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Abstract This paper discusses a complete and efficient
algorithm for enumeratingdensely connected k-Plexes in net-
works. A k-Plex is a kind of pseudo-clique which imposes
a disconnection upper bound (DUB) involving a parameter
k for each constituent vertex. However, because the para-
meter value is usually set independently of the sizes of
the targeted pseudo-cliques, we often obtain k-Plexes that
are not densely connected. To overcome this drawback, we
introduce another constraint, the connection lower bound
(CLB), which involves a parameter j . Using the CLB, we
can enjoy monotonic j-core operations and can design an
efficient depth-first algorithm,which can exclude both search
branches that generate duplicate search nodes and “hopeless”
nodes that yield no targets satisfyingbothDUBandCLB.Our
experimental results show that the algorithm can be a useful
tool for detecting densely connected pseudo-cliques in large
networks, including an example with over 800, 000 vertices.
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1 Introduction

Detecting communities in a network is an important aspect
of social network analysis [22]. Cliques are typical ver-
tex sets that can be understood as potential communities
[20]. Moreover, the class of cliques has an antimonotonic-
ity property that is helpful in designing an efficient clique
enumerator. In a real-world network, however, the clique
model is too restrictive to capture various communities
because it is rare for actual communities to appear as cliques.
This has motivated the study of clique relaxation models,
with various “pseudo-clique” models having been proposed
[20].

An alternative approach to community detection uses
graph clustering or partitioning methods, which has been
shown to work well (e.g., [14,17]). However, if our aim is
to identify small communities, we might prefer to use the
(pseudo-) clique detection approach because the alternative
approach usually supposes small numbers of relatively large
clusters. Our smaller targets would tend to be merged and
absorbed into these larger clusters.

In a density-based model of pseudo-cliques (e.g., [1]),
indices formeasuring the density of vertex sets are presented.
Because this class of pseudo-cliques does not satisfy the anti-
monotonicity property of the pure clique model, efficient but
heuristic detectors have been proposed for search purposes
[1]. As a result, some possibly valuable vertex sets might be
missed. Moreover, even if we had a complete detector, the
huge number of pseudo-cliques might prevent the process-
ing of large-scale networks. In spite of these difficulties, it is
important to develop an efficient and complete pseudo-clique
enumerator for handling large networks because such an enu-
merator would be useful not only for community discovery,
but also for analyzing the nature of large networks in terms
of (pseudo-) cliques statistics [25].

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s41060-016-0022-1&domain=pdf


146 Int J Data Sci Anal (2016) 2:145–158

Other clique-relaxation models, a distance-based model,
k-clique [13], and diameter-based models, k-club and k-clan
[2,15], have been proposed. Here, the parameter k controls
admissible distances among vertices. As discussed in [27], if
we allow long distances, large dense subgraphs appear that
are almost cliques even when their subgraphs with respect to
the original edge connections are not dense.

On the other hand, a k-Plex model [24] considers the den-
sity of the original connections by setting an upper bound
for the number of missing edges among the vertices. The
class of k-Plexes has an antimonotonicity property that can
aid the design of a simple bottom-up enumerator [6,28]. For
this reason, we consider k-Plexes in this paper by introducing
new constraints to mitigate their weaknesses, which we now
discuss.

A vertex set is called a k-Plex if, for each included vertex
x , the number of vertices not adjacent to x is at most k. The
DUB is therefore specified by the parameter k. Note that a
k-Plex could have disconnected parts. However, such a set
would be unlikely to represent a community and we exclude
such sets from further consideration.

For a very small k, a connected k-Plex will be dense if
its size is relatively larger than k. However, as the size of
the densely connected vertex set increases, the number of
disconnected vertices, k per each vertex, shall be nonsmall,
depending on the density requirement. In other words, we
think that a constraint that considers the sizes of targeted
pseudo-cliques is important. For a k-Plex of size n, each ver-
tex has at least n−k adjacent vertices, where n−k must be a
particular value, provided the vertex set is to be densely con-
nected. We therefore introduce another constraint, involving
a parameter j , that designates aCLB.We can then aim to enu-
merate all maximal connected k-Plexes that meet the CLB
constraint.

A naïve strategy, such as computingmaximal k-Plexes and
then checking the CLB constraint, does not work well for
cases involving nonsmall k. This is because every vertex set
with size no larger than k is trivially a k-Plex, which forces
the examination of an exponentially increasing number of
such sets. The key to solving this problem lies in another fact
that, if a connected k-Plex X can be extendable to a maximal
connected k-Plex under the CLB constraint, X is involved
in a “core” of X together with candidates that are potential
vertices to be added to X , where the term “core” means the
largest subset of vertices with at least j adjacent vertices in
the subset [5].

In this paper, j is taken to be fixed beforehand depend-
ing on the size of the targeted vertex set. The monotonicity
of the core operation suits a standard k-Plex enumerator,
which uses the antimonotonicity of the k-Plexness. Based
on these monotonicities, we can design an efficient complete
depth-first algorithm, which can exclude numerous hopeless
k-Plexes that cannot be maximally extended to meet our

requirements. This significantly improves the performance
of the k-Plex enumerator. In our experiments, we focus on
comparing our algorithm with a state-of-the-art maximal k-
Plex enumerator that has been proposed very recently [6],
in terms of both computational performance and the quality
of the solution k-Plexes as pseudo-cliques. For synthetic and
large real-world networks, including a Web graph with over
800,000 vertices, the results demonstrate that combining the
CLB constraint with our pruning mechanisms is quite effec-
tive. Therefore, the proposed algorithm works very well as a
practical tool for detecting dense pseudo-cliques.

As an alternative to our formalization of densely con-
nected pseudo-cliques as maximal k-Plexes satisfying the
CLB constraint, one might consider maximal vertex sets,
which can form k-Plexes satisfying the constraint, where
the class of those maximal sets completely subsumes our
solutions. This would seem preferable to our formalization
becausewe couldmiss possiblymany densely connected ver-
tex sets. However, our experiments show that the number of
the sets actually missed is quite small. Therefore, we can
argue that our model of pseudo-cliques is both reasonable
and practical.

