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Abstract
The COVID-19 pandemic increased the need for distributed and ubiquitous health technology management. The eminent 
risk of Sars-CoV-2 contamination when visiting a health care establishment requires an efficient allocation of the technical 
team. The equipment problems should be quickly identified and fixed to keep the facility working at its full condition. This 
article presents a solution to perform remote real-time analysis of primary health care technology behavior, detecting and 
diagnosing the failures to create predictive maintenance plans. The project uses feature engineering to adapt regular machine 
learning algorithms to multiclass classification of time series data. The methodology was applied to a dental air compressor. 
It includes data collection, analysis, and exhibition. The model verified the IBM Watson and the Microsoft Azure Machine 
Learning Studio with the algorithms of neural networks, logistic regression, decision jungle, and decision forest, which 
was the most suitable one. The transformation performed in the data considered the influence of time in the read values to 
obtain a more efficient result in the platform. The solution integrated data collected by the sensors with the cloud using an 
Internet of Things architecture, a web service, and python scripts to exhibit the outcomes on the computer screen. Therefore, 
the model performs notification and identification of health technology failures, supporting the decision-making process of 
ubiquitous management in clinical engineering.

Keywords Clinical engineering · Machine learning · Ubiquitous health technology management · Remote supervision · 
Dental air compressor

1 Introduction

Driven by the necessity of safer proceedings, more reli-
able diagnosis, and cost reduction, clinical engineering, 
once associated mainly with the maintenance of medical  
equipment, has expanded its fields of operation (Garcia et al. 
 2011; Zambuto 2004). Besides, the supervision of technol-
ogy as part of predictive maintenance is financially justifi- 
able in systems where failures have serious impacts on the 
whole technological process. It can be used in situations of  

randomness, repetitiveness, and dangers caused by faults in 
the technology (Mobley 2002).

Among the systems used in equipment management, there are 
machine learning (ML) algorithms. These computation methods 
comprehend the relation between data and information through 
the generalization of examples. Therefore, they are not explicitly 
programmed to develop a task, but they learn from experience. 
These tools can be used to solve classification problems. They are  
indicated to work with large amounts of data processing and with  
the confirmation of conditions yet unknown (Awad and Khanna  
2015). The creation of a machine learning model can be per-
formed with programming languages or with a Software as a 
Service (SaaS) platform (Idoine et al. 2018).

The importance of an Internet of Things (IoT) archi-
tecture in medical equipment management is widely  
known (Maktoubian and Ansari 2019; Çoban et al. 2018), 
yet there are few examples of machine learning applied to 
their predictive maintenance. The industry has used Support  
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Vector Machine (SVM) algorithms to detect failures in reciprocat- 
ing compressor valves based on vibration information (Ren 
et al. 2005). In health care, SVM and vibration data have 
also been applied to predictive maintenance of an Immuno-
assay Analyzer, identifying the belt slippage of the metering 
arm failure (Shamayleh et al. 2020). In both cases, the algo-
rithms were restricted to detect only a single failure type in 
the whole system. A multiclass failure classification allows 
the creation of maintenance plans to indicate the tools and 
mechanical parts required to fix the equipment, reducing the 
number of visits to the health facility.

The Brazilian primary health care establishments 
are geographically distributed to follow the population 
density distribution. The facilities are not close to each 
other and may have different types of equipment to be 
monitored. Therefore, the technical team needs to travel 
significant distances to manage them. A remote decision-
making support system with trend indicators would allow 
the prediction of conditions to coordinate the team mobil-
ity. Furthermore, the failure classification would avoid 
visits designed to malfunctioning identification.

The objective of the present work is to provide a plat-
form to detect and classify health equipment failures apply-
ing machine learning. It integrates the data collected by the 
sensors with the cloud using an IoT architecture to perform 
remote real-time analysis. The results of this application 
belong to the decision category as a stage of cognitive anal-
ysis, in which cognitive tools are used to construct prede-
termined actions to support the decision-making process 
in technology management regarding ubiquitous structures 
of clinical engineering (Garcia et al. 2018).

This article evaluates models created using two soft-
ware as a service (SaaS) platforms: the IBM Watson and 
the Microsoft Azure Machine Learning Studio. It also 
examines how the number of variables, feature engineer-
ing, and the number of classes influence the performance 
of the algorithms available in such high-level interfaces. 
The paper proposes an alternative to classifying time 
series data with general machine learning models, such 
as decision forest, instead of more complex algorithms, 
such as recurrent neural networks.

