid
results.
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5.2 Competing methods

In our experiments, we compared our methods with the fol-
lowing competing approaches.

1. BiasOnly. We only took into consideration local and
global biases to predict the students’ grades. These
biases were estimated using Eqn. 4 by setting l = 0.

2. Student-Based Collaborative Filtering (SBCF). This
method implements the approach described in [4]. For
a target course c, every student i is represented by a
vector whose nonzero entries are the grades that the
student obtained on the courses taken prior to c. We
compare the vector of a target student s against the vec-
tors of the other students that have taken course c using
the Pearson’s correlation coefficient. We perform grade
predictionwhile taking into consideration the positively
similar students to s according to

ĝs,c = ḡs + min(r, nbr)

r

∑nbr
i=1(gi,c − ḡi ) sims,i

∑nbr
i=1 sims,i

, (5)

where nbr is the number of students selected, r is
a confidence lower limit for significance weighting,
ḡi is the average grade of the student prior taking c,
and sims,i represents the similarity of target student s
with i .

5.3 Parameters and model selection

For CSR, we let λ1 take values from 0 to 40 in increments
of 1 and λ2 from 0 to 50 in increments of 1. For SSR, we let
λ1 take values from 0 to 10 in increments of 1 and λ2 from
0 to 14 in increments of 2. For BiasOnly, MF, and CSMF,
we let λ take values from 0 to 16 in increments of 0.05. For
SSR, the range of the tested values for overlap ratio is 0.3 to
1, in increments of 0.04, and for the confidence lower limit
is 10 to 100, in increments of 10. For SBCF, we tested the
number of neighbors to be from 10 to 100 with increments
of 10. For MF and CSMF methods, we tested the number of
latent dimensions with the values 2, 5, and 8.

For SBCF, CSR, and SSR, we used the semester before
the target semester to estimate and select the best parame-

ters. For BiasOnly, MF, and CSMF, model selection was
based on the performance of the validation set, which was a
randomly selected 10% subset of the training data. For the
CSMFmodel, the best-performing parameters were selected
for each course.

5.4 Evaluation methodology and performance metrics

We evaluated the performance of the different approaches
by using them to predict the grades for the last semester in
our dataset using the data from the previous semesters for
training. We report the results for the courses belonging to
CSE and ECE departments.

We assessed the performance using the root-mean-square
error (RMSE) between the actual grades and the predicted
ones. Since the courses whose grades are predicted have dif-
ferent number of students, we computed two RMSE-based
metrics. The first is the overall RMSE in which all the grades
across the different courseswere pooled together, and the sec-
ond is the average RMSE obtained by averaging the RMSE
values for each course.Wewill denote the first by RMSE and
the second as AvgRMSE.

In order to get a better understanding of the quality of
the predictions, we also report the distribution of the actual
vs predicted letter grades. The grading system used by the
University of Minnesota has 11 letter grades (A, A−, B+, B,
B−, C+, C, C−, D+, D, F) that correspond to grades from 4
to 0 (4, 3.667, 3.333, 3, 2.667, 2.333, 2, 1.667, 1.333, 1, 0).
After converting the predicted grades to their closest letter
grade, we compute the percentage of grades that are within
or more than x ticks away from their actual grades. A tick is
defined as the difference between two successive letter grades
(e.g., B vs B+ is one tick, A vs B is 3 ticks).

6 Experimental results

6.1 Course-specific regression

Table 2 shows the performance achieved by the CSR and
CSR-RC models when trained using the three different
datasets discussed in Sect. 5.1. These results show that
between the two models, CSR-RC, which operates on the

Table 2 Performance achieved by linear course-specific regression per department

CSE courses ECE courses
RMSE AvgRMSE RMSE AvgRMSE

Prior courses 5 7 9 5 7 9 5 7 9 5 7 9

CSR 0.928 0.958 0.990 0.994 1.034 1.082 0.717 0.693 0.704 0.702 0.685 0.699

CSR-RC 0.727 0.725 0.722 0.726 0.726 0.716 0.634 0.632 0.634 0.651 0.646 0.651

The performance of the models trained on the different datasets was evaluated on the D≥9
test test set, which is the common subset among their

respective test sets
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Fig. 4 Comparison of SSR model and CSR-RC with 9 prior courses w.r.t. overlap ratio. The other options for number of prior courses have similar
behavior

GPA-centered grades, leads to considerably lower errors both
in terms of RMSE and AvgRMSE, especially for the CSE
courses.