Our experiments also demonstrate that the proposed
method is particularly effective in detecting densely con-
nected pseudo-cliques of relatively small or medium sizes,
which are usually outside the target of the standard method
for graph clusteringor partitioning. In general, those nonlarge
pseudo-cliques are often subsumed in large communities and
hence would be invisible. However, such a nonlarge commu-
nity can be considered valuable and informative because it
could be a “seed” which potentially grows into a novel com-
munity. For example, in a friendship network of SNS users,
such a seed absorbed by a major community could be the ori-
gin of a new trend. In marketing research, therefore, it would
beworth detecting potential seed communities for trend fore-
casting. The proposed algorithm can play the principal role
in accomplishing the important task.

The notion of densely connected pseudo-cliques is funda-
mental and useful not only for social network analysis, but
also for other application domains such as biological sys-
tems [9] and financial markets [16]. The method proposed in
this paper is a general framework because we do not need to
make assumptions specific to some particular domain. There-
fore,we expect our algorithm to be applicable to and effective
in a variety of application domains in which graph-based for-
malizations are natural and reasonable.

The remainder of this paper is organized as follows. In
Sect. 2, the basic terminology and notations used through-
out this paper are introduced. Section 3 presents the notion
of maximal connected k-Plexes (k-MPCs). We then define
our target sets, namely j-cored maximal connected k-
Plexes (( j, k)-MPCs), and show their theoretical properties
in Sect. 4. Effective search control rules for the efficient com-
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putation of ( j, k)-MPCs are discussed in Sect. 5. Section 6
presents our algorithm for enumerating ( j, k)-MPCs using
the control rules. Our experimental results for synthetic and
real-world networks are presented in Sect. 7. Finally,we sum-
marize the paper in Sect. 8 and conclude with our plans for
future work.

2 Preliminaries and notations

An undirected graph G is denoted by G = (V, Γ ), where
V = {v1, . . . , v|V |} is a set of vertices and Γ (vn) = {vm ∈
V | vn, vm are adjacent}. Γ (vn) is assumed to not include vn
itself, i.e., vn /∈ Γ (vn). An ordering ≺ over V is defined by
vi ≺ v j and vi is said to be younger than v j if and only if
i < j . (If the identifier i of vi does not need to be specified,
we will abbreviate the notation vi as v.) For a vertex set
X ⊆ V , G[X ] is a subgraph of G induced by X . For a vertex
x ∈ X , ΓX (x) denotes Γ (x) ∩ X . |ΓX (x)| is often referred
to as degX (x).

A vertex set X is called a k-Plex if |X − ΓX (x)| ≤ k
for any x ∈ X . It is easy to see that, for a k-Plex Y ,
any subset X of Y is also a k-Plex. Therefore, the class
of k-Plexes has an antimonotonicity property, which is
often used to design maximal k-Plex enumerators. A ver-
tex y /∈ X is called a k-Plex candidate if Xy remains a
k-Plex, where Xy is an abbreviation of X ∪ {y}. Cand(X)

denotes the set of all k-Plex candidates for X . In this paper,
we are particularly interested in connected k-Plexes (c-k-
Plexes).

For a vertex set X and a vertex y, the distance between X
and y, denoted dist (X, y), is given by the minimum length
of paths in G from X to y, where dist (X, x) = 0 whenever
x ∈ X . dist (X, y) = ∞ only when y is not reachable from
X . Dn(X) is defined as {y ∈ V | dist (X, y) = n}. K1(X) =

D1(X) ∩ Cand(X) is the set of k-Plex candidates directly
connected to X and plays a key role in the discussion of
c-k-Plexes. It is called a K1-candidate set at X .

These basic notations are summarized in Table 1.

3 Maximal connected k-Plex

A maximal c-k-Plex (k-MPC) is a c-k-Plex that is maximal
among c-k-Plexes. It is clear that a c-k-Plex X is extendable
to its super c-k-Plex if and only if K1(X) 	= ∅. Therefore,
the extension can be made by adding K1-candidates at X
to X .

A formation X f of c-k-Plex X with respect to an indexing
function f is a sequence of vertices v f (i), (v f (1), v f (2), . . . ,

v f (|X |)), where f (i) is the identifier of the i-th vertex added
to form X = {v f (1), . . . , v f (|X |)} as sets, and each of the

intermediate X f
i = {v f (1), . . . , v f (i)} must be a c-k-Plex.

That is,

v f (i+1) ∈ K1

(
X f
i

)
. (1)

The sequence (X f
1 , . . . , X f

|X |) is also called a formation

of X . For any k-MPC Z , its formation ends at Z = Z f
|Z | with

K1(Z) = ∅.
We have multiple formations Z f for a k-MPC Z , depend-

ing on the order of the vertex addition. For an arbitrary initial
vertex vn1 ∈ Z , we can repeat the addition of vni ∈ Z
such that vni is adjacent to some vertex added prior to vni .
Any intermediate Xi (⊆ Z ) is then a c-k-Plex because the
monotonicity of k-Plexes and Z f with the index f such that
f (i) = ni gives a formation of Z . In Sect. 5, we introduce
some control rules to enable us to disregard useless forma-
tions, given the restriction that formations must be those for
k-MPCswhose density is guaranteed by another parameter j .

Table 1 Basic notations

Notation Definition Meaning/interpretation

G (V, Γ ), where Γ ⊆ (V × V ) \ {(x, x)|x ∈ V } An undirected graph with a set V of vertices and an
adjacency relation Γ on V

Γ (x) {v ∈ V |(x, v) ∈ Γ } The set of vertices in V adjacent to a vertex x

G[X ] G[X ] = (X, Γ ∩ (X × X)) The subgraph of G induced by a set of vertices X

ΓX (x) Γ (x) ∩ X The set of vertices adjacent to a vertex x in G[X ]
degX (x) |ΓX (x)| The degree of a vertex x in G[X ]
Cand(X) {y ∈ V |Xy is a k-Plex } The set of k-Plex candidates of a vertex set X

dist (X, y) the minimum length of paths in G from X to y The distance between a vertex set X and a vertex y

Dn(X) {y ∈ V |dist (X, y) = n} The set of vertices whose distance from a vertex set X is
exactly n

K1(X) D1(X) ∩ Cand(X) The set of k-Plex candidates adjacent to a vertex set X
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Fig. 1 Example of core j (X) for the j = 3 case

4 j -Cored k-MPC

In this section, we define a particular class of k-MPCs to be
our targets, which are dense in the sense that each vertex has
at least j adjacent vertices.We then discuss how to enumerate
those targets completely and efficiently.