2  Materials and Methods

The development of this work uses a SaaS ML platform as a 
cognitive tool. Some cognitive analysis services were veri-
fied: Amazon AWS Studio, IBM Watson, Google Cloud, and 

Microsoft Azure Machine Learning Studio, electing the last 
one due to its flexibility, higher number of classification algo-
rithms, and method for model validation (Idoine et al. 2018). 
The Microsoft Azure Machine Learning Studio (MAMLS) 
presents blocks with functions, algorithms, and data process-
ing that can be linked to obtain the desired pipeline.

The creation of an ML algorithm is divided into seven 
steps: data collection, preprocessing, transformation, train-
ing, testing, application of reinforcement learning, and exe-
cution (Awad and Khanna 2015). However, the procedure 
executed in this proposal has adaptations for the implemen-
tation in the ubiquitous management of health technology 
using the MAMLS platform.

The Fig. 1 presents the data flow in the solution. The 
data are received from a collector installed in the equipment, 
transferred to a data hub, sent to the database, downloaded 
by a computer, sent to the cloud through a web service, and 
returned to the computer for exhibition in real-time.

2.1  Data Collection

The selection of the dental air compressor as the device to be 
monitored was made in the operational category, a previous 
step in this study, performed by the Clinical Engineering 
area of the Biomedical Engineering Institute of the Federal 
University of Santa Catarina (IEB-UFSC). It was supported 
by failure analysis tools to identify and define the equipment 
and its parameters to be investigated (Soares et al. 2020). To 
extend this methodology to other equipment, the process 
performed in the article should be repeated, determining the 
faults, electing the values to be measured, and performing 
the steps for the creation of the ML algorithm.

The failures observed, corresponding to 89% of all exist-
ing failures reported in information systems for dental tech-
nologies, are the following: air leak through the hose, push-
in connector, and regulator; defect in the piston valves, rings, 
gasket and cylinder head; leaks through the air extractor; 
leaks through the coil; and locked piston (Soares et al. 2020). 
They are categorized into the following behaviors:

– Small, medium, and large leak: air leak through the hose, 
push-in connector, regulator, air extractor, and coil.

– Worn out rings (no rings): defect in the piston valves, 
rings, gasket, and cylinder head.

– Motor failure: locked piston and defective capacitor.

Based on the deficiencies described, the variables cho-
sen to be monitored were current, voltage, equipment 

Fig. 1  Data flow in the techno-
logical solution  Monitoring

Device Data Hub Data Base Computer Web
Service
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temperature, environment temperature, environment 
humidity, and pressure in the compressed air system. How-
ever, after the observation of some test results, the envi-
ronment temperature and humidity were removed since 
they were mostly constant.

A data collector is installed in each piece of equipment 
to read the values from the sensors. Since there are multi-
ple devices in a health facility, a data concentrator gathers 
the information from all collectors and sends it to a data-
base through the wireless network.

The data representing the normal behavior were 
obtained from a health facility in Florianópolis (SC - 
Brazil). A clinical engineering specialist monitored the 
device over three months while the information was col-
lected. The data representing each defect were controllably 
created by simulating such conditions in the IEB-UFSC 
laboratory. For each routine, different runs were made to 
avoid the influence of environmental conditions, such as 
the local temperature and period of the day, and to create 
a robust machine learning model.

The collector module records the data from the sensors 
every two seconds. Due to the effects of some simula-
tions in the compressor, the amount of data in each class 
is different.

2.2  Data Preprocessing

Since the values are collected using different sensors, there 
needs to be a standardization. The data from the simulations 
are joined into one file and aligned by the time of collection. 
Then, the commas representing the decimals are replaced by 
dots, the columns are renamed, and the unities are regulated. 
The information collected when the equipment was off is 
deleted. The unities indicators are removed and the missing 
values are filtered. Furthermore, a column indicating the 
simulated behavior is added.

A Python script is created for the data preprocessing 
stage. The code uses the pandas library due to its efficiency, 
wide use, and open-source, the psycopg2 library to com-
municate with the SQL database, and the datetime library 
to deal with values in date format. Thus, the data are format-
ted, cleaned, filtered, divided by simulation, and classified 
accordingly.

