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Abstract We address the problem of efficiently estimat-
ing the influence degree for all the nodes simultaneously in
the network under the SIR setting. The proposed approach
is a further improvement over the existing work of the bond
percolation processwhichwas demonstrated to be very effec-
tive, i.e., three orders of magnitude faster than direct Monte
Carlo simulation, in approximately solving the influence
maximizationproblem.We introduce twopruning techniques
which improve computational efficiency by an order of mag-
nitude. This approach is generic and can be instantiated to
any specific diffusion model. It does not require any approx-
imations or assumptions to the model that were needed in
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the existing approaches. We demonstrate its effectiveness
by extensive experiments on two large real social networks.
Main finding includes that different network structures have
different epidemic thresholds and the node influence can
identify influential nodes that the existing centralitymeasures
cannot. We analyze how the performance changes when the
network structure is systematically changed using syntheti-
cally generated networks and identify important factors that
affect the performance.

1 Introduction

Studies of the structure and functions of large complex
networks have attracted a great deal of attention in many
different fields such as sociology, biology, physics and com-
puter science [23]. It has been recognized that developing
new methods/tools that enable us to quantify the importance
of each individual node in a network is crucially impor-
tant in pursuing fundamental network analysis. Networks
mediate the spread of information, and it sometimes hap-
pens that a small initial seed cascades to affect large portions
of networks [29]. Such information cascade phenomena are
observed in many situations: for example, cascading fail-
ures can occur in power grids (e.g., the August 10, 1996
accident in the western US power grid), diseases can spread
over networks of contacts between individuals, innovations
and rumors can propagate through social networks, and large
grass-roots socialmovements canbegin in the absenceof cen-
tralized control (e.g., the Arab Spring). Understanding these
phenomena involves dynamic analysis of diffusion process.
Thus, the node influence with respect to information cascade
is a useful measure of node importance, and it is different
from the existing centralities because diffusion dynamics are
involved.
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Basic models of information diffusion over a network
often assume that each node has three states, susceptible,
infective, and recovered from the analogy of epidemiology.
A node in the susceptible state means that it has not yet been
influenced with the information. A node in the infective state
means that it is influenced and can propagate the information
to its neighbor nodes.Anode in the recovered statemeans that
it can no longer propagate the information once it has been
influencedwith the information, i.e., immune. The SIRmodel
is a typical one among such basic models and well exploited
in many fields [23]. To be more concrete, the SIR model is
a discrete-time stochastic process model, and assumes that
a susceptible node becomes infective with a certain proba-
bility when its neighbor nodes get infective, and becomes
subsequently recovered. In particular, it is known that the
SIR model on a network can be exactly mapped onto a bond
percolation process on the same network [15,23].

The dynamical behaviors of the SIR model have been
widely studied in physics literature. One such important
analysis is to examine the epidemic threshold p∗

G of a net-
workG, where most nodes of the network remain uninfected
(i.e., a small outbreak) if the probability that a suscepti-
ble node receives information from its infective neighbor
is smaller than p∗

G , and the number of infected (recovered)
nodes rapidly increase (i.e., a large outbreak) if the probabil-
ity becomes greater than p∗

G [23].Wemust be able to estimate
node influence very efficiently to make this kind of analysis
feasible because we need to estimate the average influence
degree. In this paper, we focus on the node influence based
on the SIR model, and regard it as one of the centrality mea-
sures and refer to it as the influence degree centrality for
convenience sake.

LetG = (V, E) be a directed network, where V and E (⊂
V ×V ) stand for the sets of all nodes and links, respectively.
For the SIR model over G, the influence degree σG(v) of a
node v ∈ V is defined as the expected number of recovered
nodes at the end of the information diffusion process (i.e.,
when there are no nodes in the infective state), assuming that
at the initial time t = 0, only v is in infective state and all
other nodes are in susceptible state. In order to examine the
influence degree centrality in G, it is necessary to estimate
the influence degree σG(v) for every single node v ∈ V . We
refer to

∑
v∈V σG(v)/|V | as the average influence degree

of G. In order to examine the epidemic threshold of G, we
must calculate the average influence degree of G for various
values of diffusion probability of the SIR model. Note that
it is difficult to calculate the influence degree exactly since
the SIR model is defined by a stochastic process [9,17,18].
In general, the influence degree is approximately estimated
through a number of simulations,while the existing centrality
measures are exactly calculated once the network structure
is given. Thus, it is an important research issue to estimate
the influence degree {σG(v) | v ∈ V } quite efficiently.

In this paper,1 we propose an improved method of effi-
ciently estimating the influence degree of all the nodes in
network G, {σG(v) | v ∈ V } simultaneously under the SIR
model setting.Manyof the existing techniques (seeSect. 2 for
more details) are designed for a specific diffusionmodel, e.g.,
independent cascade or linear threshold models, and intro-
duce approximations to the influence estimation, e.g., use
of sampling and/or assumptions to the model chosen, e.g.,
assuming that the diffusion probability is small enough to
allow for linear approximation, considering only the shortest
diffusion path or the maximum influence path between a pair
of nodes is enough, etc. To the best of our knowledge, two
groups of work, one [17,18] (called bond percolation) and
the other [9] (called new greedy algorithm) are the only ones
that do not introduce any approximations and/or assumptions
to the model. Both use the same idea, and in this paper we
call it BP method for short.

The BP method was shown to be very efficient, three
orders of magnitude faster than direct Monte Carlo simu-
lation in computing the node influence degree [17,18]. Our
contribution is to have made the influence degree centrality
{σG(v) | v ∈ V } estimation in network G even faster by an
order of magnitude by introducing two new pruning tech-
niques: the redundant-edge pruning (REP) technique and
themarginal-component pruning (MCP) technique. TheREP
technique prunes redundant edges for reachability analysis
among three vertices and the MCP technique recursively
prunes vertices with in-degree 1 or out-degree 1 from the
quotient graph which is obtained by decomposing the graph
(realized by the corresponding bond percolation process) into
the strongly connected components (SCCs).