Given a graph G = (V, Γ ), a vertex set X is said to be
j-cored if degX (x) ≥ j for any x ∈ X . The largest j-cored
set, denoted by core j (V ), is called the j-core ofG [5].1 For a
vertex set X , core j (X) is the j-core of the induced subgraph
G[X ]. We can observe a monotonicity in j-core operations,
as follows.
Fact (Monotonicity of j-cores): For vertex sets X1, X2 of
V , core j (X1) ⊆ core j (X2) holds whenever X1 ⊆ X2.
Verification: It is easy to see that core j (X1) ⊆ X1 ⊆ X2.
For any x1 ∈ core j (X1), because degX1(x1) ≥ j , we
have degX2(x1) ≥ degX1(x1) ≥ j . This means that x1 ∈
core j (X2) for any x1 ∈ core j (X1). Therefore, core j (X1) ⊆
core j (X2). �

The construction of core j (X) for a vertex set X is simple.
Essentially, core j (X) can be obtained by iteratively remov-
ing vertices of degree less than j from X . Because removing
some vertices usually decreases the degree of other vertices,
we can iterate the removal process until no more vertices can
be removed.

This j-core process is illustrated in Fig. 1. Any con-
nection toward outside of X is ignored as we consider the
subgraph G[X ]. For this X , both x6 and x7 can be removed
because degX (x6) = degX (x7) = 2 < j = 3. After this
removal, degX\{x6,x7}(x5) becomes 2. Therefore, x5 can now
be removed.No further removal can bemade using the lower-
bound constraint in this case because all remaining vertices
x1, x2, x3 and x4 retain at least j adjacent vertices after the
previous removals.

Our target can now be defined as a k-MPC which is
j-cored, called a j-cored k-MPC (( j, k)-MPC). We now
consider an efficient algorithm for enumerating every ( j, k)-
MPC.

1 The notion of j-core was originally defined in [23]. In this paper, we
use the definition and construction method for j-core given in [5].

Fig. 2 Examples showing how the j-core operation is useful

Unlike k-Plexes, the class of j-cored vertex sets does not
have the antimonotonicity property. Despite this, we can give
a sufficient condition for c-k-Plexes to become j-cored. We
can then use the condition in reverse to reject hopeless c-k-
Plexes from appearing in formations.
Fact (Hopeful c-k-Plex): Let X be a c-k-Plex extendable to
some ( j, k)-MPC by adding vertices to X . Then,

X ⊆ U (X), where (2)

U (X) = core j (X ∪ Cand(X)). (3)

Verification: As Xz ⊆ Z for any z ∈ Z − X and Z is a
k-Plex, Xz is also a k-Plex because of the antimonotonicity
of k-Plexes. Therefore, Z ⊆ X ∪ Cand(X). Z is j-cored,
giving X ⊆ Z ⊆ core j (X ∪ Cand(X)). �

An X satisfying (2) is said to be “hopeful.” Conversely,
“hopeless” sets are those satisfying the negation of (2).

(Hopelessness) X −U (X) 	= ∅ (4)

The definition (3) of U (X) that takes k-Plex candidates
Cand(X) before the j-core operation is weak, particularly
for small X of size less than k. In this case, a large number
of vertices appear as k-Plex candidates independently of the
length of the paths connecting X and the candidates. As X
is extended to include a vertex y further from X , the shortest
path connecting X and y in the extensionwill become longer.
Consequently, such an extendedY will not be k-Plex, because
there will be many vertices not adjacent to y on the path. If
we are targeting connected k-Plexes including X , the distance
limit becomes the key to defining U1(X) = U (X) ∩ D1(X)

as a set of potential candidates for ( j, k)-MPCs.
Figure 2 shows that the j-core operation is useful under

such a distance limit and also suggests that the construction
of U (X) depends on the sizes of X . In the right-hand fig-
ure, for a singleton Y of the black circle y, Y ∪ Cand(Y )

is the whole vertex set that is j-cored, where j = 2. There-
fore, nothing is removed by performing the j-core operation
for Y ∪ Cand(Y ). Nevertheless, note that the vertex z can-
not be consistent with Y in making a c-k-Plex, because
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dist (Y, z) = 4 > k = 3. More precisely, on the paths
connecting Y and z, there are four vertices not adjacent to
z, including z itself. Therefore, there can be no c-3-Plex
involving Y z. For this reason, we should remove z before
we test if Y is extendable to j-cored c-k-Plexes. Let N3

be the set of remaining candidates together with Y . Then
core j (N3) = ∅ asserts that there exists no j-cored c-k-
Plex containing Y .

Conversely, the left-hand figure shows a case of X with
|X | = 2. Similarly, when k = 3, vertices with dist (X, z) >

3 cannot be members of a c-3-Plex that includes X . After
excluding vertices that violate the distance limit, we perform
a 3-core operation. We first remove y2 and y3, then y1. The
remaining part, surrounded by the dot–dash line and shaded,
is 3-cored and is a maximal 3-Plex in this case.

4.1 Small c-k-Plex

A c-k-Plex X is said to be small if |X | < k. Note here that
any small connected X is a c-k-Plex. In this case, therefore,
Cand(X) is given as V − X which is usually large. To omit
useless candidates, we check whether there exists some c-k-
Plex Z such that Xy ⊆ Z for a small c-k-Plex X and y /∈ X .
Because Z = Xy is a trivial positive result for dist (X, y) =
1, we analyze the cases where � = dist (X, y) ≥ 2. Consider
the shortest path p = (y0, y1, . . . , y�′ = y) from X to y in
G[Z ], where y0 ∈ X and y1, . . . , y�′ ∈ Z . Then, � ≤ �′, and
y is not adjacent to any of X , y1, . . . , y�′−2 and y�′ = y itself.
Because Z is a k-Plex, it must be |X | + (�′ − 2) + 1 ≤ k.
Therefore, we have � ≤ �′ ≤ k − |X | + 1. In other words, y
with dist (X, y) > k−|X |+1 can never be a member of any
c-k-Plex including X . Therefore, for small X , the following
definition for U (X) is more accurate.

