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Abstract Protein–protein interactions are crucial in many biological processes. Therefore, determining the
complex structure between proteins is valuable for understanding the molecular mechanism and
developing drugs. Many proteins like ion channels are formed by symmetric homo-oligomers. In this
study, we have proposed a hierarchical docking algorithm to predict the structure of Cn symmetric
protein complexes, which is referred to as CHDOCK. The symmetric binding modes were first con-
structed by an FFT-based docking algorithm and then optimized by our iterative scoring function for
protein–protein interactions. When tested on a symmetric protein docking benchmark of 212 homo-
oligomeric complexes with Cn symmetry, CHDOCK obtained a significantly better performance in
binding mode predictions than three state-of-the-art symmetric docking methods, M-ZDOCK, SAM, and
SymmDock. When the top 10 predictions were considered, CHDOCK achieved a success rate of 44.81%
and 72.17% for unbound docking and bound docking, respectively in comparison to those of 36.79%
and 65.09% for M-ZDOCK, 31.60% and 54.25% for SAM, and 30.66% and 31.60% for SymmDock.
CHDOCK is computationally efficient and can normally complete a symmetric docking calculation
within 30 min. The CHDOCK can be freely accessed by a web server at http://huanglab.phys.hust.edu.
cn/hsymdock/.
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INTRODUCTION

Protein–protein interactions are crucial in many bio-
logical processes like signal transduction, intracellular
trafficking, and immune recognition. Among all protein–
protein interactions, a significant portion is formed by
symmetric homo-oligomers (Andre et al. 2008; Goodsell
and Olson 2000; Poupon and Janin 2010). According to
the Protein Data Bank (PDB) (Berman et al. 2000), more
than one third of the proteins have some types of
symmetry. For example, many transmembrane proteins
like ion channels are formed by symmetric homo-
oligomer assemblies. The symmetry of homo-oligomeric
proteins is thought to be associated with many potential

benefits like greater stability, reduced aggregation, and
robustness to errors in synthesis (Andre et al. 2008;
Goodsell and Olson 2000). The interface between sym-
metric homo-oligomers is often the targeting site for
regulating the biological processes (Petsalaki and Rus-
sell 2008). Therefore, determining the complex struc-
ture of symmetric proteins is important (Lensink et al.
2016, 2018). Theoretically, one can use a general
protein–protein docking approach to predict the com-
plex structure of symmetric homo-oligomers by docking
one monomer against the other (Comeau et al. 2004; de
Vries et al. 2010, 2015; Torchala et al. 2013; Tovchi-
grechko and Vakser 2006). However, such a general
docking strategy is not efficient for symmetric homo-
oligomers. On one hand, the general protein–protein
docking approach treats two interacting partners as
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different proteins and therefore often don’t generate the
complex structures with strict symmetry; On the other
hand, general protein–protein docking normally don’t
consider the symmetry restraints during the docking
process, and therefore is not computationally efficient.
Therefore, specialized protein–protein docking algo-
rithms are needed for predicting the complex structure
of symmetric protein homo-oligomers.

One important symmetry in proteins is cyclic sym-
metry (Cn), for which the oligomeric structure can be
constructed by n consecutive rotations of 360�/n
around a single rotational axis of one subunit (Andre
et al. 2008). Despite the importance of symmetric pro-
tein homo-oligomers, only a few algorithms have been
developed for symmetric protein docking. Wolfson et al.
developed a fast docking algorithm for cyclically sym-
metric complexes through local feature matching, which
is referred to as SymmDock (Schneidman-Duhovny et al.
2005). SymmDock constructs the symmetric homo-
oligomer complexes by restricting the search to
symmetric cyclic transformations. The Weng group
developed an FFT-based algorithm for symmetric
protein–protein docking by restricting the search space
with cyclic symmetry (M-ZDOCK) (Pierce et al. 2005).
Based on the symmetric protein complexes in the PDB,
several web servers that use template-based methods
like ROBETTA (DiMaio et al. 2011), SWISS-MODEL (Bi-
asini et al. 2014), and GalaxyGemini (Lee et al. 2013)
have also been proposed to predict the homo-oligomeric
structure. In addition, Ritchie and Grudinin presented a
fast docking algorithm, which is named SAM, for pre-
dicting the symmetrical models of protein complexes
with arbitrary point group symmetry through a
spherical polar FFT-based algorithm (Ritchie and
Grudinin 2016). Very recently, the Seok group has
developed a combination modeling approach,
GalaxyHomomer, for homo-oligomer structure predic-
tion from a monomer sequence or structure by
template-based modeling if homologous complexes are
available in the PDB or ab initio docking (Baek et al.
2017).

However, despite the significant progress in the
development of symmetric docking algorithms, there is
still much room in improving the docking accuracy.
Recently, we have developed a new pairwise shape-
based scoring approach to consider long-range inter-
actions (LSC) of protein atoms by an exponential form in
FFT-based protein–protein docking. Tested on general
protein–protein complexes, our LSC approach showed a
significant advantage over the traditional grid-based
method (Yan and Huang 2018). Extending the LSC
approach to symmetric complexes, we have here
developed a fast ab initio docking approach for the

symmetric docking of homo-oligomers with Cn symme-
try by an FFT-based search algorithm with LSC, which is
referred to as CHDOCK.