We extensively evaluate the proposed method using two
large real social networks, compare the computation time,2

and show that the proposedmethod significantly outperforms
the existing BP method. The MCP technique is found to be
more effective than the REP technique. Use of both tech-
niques is always better than the single use of either technique.
We further examine how the performance of the two pruning
techniques changes as the network structure changes. For this
purpose we extend the BA and CNN methods, and system-
atically generate synthetic networks with different structure.
We reconfirm the above results and identify the important
factors that are decisive in controlling the performance.

The proposed method inherits the good feature of the BP
method. It is a generic framework to estimate the influence
degree centrality under the SIR model setting without need
for any approximations and assumptions.With this improved
efficiency, it is now possible to estimate the node influence

1 This paper extends the work [19] presented in the 2014 International
Conference on Data Science and Advanced Analytics (DSAA’14).
2 The estimation accuracy of {σG(v) | v ∈ V } is the same because of
no new approximations and assumptions introduced.
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of every single node of a network with one million nodes
and analyze the existence of epidemic threshold. We further
confirm that the inluence degree centrality can identify nodes
that are deemed indeed influential which are not identifiable
by the existing centrality measures.

The paper is organized as follows. We briefly explain the
related work in Sect. 2 and the BPmethod in Sect. 3.We then
introduce the proposed method (REP and MCP techniques)
in Sect. 4. The experimental results for real networks are
given in Sect. 5, and the performance analysis for synthetic
networks is given in Sect. 6. We conclude the paper in Sect. 7
summarizing the main achievement and future plans.

2 Related work

Developing efficientmethods that enable us to find influential
nodes in a social network is a fundamental problem in social
network analysis, and many studies have been made on this
problem.

Several centraility measures have been proposed in the
field of social science. The well-known centrality measures
include, but not limited to, degree centrality [12], eigenvector
centrality [3], Katz centrality [14], PageRank [5], closeness
centrality [12], betweenness centrality [12], and topologi-
cal centrality [32]. However, some centrality measures (e,g.,
closeness centrality and betweenness centrality) require to
use the global structure of a network for computing the value
of each node, and their computation become harder as the
size of a network increases. Thus, several researchers try to
efficiently approximate such centralities [2,11,25]. Notable
feature of the existing centrality measures is that they all are
defined only by network topology.Node influence is different
from them in that it is defined through dynamical processes of
a network. Therefore, it can provide new insights into infor-
mation diffusion phenomena such as existence of epidemic
threshold which the topology-based centrality measures can
never do.

Estimating influence degree is a sub-problem in the influ-
ence maximization problem, which has recently attracted
tremendous interest in the field of social network min-
ing [7]. The task of the influence maximization problem is to
identify a limited number of seed nodes that together max-
imize the expected spread of influence over G. Kempe et
al. [15] first formalized this problem and presented a poly-
nomial solution by using a greedy search strategy. Since
then, many researchers have proposed various techniques for
improving the efficiency in finding high-quality approximate
solutions [8–10,13,17,20,24,30]. Recently, Borgs et al. [4]
provided a fast algorithm running in quasilinear time, and
mathematically proved its high performance. Song et al. [27]
introduced a diffusion model to accommodate link weights,
and investigated the influence maximization problem for a

mobile social network where individuals communicate with
one another using mobile phones. Zhou et al [31] established
new upper bounds to significantly reduce the number of
Monte-Carlo simulations in greedy algorithms and presented
a fast algorithm based on the upper bounds. The techniques
developed so far include both of those that aim at improving
the efficiency of estimating the expected spread for a given
seed node set and those that aim at improving the efficiency
of the search for the seed node set. The proposed method
belongs to the former, but differs from the others in that it can
obtain the influence degree of all the nodes simultaneously.
Thus, it can naturally be applied to the influence maximiza-
tion problem through the greedy search. It can also be utilized
for identifying super-mediators of information diffusion in
social networks [26].

3 BP method

We briefly revisit the BP method (see [18] for more detail).
A bond percolation process on a given network G = (V, E)

is the process in which each link of G is stochastically desig-
nated either “occupied ” or “unoccupied” according to some
probability distribution. The occupation probability distrib-
ution is determined according to the assumed information
diffusion model and its associated parameter values. Now,
we consider M times of bond percolation processes. Let Em

(⊂ E) denote the set of occupied links at the m-th bond
percolation process and let Gm denote the network (V, Em).

Figure 1 illustrates a bond percolation process and a result-
ing network. The solid arrows in the network at the left in
Fig. 1 denote occupied links, while the broken arrows denote
unoccupied ones. This process results in the network at the
right in Fig. 1. For any node v ∈ V , we define σ̄G(v) by

σ̄G(v) = 1

M

M∑

m=1

|RGm (v)|, (1)

where RGm (v) stands for the set of reachable nodes from
v on Gm , and |RGm (v)| is the number of nodes in RGm (v).

Fig. 1 A network resulted from a bond percolation
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Fig. 2 An example of quotient graph

Here, we say that a node w ∈ V is reachable from node
v on Gm if there exists a path from v to w in the net-
work Gm . For example, in the network at the right in Fig.
1, the reachable nodes from node v are v, w1, w2, w3. Thus,
RGm (v) = {v,w1, w2, w3}, and |RGm (v)| = 4.