U (X) = core j (X ∪ K (X)),

K (X) = ⋃k−|X |+1
i=1 Di (X),

where k − |X | + 1 is the distance limit.
Because the distance limit decreases as X becomes larger,

K (X) is monotonically decreasing.

4.2 Medium c-k-Plex

We say that a c-k-Plex X is medium if k ≤ |X | < j + k.
For a medium c-k-PlexX , any vertex whose distance from X
is greater than 1 can never be a k-Plex candidate because it
has no connection with at least k vertices in X . Therefore,
Cand(X) = K1(X), and U (X) can be given exactly as

U (X) = core j (X ∪ K1(X)).

4.3 Large c-k-Plex

We say that c-k-Plex X is large if |X | ≥ j + k. Any large X
is j-cored because j ≤ |ΓX (x)| is derived from j + k ≤ |X |
and |X−ΓX (x)| = |X |−|ΓX (x)| ≤ k. We need not perform
the j-core operation, which gives U (X) = X ∩ Cand(X).
Therefore, we have the following rule for updating U .

U (Xu) = U (X) ∩ Cand(Xu), where u ∈ U1(X).

The rule for large X is the same as that for k-Plexes.

4.4 Revised formations for ( j, k)-MPCs

Using theseU (X) definitions that depend on |X |, a formation
Z f = (v f (1), . . . , v f (|V |)) of ( j, k)-MPC Z satisfies

U
(
Z f
i+1 = Z f

i v f (i+1)

)
⊆ U

(
Z f
i

)
and (5)

v f (i+1) ∈ U1

(
Z f
i

)
, where U1depends on |Z f

i |, (6)

U1

(
Z = Z f

|Z |
)

= ∅. (7)

Condition (6) is stronger than (1) because U1(Z
f
i ) ⊆

K1(Z
f
i ). The Condition (7) holds because U1(Z) ⊆ K1(Z)

and K1(Z) = ∅ by the property of ( j, k)-MPC as a k-MPC.

5 Right and left search control rules

If a c-k-Plex Z is more densely connected, the number of
possible formations of Z will be greater. To achieve efficient
computation by avoiding useless and duplicated formations,
we can deploy two search control rules, namely “right” and
“left” rules.

Using a right candidate control (RCC), we can exclude
many useless formations. A formation Z f = (v f (1), . . . ,

v f (|Z |)) can be obtained by extending an intermediate Z f
i

with a vertex in U1(Z
f
i ). In other words, for complete enu-

meration of formations, we have to examine every vertex in
U1(Z

f
i ) to extend Z f

i . Some of them, however, will result
in nonmaximal k-Plexes. Extending an idea discussed in
[8,26], we can identify the candidate set R(Z f

i ) using the

property that adding member vertices in R(Z f
i ) only to the

present Z f
i will never achieve a maximal k-Plex. Therefore,

the set of vertices actually used to extend Z f
i is given as

N R(Z f
i ) = U1(Z

f
i ) − R(Z f

i ) and called the nonright can-
didates. The RCC used here can be regarded as an extended
version of the RCCs in [28] in the sense that it is more widely
applicable to nonsmall Z f

i than that in [28].Althoughwe skip
the details because of space limitations, interested readers can
refer to [18].
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In addition to using RCC, we can deploy a left candidate
control (LCC) enabling just one formation for each ( j, k)-
MPC to be composed. The LCC is in some sense a standard
technique for set enumeration [21] and is similar to what is
discussed in [26]. In essence, if we extend an intermediate
Z f
i , we do not need to consider any vertex y such that y ≺

v f (i), called a left candidate because any formation obtained

by extending Z f
i with such a y can be composed by extending

another intermediate formation with some left candidate �( 	=
y). Therefore, the set of vertices we actually use to extend
Z f
i is given by N R(Z f

i )− L(Z f
i ), where L(Z f

i ) is the set of
left candidates. Although we do not go into detail, the effects
of the control rules in forming the search tree are illustrated
in the next section.

6 Algorithm for ( j, k)-MPCs

In Fig. 3, we present an algorithm for making formations
for ( j, k)-MPCs. At each intermediate c-k-Plex X = Zc

i ,
only the nonleft and nonright candidates x at X are added
to extend the partial formations, provided that X together
with x is hopeful. Therefore, any hopeless cases are omitted
immediately. Although the whole control structure appears

simple, it should be noted that the construction ofU1(X) and
R(X) depends on the size |X |.

The algorithm is written using recursive calls to procedure
Expand. This will realize a depth-first search for ( j, k)-
MPCs.

In Fig. 4, we show the process of invoking Expand in the
form of search tree with c-k-Plexes as its nodes. In the search

Fig. 4 Search tree

procedure Main(Ginput):
[Input] Ginput = (V input, Γ input): an input graph.
[Output] All maximal j-cored c-k-Plexes including (j, k)-MPCs
begin

for each connected component C of corej(V input)
Let G = (C, Γ = Γ input

C );
ũ = arg max

u∈C
deg(u);

NR = C − Γ (ũ); L = ∅;
X = ∅; U = NR;
Expand(X, NR, L, U);

endfor
end

procedure Expand(X, NR, L, U):
// X: c-k-Plex, NR = NR(X), L = L(X);U = U(X) (depending on |X|)

begin
U1 = U ∩ D1(X); //for non-small case, U1 = U
if (U1 = ∅) then

print X; return; // maximal j-cored c-k-Plex including (j, k)-MPC
endif
for each v ∈ NR − L // the order accords to ≺