2.3  Data Transformation

It is possible to understand the equipment behavior as time 
functions of the variables collected by the sensors. Conse-
quently, the task of classifying the health care technology 
behavior consists in the identification of the category its 
curve belongs to.

There is no previous knowledge about the parameter 
with higher influence in the operation, however, it is 
known that the values change differently as time passes, 
depending on the behavior of the equipment. So, an analy-
sis of the data at a single moment is not enough to solve 
the problem. To work around this issue, it is essential to 
create a variable that relates the measures to time.

Since the MAMLS platform does not offer algorithms 
to analyze time series information, such as recurrent neural 
networks, feature engineering was needed. Transforma-
tions derived the original data to create more significant 
characteristics.

First, the operation attribute (on or off) is added to the 
data. The feature is defined based on the current value, 
when it is low (less than 1A) the device is off, otherwise, 
it is on.

Using the operation element, a column is created to 
store the elapsed time since the last change in functioning. 
Hence, it is possible to obtain how long the equipment has 
been working. This feature is useful to classify air leaks, 
when the technology takes more time to turn off.

The elapsed time brings forward the equivalent time 
between the actual moment and the one in which the device 
was turned on/off, however, it does not present a measure 
relative to subsequent data. Therefore, to relate the actual 
value with the one before, two features are built: the tem-
perature rate and the pressure rate. This solution is effec-
tive because it represents how the function evolves as time 
passes. For example, if the temperature rate is a large posi-
tive number, the temperature increases quickly; if it is zero, 
the temperature is constant; if the rate is a small negative, the 
temperature decreases slowly. These attributes are created by 
subtracting the value of the actual data by the past one and 
dividing them by the time between the samples. This way, 
as the time difference tends to zero, the value approaches the 
slope (inclination) of the tangent line at the point.

Consequently, it is possible to obtain an approximation 
of the derivative by the Euler Backward Method (Equa-
tion 1), where f(k) is the value of the function at instant k 
and Dt is the time difference between instants k and k-1.

Thus, the parameters that present the relationship between 
data in distinct moments are constructed, solving the prob-
lem of using the MAMLS platform for time series data 
analysis.

2.4  Model Training

The data sent to the MAMLS platform are randomly divided 
into two sets, one for training, corresponding to 70%, and 

(1)f �(k) =
f (k) − f (k − 1)

Dt
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the other for testing, 30%. The platform has four multiclass 
classification algorithms: decision forest, which classifies by 
combining different decision trees (Tong et al. 2003); decision 
jungle, an extension of the decision forest algorithm (Shotton 
et al. 2013); logistic regression, classification using the logis-
tic curve (Kleinbaum et al. 2002); and neural networks, which 
uses layers of artificial neurons for classification (Guresen and 
Kayakutlu 2011). The parameters for training each algorithm 
are the ones set as default by the platform.

To obtain the best model, all the algorithms available in 
the MAMLS platform were compared (Fig. 2). Then, the 
best one was integrated into the solution.

The study also verified the IBM Watson platform. It has 
a model creation assistant, a high-level interface, and only 
one algorithm for multiclass classification. It does not allow 
the connection of blocks to create a pipeline. Instead, a menu 
where one can select the desired purpose encapsulates the 
whole process. The platform has an exclusive page for manu-
ally testing one data at a time. Besides the lack of algorithm 
customization, the IBM Watson did not perform as expected 
(Fig. 3) and it was not considered in future evaluations.

2.5  Model Testing

The algorithm evaluation creates a confusion matrix that pre-
sents the predicted categories against their true classes with 
the values for the true positives (TP), false positives (FP), true 
negatives (TN), and false negatives (FN). So, a matrix with all 
data in the main diagonal reflects an effective model.

To have a single score value that is easier to compare, some 
evaluation metrics can be derived from the confusion matrix. 
One of them is the accuracy (Acc), which corresponds to 
the fraction of the total instances that are correctly classified 
(Equation 2) (Hand and Christen 2018).

Besides, the values of precision and recall can be also 
obtained: precision (P) is the ratio between the values that 
were correctly classified as positive and values that were 
predicted to be positive (Equation 3); recall (R) is the rate  
of all positive values that were correctly labeled (Equa- 
tion 4) (Hand and Christen 2018).

