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Abstract An arbitrary m × n Boolean matrix M can be
decomposed exactly as M = U ◦ V , where U (resp. V ) is
an m × k (resp. k × n) Boolean matrix and ◦ denotes the
Boolean matrix multiplication operator. The minimum k is
called the Boolean rank of M , and it is known to be NP-hard
to find it. With the interpretability issue in data mining appli-
cations inmind, we impose the column-use condition that the
columns of U form a subset of the columns of the given M ,
and employ commonly used heuristics to find as small a k as
possible.To this end, we first derive an exact closed-form for-

mula, J = M
T ◦ M , such thatM = M◦ JT holds, where J is

maximal in the sense that if any 0 element in J is changed to
a 1; then, this equality no longer holds. We measure the per-
formance (in minimizing k) of our algorithms on several real
benchmark datasets. The results demonstrate that one of our
proposed algorithms performs as well or better on all but one
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of them than other representative heuristic algorithms, which
do not impose the column-use condition and thus theoreti-
cally should find a smaller k.Boolean matrix decomposition
with the column-use condition has wide applications. In edu-
cational databases, for example, the “ideal item response
matrix” R, the “knowledge state matrix” A, and the “Q-
matrix” Q play important roles. As they are related exactly
by R = A ◦ QT, given R, we can find A and Q with a small
number (k) of interpretable “knowledge states,” using our
heuristics.

Keywords Boolean matrix decomposition · Boolean rank ·
Efficient algorithm · Educational database

1 Introduction

Matrix decomposition, a.k.a.matrix factorization, has a long
history and is an indispensable tool in matrix algebra [14].
Many applications of matrix decomposition to data min-
ing are described in a recent book on massive data mining
by Rajaraman et al. [39]. The well-known singular value
decomposition (SVD), for example, is nowawell-established
technique and has been applied in diverse areas, ranging from
statistics, image processing, and signal processing to data
analytics, to name a few. Although SVD provides a pow-
erful tool in many applications, it suffers from the lack of
interpretability in some applications [31]. To address the
interpretability issue, researchers investigated nonnegative
factorization (NMF) [3,25,26,47]. In applications such as
digital image analysis, DNA analysis, and chemical spectral
analysis, for example, it is required that the factor matrices
have only nonnegative elements.

To deal with categorical data in data mining, there have
recently been intensive research activities in Boolean matrix
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decomposition (BMD). This problem has appeared and been
investigated in many different guises. A good overview can
be found in the Ph.D. thesis of Miettinen [32], and Vaidya
[45] surveysmany equivalent problems toBMD.The essence
of these problems can be abstracted as formal concept analy-
sis (FCA) [12]. The bi-clique cover problem [1,6,9,17,29]
is a particularly nice equivalent formulation of BMD. Unfor-
tunately, the bi-clique covering of a bipartite graph, hence
BMD, is an NP-hard problem [38] even for the chordal bipar-
tite graphs [35]. However, it can be solved in polynomial time
for some other subclasses of bipartite graphs [11,30,35].

In connectionwith datamining, BMDhas attracted a great
deal of research interest in recent years, as evidenced by a
large number of recent publications. The seminal work by
Miettinen et al. [32,34]was a catalyst to ignite awaveof inter-
est in BMD and its applications to data mining, for example,
[2,4,5,21,33,34,40,43,46,49].

By M ∈ {0, 1}m×n , we mean that M is an m × n Boolean
matrix. BMD aims to find two matrices U ∈ {0, 1}m×k and
V ∈ {0, 1}k×n such that the difference ‖M −U ◦ V ‖L under
some norm L is minimized with a given k or as small a k as
possible. The minimum possible k is called the Boolean rank
ofM . It is known that theBoolean rankof a binarymatrixmay
be larger or smaller than its real rank [15].Moreover, the rank
of any real matrix can be computed efficiently by Gaussian
elimination,whilefinding theBoolean rankof a binarymatrix
is NP-hard [37]. The minimization of ‖M −U ◦ V ‖L under
the Hamming norm L for a given k is called the discrete basis
problem (DBP) [34].

We can divide ‖M − U ◦ V ‖L into two components [4],
Eu ,1 which is the number of 1’s in M that are 0’s in U ◦ V ,
and Eo,2 which is the number of 0’s inM that are 1’s inU ◦V .
In this paper, we require that Eo = 0 orU ◦V ≤ M , in other
words, if an element of M is a 0, then the corresponding
element of U ◦ V must also be a 0. This condition is called
from-below approximation in [4,5]. We initially require that
‖M − U ◦ V‖L = 0 under any norm L , namely we are
interested in exact BMD. Later in this paper we relax the
requirement of exact decomposition, and also discuss from-
below approximation to BMD. Unless otherwise specified,
‖M‖ (resp. ‖v‖) shall denote the number of non-0 elements
in matrix M (resp. vector v), i.e., we adopt the l0 norm. Since
BMD is an NP-hard problem, it is impractical to insist that
we discover U and V with the minimum k, especially when
the size of M is very large.

Geerts et al. [13] formulate the problem as follows. A tile
consists of a set of 1’s in a Boolean matrix that appear at
every intersection of a set of rows and a set of columns, and
the number of those 1’s is called the area of the tile. A tile is
also called a combinatorial rectangle in a communications

1 The subscript “u” stands for “uncovered” or positive error.
2 The subscript “o” stands for “overcovered” or negative error.

context [22], and a maximal tile corresponds to a formal
concept in FCA [12]. A set of tiles is called a tiling. Geerts et
al. [13] investigate several tiling problems cast in the context
of databases. We paraphrase some of them as problems of
covering 1’s in a given matrix M .

– Minimum tilingFind a tiling containing the smallest num-
ber of tiles that together cover all the 1’s in M .

– Maximum k-tiling Find a tiling consisting of at most k
tiles covering the largest number of 1’s in M .

– Large tile mining (LTM) Given a minimum threshold σ ,
find all tiles whose area is at least σ .

Thus, the difference between maximum k-tiling and the
discrete basis problem is that the former imposes the from-
below approximation condition, but the latter does not.
Geerts et al.’s main interest is in designing an algorithm for
maximum k-tiling, which can be used to solve minimum
tiling problem.

We mentioned nonnegative factorization (NMF) earlier
in connection with the interpretability issue. To address this
issue from a different angle, Drineas et al. [7,8] introduced
CX- and CUR-decompositions. In the CX-decomposition, a
given matrix M is decomposed into two matrices C and X
such that the “difference” ‖M −C ◦X ‖L is minimized, with
the column-use condition that the columns of C must be a
subset of the columns of M . Note that in CX-decomposition,
a parameter k is given and it is required that C have no more
than k columns.

In the CUR-decomposition, on the other hand, a given
matrix M is decomposed into three matrices C,U , and R,
with the condition that the columns of C (resp. rows of R)
must be a subset of the columns (resp. rows) of M . Mietti-
nen [31] applies CX- (resp. CUR)-decomposition to BMD,
where all the factor matrices are Boolean, and proposes
heuristic algorithms. They calls it BCX- (resp. BCUR)-
decomposition, and imposes the column-use condition that
the columns of C form a subset of the columns of M .