It is known [23] that the influence degree σG(v) can be
estimated by σ̄G(v) with a reasonable accuracy if M is suffi-
ciently large. 3 Here note that the bond percolation technique
decomposes each network Gm into its SCCs, where an SCC
(strongly connected component) is a maximal subset C of
V such that for all v, w ∈ C there is a path from v to w on
Gm . Note that RGm (v) = RGm (w) (v,w ∈ C). Thus, we can
obtain RGm (v) for any node v ∈ V by calculating RGm (v) for
only one node v in each component C . Let Qm = (Cm, Em)

be the quotient graph obtained by the SCC decomposition
of Gm = (V, Em), where Cm is the set of all the SCCs of
Gm , and Em (⊂ Cm × Cm) is the set of edges in Qm , i.e.,
(C, D) ∈ Em if there exist some pair of nodes v ∈ C and
w ∈ D which satisfies (v,w) ∈ Em . Note that the quotient
graph Qm is a DAG (directed acyclic graph). For each com-
ponent C ∈ Cm , we can also consider the set of reachable
components from C on Qm , which is denoted by RQm (C).
Here, a component D ∈ Cm is an element of RQm (C) when
there exists a path from vertex C to vertex D on the graph
Qm . Then, for any node v ∈ C , we can calculate the number
of reachable nodes from v on the network Gm by

|RGm (v)| = |C | +
∑

D∈RQm (C)

|D|. (2)

For example, Fig. 2 shows a quotient graph consisting of four
components X , C1, C2, and C3, in which block arrows are
edges in this quotient graph that connect components and
narrow arrows are links in the original networks. Then, the
number of reachable nodes from node vX ∈ X is given as
|RGm (vX )| = |X | + |C1| + |C3| because a set of reachable
components from X are RQm (X) = {C1,C3}.

3 It is shown that setting M to a few thousands usually gives good
accuracy in experiments using real social networks (see [18]).

In case of the MCP technique as described later, Eq. (2)
is replaced as follows:

|RGm (v)| = hm(C) +
∑

D∈RQm (C)

hm(D), (3)

where hm(D) is initially set to hm(D) = |D| for any com-
ponent D ∈ Cm , and it is to be updated iteratively. Note that
in general,

|RGm (v)| �= |C | +
∑

D∈Fm(C)

|RGm (wD)|

for any node v ∈ C , unlessQm is a tree.Here,Fm(C) denotes
the set of child components of a componentC inGm , defined
by

Fm(C) = {D ∈ Cm | (C, D) ∈ Em},

and wD stands for a representative node of a component
D ∈ Cm .

In summary, the existing BP method first computes the
subset RQm (C) of Cm for each component C ∈ Cm by fol-
lowing the edges on the quotient graph Qm , then calculates
|RGm (vC )| for only one node vC ∈ C by using Eq. (2), and
finally sets |RGm (v)| as follows:

|RGm (v)| ← |RGm (vC )|, (∀v ∈ C \ {vC }).

4 Proposed method

We enhance the existing BP method by introducing two
techniques: redundant-edge pruning (REP) and marginal-
component pruning (MCP). Again, we focus on the quotient
graph Qm = (Cm, Em) of the network Gm = (V, Em) con-
structed through the m-th bond percolation process.

The REP technique performs pruning redundant edges for
reachability analysis among three components in Gm , i.e.,
three vertices on Qm . For each component C ∈ Cm in Gm ,
an edge (C, D) ∈ Em is called a redundant edgewith respect
to C if a component D is reachable from C via another com-
ponent X ∈ Cm . This situation is illustrated in Fig. 3, in
which a component D is reachable from a component C via
two edges (C, X) and (X, D). Let EPQm (C) denote the set
of all redundant edges with respect to C ∈ Cm . Then, we
have

EPQm (C) =
⎧
⎨

⎩
(C, D) ∈ Em

∣
∣
∣
∣
∣
∣
D ∈

⋃

X∈Fm (C)

Fm(X)

⎫
⎬

⎭
.

(4)
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Fig. 3 Redundant edge pruned by the REP technique

Note that if an edge (C, D) ∈ Em is a redundant edge with
respect to a component C , i.e., (C, D) ∈ EPQm (C), then
it is possible to correctly compute RQm (C) without using
the edge (C, D). For example, in Fig. 3, RQm (Y ), reachable
components from a component Y can be correctly computed
without using the redundant edge (C, D). Thus, the REP
technique prunes the set of redundant edges EPQm (C)when
computing RQm (C) for any component C ∈ Cm . If inter-
preted as a network motif [22], the REP technique detects
such 3-vertices {C, X, D} on graph Qm that form a feedfor-
ward motif pattern {(C, X), (X, D), (C, D)}, and prunes its
short-cut edge (C, D) from them. Let EPQm denote the set
of all the redundant edges, i.e.,

EPQm =
⋃

C∈Cm
EPQm (C).

In summary, the REP technique computes the set of all the
redundant edges EPQm , and replaces the set of edges onQm

as follows:

Em ← Em \ EPQm .

The MCP technique recursively performs pruning com-
ponents with in-degree 1 or out-degree 1 in the network Gm .
Here, we define the sets of components with in-degree 1 and
out-degree 1 by Eqs. (5) and (6), respectively:

CPIQm = {C ∈ Cm | |Bm(C)| = 1, |Fm(C)| = 0}, (5)

CPOQm = {C ∈ Cm | |Fm(C)| = 1, |Bm(C)| = 0}. (6)

Here, Bm(C) denotes the set of all parent components of C ,

Bm(C) = {D ∈ Cm | (D,C) ∈ Em}.

We define the set CPQm of components with in-degree 1 or
out-degree 1 in Gm by

CPQm = CPIQm ∪ CPOQm .

Fig. 4 Pruning components and edges by the MCP technique

Below we explain two basic ideas of the MCP technique.
First, for any component C ∈ CPIQm with in-degree 1, we
can easily prove the following properties:

1. |RGm (v)| = |C | for any v ∈ C .
2. Setting hm(D) ← hm(D) + |C | for the unique parent

component D ∈ Bm(C), |RGm (vX )| is obtained by

|RGm (vX )| = hm(X) +
∑

Y∈RQm (X)\{C}
hm(Y )

(see Eq. (3)) for any component X ∈ Cm \ {C}, where vX
stands for a representative node of X .