Xnew = Xv;
Unew = U(Xnew);
if Xnew − Unew = ∅ then continue; // Xnew is hopeless
NRnew = NR(Xnew); Lnew = (L(X) ∪ {v}) ∩ Unew;
Expand(Xnew, NRnew, Lnew,Unew);

endfor
end

Fig. 3 Enumeration algorithm for ( j, k)-MPCs
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tree, a path from the root, the empty set ∅, to a leaf just corre-
sponds to the formation of a c-k-Plex. Dark circles indicate
hopeless c-k-Plexes from which no branch is expanded. The
double circle is a ( j, k)-MPC. Each of the remaining single
circles has a chance of being extended by choosing some
of N R(X) − L(X) 	= ∅. The dark triangle is a c-k-Plex P
such that every nonright candidate is left. This means that
the ( j, k)-MPC Z obtained by extending X is generated by
another branch with some left candidates � along its path.
In other words, using some initial segment X of Z and its
nonleft � ∈ N R(X), Z appears in the subtree rooted by X�.
Finally, the white square J is a j-cored c-k-Plex, which is
not a k-MPC. It is maximal in the sense that there exists no
j-cored c-k-Plexes that include J . Although it is straightfor-
ward to exclude such a J with the condition K1(X) 	= ∅,
we allow the output of J in addition to all possible ( j, k)-
MPCs.

We should also note that every ( j, k)-MPC is a subset of
the global j-core core j (V ). In addition, because core j (V )

comprises several connected components and our targets
must be connected, we run the algorithm for each connected
component C of core j (V ).

In setting parameters k and j , we assume a preferred size
range [n1, n2] and a density parameter τ . Then the CLB will
be j = τ · n1, and the DUB will be k = (1 − τ) · n2.

7 Experimental results

In this section, we present our experimental results. The pro-
posed system, referred to as JKMPC, was coded in Java and
executed on aPCwith an Intel® CoreTM-i7 (1.7GHz) proces-
sor and 8 GB memory. For several datasets, we observed the
computation times and the quality of the solutions as repre-
senting pseudo-cliques.

To investigate the practical efficiency of JKMPC, we
compared it with MaxKplexEnum, a state-of-the-art max-
imal connected k-Plex enumerator [6].2 In Ref. [6], it was
shown that MaxKplexEnum could enumerate maximal
(connected) k-Plexes much faster than Pemp, a pioneer sys-
tem for enumerating maximal k-Plexes [28].3

7.1 Datasets

For our experiments, we prepared a collection of both syn-
thetic and real networks.

As a synthetic dataset, we created a scale-free network,
referred to as BA, based on the Barabási-Albert model [3].

2 Its Python-based source code was kindly provided by the authors of
[6].
3 As discussed in [6,20], Pemp was the only system available for the
task until recently.

This dataset involved the parameters N = 10, 000 and m =
10, where N was the number of nodes and m the number of
edges to be attached from each new node to existing nodes.
We also created a synthetic small-world network, referred to
as WS, based on theWatts–Strogatz model [27]. This dataset
involved the parameters N = 50, 000, K = 20 and p = 0.1,
where N was the number of nodes, K the initial degree of
each node and p the probability of rewriting edges.

For the real datasets, we prepared four benchmark net-
works, calledGrQc [10,11],DAYS [4,7],DBLP [11,29], and
Google [11,12]. GrQc was a network representing scien-
tific collaborations among authors of submitted arXiv papers
under the category of General Relativity and Quantum Cos-
mology. The researchers were the nodes, with co-authors of
a paper being connected by edges to each other. DAYS was
a word co-occurrence network created from a collection of
Reuters news articles. If a pair of words co-occurred in a
certain number of sentences, they would be connected by an
edge. DBLP was also a collaboration network constructed
from the DBLP computer science bibliography.4 Authors as
nodes were connected if they had published a paper together
in registered journals or conferences. Google was a Web
graph comprising Web pages and their hyperlinks, and was
released as a part of a Google programming contest in 2002.5

7.1.1 Characteristics

Characteristics and degree distributions of those networks are
presented in Fig. 5. Note here that since both BA and WSwere
artificially generated in systematic ways, they had charac-
teristic properties which are rather rare in the real world.
Concretely speaking, although every vertex inBA had at least
10 edges, where the value was determined by the parameter
m, the minimum degree in most real networks was just a
small integer, say 1. This implies that the average degree of
BA would be larger than those of most real networks. More-
over, the vertex degrees in WS were distributed around 20
determined by the parameter K as the peak. In other words,
the degree distribution did not follow a power law. That is,
WS was not scale-free which is a typical property of most
real networks, whereas it was a small-world network. From
these observations, we tried BA and WS to examine whether
our algorithm can work well even for unrealistic networks.

Because the others were all real networks, their degree
distributions seemed to almost followpower laws as shown in
Fig. 5. However, we found several characteristic differences
among them. The density of GrQc was clearly higher than
those of the others, whereas the cluster coefficient was not
characteristic. For DAYS, because the number of edges was
about a half of the number of vertices, the average degree

4 http://dblp.org.
5 http://www.google.com/programming-contest.
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Fig. 5 Scales and degree distributions for networks

and the cluster coefficient were much smaller than those of
the others. The cluster coefficient of DBLPwas clearly larger
than those of the others, whereas the maximum degree was
small for the number of vertices. Because Google was the
largest real network in the experiments, the degree of each
vertex was in a fairly wide range from 1 to over 6000.

From the above, the networks used in the experiments had
their own characteristic features. Using the networks, there-
fore, we could examine the proposed algorithm in various
cases.

7.1.2 Preprocessing for real networks

In our preparation process for the real networks, DAYS and
Google, we conducted the following preprocessing.

The word co-occurrence network, DAYS, was originally
provided as a network with 13, 332 vertices (words) and
243, 447 edges, where each edge connected a pair of words
co-occurred in the same text sentence. Moreover, the weight
of each edge was defined as the co-occurrence frequency.
For the original network, we removed every edge that
assigned the weight less than 4, to exclude insignificant co-
occurrences of too small frequencies. The resultant network
with 5616 edges was actually used for the experiments.

The Web graph, Google, was originally available as a
directed network with 875, 713 Web pages as vertices and

5, 105, 039 hyperlinks as directed edges. To obtain an undi-
rected network, we neglected the directions of the hyperlinks
and identified any edges connecting the same pair of Web
pages with a single undirected edge. For the experiments, we
actually used the resultant network with 4, 322, 051 edges as
Google.