We also adopt the column-use condition that the set of
columns of the factor matrixU form a subset of the columns
of M in decomposing M intoU ◦V . Arguments in support of
imposing this condition in some datamining applications can
be found in [18,31]. Role mining problem [46], which is also
equivalent to BMD, is particularly useful to explain/justify
the column-use condition. The human resources department
of a company may assign certain permissions to its employ-
ees. These permissions can be represented by a Boolean
matrix M , where the rows (resp. columns) represent the
employees (resp. permissions). Since it is constructed by the
management, each permission has a well-defined specific
purpose, namely it is clearly interpretable. We now quote
a paragraph from Ene et al. [9], which gives some support
to the column-use condition. A “role” corresponds to a tile.
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“We have ignored the qualitative but important question of
whether or not these roles are meaningful. Indeed, this is the
biggest barrier we have encountered to getting the results of
role mining to be used in practice; customers are unwilling
to deploy roles that they can’t understand. In practice, role
mining alone is not sufficient.”

Our main goal is to solve the minimum tiling problem
defined above (or from-below BMD) with the column-use
condition. Imposing the column-use condition has a benefi-
cial effect of greatly reducing the search space for candidate
tiles. As commented in [4], the number of maximal tiles may
be exponential in n+m. Themajor effort in [13] is on pruning
tiles that are not good candidates. Thanks to the column-use
condition that we impose, we are spared of that task and our
search space consists only of O(n) tiles. Selecting the best
k from among a set of candidates is common to both their
algorithms and ours and they both use essentially the same
set-covering heuristic.

It is clear that exact BMD is easily reducible to the set
cover problem (SC). Feige [10] shows that SC can be solved
approximately with the guaranteed approximation ratio of
O(log n) in the worst case. Umetani et al. [44] give a survey
on SC algorithms, but new heuristics are still being proposed,
e.g., [23]. Bělohlávek et al. [5] comment that using a SC
heuristic (without any modification) to solve BMD is not
very effective. In another context, Miettinen [31] also states
that in practice algorithms without provable approximation
factors performed better.

1.1 Main contributions of this paper

We present algorithms for minimum tiling (or exact BMD)
in a limited search space, although our algorithms can be
modifiedonly slightly to solve themaximum k-tilingproblem
(or from-below BMD) as well.

Using elementary matrix calculus, we first derive a simple
closed-form formula for matrix J satisfying M = M ◦ JT,
where J is maximal in the sense that if any 0 in J is changed
to a 1, then this equality is violated. We then propose two
heuristic algorithms for decomposing M ∈ {0, 1}m×n into
U ◦ V , where U ∈ {0, 1}m×k and V ∈ {0, 1}k×n , such that
U satisfies the column-use condition and k is minimized.
Matrix J greatly facilitates finding the set of all candidate
tiles.

Two important performance criteria are (i) how close the
common dimension k of the generated U and V is to the
(Schein) rank of M , which is the minimum possible, and (ii)
how fastU and V can be computed. We demonstrate that our
algorithms do rather well in these aspects in comparison with
other known algorithmswithout the column-use condition [4,
5,13,49]. Obviously, without the column-use condition, one
should be able to achieve a smaller (not larger to be exact) k.
When the objective is exact BMD, in spite of this restriction,

our algorithms do as well as or better than the others (without
the column-use condition) on four out of the five popular
datasets we have tested,3 which we find rather surprising.

We apply one of our algorithms to educational data min-
ing. The “ideal item response matrix” R, the “knowledge
state matrix” A, and the “Q-matrix” Q play important roles.
As they are related exactly by R = A ◦ QT, given R, we
can find A and Q with a small number (k) of interpretable
“knowledge states,” using our heuristics.

Our algorithms can be slightly modified to find from-
below approximation with competitive coverage (i.e., the
fraction of the 1’s covered by the selected tiles). Since matrix
operations are available in popular mathematical software
packages such as MATLAB, Maple, and the R-language,
we made special efforts to state our algorithms in matrix
operations. We believe that it has helped to enhance read-
ability.

1.2 Related work

Geerts et al. [13] concentrate on ‘maximum k-tiling’ and
‘large tile mining’ mentioned before. Their algorithm, which
we call Tiling, uses the well-known greedy SC heuristic
to iteratively find tiles that cover the most uncovered 1’s in
the given matrix M . What is new is the way they choose the
candidate tiles. Miettinen et al. [34] designed an algorithm,
named Asso, to solve the DBP. As such, it is not designed
to produce exact BMD with the minimum dimension.

Work by Bělohlávek et al. [4,5] addresses exact, as well as
approximate, BMD. They make use of ideas from FCA [12],
and propose two heuristic algorithms, named GreConD and
GreEss, which find good from-below approximation as
well as exact BMD. They do not impose the column-use
condition. In [4], they compare the performance of their algo-
rithms with other known algorithms. Keprt and Snášel [19]
also discussBMD, from the viewpoint of concept lattice [12].

Another group of researchers, Xiang et al., worked on the
“summarization” of a database [49]. Essentially, they also
try to find a tiling that covers all 1’s in a given transactional
database, which can be represented by a Boolean matrix.
However, the objective function that they want to minimize
is not the number of tiles in the tiling, but the total size of
the “description length,” based on theMinimum Description
Length (MDL) Principle. (See Grünwald’s book [16].) They
equate the “description length” of a tile with the sum of the
number of 1’s in a row of the tile and the number of 1’s in a
columnof the tile. They propose a heuristic algorithm, named
Hyper, to minimize this objective function, and claim that
it also tends to minimize the number of tiles, which is the
dimension k in our model.

3 See Table 2 in Sect. 5. The rows labeled 100% show the data for exact
decomposition.
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Ene et al. [9] have proposed a very effective heuristic
algorithm for the bi-clique cover problem. Their main con-
tribution is to find a small set of candidate tiles in polynomial
time, and they use a simple heuristic used in [13,46] to select
the smallest subset from among them. Therefore, it is not
relevant to our work reported here, because, thanks to the
column-use condition that we adopt, we already have a small
number (i.e., O(n)) of candidates.

1.3 Paper organization

The rest of the paper is organized as follows. Section 2 gives
some basic definitions which will be used throughout the
paper, and reviews a minimal set of Boolean algebra facts
needed to understand this paper. Section 3 derives a for-
mula, which forms the theoretical basis for our algorithms. In
Sect. 4, we describe two algorithms for decomposing a given
M into the unknown U and V , and illustrate them with sim-
ple examples. Section 5 presents some experimental results,
which are very encouraging. In Sect. 6, as an example of
possible practical applications, we show how to apply our
algorithms to educational data mining. Section 7 concludes
the paper with some discussions.

2 Preliminaries

In this section, the basic notations and definitions used
throughout this paper are given. We also cite some basic
formulae of Boolean matrix theory. Some standard terms
in matrix theory are used without definition since they are
readily available, for example, in books by Golub and Van
Loan [14] and Kim [20].

2.1 Notations and definitions

Let M = [μi j ] ∈ {0, 1}m×n . Although there is no intrinsic
size or magnitude attribute in the value 0 (False) and 1
(True), we assume that the “larger than” (>) relation 1 > 0
holds and 1 − 0 = 1, 1 − 1 = 0 − 0 = 0. In an expanded
form, it is represented as

M =

⎛
⎜⎜⎜⎝

µ1
µ2
...

µm

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

μ11 μ12 · · · μ1n

μ21 μ22 · · · μ2n
...

...
...