For example, at the left in Fig. 4, componentC is the onewith
in-degree 1, and |RGm (vC )| = |C | for its representative node
vC ∈ C . Then, even ifwepruneC and its unique edge (D,C),
we can correctly compute the number of nodes reachable
from the representative node of component X , according to
the above definition, by setting hm(D) as hm(D) ← |D| +
|C |.

Second, for any component C ∈ CPOQm of out-degree 1,
we can easily prove that if |RGm (vD)|, (vD ∈ D) is given for
the unique child component D ∈ Fm(C), then |RGm (vC )|,
(vC ∈ C) is obtained by

|RGm (vC )| = |C | + |RGm (vD)|

without computing RQm (C) by following the edges on Qm .
This is illustrated at the right in Fig. 4, in which component
C is the one with out-degree 1 and its unique child is com-
ponent D. Then, it is obvious that even if we prune C and
its unique edge (C, D) from this quotient graph, it does not
affect computation of RQm (X) for any component X ∈ Cm .
Therefore, it is possible to prune the components with in-
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degree 1 or out-degree 1 in Gm from Cm when computing
RQm (C) for any component C ∈ Cm .

For a component X ∈ Cm , let IEQm (X) be the set of
all edges attached to X in Qm . We define the operation of
pruning a component C ∈ Cm in graph Qm by

Qm 	 C = (Cm \ {C}, Em \ IEQm (C)).

Evidently, after pruning a component C , there might exist
some component D ∈ Cm such that D /∈ CPQm and
D ∈ CPQm	C . Thus, the MCP technique need recursively
perform pruning components. In summary, unless |CPQm | =
0, the MCP technique recursively selects a component C
∈ CPQm , and prunes C by

Qm ← Qm 	 C

after setting first,

|RGm (vC )| ← |C |, (vC ∈ C)

hm(D) ← hm(D) + |C |

for the unique parent component D ∈ Bm(C) ifC ∈ CPIQm ,
and second,

|RGm (vC )| ← |C | + |RGm (vD)|

when |RGm (vD)|, (vD ∈ D) has been computed for the
unique child component D ∈ Fm(C) if C ∈ CPOQm .

In our proposed method, the REP technique is applied
before the MCP techniques, because it is naturally con-
ceivable that the REP technique increases the number of
components with in-degree 1 or out-degree 1. Clearly we can
individually incorporate these techniques into the existingBP
method. Hereafter, we refer to the proposed method without
the MCP technique as the REP method, and the proposed
methodwithout theREP technique as theMCPmethod. Since
it is difficult to analytically examine the effectiveness of these
techniques, we empirically evaluate the computational effi-
ciency of these threemethods in comparisonwith the existing
BP method.

5 Experiments

We evaluated the effectiveness of the proposed method using
large real networks.

5.1 Network datasets

We employed two large social networks, where all the net-
works are represented as directed graphs. Here, we adopt the

notation for a link in which the link creator is the target node
in order to emphasize the direction of information flow.

The first one is a network extracted from “@cosme”,4 a
Japanese word-of-mouth communication site for cosmetics,
in which each user page can have fan links. A fan link (u, v)

means that user v registers user u as her favorite user. We
traced up to ten steps in the fan-link network from a randomly
chosen user in December 2009 and extracted a large weakly
connected network consisting of 45,024 nodes and 351,299
directed links.We refer to this directed network as the Cosme
network.

The second one is a network extracted from a set of mes-
sage posts from “Japanese Twitter”,5 which totally consists
of 201,297,161 messages (tweets) made by 1,088,040 active
users (micro-bloggers or twitters who posted no less than
200messages) during the period of almost three weeks (from
March 5, 2011 to March 24, 2011), when the massive earth-
quake and consequent tsunami in eastern Japan occurred on
March 11, 2011. We used the network constructed from
the follower links between these users, which resulted in
a network consisting of 1,088,040 nodes and 157,371,628
directed links. We refer to this huge network as the Twitter
network.

5.2 Experimental settings

One of the simplest models of the SIR framework is the
independent cascade (IC) model [15], where nodes have two
states (active and inactive) and can switch their states only
from inactive to active. The IC model on a network G =
(V, E) has a diffusion probability pu,v with 0 < pu,v < 1
for each link (u, v) ∈ E as a parameter. Suppose that a node
u ∈ V first becomes active at time-step t , it is given a single
chance to activate each currently inactive child node v ∈ V
with (u, v) ∈ E , and succeeds with probability pu,v . If u
succeeds, then v will become active at time-step t + 1. If
multiple parent nodes of v first become active at time-step t ,
then their activation trials are sequenced in an arbitrary order,
but all performed at time-step t . Whether u succeeds or not,
it cannot make any further trials to activate v in subsequent
rounds. The process terminates if no more activations are
possible. It is well known [15] that the IC model on G for
diffusion probabilities {pu,v | (u, v) ∈ E} is equivalent to the
bond percolation process on G for occupation probabilities
{pu,v | (u, v) ∈ E}, that is, these two models have the same
probability distribution for the final active (recovered) nodes.
In the experiments, we employed the IC model.

Now, we explain the setting of diffusion probabilities
{pu,v | (u, v) ∈ E} for the ICmodel.We draw {pu,v | (u, v) ∈
E} independently assuming a generative model according to

4 http://www.cosme.net/.
5 http://twitter.jp.
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the beta distribution with a mean of μ. Note that the beta
distribution is the conjugate prior probability distribution for
the Bernoulli distribution corresponding to a single toss of
a coin. Then, the average occupied probability of the cor-
responding bond percolation process over G reduces to μ.
Actually, this formulation is equivalent to assigning a uni-
form value μ to the diffusion probability pu,v for any link,
i.e., pu,v = μ, ∀(u, v) ∈ E . In the experiments, we inves-
tigated the four cases of very low, low, medium, and high
diffusion probabilities:

μ = r

d̄G
, (r = 0.25, 0.5, 1.0, 2.0),

where d̄G is the mean out-degree of network G. We refer r
to the diffusion probability factor.