7.2 Computational performance

We know of no existing algorithm devoted to enumerat-
ing all ( j, k)-MPCs. This makes it difficult to compare
JKMPC directly with other systems. However, our target
k-MPCs can be obtained by any maximal k-Plex enumer-
ator with a j-coreness check. Therefore, we measured the
computational performance of a state-of-the-art enumera-
tor, MaxKplexEnum [6], and of our JKMPC to investigate
the practical efficiency of our system. Given a network,
MaxKplexEnum runs in FPT (fixed-parameter-tractable)
incremental polynomial time with respect to k and can
enumerate a designated number N of maximal k-Plexes.
That is, to completely obtain our target ( j, k)-MPCs using
MaxKplexEnum, there has to be a sufficiently large value
for N for it to generate a set of candidates that includes
all of our solutions. However, it is impossible to identify
such a suitable N in advance. Therefore, in our com-
parison experiments, we first ran JKMPC and identified
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Fig. 6 Computation times

the number of solutions Ñ . We then tried to detect Ñ
maximal k-Plexes using MaxKplexEnum. Note that the
k-Plexes extracted by MaxKplexEnum do not always con-
tain all of our solution ( j, k)-MPCs. That is, using the value
of Ñ can provide MaxKplexEnum with the best-case sce-
nario that the k-Plexes found by MaxKplexEnum would
exactlymatch our solutions.Using this approachwould never
unfairly advantage our JKMPC.

Figure 6 shows the computation times for both systems,
where the dotted lines indicate MaxKplexEnum and the
solid lines indicate JKMPC. Data points for each k-value are
distinguished by point types (e.g., •, �). For each computa-
tion, we set a time limit of 12 h. If a computation for some
j and k did not complete within the limit, the corresponding
data point is omitted from the graphs. In our experiments, we
assumed that the values of j were larger than k to exclude
undesirable solutions of low density.

The larger a j-value is, the smaller the number of ( j, k)-
MPCs becomes. MaxKplexEnum finds the computation
easier for higher ranges of j because it is required to enu-
merate a smaller number of maximal k-Plexes. In fact,
MaxKplexEnum executes faster than our system for higher
ranges of j . Its performance, however, suddenly deteriorates
as j decreases. In many cases, it failed to complete the enu-
meration within the time limit. One such example was the
case of j = 3 and k = 2 forBA, whereMaxKplexEnumwas
required to extract 19, 138 maximal k-Plexes.

The number of solutions we have to enumerate is also
affected by the value of k. In most cases, it increases as k
increases. It turns out that MaxKplexEnum can work well
for a small k, say 2. For k = 3 or k = 4, however, we often

observed low performance by MaxKplexEnum even for the
larger j-values. For example, for WS, the computation was
completed within the time limit only for j = 10. Moreover,
no data points for k = 4 and k = 5 were observed with
GrQc, or for k = 4 with DBLP.

In contrast, the performance of JKMPC was almost sta-
ble. Even for cases that were difficult for MaxKplexEnum,
our system could enumerate all solutions. In other words,
JKMPC has the ability to extract ( j, k)-MPCs even for rel-
atively small sizes. This is a remarkable advantage of our
system because it is usually difficult for standard methods
of graph clustering and partitioning to detect such small
dense subgraphs. Therefore, these results demonstrate that
JKMPC is an efficient and practical system for enumerating
( j, k)-MPCs.

7.3 Quality of solutions as pseudo-cliques

Because the notion of a k-Plex was originally proposed as
a relaxation model for a clique, any maximal k-Plexes with
lower densities would be undesirable. Therefore, we would
like our solution k-Plexes to have sufficient density. To inves-
tigate the quality of solution k-Plexes from the viewpoint
of pseudo-cliques, we observed the density distributions for
solutions obtained by MaxKplexEnum and JKMPC. As
with the computational performance experiments, given a
pair of j and k for each network, we first enumerated ( j, k)-
MPCs using JKMPC. If the number of obtained solutions
was Ñ , we then tried to enumerate Ñ connected maximal
k-Plexes using MaxKplexEnum. Finally, for the solution k-
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Fig. 7 Density distributions of solution k-Plexes

Plexes enumerated by each system, we recorded their density
distributions.

The density distributions of solutions for each network are
presented in Fig. 7. For each network, the upper and lower
graphs show theMaxKplexEnum and JKMPCdistributions,
respectively. Clearly, the distributions are quite different for
each network. For more precise analysis, we also summa-
rize the averages and standard deviations of the densities, as
shown in Fig. 7.

For BA, although the standard deviations by both sys-
tems are low and almost the same, the average of 0.816
for JKMPC is much better than that of 0.509 for
MaxKplexEnum.

For WS, the average of 0.803 for MaxKplexEnum seems
fine. However, the actual densities are spread out away from
the average, as indicated by the high standard deviation of
0.137. Additionally, the densities given for JKMPC are dis-
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tributed around a high average of 0.953 with a very low
standard deviation of 0.018.

For GrQc, the average of 0.562 for MaxKplexEnum is
low and the actual densities are distributed in a wide range
from 0.5 to 1.0, whereas the densities for JKMPC give a
high average and a low deviation. Similar behavior can be
observed for DAYS.

For DBLP and Google, the densities for
MaxKplexEnumare somewhat low, giving averages of
0.657 and 0.750, respectively. Moreover, the standard devi-
ations are also high, at 0.154 and 0.170, respectively. The
densities for JKMPC are distributed quite differently. For
both networks,we observe very high average densities, above
0.99, and very low standard deviations near zero.

These results demonstrate that the solutions using
JKMPC have sufficient density. Without doubt, all solutions
would be regarded as pseudo-cliques. However, the solutions
using MaxKplexEnum include many maximal k-Plexes of
relatively low density. In other words, the quality of solutions
using MaxKplexEnum can be unstable, but JKMPC can
work well in practice as an effective pseudo-clique detector.