The F1 score is used because the accuracy measure is not 
adequate for classification problems with imbalanced classes 
(Schütze et al. 2008). For binary classification, this met-
ric calculates the harmonic means of precision and recall, 
however for multiclass classification, the F1-score is cal-
culated as the arithmetic mean over the harmonic means, 
(Equation 5), where K is the number of classes (Opitz and 
Burst 2019).

(2)Acc =
TP + TN

TP + FP + TN + FN

(3)P =
TP

TP + FP

(4)R =
TP

TP + FN

Fig. 2  Microsoft Azure Machine Learning Studio model
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In case the test results are not appropriate, the proceedings 
should be repeated, adding more data, more features, modify-
ing the transformations or changing the training parameters. 
Besides the model evaluation performed in 30% of the col-
lected data, online tests conducted in the laboratory of the IEB-
UFSC simulated some behaviors and verified that the results 
corresponded to the ones presented in the confusion matrix.

2.6  Execution

To apply the remote classification in real-time, the raw data col-
lected by the device is sent to a local database. A Python script 
is created to transform it following the standards applied in the 
training procedure and send it to the cloud using a web service 
to be analyzed by the model. The response from the MAMLS 
platform is treated and exhibited on the computer screen.

3  Results

An initial test simulated only the problems of worn-out rings 
and clogged filter. In this case, no transformations were per-
formed, only preprocessing. Besides, this model included the 
measurements of environmental humidity and temperature, but 

(5)F
1
=

1

K

K
∑

k=1

2PkRk

Pk + Rk

not of compressed air pressure. The development also tested 
the four algorithms: decision forest (Fig. 4), decision jungle 
(Fig. 5), logistic regression (Fig. 6) e neural network (Fig. 7).

Then, the model contemplated the measurements of pres-
sure, but not the ones of environmental humidity and tem-
perature since these values were mostly constant during the 

Fig. 3  IBM Watson result and comparison

Fig. 4  Confusion matrix of the decision forest algorithm development 
version
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simulation. This version considered the derived values to 
relate the data to time: operation, elapsed time, temperature 
rate, and pressure rate. Besides, it included the problems 
from all categories.

The confusion matrix for the decision forest algorithm 
(Fig. 8) shows that it did most of the classification correctly. 

The majority of the values were presented in the main diago-
nal, except for the motor failure one, which was classified as 
normal in 33% of the cases.

The decision jungle algorithm shows similar behavior to 
the decision forest model (Fig. 9), yet the motor failure data 
are not classified correctly because in 66.7% of the cases 
they are classified as no rings.

The logistic regression (Fig. 10) and the neural network 
(Fig. 11) algorithms do not present good results because 
there is considerable dispersion in classification with some 
focus on the normal behavior.

The accuracy and F1-score metrics for each algorithm are 
shown in Table 1.

4  Discussion

The high-level of the Microsoft platform allows fast model 
creation, but it also comes with some caveats. During train-
ing, it considered the information from the date column in 
the classification. Thus, data from different behaviors, but 
simulated in periods close to each other, were classified the 
same way and the date column had to be removed. The tests 
considering just the raw data of the normal, worn-out rings, 
and clogged filter behaviors had adequate results for all algo-
rithms but the neural networks. However, as the number of 
problems increased, the model could not classify them prop-
erly, indicating the limitations of the machine learning studio 
to classify time series data.

Fig. 5  Confusion matrix of the decision jungle algorithm develop-
ment version

Fig. 6  Confusion matrix of the logistic regression algorithm develop-
ment version

Fig. 7  Confusion matrix of the neural network algorithm develop-
ment version
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The model increased in performance after implementing 
feature engineering and creating the elements of operation, 
elapsed time, temperature rate, and pressure rate. One minor 
issue is that some of the small leak values were classified 
as normal by the decision forest and decision jungle algo-
rithms. A small leak (Fig. 12) does not present a significant 
influence on the equipment behavior. During the simula-
tions, the air compressor did not work constantly, but in real 
cases, when the technology is used during the whole day, 
this could cause a larger leak and the algorithm would detect 
it properly.Fig. 12  Small leak

Another condition noticed in the decision forest algorithm 
is that some data from motor failure were wrongly classi-
fied (Ling and Sheng 2010). A possible explanation is the 
effects of imbalanced classes (skewed data). In other words, 
there are much more data corresponding to the other classes, 
mainly the normal class, than the motor failure one. It is dif-
ficult to collect data of this category because the simulations 
of a stuck piston or defective capacitor automatically trigger 
the residual circuit breaker as a result of overcurrent in the 
electric power system, shutting down the motor.