In terms of the sensitivity of their performance on the
amount of historical information that was available when
estimating these models (i.e., the minimum number of prior
courses), we can see that the performance of the models does
not change significantly for the CSR-RC method. CSR pre-
dicts CSE courses better when using 5 prior courses, while
it predicts better the ECE courses with 9 prior courses. This
indicates that the model benefits from increased number of
students that increased number of prior courses, because the
students with 9 prior courses are only 67% of the students
with 5 prior courses. The ECE department does not suffer
from such low number of students left with 9 prior courses,
as the corresponding percentage is 80% (statistics according
to Table 1).

6.2 Student-specific regression

As one of the parameters for this problem was the overlap
ratio between the courses of the target student and other stu-
dents, Fig. 3 presents the behavior of themodel’sRMSE (left)
and AvgRMSE (right) as we vary the OR for Dc,≥9

test (k = 9).
When the OR is increased, the selected students have more
courses in common with the target user and that leads to
better performance.

In order to compare the performance of SSR against
CSR-RC, Fig. 4 shows the RMSE of the best CSR-RC and
SSR models. The RMSE values were computed on the sub-
sets of the test set that was predicted by both models for
Dc,≥9
test (k = 9). These results show that SSR leads to con-

sistently worse predictions for the CSE courses than the
CSR-RC model. However, in the case of the ECE courses,
SSR does better than CSR-RC when the OR is greater than

123



166 Int J Data Sci Anal (2016) 2:159–171

Table 3 Errors per department
for matrix factorization methods

CSE courses ECE courses
Prior courses Latent factors MF CSMF MF CSMF

5 2 RMSE 0.740 0.734 0.603 0.606

5 0.753 0.731 0.605 0.616

8 0.735 0.734 0.596 0.602

2 AvgRMSE 0.726 0.716 0.614 0.615

5 0.732 0.717 0.608 0.628

8 0.721 0.714 0.605 0.612

7 2 RMSE 0.741 0.739 0.606 0.615

5 0.750 0.735 0.611 0.607

8 0.744 0.734 0.598 0.601

2 AvgRMSE 0.726 0.729 0.610 0.626

5 0.720 0.711 0.607 0.617

8 0.727 0.728 0.604 0.609

9 2 RMSE 0.740 0.735 0.604 0.603

5 0.746 0.723 0.600 0.601

8 0.751 0.733 0.597 0.598

2 AvgRMSE 0.726 0.732 0.611 0.617

5 0.721 0.714 0.601 0.611

8 0.735 0.725 0.607 0.610

0.8. That might be related to the fact that the degree program
of ECE is more structured than the CSE degree program, giv-
ing some advantage to the SSR method. As shown in Fig. 1,
at such high OR values, the number of grades that can be
predicted by SSR is small. For example, when OR is 0.8, the
SSR model can predict less than 10% of the grades in the
target semester.

6.3 Methods based on matrix factorization

The performance of the methods based on matrix factoriza-
tion (Sect. 4.3) is shown in Table 3.

These results show that for the CSE courses, CSMF per-
forms the best in terms of RMSE and AvgMSE, for any num-
ber of prior courses. That confirms that by building matrix
factorization models on smaller but denser course-specific
sub-matrices, we can derive low-rank models that lead to
more accurate matrix completion. On the other hand, the
performance of the ECE courses does not vary a lot. For that
department, the best predictions are performed by MF, fol-
lowed by CSMF with a RMSE difference of 0.002. A poten-
tial explanation for these results is that the ECE courses are
part of a stricter degree program, whose structure is present
even in the more general setting ofMF. As a result, by select-
ing the course-specific sub-matrices does not provide any
further insight to the data, as happens for the CSE courses.