For the parameter M of the proposed method, we found
M = 1000 to be a reasonable value for estimating the influ-
ence degree for the Cosme and Twitter networks through our
preliminary experiments. Thus, we used M = 1000 unless
otherwise stated.

In the next subsection, we explain experimental results
for computation time. All our experimentation was under-
taken on a single PC with Intel(R) Xeon(R) CPU X5690 @
3.474 GHz, with 198 GB of memory, running under Linux.

5.3 Efficiency evaluation

First, we evaluated the efficiency of the proposed method.
We compared the computation time of the proposed, REP,
MCP, and existing BP methods. All of them are based on the
bond percolation process on the same network G, and have
the same accuracy for the same M (see Eq. (1)). Here, we
used M = 100 trials and evaluated the time for each trial
(corresponding to M = 1), because the existing BP method
needed much time for the Twitter network. Figure 5 shows
the computation time of each method as a function of diffu-
sion probability factor r , where the average values are plotted
and the standard deviations are indicated by the error bars.
The results show that the MCP technique can always be use-
ful although the REP technique is not necessarily effective
alone. However, the proposed method, which incorporates
both techniques, always performs the best. The Twitter net-
work requiresmuch longer computation time than the Cosme
network since the former is much larger than the latter. It is
in particular important to reduce the processing time in case
of large diffusion probability μ since the processing time in
general increases asμ becomes larger. In case of r = 2.0, the
proposed method is about 18 times faster than the existing
BP method on average for the Cosme network. Moreover,
when using M = 1 in the Twitter network for r = 2.0, the
proposed method requires only about 2 min while the exist-
ing BP method needs about 20 min. Thus, for M = 1000,
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Fig. 5 Computation time comparison. a Cosme network, b Twitter
network

the existing BPmethod would have needed about twoweeks,
while the proposed method would have required only about
one day and a half. Compared to the existing BP method, the
proposed method has smaller standard deviations, especially
for the diffusion probabilities with medium and high values.
When the diffusion probability takes a large value, the infor-
mation diffusion path length changes substantially for each
trial as seen in the next experiment (see Fig. 6). This fluc-
tuation is attributed to whether or not information diffusion
paths in network G arrive at several marginal components of
G, that is, we conjecture that the structure of quotient graph
Qm substantially changes for each trialm. In general, it takes
more time to trace down longer paths for identifying RQm (C)

in the BP framework. Since the MCP technique attempts to
prune such marginal components in advance, we can expect
that the MCP method has smaller standard deviations than
the existing BP method. Further, since the REP technique
finds candidates of marginal components, we can conjecture
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Fig. 6 Results for “influence
degree versus standard
deviation”. a Cosme network, b
Twitter network
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Fig. 7 Relation between σ̄ 1
G(v)

and s̄1G(v).a Cosme network, b
Twitter network
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that the proposed method combining both the REP andMCP
techniques is more stable than the other three methods in
terms of computation time. These results demonstrate the
effectiveness of the proposed method.

Next, we investigated a global picture of the node influ-
ence estimation of theBPmethod frameworkwithM = 1000
for the Cosme and Twitter networks. Using the proposed
methodwithM = 1000,we estimated the influence degree of
eachnodev in networkG by σ̄G(v) (seeEq. (1)), and then cal-
culated the standard deviation s̄G(v) of samples {|RGm (v)|}
for each v ∈ V . Figure 6 plots the pair (σ̄G(v), s̄G(v)) for
all v ∈ V . We first see that all the results are qualitatively
very similar, and these plots can provide a tool of network
structure analysis. In fact, there exists a critical influence
degree σ̄G(v∗) for network G such that standard deviation
s̄G(v) is an increasing function of influence degree σ̄G(v) if
σ̄G(v) ≤ σ̄G(v∗), but s̄G(v) is a rapidly decreasing function
of σ̄G(v) if σ̄G(v) > σ̄G(v∗). Moreover, influence degree
σ̄G(v) and its standard deviation s̄G(v) increase as the dif-
fusion probability becomes larger. We also investigated the
relation between ratios σ̄ 1

G(v) and s̄1G(v),

σ̄ 1
G(v) = σ̄G(v)

maxu∈V σ̄G(u)
, s̄1G(v) = s̄G(v)

σ̄G(v)
,

for all v ∈ V . Figure 7 plots the pair (σ̄ 1
G(v), s̄1G(v)) for all

v ∈ V . We observe that s̄1G(v) is essentially a decreasing
function of σ̄ 1

G(v), and the function form does not primarily
depend on the value of diffusion probability although it does
depend on network structure. Moreover, roughly speaking,
s̄1G(v) becomes almost equal to or less than 100 = 1.0 when
the ratio σ̄ 1

G(v) is larger than 10−1 for both the networks,
which means that standard deviation s̄G(v) becomes almost
equal to or less than σ̄G(v) for nodes whose influence degree
σ̄G(v) is greater than 10%of themaximumvalue of influence
degree. These results imply that the estimation accuracy with
M = 1000 is acceptable from a statistical point of view.

5.4 Average influence degree

We consider finding the epidemic threshold p∗
G of the IC

model for the Cosme and Twitter networks. To this end,
we examined the relation between the diffusion probability
pu,v = μ and the average influencedegree

∑
v∈V σG(v)/|V |.