Since the acquisition of more data seems impracti-
cal, the solution should come from the algorithm. There 
are techniques that could be used to create artificial data 
for the imbalanced class. However, some of them require 

adaptations for multiclass problems (He et al. 2008). Thus, 
this study only used the data obtained in the simulations.

Analyzing the results, the decision forest is the chosen 
model because it joins different decision tree classifiers, 
training each one in a different part of the data, and combin-
ing their results. It mitigates some of the errors from the 
decision tree model, such as those caused by class imbal-
ance (Rokach 2016). The results validate that this method 
is more suitable for the classification of applications where 
the importance of each variable is initially unknown (Oza 
and Tumer 2008).

Furthermore, the algorithms of decision forest and deci-
sion jungle had similar accuracies, yet their F1-scores were 
distinct, showing that the F1-score is a better evaluation 
metric for classification (Schütze et al. 2008). This can be 
explained because the F1-score for the motor failure class is 
zero for all the algorithms except for the decision forest one.

However, the F1-score has the disadvantage of attributing 
the same importance for precision and recall independently 
of their classes, while this should be an aspect defined by 
the problem (Hand and Christen 2018). For example, the 
classes of small leaking and motor failure had false nega-
tives, that is, sometimes the behavior was classified as nor-
mal even though it was not. This fact has consequences in 
primary health care management since the non-notification 

Fig. 8  Confusion matrix of the 
decision forest algorithm
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Fig. 9  Confusion matrix of the 
decision jungle algorithm

Fig. 10  Confusion matrix of the 
logistic regression algorithm
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of this event may cause the equipment to deteriorate or even 
break. On the other hand, the incorrect notification of normal 
behavior as problematic would waste time and resources. 
Therefore, to make changes to the weights of precision and 
recall, a study is suggested on the impacts of false posi-
tives and false negatives in clinical engineering ubiquitous 
management.

5  Conclusion

The cognitive analysis platform can support clinical engi-
neering in the decision-making process by creating plans 
for predictive maintenance, increasing the reliability and 
the safety of primary health care system users.

The application of the platform as a tool for ubiquitous 
management of medical technologies enables the constant 
supervision of the equipment, improving the quality of 
health assistance. The amount of time and resources needed 
to manage health devices can be reduced by the remote real-
time analysis provided by this technological solution, caus-
ing the decision-making process to be faster, more efficient, 
and based on evidence. Furthermore, the monitoring allows 
the collection of data for the future creation of a predictive 
maintenance model based on the occurrence of failures.

Fig. 11  Confusion matrix of the 
neural network algorithm

Table 1  Evaluation metrics

Algorithm Accuracy F1-score

Decision Forest 96.61% 92.98%
Decision Jungle 95.4% 77.34%
Logistic Regression 31.1% 16.75%
Neural Network 29.68% 19.11%

Fig. 12  Small leak
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The remote analysis system can help to coordinate the 
management team’s actions by creating maintenance plans 
based on the failures found in the equipment. The workers 
would only need to visit the health establishment to fix 
the technology when a problem was reported and classi-
fied. There would be no appointments to identify failures 
and elect the tools and mechanical parts required to repair 
them. Hence, it would reduce the number of visits to the 
health facilities and the risk of contracting Sars-CoV-2, 
increasing the team’s safety.

The development of the solution indicated the impor-
tance of feature engineering for the multiclass classifi-
cation of time series data using regular ML algorithms. 
The transformations of operation, elapsed time, and time 
derivatives were crucial to improve the performance of 
the model as the number of classes increased. Besides, 
the measurement of pressure in the compressed air sys-
tem proved to be essential, while the ones of environment 
temperature and humidity did not.

Finally, the methodology applied in the dental air com-
pressor had an accuracy of 96.91% and an F1-score of 
92.98% for the decision forest algorithm. Thus, it proved 
to be efficient in failure detection and classification, as 
shown in Fig. 8. Hence, this procedure could be extended 
to other primary health care technologies, including those 
with higher costs, risks, and impacts in hospitals’ budgets, 
by repeating the process to identify the monitored param-
eters (Soares et al. 2020) and the steps for the ML model 
creation (Awad and Khanna 2015).
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