...

μm1 μm2 · · · μmn

⎞
⎟⎟⎟⎠ (1)

where µi = [μi1, μi2, . . . , μin] is called the i th row vector,
and [μ1 j , μ2 j , . . . , μmj ]T is called the j th column vector of
M . We also often use M[i, :] (resp. M[:, j]) to denote the
i-th row(resp. j-th column) vector of M . The matrix whose
(i, j) elements is μi j , where 0 = 1 and 1 = 0, is called the

complement of M and is denoted by M . The matrix whose
(i, j) elements is μ j i is called the transpose of M , and is
denoted byMT. The n×n identitymatrix is denoted by In×n ,
and [0]m×n shall denote anm × nmatrix whose elements are
all 0’s. LetR (resp.N) denote the set of all real numbers (resp.
natural numbers, including 0).

Definition 1 Let p = [p1, p2, . . . , pn] ∈ {0, 1}1×n and q =
[q1, q2, . . . , qn] ∈ {0, 1}1×n . We say that p dominates q if
pi ≥ qi for all i = 1, . . . , n, and write p ≥ q. We write
p > q if p ≥ q and pi > qi for some i (1 ≤ i ≤ n), and say
that p strictly dominates q. Dominance relation is similarly
defined for a pair of column vectors.

Definition 2 Wedefine a partial order “≤” on a pair of binary
matrices P = [pi j ] ∈ {0, 1}m×n and Q = [qi j ] ∈ {0, 1}m×n .
We write P ≤ Q, if pi j ≤ qi j , for all i = 1, 2, . . . ,m and
j = 1, 2, . . . , n.

Definition 3 Let P = [pi j ] ∈ {0, 1}m×n and Q = [qi j ] ∈
{0, 1}m×n such that P ≤ Q. We say that P covers the set of
1 entries in Q at {(i, j) | pi j = 1}.

Definition 4 If U = [ui j ] ∈ {0, 1}m×n and V = [vi j ] ∈
{0, 1}m×n , the element-wise Boolean sum of U and V is
defined by

U ∨ V = [ui j ∨ vi j ] ∈ {0, 1}m×n,

and element-wise Boolean product of U and V is defined by

U ∧ V = [ui j ∧ vi j ] ∈ {0, 1}m×n,

where 0∨0 = 0, 1∨0 = 0∨1 = 1∨1 = 1, 0∧0 = 1∧0 =
0 ∧ 1 = 0, and 1 ∧ 1 = 1.

For U = [ui j ] ∈ {0, 1}m×k and V = [vi j ] ∈ {0, 1}k×n ,
their ordinary arithmetic product is defined by

P = UV = [pi j ] ∈ R
m×n, pi j =

k∑
t=1

uitvt j . (2)

Their Boolean product is defined by

B = U ◦ V = [bi j ] ∈ {0, 1}m×n, bi j = ∨k
t=1(uit ∧ vt j ).

(3)

In a Boolean product, 1’s and 0’s are considered as
Boolean values, while in an arithmetic product, they are
treated as integers. Let M be given by (1) and c be a con-
stant. The matrix whose (i, j) element is cμi j is called a
scalar multiple of M and is denoted by c · M .
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2.2 Brief review of matrix algebra relevant to this paper

The materials in this subsection, except Lemma 1, can be
found in [14,20].

Proposition 1 Associativity.

(a) (UV )W = U (VW )

(b) (U ◦ V ) ◦ W = U ◦ (V ◦ W ).

We can thus write UVW (resp. U ◦ V ◦ W ) for (a) (resp.
(b)) without ambiguity.

Proposition 2 Transpose of product.

(a) For U ∈ {0, 1}m×k and V ∈ {0, 1}k×n, (U ◦ V )T =
V T ◦UT holds.

(b) For U ∈ R
m×k and V ∈ R

k×n, (UV )T = V TUT holds.

Proposition 3 Product expansion.

M = U ◦ V = U [:, 1] ◦ V [1, :] ∨U [:, 2] ◦ V [2, :] ∨ · · ·
∨U [:, k] ◦ V [k, :]

= ∨k
t=1{U [:, t] ◦ V [t, :]} (4)

The following proposition follows directly from (3).

Proposition 4 Let p= [p1 p2 . . . pm] and q=[q1 q2 . . . qn]
be two Boolean row vectors. We have

pT ◦ q =
[
q1 · pT q2 · pT . . . qn · pT

]
(5)

=

⎛
⎜⎜⎜⎝

p1 · q
p2 · q

...

pm · q

⎞
⎟⎟⎟⎠ ∈ {0, 1}m×n . (6)

For example, if p = [0 1 0 1 0 1] and q = [0 1 0 1 1],
then

pT ◦ q =

⎛
⎜⎜⎜⎜⎜⎜⎝

. . . . .

. 1 . 1 1

. . . . .

. 1 . 1 1

. . . . .

. 1 . 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

(7)

Thus, pT ◦q represents a tile. We identify pT ◦q with the tile
it represents, and sometimes call this expression itself a tile.
The formula in the following lemma will be used to simplify
our algorithms later.

Lemma 1 Let p = [p1 p2 . . . pm] and q = [q1 q2 . . . qn] be
two Boolean row vectors, and let C ∈ {0, 1}n×m. Then, the
following equality holds.

‖C ∧ ( pT ◦ q)‖ = qC pT. (8)

Proof The quantity ‖C∧( pT ◦q)‖ is clearly the number of 1
elements of C such that the corresponding element of pT ◦ q
is also a 1. By Proposition 4, the (i, j) element of pT ◦ q is a
1 if pi = q j = 1, and a 0 otherwise. Note that C pT ∈ N

n×1

on the right hand side of (8) is a column vector such that its
i th element is the number of 1’s in the i th row of C , which
are counted if it is in column j satisfying C[i, j] = p j = 1.
Now, q(C pT) adds the i th element of C pT provided qi = 1
and computes their total. 	


3 BMD theorems

In the rest of this paper, we refer to matrix U ∈ {0, 1}m×k

defined by

U =

⎛
⎜⎜⎜⎝

u1
u2
...

um

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

u11 u12 · · · u1k
u21 u22 · · · u2k
...

...
...

...

um1 um2 · · · umk

⎞
⎟⎟⎟⎠ (9)

and matrix V ∈ {0, 1}k×n defined by

V =

⎛
⎜⎜⎜⎝

v1
v2
...

vk

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

v11 v12 · · · v1n
v21 v22 · · · v2n
...

...
...

...

vk1 vk2 · · · vkn

⎞
⎟⎟⎟⎠ (10)

The following lemma follows easily from the fact that
1 ∨ 1 = 1.

Lemma 2 Define matrices G = [gi j ] = UV ∈ N
m×n and

H = [hi j ] = U ◦ V ∈ {0, 1}m×n. Then, for i = 1, 2, . . . ,m
and j = 1, 2, . . . , n we have

gi j = 0 ⇔ hi j = 0

gi j ≥ 1 ⇔ hi j = 1. (11)

The following proposition follows easily from definition.

Proposition 5 Let p, q ∈ {0, 1}1×a be two Boolean row
vectors. Then “ p dominates q” can be expressed as

p ≥ q ⇔ p ◦ qT = q ◦ pT = 0 ⇔ p ◦ qT = q ◦ pT = 1.