Since this is a computationally heavy task, we estimated the
average influence degree using the proposed method with
M = 100. Figure 8 shows the estimated average influence
degree as a function of diffusion probability factor r , where
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Fig. 8 Average influence
degree curves. a Cosme
network, b Twitter network
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the standard deviations (see Eq. (1)) are indicated by the error
bars. Here, we investigated r = r1ak−1, (r1 = 0.01, a = 1.2,
k = 1, . . . , 35), that is, 1.3 × 10−3 ≤ μ ≤ 6.3 × 10−1 for
the Cosme network and 6.9 × 10−5 ≤ μ ≤ 3.4 × 10−2 for
the Twitter network. We first observe that the standard devia-
tions are relatively small, and the accuracy with M = 100 is
acceptable when the goal is to estimate the average influence
degree. We needed about 1.1 min for the Cosme network
and about 9.1 hours for the Twitter network to obtain the
results shown in Fig. 8. From Fig. 8, we can find that the epi-
demic threshold p∗

G = r∗
G/d̄G is given by p∗

G = 1.9 × 10−2

(r∗
G = 0.15) for the Cosme network and p∗

G = 2.8 × 10−4

(r∗
G = 0.04) for the Twitter network. These results imply that

the epidemic threshold depends on network structure and the
Twitter network spreads information more easily than the
Cosme network.

5.5 Comparison with conventional centralities

Although estimating influence degree centrality for large net-
works is a time-consuming and difficult task, the proposed
method enabled us to approximately calculate the influence
degree within a reasonable time even for huge social net-
works. Thus, for the huge Twitter network, we evaluated
whether or not the influence degree centrality can actually
provide a novel concept in comparison with conventional
centralities.

As conventional centralities, we examined the between-
ness centrality, the closeness centrality, the hub centrality, and
the PageRank centrality for network G. Here, the between-
ness betw(v) of a node v is defined as

betw(v) =
∑

u∈V

∑

w∈V

spathGu,w(v)

spathGu,w

,

where spathGu,w is the total number of the shortest paths
between node u and node v in G and spathGu,w(v) is the num-

ber of the shortest paths between node u and node v inG that
passes through node v. The closeness close(v) of a node v

is defined as

close(v) = 1

|V |
∑

u∈V

1

distG(v, u)
,

where distG(v, u) stands for the graph distance from v to u
in G, that is, the length of the shortest path from v to u in
G. Also, the hub centrality score of a node is obtained by the
HITS algorithm [6] that defines the hub and authority central-
ity, and the PageRank score of a node is provided by applying
the PageRank algorithm with random jump factor 0.15 [5]
to the reverse network G− = (V, E−) that is constructed
through reversing any link of G, that is,

E− = {(u, v) ∈ V × V | (v, u) ∈ E}.

Tables 1 and 2 show the top five nodes in the degree,
betweenness, closeness, hub, PageRank, and influencedegree
(r = 0.25, 0.5, 1.0, 2.0) centralities for the Twitter network.
We can first observe that each centrality measure actually
extracts its own proper nodes. For the influence degree cen-
trality, while the diffusion probability setting affects the
result, the top two nodes coincided. They were “masason”
and “GachapinBlog”, which also appeared in the top five
of the degree, closeness and PageRank centralities. Here,
“masason” is the Twitter account of Masayoshi Son who
is a famous Japanese businessman and CEO of SoftBank
(a big IT company), and “GachapinBlog” is the Twitter
account of Gachapin who is a popular Japanese TV char-
acter in a children’s program. These are very influential in
Japanese Twitter. Unlike other centralities, the hub centrality
extracted the representatives of a certain big community in
Japanese Twitter, where “tomo7272” is the Twitter account
of an ordinary person who often posts nice tweets. Note
that “shuzo_matsuoka” is a famous bot in Japanese Twitter,
and was extracted by the degree, betweenness and close-
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Table 1 Ranking results for
conventional centralities in the
huge Twitter network

Rank Degree Betweenness Closeness Hub PageRank

1 masason shuzo_matsuoka masason tomo7272 masason

2 GachapinBlog SNOOPYbot GachapinBlog ktamiya natalie_mu

3 higashimototiji NHK_PR shuzo_matsuoka euro_tour JAXA_jp

4 shuzo_matsuoka moomin_valley higashimototiji rakko001 Hayabusa_jaxa

5 555hamako shuumai takapon_jp mabou77 GachapinBlog

Table 2 Ranking results for the
influence degree centrality in the
huge Twitter network

Rank r = 0.25 r = 0.5 r = 1.0 r = 2.0

1 masason masason masason masason

2 GachapinBlog GachapinBlog GachapinBlog GachapinBlog

3 higashimototiji itoi_shigesato itoishigesato utadahikaru

4 itoi_shigesato higashimototiji higashimototiji shiro_tsubuyaki

5 555hamako Astro_Soichi utadahikaru tenkijp

ness centralities. However, it did not appear in the top ten
of the influence degree ranking. The tweet of bot attracts
many people but dies out very rapidly. Thus, it is not iden-
tified as influential by the proposed method. On the other
hand, “utadahikaru” was extracted only by the influence
degree centrality with medium and high diffusion probabili-
ties, while it did not appear in the top ten of other rankings.
Here, “utadahikaru” is the Twitter account of Hikaru Utada
who is a Japanese American singer known as one of the most
influential artists in Japan. These results demonstrate that the
influence degree centrality can serve as a novel measure that
extracts influential nodes in terms of information diffusion
which are not identified by existing measures.

6 Performance analysis of proposed techniques

The results of the previous section supported the usefulness
of the proposed approach. However, analysis for networks of
fixed structure alone is not sufficient enough tounderstand the
effects of the REP and MCP techniques. Here, we extended
our analysis using synthetic network with varying structures.
The performance of these two pruning techniques should
depend on the structure of the quotient graphQm = (Cm, Em)

which is derived from the SCC decomposition of an under-
lying network Gm . Clearly, if there are many feedforward
motif patterns (i.e., {(C, X), (X, D), (C, D) ∈ Em}), theREP
technique must be useful. Also, the MCP technique must
be effective if Cm has a large number of components with
in-degree 1 or out-degree 1, and a small number of com-
ponents of large size. For simplicity, we consider roughly
controlling the size of SCCs and the number of feedforward
motif patterns for an original network G. In this section,
we first describe such network generation methods, and
next present the analysis results using those synthetic net-
works.