In order to see how the size of the training set associ-
ated with the different courses impacts the performance of
the MF and CSMF methods, Fig. 5 shows the cumulative

AvgRMSE over the courses with increasing training size and
the RMSE per course achieved from each method. Cumula-
tive AvgRMSE is used to provide some insight to the impact
that the training size has on the performance of our mod-
els. We can notice that for the ECE courses, MF model has
an advantage against CSMF for relatively smaller courses.
MF performs better for eight out of the ten smallest courses,
indicating that it gains its accuracy by utilizing other data
that are not included in the course-specific datasets in order
to compute better biases. Moreover, from the bottom part of
the figure, we can confirm that the performance of both MF
and CSMF is similar for the ECE courses in comparison with
the CSE courses.

In terms of the number of latent factors, we see that when
we are using the smallest dataset for training (the one with 9
prior courses), the best performance is achieved for smaller
number of latent factors compared to the datasets with 5 or 7
prior courses. In that case, the average number of grades per
course is lower, which might not support a large number of
latent factors.

6.4 Comparison with other methods

Table 4 compares the performance of the baseline approaches
described in Sect. 5.2 (BiasOnly and SBCF) with the best-
performing course-specific regression method (CSR-RC),
the MF and CSMF methods. From these results, we can see
that CSR-RC leads to the best RMSE for the CSE courses
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Fig. 5 Cumulative AvgRMSE
w.r.t. increasing training size
(top) and RMSE achieved per
course (bottom) of CSMF and
MF models for Dc,≥9

test (k = 9)
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Table 4 Errors per department

CSE courses ECE courses
RMSE AvgRMSE RMSE AvgRMSE

Prior courses 5 7 9 5 7 9 5 7 9 5 7 9

BiasOnly 0.752 0.752 0.754 0.740 0.734 0.738 0.633 0.634 0.634 0.642 0.640 0.642

SBCF 0.733 0.733 0.732 0.713 0.713 0.710 0.619 0.619 0.619 0.621 0.620 0.620

CSR-RC 0.727 0.725 0.722 0.726 0.726 0.716 0.634 0.632 0.634 0.651 0.646 0.651

MF 0.735 0.741 0.739 0.726 0.726 0.726 0.596 0.598 0.597 0.605 0.604 0.607

CSMF 0.731 0.734 0.722 0.717 0.728 0.714 0.602 0.601 0.598 0.612 0.609 0.610

The performance of the models trained on the different datasets was evaluated on the D≥9
test test set, which is the common subset among their

respective test sets

Table 5 Wins/ties/losses for every pair of methods tested

CSE courses ECE courses
BiasOnly SBCF CSR-RC MF CSMF BiasOnly SBCF CSR-RC MF CSMF

BiasOnly 7/1/16 7/1/16 6/5/13 7/2/15 8/2/15 10/3/12 7/6/12 6/2/17

SBCF 16/1/7 12/1/11 11/3/10 13/2/9 15/2/8 13/4/8 8/4/13 8/4/13

CSR-RC 16/1/7 11/1/12 13/2/9 12/4/8 12/3/10 8/4/13 7/4/14 6/3/16

MF 13/5/6 10/3/11 9/2/13 9/2/13 12/6/7 13/4/8 14/4/7 8/3/14

CSMF 15/2/7 9/2/13 8/4/12 13/2/9 17/2/6 13/4/8 16/3/6 14/3/8

The cell (i, j) refers to the wins/ties/losses of the i th method compared to the corresponding j th method

Table 6 Analysis of the accuracy of the predictions in terms of letter grades

5 prior courses 9 prior courses
BiasOnly SBCF CSR-RC MF CSMF BiasOnly SBCF CSR-RC MF CSMF

CSE no error 23.73 23.87 26.40 25.84 24.85 25.84 24.16 26.68 24.58 24.43

within one tick 62.63 63.59 63.45 65.02 62.47 62.08 63.32 63.31 63.04 63.74

within two ticks 81.58 82.95 83.81 81.98 84.22 81.46 83.25 84.37 81.98 84.52

ECE no error 30.38 28.38 26.37 30.13 26.38 30.98 28.11 26.27 30.88 27.40

within one tick 66.62 65.39 64.89 67.36 66.24 65.74 64.98 65.52 67.51 66.00

within two ticks 87.75 88.26 86.50 90.12 88.86 87.59 88.09 86.26 88.62 89.73

These numbers correspond to the percentage of the predicted grades that were exactly, within one tick or two ticks away from the true letter grade.
One tick corresponds to a letter grade away from the true grade, i.e., we predict a grade of B while the student took B- in a course.
While comparing models, the higher the percentage, the better it is for the grades predicted exactly, or less than one or two ticks away. For each
case, the best percentage is in bold