7.4 Effectiveness of j -coreness constraint

Our ( j, k)-MPC is defined as a maximal k-Plex that satisfies
the j-coreness constraint. The main purpose of imposing the
constraint is to exclude pseudo-cliques that are not densely
connected. To investigate the effectiveness of the constraint,
we compared the numbers of maximal k-Plexes and ( j, k)-

MPCs. The difference between them indicates the number
of undesirable maximal k-Plexes, which we cannot consider
densely connected.

Because theremaybe a huge number ofmaximal k-Plexes,
even in a network of moderate size, enumerating all maxi-
mal k-Plexes in a large network such as DBLP or Google is
quite impractical. Therefore, we present results only for
WS and GrQc. More precisely, for the set of ( j, k)-MPCs,
we aim to enumerate (and count) the maximal k-Plexes of
size larger than j because the minimum size for a ( j, k)-
MPC is given by j + 1 (for any k). For this enumeration, we
implemented a simple extended version of Pemp [28] with
branch-and-bound pruning based on theminimum size of the
solutions.

Figure 8 shows the numbers of maximal k-Plexes and
( j, k)-MPCs for each network with various j and k values.
In the graphs, k-Plexes are represented by dotted lines and
( j, k)-MPCs by solid lines. For each j and k, the difference
between the former and the latter gives the number of max-
imal k-Plexes that cannot satisfy the j-coreness constraint.
To clarify the differences, we show them separately in the
graphs. The graphs show that the differences almost coin-
cide with the numbers of maximal k-Plexes, particularly for
larger values of k. This indicates that most of the maximal
k-Plexes cannot be regarded as densely connected. Our j-
coreness constraint can therefore exclude a high proportion
of these undesirable maximal k-Plexes. Because our algo-
rithm deploys several search control mechanisms based on
this constraint, a large number of useless search branches

103

104

105

106

107

108

109

 3  4  5  6  7  8  9  10

WS

N
um

be
r o

f S
ol

ut
io

n 
k -

Pl
ex

es

j-value

k=4
k=3
k=2

101
102
103
104
105
106
107
108
109

 3  4  5  6  7  8  9  10
GrQc

N
um

be
r o

f S
ol

ut
io

n 
k-

Pl
ex

es

j-value

k=5
k=4
k=3
k=2

103

104

105

106

107

108

109

 3  4  5  6  7  8  9  10

WSD
iff

er
en

ce
 o

f S
ol

ut
io

n 
N

um
be

rs

j-value

k=4
k=3
k=2

101
102
103
104
105
106
107
108
109

 3  4  5  6  7  8  9  10
GrQcD

iff
er

en
ce

 o
f S

ol
ut

io
n 

N
um

be
rs

j-value

k=5
k=4
k=3
k=2

a

b

Fig. 8 Numbers of solution k-Plexes. a Number of maximal k-Plexes and (j, k)-MPCs. b Difference between numbers of maximal k-Plexes and
(j, k)-MPCs
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(formations) incapable of arriving at solutions can be pruned
during our search process.

Note that, from the definition, every maximal k-Plex of
size no less than j + k is always a ( j, k)-MPC. For any max-
imal k-Plex not densely connected, its size will be in the
interval of ( j, j + k). This implies that most of the maximal
k-Plexes can be considered as relatively small or medium
sized. If our task is to detect densely connected maximal
k-Plexes of larger sizes, the standard methods for graph clus-
tering or partitioning would work well. However, they would
not be suitable when we try to obtain such k-Plexes of mod-
erate size because those clusters would usually be outside
their target. As noted, our algorithm can efficiently enumer-
ate all of ( j, k)-MPCs, including small- or medium-sized
ones. Moreover, finding nonlarge clusters could be valuable
in the sense that they are often invisible or difficult to detect.
Without the j-coreness constraint, we might not have the
ability to detect such potential candidates.

7.5 Practical utility of ( j, k)-MPCs

In our formulation, a densely connected pseudo-clique is
defined as amaximal k-Plex that satisfies the j-coreness con-
straint. That is, the solution k-Plexes we aim to enumerate
are intended to belong to the class of maximal k-Plexes. The-
oretically speaking, however, there must exist k-Plexes that
are not maximal but can satisfy the j-coreness constraint.
An example of such a (nonmaximal) k-Plex is illustrated in
Fig. 9.

For this graph,we try to enumerate (4, 3)-MPCs, i.e.,max-
imal 3-Plexes that satisfy the 4-coreness constraint. It is easy
to find two maximal 3-Plexes, A = {a,1,2,3,4,5} and
B = {b,1,2,3,4,5}. However, we see that degA(a) = 3
and degB(b) = 3, i.e., neither satisfies the constraint. There-
fore, no (4, 3)-MPC can be detected for this example.

Alternatively, consider a subset of A (that is also a subset
of B), X = {1,2,3,4,5}. From the antimonotonicity of a
k-Plex, X is a 3-Plex. Moreover, we have degX (x) = 4 for
any x ∈ X . That is, X is a 3-Plex that satisfies the 4-coreness
constraint even though it cannot be a solution according to
our current formulation.

It could be claimed that such an X should be detected as
a solution because it actually satisfies both of the DUB and

a

1

2

3 4

5

b

A B

X

Fig. 9 Example of maximal j-cored k-Plex

CLB constraints that we impose. This claim could lead to an
alternative formulation of densely connected pseudo-cliques,
namely maximal j-cored k-Plexes (max-( j, k)-PCs). More
precisely, we can define a max-( j, k)-PC as a maximal set
of vertices X that forms a k-Plex and satisfies the j-coreness
constraint. Again, note that X is not necessarily a maximal
k-Plex.

Since a ( j, k)-MPC is always amax-( j, k)-PC, the class of
( j, k)-MPCs is subsumed by that of max-( j, k)-PCs. In our
current framework, we will miss every max-( j, k)-PC that
is not a maximal k-Plex. Therefore, the class of max-( j, k)-
PCs would be preferable to that of ( j, k)-MPCs because we
have a better chance of finding pseudo-cliques that might
be valuable. From a computational point of view, however,
the class of ( j, k)-MPCs has the advantage, because of the
lack of the antimonotonicity in j-coreness. For a set of ver-
tices satisfying the j-coreness constraint, its subset does not
necessarily satisfy the constraint. This simple fact requires
us to pay a substantial computational cost for detecting the
maximal set of vertices with j-coreness. Therefore, ( j, k)-
MPCs and max-( j, k)-PCs each have their strong and weak
points.Onbalance,we argue that the notion of ( j, k)-MPCs is
a reasonable formulation for pseudo-cliques from a practi-
cal viewpoint. To make this argument more convincing, we
recorded the number of max-( j, k)-PCs that were actually
missed in our enumeration process for ( j, k)-MPCs.