(12)
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Lemma 4 below plays an important role in what follows.
In order to prove it, we first need to show a technical lemma.

Lemma 3 Let P ∈ {0, 1}a×p be an arbitrary Boolean
matrix.

(a) For any two row vectors u, v ∈ {0, 1}1×a we have

[v = (u ◦ P) ◦ PT] ⇒ v ≥ u (13)

(b) For any two matrices U, V ∈ {0, 1}b×a we have

[V = U ◦ P ◦ PT] ⇒ V ≥ U. (14)

Proof (a) Suppose v = (u ◦ P) ◦ PT holds. Then v j = 0
(i.e., v j = 1) if and only if

(u ◦ P) ◦ P[ j, :]T = 0.

By Proposition 5, this implies that u ◦ P dominates the j th
column of PT, i.e., the j th row of P . Since this clearly hap-
pens if u j = 1, we have u j = 1 ⇒ v j = 1. It follows that
v ≥ u.

(b) Let ui (resp. vi ) be the i th rowvector ofmatrixU (resp.
V ), as in (9) (res. (10)). Then (13) holds for each i (1 ≤ i ≤
b), namely,

[vi = (ui ◦ P) ◦ PT] ⇒ vi ≥ ui ,

and (14) follows. 	

Without loss of generality, we assume from now on that

the given matrix M has no all-0 row or all-0 column.We now
prove the following theorem, which provides a basis for the
algorithms given in the next section.

Lemma 4 Let M ∈ {0, 1}m×n, U ∈ {0, 1}m×k , and V ∈
{0, 1}k×n satisfy M = U ◦ V , and define

K ≡ M
T ◦U (15)

Then we have

(a) V ≤ KT, and
(b) M = U ◦ KT

Proof (a) From (15), we get

K = M
T ◦U (16)

Plugging M = U ◦ V into (16) and using Proposition 2(a)
and the fact that the order of complementation and transpose

is reversible, we obtain

K = U ◦ V
T ◦U = V T ◦UT ◦U. (17)

If we set U = PT in (17), we get

K = V T ◦ P ◦ PT.

Thus we get K ≥ V T using (14).
(b) Define N = U ◦ KT. We want to show that N = M .

From (15), we get

NT = K ◦UT = M
T ◦U ◦UT, (18)

which yields N
T ≥ M

T
or N ≤ M by (14). On the other

hand, from V ≤ KT (see part (a)), we get M = U ◦ V ≤
U ◦ KT = N . It follows that M = N . 	

Example 1 Let

U =

⎛
⎜⎜⎜⎜⎝

1 1 1 1
1 1 1 0
1 1 0 1
1 1 0 0
1 0 1 1

⎞
⎟⎟⎟⎟⎠

; V =

⎛
⎜⎜⎝
1 1 0 0 1
0 1 0 0 0
0 0 1 0 1
0 0 0 1 0

⎞
⎟⎟⎠

Then we have

M = U ◦ V =

⎛
⎜⎜⎜⎜⎝

1 1 1 1 1
1 1 1 0 1
1 1 0 1 1
1 1 0 0 1
1 1 1 1 1

⎞
⎟⎟⎟⎟⎠

;

K = M
T ◦U =

⎛
⎜⎜⎜⎜⎝

1 1 1 1
1 1 1 1
0 0 1 0
0 0 0 1
1 1 1 1

⎞
⎟⎟⎟⎟⎠

Clearly, Lemma 4(a) holds, and we can verify Lemma 4(b)
as well.

From now on, we consider the special case in Lemma 4,
where U = M , hence

J = M
T ◦ M ∈ {0, 1}n×n . (19)

Lemma 4 has the following important implication.

Corollary 1 Given an arbitrary matrix M ∈ {0, 1}m×n, let
J be defined by (19). Then, V ≤ JT holds for any matrix
V ∈ {0, 1}n×n satisfying M = M ◦ V . 	


Matrix J has a number of other important properties.
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Theorem 1 For any M ∈ {0, 1}m×n, matrix J defined by
(19) has the following properties.

(a) J [i, j] = 1 ⇔ M[:, i] ≥ M[:, j], i.e., column i domi-
nates column j of M.

(b) J [i, j] = J [ j, i] = 1 ⇔ M[:, i] = M[:, j] ⇔
J [:, i] = J [:, j] and J [i, :] = J [ j, :].

(c) J [i, j] = 1 > J [ j, i] = 0 ⇔ M[:, i] > M[:, j] ⇒
J [:, j] > J [:, i] and J [ j, :] < J [i, :].

Proof (a) If we let p = MT[:, i] and q = MT[:, j] in (12),
then we get MT[i, :] ≥ MT[ j, :] if and only if

M
T[i, :] ◦ M[:, j] = 1,

which holds if and only if J [i, j] = 1 by (19). Note that
MT[i, :] ≥ MT[ j, :] is equivalent to M[:, i] ≥ M[:, j].

(b) By interchanging i and j in part (a), we get J [ j, i] =
1 ⇔ M[:, i] ≤ M[:, j]. It follows that J [i, j] = J [ j, i] =
1 ⇔ M[:, i] = M[:, j]. Thus for any column M[:, k] we
have M[:, k] ≥ M[:, j] ⇔ M[:, k] ≥ M[:, i], i.e., any
column that dominates M[:, j] also dominates M[:, i], and
vice versa. This implies J [:, i] = J [:, j]. Similarly, for any
column M[:, k] we have M[:, k] ≤ M[:, j] ⇔ M[:, k] ≤
M[:, i], i.e., any column that is dominated by M[:, j] is
also dominated by M[:, i], and vice versa, which implies
J [i, :] = J [ j, :].

(c) J [i, j] = 1 > J [ j, i] = 0 implies that M[:, i] strictly
dominatesM[:, j], i.e.,M[:, i] > M[:, j]. Therefore, for any
column M[:, k] we have M[:, k] ≥ M[:, i] ⇒ M[:, k] >

M[:, j], which implies J [:, j] > J [:, i]. Similarly, for any
column M[:, k] we have M[:, k] ≤ M[:, j] ⇒ M[:, k] <

M[:, i], which implies J [ j, :] < J [i, :]. 	

Example 2 The properties proved in Theorem 1 can be ver-
ified for the matrix M in Example 1, for which matrix J
defined by (19) is

J = M
T ◦ M =

⎛
⎜⎜⎜⎜⎝

1 1 1 1 1
1 1 1 1 1
0 0 1 0 0
0 0 0 1 0
1 1 1 1 1

⎞
⎟⎟⎟⎟⎠

We now prove another useful property of matrix J defined
by (19).

Lemma 5 Given an arbitrary matrix M ∈ {0, 1}m×n, let J
be defined by (19). If any 0-element in J is changed to a 1,
then M = M ◦ JT no longer holds.

Proof Assume that J does not have the maximum number
of 1’s and assume that J [i, j] = 0, 1 ≤ i, j ≤ n, can be
changed from 0 to 1 without violating Lemma 4(b) withU =

M , i.e., M = M ◦ JT. Let w j = J [ j, ·], so that (w j )
T is

the j th column of JT. If the i th element of w j is 0, i.e.,
J [ j, i] = 0, then M[·, j] � M[·, i] by Theorem 1(a). Let
w′

j be obtained from w j by changing its i th element from
0 to 1. Since M ◦ (w′

j )
T ≥ M[·, i], we have M[·, j] �

M ◦ (w′
j )
T, a contradiction. We conclude that if any element

in J is changed from a 0 to a 1, then M = M ◦ JT is violated.
	