Table 7 Analysis of the error severity of the predictions in terms of letter grades

5 prior courses 9 prior courses
BiasOnly SBCF CSR-RC MF CSMF BiasOnly SBCF CSR-RC MF CSMF

CSE underpredict (>1 tick) 20.34 18.93 18.38 18.79 21.34 20.76 19.22 18.94 19.37 19.22

overpredict (>1 tick) 16.96 17.38 18.08 16.10 16.11 17.10 17.38 17.66 17.51 16.96

underpredict (>2 ticks) 9.53 7.56 7.98 8.97 8.00 9.10 7.28 7.14 8.28 7.00

overpredict (>2 ticks) 8.82 9.39 8.12 8.96 7.70 9.38 9.39 8.40 9.66 8.40

ECE underpredict (>1 tick) 14.74 15.38 15.22 13.73 15.74 15.21 15.87 15.08 12.60 14.73

overpredict (>1 tick) 18.60 19.16 19.83 18.84 17.96 18.96 19.04 19.31 19.83 19.22

underpredict (>2 ticks) 4.88 3.75 4.99 2.73 4.50 4.86 3.75 5.47 3.61 3.63

overpredict (>2 ticks) 7.33 7.92 8.45 7.08 6.58 7.86 8.05 8.18 7.71 6.59

These numbers correspond to the percentage of the predicted grades that were one or two ticks away from the true letter grade. One tick corresponds
to a letter grade away from the true grade, i.e., we predict a grade of B while the student took B- in a course.
A model under or over predicts when the grade predicted is lower or higher, respectively, than the actual one.
While comparing models, the lower the percentage, the better it is for the grades predicted more than one or two ticks away. For each case, the best
percentage is in bold
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Table 8 Errors per course for all methods for the case of 9 prior courses (Dc,≥9
test (k = 9))

Course train test feat nnz offer Mn Tr StD Tr Mn Te StD Te BiasOnly SBCF CSR-RC MF CSMF