From the definitions, any maximal k-Plex of size no less
than j + k satisfies the j-coreness constraint. That is, it can
always be regarded as a max-( j, k)-PC. Moreover, no set of
vertices of size no larger than j will ever satisfy the constraint.
Therefore, for every max-( j, k)-PC we cannot detect, its size
must be in the interval ( j, j + k). In particular, such a max-
( j, k)-PC must appear as a proper subset of a maximal k-
Plex not satisfying the j-coreness constraint. Based on these
theoretical properties, we can count the number of missing
max-( j, k)-PCs for given j and k. Note that we will never
miss any max-( j, k)-PC for k = 2. This is because any max-
( j, k)-PC not satisfying the constraint must comprise at most
j+1(= j+k−1) vertices and the size of its proper subset is
therefore outside the interval ( j, j + 2) (i.e., [ j + 1, j + 1]).

Let M j,k be the set of ( j, k)-MPCs and Mmiss the set
of missing max-( j, k)-PCs. From the subsumption relation,
the set of all max-( j, k)-PCs, denoted byM, can be given as
M = M j,k ∪ Mmiss . Therefore, if the ratio of |Mmiss | to
|M j,k | is sufficiently low (close to 0.0), we can almost iden-
tify the class of ( j, k)-MPCs as being that of max-( j, k)-PCs,
with few solutions beingmissed. In such a case, ( j, k)-MPCs,
which can be computed efficiently, would be considered as
a reasonable and practical formalization of pseudo-cliques.

Table 2 lists the ratio of |Mmiss | to |M j,k | for various j
and k. Because the size interval of max-( j, k)-PCs inMmiss

is defined as ( j, j + k), it would seem that we would miss
more max-( j, k)-PCs as k increases. For the synthetic net-
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Table 2 Ratio of |Mmiss | to |M j,k |
|Mmiss | |M j,k | |Mmiss ||M j,k |

WS

k = 3

j = 4 0 5, 821, 233 0.000000

j = 5 0 3, 483, 608 0.000000

j = 6 0 1, 848, 536 0.000000

j = 7 0 806, 784 0.000000

j = 8 16 253, 356 0.000063

j = 9 50 45, 888 0.001090

j = 10 33 2706 0.012195

k = 4

j = 5 0 21, 131, 619 0.000000

j = 6 0 8, 178, 200 0.000000

j = 7 0 2, 591, 030 0.000000

j = 8 7 602, 300 0.000012

j = 9 96 81, 546 0.001177

j = 10 304 3815 0.079685

GrQc

k = 3

j = 4 16 87, 786 0.000182

j = 5 6 32, 407 0.000185

j = 6 4 20, 014 0.000200

j = 7 0 13, 364 0.000000

j = 8 0 11, 247 0.000000

j = 9 0 9658 0.000000

j = 10 0 2355 0.000000

k = 4

j = 5 18 1, 204, 135 0.000015

j = 6 4 262, 717 0.000015

j = 7 1 168, 025 0.000006

j = 8 0 128, 942 0.000000

j = 9 0 107, 120 0.000000

j = 10 0 100, 080 0.000000

k = 5

j = 6 0 8, 235, 436 0.000000

j = 7 2 1, 192, 371 0.000002

j = 8 0 731, 706 0.000000

j = 9 0 521, 364 0.000000

j = 10 0 478, 779 0.000000

work WS, such a trend can be observed for larger values of j .
For smaller j , however, wemiss very fewmax-( j, k)-PCs. In
contrast, for the real network GrQc, the numbers of missing
max-( j, k)-PCs are quite low, almost 0, for the whole range
of j . These different observations would be caused by the
size distributions for the larger solutions (( j, k)-MPCs).

More concretely, theWS solution sizes are distributed over
the narrow range of 11 to 14 (for j = 10 and k = 4). In con-
trast, for GrQc, we observe a wide range of solution sizes,
from 11 to 46 (for j = 10 and k = 4). We can note simply
that a larger k-Plex can subsume more k-Plexes. For j = 10
and k = 4, moreover, the size of the missed max-( j, k)-
PCs must be in the interval of [11, 13]. Therefore, the larger
solutions inGrQcwould tend tomakemost of the k-Plexes in
the interval nonmaximal. As a result, there are several max-
( j, k)-PCs we will miss. Conversely, for WS, because there
are a small number of ( j, k)-MPCs, and all of them are rel-
atively small, k-Plexes in the interval would be less likely
to be subsumed. Therefore, we might sometimes miss the
detection of a certain number of max-( j, k)-PCs.

Although cases like those for WS are undesirable, similar
cases would not often arise in real-world networks. In actual
networks, such a narrow range of solution sizes is rare. We
emphasize again the ability of our algorithm to detect densely
connected pseudo-cliques of relatively small size (for smaller
j-values). Therefore, we consider our ( j, k)-MPCs to be a
useful formalization of densely connected pseudo-cliques in
practice.

8 Conclusion

In this paper, we have considered the design of an effi-
cient complete algorithm for enumerating ( j, k)-MPCs. For
efficient computation, we have discussed several search
mechanisms that can prune many useless search nodes effec-
tively. Our experimental results have demonstrated that the
algorithm can work well as a practical tool for extracting
densely connected pseudo-cliques in large networks.

Although our j-coreness constraint can drastically reduce
the number of solutions to be enumerated, it might prove
inadequate when dealing with much larger-scale networks.
Therefore, it is worth seeking additional constraints that
would target the desired solutions more tightly. The authors
have investigated a reasonable constraint based on the notion
of variable- j-coreness [19] that considers the degree of iso-
lation of cliques, and are currently extending it. Based on this
work, we expect that the efficiency of our algorithm can be
improved further, becoming practical even for huge networks
of over a million vertices.
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