If we change J [3, 1] = 0 → 1 in Example 2, for exam-
ple, then the [3, 3] element of M ◦ JT become a 1, while
M[3, 3] = 0, and M = M ◦ JT no longer holds.

Theorem 2 Let M = U ◦ V be an optimal decompo-
sition of M, satisfying the column-use condition,4 where
U ∈ {0, 1}m×k , V ∈ {0, 1}k×n and k is the minimum possi-
ble. Then for each i = 1, 2, . . . . , k, we have U [:, i] ◦ V [i, :
] ∈ {M[:, t] ◦ J [t, :] | t = 1, . . . , n}.
Proof Let

U ◦ V = ∨k
i=1{U [:, i] ◦ V [i, :]},

and consider a particular term U [:, i] ◦ V [i, :] in it. Since U
consists of columns of M , there is an h such that U [:, i] =
M[:, h]. By Corollary 1, J [h, :] is the maximal row vector
such that U [:, i] ◦ J [h, :] ≤ M , hence V [i, :] ≤ J [h, :]. We
thus have U [:, i] ◦ V [i, :] ≤ U [:, i] ◦ J [h, :] = M[:, h] ◦
J [h, :]. 	


Intuitively, Theorem 2 implies that the search space for an
optimal decomposition ofM under the column-use condition
can be limited to {M[:, t] ◦ J [t, :] | t = 1, . . . , n}. When
the column-use condition is not imposed, the counterpart to
Theorem 2 is proved in [4], using FCA.

In the next section, we design heuristic algorithms for
exact BMD, based on Theorem 2.

4 Heuristic BMD algorithms

4.1 Algorithm description

In this section, we propose new algorithms for finding factor
matrices U ∈ {0, 1}m×k and V ∈ {0, 1}k×n from matrix
M ∈ {0, 1}m×n . By Theorem 2, we want to find a subset of
{M[:, t] ◦ J [t, :] | t = 1, . . . , n} that provides the optimal
tiling. Since an exhaustive search is obviously impractical,
we want to devise a heuristic algorithm that yields a good
suboptimal tiling.

4 By definition, this means that the columns of U are some of the
columns of M .
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Suppose there exists an l satisfying

U ◦ V = ∨k
i=1, j �=l{U [:, i] ◦ V [i, :]},

in other words,

∨k
i=1, j �=l{U [:, i] ◦ V [i, :]} ≥ U [:, l] ◦ V [l, :]. (20)

Then, we can safely eliminate the lth column U [:, l]
and the lth row V [l, :] from U and V , respectively, which
helps reduce the dimension k. The condition (20) is equiv-
alent to ‖T ‖ = ‖T − Tl‖, where T = U JT (arithmetic
matrix product defined by (2)) with J given by (19), and
Tl = U [:, l] ◦ V [:, l]. There may be several indices l that
satisfy (20). Therefore, we need to decide in which order
the eliminations should be carried out. We thus define the
selection index σi as follows:

σi = ‖U [:, i]‖ × ‖V [:, i]‖,

where, as the reader recalls, ‖V ‖ represents the number of 1’s
(l0 norm) in vector V . Clearly, σi is the number of 1 entries
in M that are covered by Gi . Given the initial matrices U
and V , satisfying M = U ◦ V , we generate the new matrix
J by (19). There are at least two straightforward strategies
that appear reasonable, regarding which attribute we should
process first.

(a) Remove-Smallest: Remove attribute j such that σ j

is the smallest, provided the removal does not affect M .
(b) Pick-Largest: Retain attribute j such that σ j is the

largest.

Strategy (b) has been used before by other researchers,
including Geerts et al. [13] and Vaiya et al. [46]. Our first
heuristic algorithm adopts strategy (a). After deleting one
attribute, we update U and V , and repeat the elimination
process until there is no more attribute that can be deleted.

Algorithm 1 Remove-Smallest Input:Responsematrix
M ∈ {0, 1}m×n.

1. Initialize U = M and k = n.
2. Compute

V T = J = M
T ◦ M . (21)

3. Compute 5

T = UV .

5 Intuitively, T [i, j] is the number of tiles inU ◦ V that cover M[i, j].

4. For i = 1, 2, . . . , k compute the size of the maximal tile
for i th attribute (αi ) by

σi = ‖U [:, i]‖ × ‖V [:, i]‖,

and rename the attributes so that σ1 ≤ σ2 ≤ · · · ≤ σk
holds.

5. For j = 1, 2, . . . , k, do

(a) Compute

Tj = U [:, j] ◦ V [ j, :];

(b) If ‖T ‖ = ‖T − Tj‖ then (i) remove column U [:, j]
from U and row V [ j, :] from V ; and (ii) set T =
T − Tj ; k = k − 1.

6. Output U and V .

Our second algorithm adopts strategy (b).

Algorithm 2 Pick-Largest Input: Response matrix
M ∈ {0, 1}m×n.

1. Initialize U = M and k = n.
2. Compute

V T = J = M
T ◦ M . (22)

3. Initialize6 C = [0]m×n ∈ {0, 1}m×n.
4. For i = 1, 2, . . . , k compute the size of the maximal tile

for the i th attribute (αi ) by

σi = ‖U [:, i]‖ × ‖V [:, i]‖.

5. For each i such that αi has not been picked or discarded,
compute (see (8))

δi = σi −U [:, i]TCV [:, i].

If δi = 0 then removeαi by deletingU [:, i] (resp. V [i, :])
from U (resp. V ).

6. Let δ j = maxi {δi } and compute

Tj = U [:, j] ◦ V [ j, :].

Replace matrix C by C ∨ Tj , and delete U [:, j] (resp.
V [ j, :]) from U (resp. V ). If there are still attributes
remaining, then go to Step 5.

7. Output U and V .

6 Matrix C keeps track of the 1 elements in M covered by the products
that have been picked so far. We have C = M when this algorithm
completes.
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Note that we compute σi just once in Step 4, but it is
effectively updated in Step 5. The correctness of the above
algorithms is implied by Theorems 1 and 2.

4.2 Simple example

Example 3 Let us consider the following matrix M , and
carry out Steps 2) and 4), which are common to both algo-
rithms.

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0
1 0 1 1 0 1 1
0 1 1 0 1 0 1
0 0 0 1 0 0 0
0 1 1 0 1 0 1
0 1 1 0 1 0 1
1 0 1 1 0 1 1
1 1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

V T = M
T ◦ M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 1 0
0 1 0 0 1 0 0
1 1 1 0 1 1 1
1 0 0 1 0 1 0
0 1 0 0 1 0 0
1 0 0 0 0 1 0
1 1 1 0 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Step 3 of Remove-Smallest computes

T = UV =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0
2 0 4 3 0 2 4
0 2 4 0 2 0 4
0 0 0 1 0 0 0
0 2 4 0 2 0 4
0 2 4 0 2 0 4
2 0 4 3 0 2 4
2 2 6 3 2 2 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(23)

If we order the columns ofU from the smallest to the largest
according to the value of σi , we get 4,3,7,1,6,2,5. Thus,
Remove-Smallest processes the columns of U in this
order.
Step 5(a): Compute T4.