6.1 Network generation methods

For a given DAG expressed as G = (V, E), we first note
that any pair of two nodes v,w ∈ V is classified into one
of the following three cases: (1) w is reachable from v, i.e.,
w ∈ RG(v) ∧ v /∈ RG(w), (2) v is reachable from w, i.e.,
v ∈ RG(w) ∧ w /∈ RG(v), and (3) v (or w) is not reachable
from w (or v), i.e., v /∈ RG(w) ∧ w /∈ RG(v). Moreover,
even when we add a link (v,w) for the case (1), and (w, v)

for the case (2), it is guaranteed that the modified network
still has the property of DAG. In what follows, for a given
arbitrary network G = (V, E), we will say that a pair of
nodes v,w ∈ V has a DAG property if the pair of nodes is
classified into one of the above first two cases, (1) and (2),
and a link (v,w) has a DAG direction if the pair of nodes
v,w ∈ V still has a DAG property after creation of this link.
Now, we consider controlling the size of SCCs by changing
a rate q of DAG direction link creation. Here note that each
size of SCCs is minimized as 1 for a DAG.

In order to prepare networks having substantially differ-
ent numbers of feedforward motif patterns, we focus on two
network generation methods, CNN (Connecting Nearest-
Neighbors) [28] and BA (Barabási-Albert) [1], and extend
them so as to control the size of SCCs according to the rate
q. Hereafter, these extended methods are referred to as the
DCNN and DBA methods. Here, we will say that a pair of
nodes {v,w} is a potential pair if they are not directly con-
nected, but have at least one common neighbor node, i.e.,
(v,w) /∈ E∧ (w, v) /∈ E and ∃x ∈ V ((v, x) ∈ E∨ (x, v) ∈
E) ∧ ((w, x) ∈ E ∨ (x, w) ∈ E). Then, we can summarize
the DCNNmethod as an algorithmwhich repeats the follow-
ing steps L times froma single node and an empty set of links:

1. With probability 1− ε, create a new node u ∈ V , select a
node v ∈ V at random, and create a link (u, v) or (v, u)

arbitrary.
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2. With probability ε, select a potential pair {v,w} at ran-
dom, and create a link (v,w) or (w, v) to be a DAG
direction with probability q if the pair of nodes v,w ∈ V
has a DAG property; otherwise create a link (v,w) or
(w, v) arbitrary.

Clearly, we can easily see that the DCNN method gener-
ates a DAG by setting q = 1. In our experiments, we set
L = 360,000 and ε = 1/8 for the sake that the size of the
generated networks can be roughly equal to that of theCosme
network, and their average degree can be around d̄G = 8.

Next, we describe the DBAmethod. Here, wewill say that
a node is selected by preferential attachment if its selection
probability is proportional to the number of adjacent nodes.
Then, we can summarize the DBA method as an algorithm
which repeats the following steps L − H times from a DAG
having H links generated by the DCNN method:

1. With probability 1− ε, create a new node u ∈ V , select a
node v ∈ V by preferential attachment, and create a link
(u, v) or (v, u) arbitrary.

2. With probability ε, select a node v ∈ V at random, select
another node w ∈ V by preferential attachment, and cre-
ate a link (v,w) or (w, v) to be a DAG direction with
probability q if the pair of nodes v,w ∈ V has a DAG
property; otherwise create a link (v,w) or (w, v) arbi-
trary.

Again, we can easily see that the DBA method generates
a DAG by setting q = 1. In our experiments, we also set
L = 360,000, ε = 1/8, and H = 800. Here note that num-
bers of feedforward motif patterns appearing in the networks
generated by the DCNN method inevitably become larger
than those generated by the DBAmethod because the DCNN
method has a link creation mechanism between potential
pairs.

6.2 Analysis results

We compared the computation time of the proposed, REP,
MCP and existing BP methods in the same way as the
case of real networks in Sect. 5.3 (see Fig. 5) for the syn-
thetic networks generated in Sect. 6.1. Here, the cases of
r = 0.25, 0.5, 1.0, 2.0, 4.0, 8.0 were investigated since the
mean out-degree of each synthetic network is set at d̄G = 8.
For each setting of respective method, 100 trials (M = 100)
were performed, and the time for each trial was evaluated.
The results are shown in Figs. 9, 10 and 11, where the average
values are plotted and the standard deviations are indicated
by the error bars.

Figure 9 displays the results for DAGs, where the size of
each SCC component of an original network G is one, and
the quotient graph Qm coincides with Gm . We first observe
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Fig. 9 Computation time comparison for DAGs. a BA DAG, b CNN
DAG

that all the methods are comparable when r ≤ 1, and the
existing BP method always performs the worst when r ≥ 2.
Thus, the proposed REP and MCP methods can be help-
ful. As expected, the REP technique is more effective for
the CNN DAG than for the BA DAG, since the CNN DAG
encourages constructing feedforward motif patterns, while
the BA DAG does not. In fact, the generated CNN DAG had
20 times more feedforward motif patterns than the generated
BA DAG. Thus, in particular, the REP method outperforms
theMCPmethod for the CNNDAG. Compared to the case of
real networks (see Fig. 5), the MCP method is not so useful
for these DAGs, since there are not that many components
with in-degree 1 or out-degree 1, and the size of such compo-
nents is also very small (equal to one). For the BA DAG, the
proposed method combining both the REP and MCP tech-
niques is comparable to the MCP method, and these two

123



14 Int J Data Sci Anal (2016) 1:3–16

0.25 0.5 1 2 4 8
0

5

10

15

20

25

30

35

diffusion probability factor r

pr
oc

es
si

ng
 ti

m
e 

(s
ec

.)
existing BP
REP
MCP
proposed

(a)

0.25 0.5 1 2 4 8
0

1

2

3

4

5

diffusion probability factor r

pr
oc

es
si

ng
 ti

m
e 

(s
ec

.)

existing BP
REP
MCP
proposed

(b)

0.25 0.5 1 2 4 8
0

0.5

1

1.5

2

2.5

diffusion probability factor r

pr
oc

es
si

ng
 ti

m
e 

(s
ec

.)

existing BP
REP
MCP
proposed

(c)

Fig. 10 Computation time comparison for BA networks. a q = 10−5, b q = 10−3, c q = 10−1
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Fig. 11 Computation time comparison for CNN networks. a q = 10−5, b q = 10−3, c q = 10−1

methods slightly outperform the REP and existing BP meth-
ods. This is attributed to the fact that the REP technique is
not so useful for the BA DAG. However, for the CNN DAG,
the proposed method significantly outperforms other three
methods for large r since the REP technique becomes effec-
tive.