CSCI2x 89 6 164 1345 23 3.180 0.596 3.000 0.577 0.492 0.357 0.454 0.499 0.499

CSCI2x 196 19 167 2796 23 2.697 1.109 2.825 0.670 0.511 0.540 0.531 0.527 0.629

CSCI2x 105 21 165 1843 6 2.686 1.011 3.032 0.625 0.390 0.466 0.416 0.373 0.403

CSCI3x 705 45 240 10272 21 3.135 0.813 3.104 0.852 0.738 0.651 0.803 0.755 0.715

CSCI4x 639 53 234 9774 23 2.847 0.821 2.799 0.912 0.795 0.809 0.788 0.792 0.801

CSCI4x 635 25 230 9147 23 3.035 0.906 2.747 0.981 0.787 0.812 0.756 0.809 0.759

CSCI4x 865 56 252 13502 23 3.099 0.924 3.018 1.191 0.952 1.005 0.852 0.984 0.891

CSCI4x 618 52 225 11379 19 3.530 0.630 3.141 0.904 0.857 0.815 0.736 0.831 0.771

CSCI4x 105 15 168 2136 20 2.797 1.048 3.400 0.762 0.928 0.916 0.879 0.884 0.924

CSCI4x 536 45 219 9593 21 3.173 0.784 3.015 0.886 0.826 0.747 0.757 0.749 0.771

CSCI4x 230 87 193 5198 4 3.229 0.826 3.134 0.849 0.760 0.732 0.738 0.733 0.730

CSCI4x 518 55 219 9448 20 3.094 0.813 3.345 0.422 0.513 0.433 0.502 0.454 0.427

CSCI5x 175 28 180 3409 13 3.154 0.773 2.738 1.146 0.942 0.947 0.980 0.945 0.993

CSCI5x 37 8 123 849 7 3.441 0.658 3.458 0.686 0.916 0.855 0.864 0.763 0.731

CSCI5x 59 15 132 1444 9 3.057 0.929 3.511 0.569 0.806 0.637 0.670 0.741 0.765

CSCI5x 34 10 96 804 5 3.167 0.901 3.767 0.300 0.400 0.372 0.524 0.408 0.428

CSCI5x 27 15 128 736 10 2.518 1.212 3.045 0.619 0.622 0.643 0.822 0.594 0.498

CSCI5x 182 65 231 4195 21 2.984 0.920 3.149 0.627 0.522 0.515 0.481 0.492 0.480

CSCI5x 51 9 131 1040 10 2.869 1.065 3.519 0.419 0.548 0.525 0.587 0.699 0.550

CSCI5x 45 15 119 1039 4 2.593 0.973 3.022 1.078 0.955 0.897 0.836 0.972 0.911

CSCI5x 35 15 135 866 5 2.771 1.053 3.089 1.380 1.161 1.102 1.086 1.147 1.094

CSCI5x 44 6 115 924 9 2.667 1.061 3.055 1.420 1.310 1.389 1.170 1.296 1.418

CSCI5x 77 17 122 1678 12 3.043 0.663 3.059 0.649 0.554 0.484 0.520 0.534 0.521

CSCI5x 199 30 167 4222 9 3.201 0.713 3.222 0.450 0.437 0.389 0.432 0.436 0.429

EE2x 334 19 111 4143 23 3.083 0.812 2.807 0.511 0.428 0.423 0.408 0.449 0.395

EE2x 467 33 185 6748 23 2.720 0.854 2.788 0.724 0.497 0.506 0.470 0.495 0.486

EE3x 509 19 139 7421 23 2.898 0.865 3.053 0.774 0.533 0.578 0.570 0.574 0.579

EE3x 624 43 181 11045 22 2.707 0.846 2.481 1.069 0.835 0.849 0.837 0.846 0.828

EE3x 32 5 92 629 13 3.552 0.739 3.800 0.400 0.578 0.482 0.647 0.497 0.534

EE3x 524 16 149 7758 22 3.357 0.689 3.813 0.333 0.736 0.681 0.766 0.638 0.754

EE3x 668 61 201 12230 21 3.564 0.565 3.404 0.392 0.651 0.602 0.607 0.532 0.524

EE3x 523 18 157 7812 22 2.683 0.926 2.537 1.112 0.866 0.856 0.823 0.861 0.846

EE3x 636 45 183 11597 23 2.759 0.879 2.644 0.970 0.777 0.768 0.860 0.781 0.760

EE3x 534 35 170 9141 22 2.917 0.835 2.638 0.889 0.783 0.749 0.788 0.789 0.752

EE4x 247 14 158 5070 11 2.831 0.931 3.071 0.402 0.541 0.457 0.554 0.540 0.523

EE4x 170 58 128 4631 3 2.998 0.782 3.052 0.729 0.521 0.535 0.564 0.520 0.520

EE4x 42 16 91 1161 3 3.786 0.674 3.958 0.110 0.451 0.368 0.420 0.389 0.441

EE4x 276 53 177 6679 10 2.992 0.897 2.918 0.666 0.452 0.479 0.468 0.479 0.463

EE4x 94 23 144 2269 10 3.784 0.643 3.942 0.188 0.501 0.422 0.496 0.396 0.314

EE4x 265 43 179 6485 11 2.782 0.794 2.876 0.810 0.444 0.446 0.443 0.458 0.458

EE4x 327 25 191 7237 21 3.002 0.815 3.213 0.810 0.706 0.725 0.672 0.714 0.707

EE4x 190 59 155 5029 5 2.942 0.739 2.780 0.701 0.550 0.567 0.584 0.554 0.561

EE4x 514 57 182 11080 10 3.243 0.652 3.398 0.644 0.470 0.463 0.462 0.464 0.443

EE4x 381 47 171 8313 13 3.802 0.446 3.901 0.167 0.541 0.460 0.500 0.393 0.349

EE4x 762 60 226 17340 21 3.627 0.449 3.706 0.713 0.855 0.812 0.774 0.734 0.751

EE4x 101 17 176 2680 9 3.865 0.345 3.882 0.196 0.208 0.174 0.187 0.168 0.186

EE5x 47 21 121 1270 3 3.702 0.675 3.905 0.426 0.455 0.447 0.504 0.378 0.414
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Table 8 continued