T4 = U [:, 4] ◦ V [4, :] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Step 5(b): ‖T ‖ > ‖T − T4‖ ⇒ Cannot remove attribute 4.

Step 5(a): Now try the next smallest attribute 3, and compute
T3.

T3 = U [:, 3] ◦ V [3, :] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0
0 0 1 0 0 0 1
0 0 1 0 0 0 1
0 0 0 0 0 0 0
0 0 1 0 0 0 1
0 0 1 0 0 0 1
0 0 1 0 0 0 1
0 0 1 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Step 5(b): ‖T ‖ = ‖T − T3‖ ⇒ Remove attribute 3, and
update T .

T = T − T3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0
2 0 3 3 0 2 3
0 2 3 0 2 0 3
0 0 0 1 0 0 0
0 2 3 0 2 0 3
0 2 3 0 2 0 3
2 0 3 3 0 2 3
2 2 5 3 2 2 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Similarly, attributes (columns of M) 7, 1, and 5 are removed.
Step 6: generates

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
1 1 0
0 0 1
1 0 0
0 0 1
0 0 1
1 1 0
1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

; V =
⎛
⎝
0 0 0 1 0 0 0
1 0 1 1 0 1 1
0 1 1 0 1 0 1

⎞
⎠

(24)

The columns of U are columns 4, 6, and 2 of M , and M =
U ◦ V . Let us now apply Algorithm Pick-Largest to
matrix M . We already illustrated the first four steps above.
From Table 1, we see that δ5 = σ5 = 16 is the largest (tied
with δ2 = σ2 = 16). Since δi = 0 holds for no i , we proceed
to Step 6.

Table 1 Computing σi

i 1 2 3 4 5 6 7

||U [:, i]|| 3 4 6 4 4 3 6

||V [i, :]|| 5 4 2 1 4 5 2

σi 15 16 12 4 16 15 12
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T5 = U [:, 5] ◦ V [5, :] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 1 0 1 0 1
0 0 0 1 0 0 0
0 1 1 0 1 0 1
0 1 1 0 1 0 1
0 0 0 0 0 0 0
0 1 1 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

We setC = C∨T5 to remember the 1’s that are now covered
by the picked product term. Although this algorithm does not
use T in (23), it is instructive to interpret Steps 5 and 6 of
Pick-Largest in terms of T . We have

T = T − T5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0
2 0 4 3 0 2 4
0 1 3 0 1 0 3
0 0 0 0 0 0 0
0 1 3 0 1 0 3
0 1 3 0 1 0 3
2 0 4 3 0 2 4
2 1 5 3 1 2 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

In Step 5, we update {δi }. For example, let us compute
CV [i, :]T for i = 2. We get

CV [2, :]T= [0 0 4 0 4 4 0 4] and U [:, 2]TCV [:, 2]=16.

Therefore, δ2 = σ2 − 16 = 0. This implies that T2 ≤ C .
We can simply remove attribute 2 (i.e, U [:, 2] and V [2, :]).
Updating C by C = C ∨ T2 does not change C .

T = T − T2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0
2 0 4 3 0 2 4
0 0 2 0 0 0 2
0 0 0 1 0 0 0
0 0 2 0 0 0 2
0 0 2 0 0 0 2
2 0 4 3 0 2 4
2 0 4 3 0 2 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

This computation can be done by matrix operation,
although it is not the most efficient, since it computes ele-
ments that are of no use to us. Construct a column vector Us
whose i th element is ‖U [:, i]‖, and a row vector Vs whose
i th element is ‖V [:, i]‖. Compute matrix P = Us ◦ V s.

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

15 12 6 3 12 15 6
20 16 8 4 16 20 8
30 24 12 6 24 30 12
20 16 8 4 16 20 8
20 16 8 4 16 20 8
15 12 6 3 12 15 6
30 24 12 6 24 30 12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Thus, the diagonal elements of P are ‖U [:, i]‖ × ‖V [:, i]‖,
which are listed in Table 1. Note that the i th diagonal element
of UT ◦ C ◦ V T is the number of 1’s in U [:, i] ◦ V [:, i] that
are already covered by C .

UT ◦ C ◦ V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 4 2 0 4 2 2
8 16 8 0 16 8 8
8 16 8 0 16 8 8
2 4 2 0 4 2 2
8 16 8 0 16 8 8
2 4 2 0 4 2 2
8 16 8 0 16 8 8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Thus, the amounts {δi } can be found on the diagonal of
P −UT ◦C ◦V , and they are 13, 0, 4, 4, 0, 13, 4. So δ2 = 13
and δ6 = 13 are the largest. Let us pick attribute 6,7 update
C = C ∨ T6, and recompute P −UT ◦C ◦ V . Since updated
δ1 = 0, we discard attribute 1. (Step 5.) We then get δ7 = 4,
so pick attribute 7. Since δ3 = 0, we discard attribute 3.
Finally, we need to pick attribute 4. For this particular exam-
ple, Pick-Largest generates the same decomposition as
Remove-Smallest given in (24).

Comment 3 Although computing UT ◦ C ◦ V is a con-
ceptually neat way of finding {δi }, the time to compute the
off-main diagonal elements is wasted. Thus, we do not use it
in Pick-Largest.

5 Performance

5.1 Complexity analysis

The time complexity of both algorithms is dominated by the
time to compute matrix V of (21) and (22), respectively, in
their Step 2. By Proposition 3, it can be expanded into n (col-
umn vector, row vector) pairs of sizes m and n, respectively.

Then, evaluating M
T ◦ M takes time proportional to

m∑
i=1

‖MT[:, i]‖ × ‖M[i, :]‖ ≤ n
m∑
i=1

‖M[i, :]‖ = n‖M‖.

This implies that (21) and (22) can be evaluated in O(n‖M‖)
time. Note that in terms of T defined in Step 3 of Algo-
rithm Remove-Smallest, we have

‖T ‖l1 =
n∑

i=1

‖U [:, i]‖ × ‖V [:, i]‖ ≤ m
n∑

i=1

‖U [:, i]‖ = m‖M‖,

7 When there is a tie in the sizes δi , as in this example, there are choices
as to which one we remove or pick first. A particular choice may affect
the coverage performance. We randomly select one.
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where ‖T ‖l1 (l1 norm) represents the sum of the elements of
T .

Theorem 4 Both Algorithms Remove-Smallest and
Pick-Largest run in O(m‖M‖) time.

Proof We can consider that every operation in Algorithm
Remove-Smallest essentially accesses/modifies some
element of T and the (i, j) element is accessed T [i, j] times.
Therefore, the total time is given by O(‖T ‖l1) = O(m‖M‖).

As for Algorithm Pick-Largest, although T is not
used in it, imagine that it was defined. We use U [:, i]TCV [:
, i] to describe Step 5, but it is used for only for the purpose
of a concise description, and this step can be implemented
more efficiently without matrix multiplication. All we need
is a way to keep track of which 1 elements of M has already
been covered. Therefore, the total time is still given by
O(‖T ‖l1) = O(m‖M‖), as reasoned above. 	


The above theorems imply that our algorithms run faster if
the given matrix M is sparse. If we use a sophisticated algo-
rithm, matrix multiplication can be done in O(m2.373) time,
assuming m ≥ n [24,48]. We should mention that another
important performance measure for heuristic algorithms of
the approximation ratio relative to the optimum.We have not
looked into this performance measure yet.