Next, we tried to increase the size of SCC components of a
generated networkG by increasing the value of q. Figures 10
and 11 show the results for the BA and CNN networks,
respectively. When q = 10−5, the generated network G is
expected to be close to a DAG. From Figs. 10a and 11a, we
first confirm that the results for q = 10−5 is almost iden-
tical to those for the cases of DAGs (see Fig. 9). When the
value of q becomes large, i.e., q = 10−3 and q = 10−1,
components of large size can emerge for large r . Also, many
components with in-degree 1 or out-degree 1 can be created.
Thus, the MCP technique becomes useful, which is the same
as the case of real networks (see Fig. 5). From Figs. 11b
and 11c, we see that the REP technique is indeed effective
for the CNN network. On the other hand, we see that the
REP method is worse than the existing BP method for large

r (see Figs. 10b and 10c) in case of the BA network. This is
because there are not many feedforward motif patterns and
the number of edges to be explored also becomes large as r
is large. However, the proposed method always significantly
outperforms other three methods for large r (see Figs. 10b, c,
11b, c). When q = 10−1 and r = 8, the proposed method is
about 10 and 25 times faster than the existing BP method for
the BA and CNN networks, respectively. Note that the REP
technique not only contributes to pruning redundant edges,
but also encourages creating components with in-degree 1 or
out-degree 1. Thus, the proposedmethod combining both the
REP and MCP techniques can be effective even for the BA
network. These analysis results support the effectiveness of
the proposed method.

7 Conclusion

We view the dynamic process of information diffusion as an
important ingredient to evaluate the importance of a node
in a social network and consider that the node influence
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degree shares the same role that other existing topology-
based centralitymeasures have. Unlike the existing centrality
measures, the influence degree centrality is not easily com-
putable because it is defined to be the expected number
of information spread. We proposed a method that can
estimate the influence degree of every single node in a
large network simultaneously under the framework of SIR
model setting. More specifically, we proposed two new prun-
ing techniques called redundant-edge pruning (REP) and
marginal-component pruning (MCP) on top of the existing
bond percolation approach which reduces the node influence
estimation problem to the problem of counting the reachable
nodes from each single node in the directed graph realized
by bond percolation on the original directed graph.

We, first, tested our algorithm using two real-world net-
works, one with 40K nodes and the other with 1000K nodes.
The experimental results confirmed that the new pruning
techniques improve the computational efficiency by an order
of magnitude over the existing bond percolation method
which is already three orders of magnitude faster than direct
Monte Carlo simulations.

We, second, demonstrated that the proposed method can
estimate the epidemic threshold of the IC model even for a
huge Twitter network with 1000K nodes in reasonable time
by examining the relation between the diffusion probability
and the average influence degree, and showed that the epi-
demic threshold depends on network structure and for the two
real-world networks, we tested the Twitter network spreads
information more easily than the Cosme network. Further,
it is confirmed that the nodes identified as influential by the
influence degree centrality based on the SIR model are not
necessarily the same or similar to those identified by the other
existing centralities, and the influence degree centrality can
identify those nodes that are deemed indeed influential but
are not identifiable by the other existing methods.

We, third, examined how the performance of the two prun-
ing techniques changes as the network structure changes
using many different networks that are synthetically and sys-
tematically generated by extending the BA and CNNmethod
in addition to the verification by the two real networks. We
confirmed that the REP technique is effective when the quo-
tient graph (a DAG obtained after decomposing the graph
realized by applying the bond percolation to the original
directed graph) has a large number of feed forward motif
patterns and the MCP technique is effective when the quo-
tient graph has a large number of components with in-degree
1 or out-degree 1 and a small number of components of large
size. In general the MCP technique is more effective than the
REP technique. Use of both techniques is always better than
the single use of either techniques.

The bond percolation is a generic approach for the SIR
model and can be instantiated to any specific diffusionmodel.
Its advantage over other methods is that it allows us to esti-

mate the influence degree of all the nodes in the network
simultaneously regardless of the size of network. It does not
require any approximations or assumptions to the model to
improve the computational efficiency, e.g., small diffusion
probability, shortest path, maximum influence path, etc., that
were needed in the existing approaches. We instantiated it to
the independent cascade (IC) model, but the same technique
can be applied to other instantiations, e.g., linear threshold
(LT) model.

Our immediate future work is to extensively evaluate the
proposed method for various instantiations of the SIR frame-
work including the LT model by using large real networks
in a variety of fields. Needless to say, it is also necessary to
mathematically clarify the performance difference between
the proposed method and the existing BP method in terms of
computational efficiency. Our results obtained by the syn-
thetic networks has laid a basis toward this direction. In
several real-world networks, there exist phenomena in which
the SIS model is more suitable than the SIR model [21,23],
where every node is allowed to be activated multiple times.
It is known that the SIS-type independent cascade model on
a network can be exactly mapped onto the ICmodel on a lay-
ered network built from the original network [15,16]. Thus,
note that the proposed method developed for the SIR set-
ting can also be applied to the SIS setting. Our future work
includes evaluating the proposed method in the SIS frame-
work.
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