Course train test feat nnz offer Mn Tr StD Tr Mn Te StD Te BiasOnly SBCF CSR-RC MF CSMF

EE5x 23 8 97 647 9 3.478 0.714 2.958 1.172 1.240 1.228 1.206 1.209 1.220

EE5x 32 5 116 743 10 3.219 0.762 3.133 1.572 1.427 1.435 1.662 1.411 1.453

The second and third columns refer to the number of students in the training and test set, respectively
From the course names, we can see the department and the academic level of the course.
feat features, offer offerings, Mn mean, Tr train, Te test, StD standard deviation

and MF leads to the best RMSE for the ECE courses, closely
followed by CSMF (0.002 difference).

A summary of the comparison between every pair ofmeth-
ods tested is shown in Table 5. For eachmethod, we count the
courses for which a method wins, ties, and losses in terms
of RMSE against each other method tested. This analysis
shows that for the CSE courses, CSR-RC outperforms the
other methods, except SBCF that is very close, in the major-
ity of the courses, whereas for the ECE courses, the CSMF
outperforms each one of the other methods (evenMFmethod
that has slightly better RMSE) in the majority of the courses.

6.5 Fine grain analysis of the predictions

In order to gain a better understanding as to the types of
errors generated by the different methods and the real-world
implication of the predictions, Tables 6 and 7 analyze the
performance achieved by the different methods by focusing
on grade ticks as opposed to RMSE values.

Table 6 shows the percentage of predicted grades thatwere
close to the true grades, over all the instances predicted by
a model. For the CSE department, CSMF is the model with
the most grades that are predicted to be within two ticks
from their true values, while CSR-RC is the best model when
focusing on exact predictions. For the ECE department, MF
has the highest percentages, and CSMF can be better only
for the case of 9 prior courses, within two letter grades from
the actual grades.

Table 7 analyzes the performance of the models on the
instances that they fail to accurately predict. We examine the
difference between the grades over or under predicted, i.e.,
they are predicted to be more or less than their real values,
respectively. In this case, the lower the percentage, the better
the model is, as there are less inaccurate predictions. These
results show that, compared theCSE, ECEhas less under pre-
dictions, but higher number of over predictions of more than
one tick. Moreover, the best methods for the CSE courses
are the CSR-RC and CSMF, and for the ECE courses, are
the MF and CSMF. Another finding is that CSR-RC has the
highest percentages of under prediction errors for the ECE
department. The reason this is happening is because a student
might have not taken an important course, and its correspond-
ing regressor will bemissingwhile estimating their grade. As
a result, we can see that in the case of this department, that has

a stricter degree program, CSR-RC (that is a linear model)
cannot handle the absence of an important prior course. How-
ever, CSR-RC is the only model that manages to lower the
over prediction error while using more dense data (case of 9
prior courses).

Table 8 compares the RMSE per course for the methods
of BiasOnly, SBCF, CSR-RC, CSMF, and MF, for both the
CSE and ECE departments. Some statistical information per
course is also included. This information suggests that if a
course has a poor RMSE, then it is very likely that the stan-
dard deviation of the grades on the test set is quite high or
higher that the standard deviation of the grades on the training
set.

7 Conclusions

In this paper, we presented two course-specific approaches
based on linear regression and matrix factorization that per-
form better than existing approaches based on traditional
methods, assuming that the degree programs involved have a
vertical structure. In that case, focusing on a course-specific
subset of the data can result in more accurate predictions.
Moreover, the performance for different departments can
significantly vary, as they may have different characteris-
tics and structures. A student-course-specific approach was
also developed but its accuracy in grade prediction is limited
by the diverse nature of degree plans. Overall, the course-
specific methods can improve the performance of grade
prediction over other methods tested for our dataset, while
the degree of improvement depends on the department.
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