5.2 Experiments on real datasets

To evaluate the performance of our heuristic algorithms,
Pick-Largest andRemove-Smallest,wehave tested
them on several real datasets, which have been used by other
authors as benchmarks. They are Mushroom [27], DBLP,8

DNA [36],Chess [27], andPaleo.9 Table 2 in the next page
lists the results of our experiments and compares them with
Tiling [13], Asso [34], Hyper [49], and GreConD [5],
and GreEss [5]. All but the last two columns of Table 2 are
from [4]. The common dimension k of the factor matrices,
generated by the exact BMD heuristics mentioned above are
listed. The numbers in bold face indicate the best value in
each row. The rows labeled 100% shows the data for exact
decomposition. Asso is not meant for exact BMD, as com-
mented earlier.

Among the datasets we used, Mushroom consists of
8,124 objects and 23 “nominal” attributes. If a “nominal”
attribute y takes h > 2 values, {v1, . . . , vh}, we expanded y,
replacing it by h Boolean attributes {yv1, . . . , yvh }. In row
i , the value of the column corresponding to yv j is has a 1 if
the value of the attribute y in row i in the original dataset is
equal to v j .

8 http://www.informatik.uni-trier.de/~ley/db/.
9 http://www.helsinki.fi/science/now/.

Note that only our algorithms impose the column-use con-
dition. In spite of this restriction, Pick-Largest achieves
the smallest tiling size (or dimension k) for exact (i.e., 100%)
coverage for four out of the five datasets inTable 2,whichwas
somewhat unexpected. Incidentally, we have found a decom-
position without the column-use condition with k = 101
by some other means, so none of the algorithms in Table 2
can find the optimal decomposition for the Mushroom
dataset. As can be seen from Table 2, Pick-Largest and
Remove-Smallest performed equally well in finding the
exact decomposition. Another observation on Table 2 is that
for 100% coverage some results are peculiar in that k > n,
i.e., the common dimension of the factor matrices is larger
than n. Our algorithms are the only ones that never produce
such results.

Although our original intention was to design algorithms
for exact BMD, our algorithms can also be used for “from-
below” approximation [5]. In the from-below approximation,
an important performance criterion is the coverage, defined
as the number of 1’s covered by the product U ◦ V over the
total number of 1’s in the given matrix M [13]. The coverage
is given in the second column of Table 2. Each entry in the
table is the number of tiles used, which is the same as the
common dimension k ofU and V . Figure 1 plots the coverage
of Algorithm Pick-Largest as a function of the number
of attributes contained inU andV . The attributes are arranged
in the order they were picked.

In most applications, high coverage, say, more than
90%, would be of interest, and we have collected cover-
age data in Table 3 in this range for Pick-Largest and
Remove-Smallest, but unfortunately not for the others,
since we haven’t had the time to program the other algo-
rithms. For Mushroom, however, it is stated in [13] that
Tiling needs 45 tiles to attain 90% coverage vs. 47 for
Pick-Largest. Table 3 shows that to attain 100% cover-
age, Tiling needs 119 tiles vs. 109 for Pick-Largest.
We have some evidence to suggest that our algorithms per-
form better than others especially at higher coverages.

Another important aspect of performance is the effi-
ciency of the algorithm in terms of speed and memory use.
Table 4 shows the time it took for them to decompose M (of
Mushroom) intoU and V and the amount of memory used.

Belohlavek et al. [5] carried out extensive tests of their
algorithms GreConD and GreEss, which can be used for
exact BMD, on Mushroom, and measured the time and
memory requirement. Their data for exact BMD are given
in Table 4. We should mention that the platforms we used
to produce our results are different from theirs, as shown in
Table 5. Probably, it is safe to say that there is not a huge
difference between the two. Unfortunately, we do not have
similar data for other algorithms, since they are not published.
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Table 2 Coverage comparison of BMD algorithms for five datasets

Coverage (%) Tiling Asso Hyper GreConD GreEss Remove-
Smallest

Pick-
Largest

Mushroom [27] 50 7 6 19 7 8 37 10

(8124 × 119) 75 24 36 37 24 26 59 27

100 119 N/A 122 120 105 109 109

DBLP 50 5 5 5 5 5 6 6

(6980 × 19) 75 10 10 10 11 10 11 11

100 21 19 19 20 19 19 19

DNA [36] 50 32 27 67 33 41 67 58

(4590 × 392) 75 94 80 155 96 105 155 123

100 489 N/A 392 496 408 368 368

Chess [27] 50 5 2 26 4 6 26 12

(3196 × 75) 75 16 15 39 15 17 44 26

100 124 N/A 90 124 113 72 72

Paleo 50 39 40 38 39 38 39 39

(501 × 139) 75 75 76 73 76 73 75 74

100 151 N/A 139 152 145 139 139

Fig. 1 Coverage of Algorithm
Pick-Largest for
Mushroom

Table 3 Comparison of
Remove-Smallest and
Pick-Largest at high
coverage ratios

Coverage (%) Mushroom DBLP DNA Paleo

Rem.- Smallest 90 76 15 243 107

95 85 17 292 112

98 100 19 332 132

Pick-Largest 90 47 15 197 107

95 62 17 242 112

98 81 19 285 132

Table 4 Performance
comparison

GreConD [4] GreEss [4] Remove-S. Pick-L.

Time 18min 5.7 s 12.47 s 7.39 s 10.71 s

Memory 97MB 2MB 2.25MB 1.72MB
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Table 5 Running platforms
Ours Belohlavek et al.’s [5]

CPU AMD Athlon X2 350 Dual
Core Processor (3.5GHz)

INTEL Xcon 4 (3.2GHz)

Memory 4GB (1.6GHz) 1GB

OS Windows 7 Professional Not mentioned in [5]

Program MATLAB Version R2012b MATLAB (partially hand-coded in C)

6 Application to educational data mining

Educational data mining has been attracting increasing inter-
est in recent years. It aims to discover students’ mastery of
knowledge, or skills which are itemized as attributes. In the
widely studied Rule Space Model [43] in cognitive assess-
ment in education, a Boolean matrix, named theQ-matrix, is
used to represent hypothetical sets of attributes which would
be needed to answer the test items correctly. To explain the
relevance of exact BMD to the educational Q-matrix theory
developed by Tatsuoka [42], let us introduce new symbols
for matrices.

Attribute or skill set: We assume that the students’
knowledge can be represented by the knowledge state matrix
A = [ai j ] ∈ {0, 1}m×k , where ai j = 1 (resp. ai j = 0)
indicates that the i th student possesses (resp. does not pos-
sess) knowledge represented by the j th attribute. For i =
1, 2, . . . ,m, the knowledge state of student i is represented
by a row vector

ai = [ai1, ai2, . . . , aik].

Q-matrix: It is denoted by Q = [qi j ] ∈ {0, 1}n×k ,
where qi j = 1 (resp. qi j = 0) indicates that answering test
item i correctly requires (resp. does not require) knowing
or understanding attribute (=concept) j . Define a row vector
by

qi = [qi1, qi2, . . . , qik].

Response matrix: Given m students and n test items, the
test results can be represented by a matrix R ∈ {0, 1}m×n ,
where R[i, j] = 1 (resp. R[i, j] = 0) indicates that the i th
student solved the j th test item correctly (resp. incorrectly).
Theoretically, student i should be able to answer question j
if ai ≥ q j or ai ◦ q j = 0. We thus define the ideal item
response R[i, j] by

R[i, j] =
{
1 ai ≥ q j
0 otherwise

(25)

If both Q and Awere known, then the students’ test perfor-
mance, called the ideal item response pattern [43], could be

theoretically predicted. The following result was announced
in [41] without proof. Here we provide a simple but formal
proof.

Theorem 5 The ideal item response matrix R, the knowl-
edge state matrix A and the Q-matrix Q are related as
follows:

R = A ◦ QT. (26)

Proof The fact that student i has enough knowledge to
answer question j can be represented by ai ≥ q j , which

is equivalent to ai ◦ qTj = 0 hence ai ◦ qTj = 1 by Proposi-
tion 5. If he/she does not, i.e., ai � q j , on the other hand,

then ai ◦ qTj = 1, and ai ◦ qTj = 0. 	


If R is given but the underlying matrices Q and A are
unknown, we want to mine Q and A out of R. Thanks
to Theorem 5, by finding decomposition R = A ◦ QT,
we can learn students’ knowledge state matrix A and the
Q-matrix Q from the test responses in R. We simply set
M = R, U = A, and V = QT, and decompose M .
Thus, the Q-matrix learning problem can be transformed
into exact (i.e., not approximate) Boolean matrix decom-
position problem. Here we assume that R has no “noise,”
namely it correctly represents the students’ knowledge, and
mine Q and A from it. Clearly, the set of collected test
responses, R, is likely to be “noisy,” because students may
be able to guess correct answers by luck, or may make
silly mistakes (called “slips” [43]). Therefore, the discov-
ered factors A′ and Q′ of R are just approximations to
the true A and Q. This problem is a main issue in Rule
space model [28,41–43,50], but is beyond the scope of this
paper.

Example 4 Here we use the dataset of Example 3.9 in [43].
Table 6 shows the ideal item response pattern matrix R for
m = 12 students and n = 11 test items,

The knowledge state matrix A12×4 and Q-matrix Q11×4

(each with k = 4 attributes) are given by
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Table 6 The ideal item response matrix R12×11 [43]

1 2 3 4 5 6 7 8 9 10 11

1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 0 1 0 1 0 0 0 0

3 1 1 0 1 0 1 0 1 0 0 0

4 1 1 0 0 0 0 0 0 0 0 0

5 1 0 1 1 1 1 0 0 1 1 0

6 1 0 1 0 1 0 0 0 0 0 0

7 1 0 0 1 0 1 0 0 0 0 0

8 1 0 0 0 0 0 0 0 0 0 0

9 0 0 1 1 0 0 0 0 1 0 0

10 0 0 1 0 0 0 0 0 0 0 0

11 0 0 1 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1
1 1 1 0
1 1 0 1
1 1 0 0
1 0 1 1
1 0 1 0
1 0 0 1
1 0 0 0
0 0∗ 1 1
0 0∗ 1 0
0 0∗ 1 0
0 0∗ 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

; Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
1 1 0 0
0 0 1 0
0 0 0 1
1 0 1 0
1 0 0 1
1 1 1 0
1 1 0 1
0 0 1 1
1 0 1 1
1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

In [43], they constructed R from the given A and Q. Here,
taking R as the input, Algorithms Remove-Smallest and
Pick-Largest were able to recover A and Q.

Comment 6 In the above example, note that Q[:, 1] dom-
inates column Q[:, 2]. This means that any test item that
tests concept 2 automatically tests concept 1, in other words,
attribute 1 is a prerequisite for concept 2 [43]. Students 9 to
12 have not mastered concept 1, which are tested in test items
1,2, 5∼8, and 10∼11. Thus R[s, 1] = 0 (they cannot answer
test items testing concept 1) for s = 9∼12. As for any test
items that has a 0 in both columns 1 and 2 of Q, i.e., Q[3, :],
Q[4, :], and Q[9, :], students 9∼12 (who haven’t mastered
concept 1) cannot pass test items testing concept 2. There-
fore, A[s, 2] = 0 for s = 9 ∼12. However, mathematically,
setting A[s, 2] = 1 for s = 9 ∼12 still satisfies R = A◦QT.
See the entries 0∗ in matrix A in Example 4.

In general, we can prove the following.

Lemma 6 Suppose that column Q[:, i] dominates column
Q[:, j]. Then [A[s, i] = 0] ⇒ [A[s, j] = 0].

The input to our algorithms is just R, and the comple-
mented knowledge state matrix A is an output. Algorithm

Table 7 The attribute picked in each round of Pick-Largest

Round 1 2 3 4 5

maxi {δi } 32 30 19 9 0

argmaxi {δi } 1 4 3 2 5–11

Pick-Largest computes the values of δi in each round,
whose maxima are shown in Table 7.

Algorithm Remove-Smallest removes attributes in
the increasing order of σi , provided the product remains the
same, i.e., R. For this example, both algorithms decompose
R into factor matrices with the common dimension (k = 4),
which equals the dimension of the original factors [43].

7 Conclusions and discussions

We have presented two heuristic algorithms to find an exact
decomposition M = U ◦ V such that U consists of a subset
of the columns of M . Exact BMD is aesthetically pleasing
and intellectually satisfying, and we believe that it will find
useful applications in the future. In the present day data min-
ing applications, however, it may not be necessary or very
important. Sowe also showed that our algorithms can be used
for approximate BMD, namely to find a product U ◦ V that
covers most of the 1’s and no 0’s in M . This is sometimes
called “from-below” approximation [4].

We ran our algorithms on several real datasets, which are
often used as benchmarks. On these particular datasets, our
algorithms perform rather well, compared with the known
algorithms proposed in [4,5,13,49]. These results are despite
the column-use condition that we impose, but the others do
not. We think this fact is rather note-worthy. If this is gen-
erally true for large databases, it has a great potential for
practical data mining. Clearly, more extensive tests are called
for to arrive at any definite conclusions. Ene et al. [9] also
report some unexpected, favorable properties of real datasets,
which help role mining. It would be interesting to explore
and understand how they are caused. Incidentally, when the
column-use condition is imposed, it seems that the idea of
concept lattice [12] is not particularly useful.

We have made an interesting observation that the sizes of
the largest, second largest tiles, etc., picked by
Pick-Largest follow Zipf’s distribution rather well.

Although we have concentrated on the elimination of col-
umn dominance, it is possible that a given matrix M has
more row dominance than column dominance. In any case,
it would be worthwhile to apply our algorithms to both M
and MT, and pick the result with the smaller factor matrix
dimensions. There may be situations where a decomposition
of M = A ◦ B is already known, but it is desired to reduce
the number of attributes (columns) in A. In such a case, we
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can apply our algorithms to decompose A as A = U ◦V . We
then have M = U ◦ (V ◦ B) such thatU consists of a subset
of the columns of A.

From Proposition 3, there is a lot of parallelism in matrix
product computation. This implies that if the given matrix M
is very large, our algorithms are amenable to themap-reduce
technique [39].

Finally, as mentioned before, we have not examined the
approximation ratio of our heuristic algorithms relative to the
optimum. We leave it as future work.
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