RESULTS AND DISCUSSION

Comparison with other programs

We have tested our symmetric docking algorithm
CHDOCK on the bound and unbound structures of our
symmetric protein docking benchmark of 212 Cn tar-
gets (Yan and Huang 2019). Table 1 lists the success
rates of CHDOCK in binding mode predictions for bound
and unbound docking on the 212 cases with Cn sym-
metry when the top 1, 10, and 100 predictions are
considered. The corresponding results are also shown in
Fig. 1. For comparison, Table 1 and Fig. 1 also give the
corresponding results of three other Cn symmetric
docking algorithms, M-ZDOCK (Pierce et al. 2005),
SymmDock (Schneidman-Duhovny et al. 2005), and
SAM (Ritchie and Grudinin 2016), on this benchmark, in
which the same clustering criteria have been applied to
their final binding modes during the calculation of
success rates. It can be seen from Table 1 and Fig. 1 that
CHDOCK obtained a significantly better performance
than the other three docking methods for bound dock-
ing and achieved a success rate of 55.19%, 72.17%, and
90.57% for top 1, 10, and 100 predictions, respectively,
in comparison to those of 45.76%, 65.09%, and 89.15%
for M-ZDOCK, 38.85%, 54.25%, and 84.91% for SAM,
and 16.04% 31.60%, and 67.45% for SymmDock.

Similar trends can also be observed in the results for
unbound docking, though the performance differences
among different algorithms are not as much as those for
bound docking due to the impact of conformational
changes in the unbound structures. Namely, CHDOCK
also performed significantly better than the other three
methods for unbound docking and obtained a success
rate of 30.66%, 44.81%, and 68.40% for top 1, 10, and
100 predictions, respectively, in comparison to those of
26.42%, 36.79%, and 66.51% for M-ZDOCK, 19.34%,
31.60%, and 63.68% for SAM, and 11.79%, 30.66%, and
58.49% for SymmDock (Table 1 and Fig. 1).

Besides the success rate of docking, we have also
compared the average root mean square deviation
(RMSD) of ‘hit(s)’ (i.e., successful binding mode pre-
dictions) for both bound docking and unbound docking
with the other three programs when the top 1, 10, 100
predictions were considered. The results are listed in
Table 2 and the corresponding results are shown in
Fig. 2. From Table 2 and Fig. 2, we can see that CHDOCK
also performed much better and obtained more
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accurate binding modes than the other three programs
for both bound docking and unbound docking. For
bound docking, CHDOCK obtained an average RMSD of
1.10, 1.51 and 2.11 Å for top 1, 10 and 100 predictions,
respectively, in comparison to those of 2.27, 2.80 and
3.46 Å for the second-best method M-ZDOCK. As for
unbound docking, similar results can also be observed.
CHDOCK obtained an average RMSD of 2.54, 3.12 and
4.07 Å for top 1, 10, 100 predictions, respectively, while
M-ZDOCK obtained a higher RMSD of 3.26, 3.86 and
5.07 Å. Interestingly, one can also note that among the

four docking programs, if a method performs better in
the success rate of binding mode prediction, it also
performs better in the average RMSD of ‘hits’. That
means, the performance comes from both the number
and the quality of successful predictions.

Performance of scoring function

To investigate the performance of our scoring function,
we also tested our pure FFT-based docking, named
CHDOCK_lite, on the benchmark, which only uses the

Table 1 The success rates (%) predicted by our CHDOCK and three other symmetric docking programs on our protein docking
benchmark of 212 Cn symmetric complexes when the top 1, 10, and 100 predictions were considered

Bound docking Unbound docking

Method Top 1 Top 10 Top 100 Top 1 Top 10 Top 100

CHDOCK 55.19 72.17 90.57 30.66 44.81 68.40

M-ZDOCK 45.76 65.09 89.15 26.42 36.79 66.51

SAM 35.85 54.25 84.91 19.34 31.60 63.68

SymmDock 16.04 31.60 67.45 11.79 30.66 58.49

Fig. 1 The success rates of our CHDOCK and three other symmetric docking methods in binding mode predictions on our protein
docking benchmark of 212 Cn symmetric complexes for bound docking (A) and unbound docking (B). For each method, from left to right
are for the results of top 100, 10, and 1 prediction, respectively

Table 2 The average LRMSD (Å) of ‘hit(s)’ predicted by our CHDOCK and three other symmetric docking programs on our protein docking
benchmark of 212 Cn symmetric complexes when the top 1, 10, and 100 predictions were considered

Bound docking Unbound docking

Method Top 1 Top 10 Top 100 Top 1 Top 10 Top 100

CHDOCK 1.10 1.51 2.11 2.54 3.12 4.07

M-ZDOCK 2.27 2.80 3.46 3.26 3.86 5.07

SAM 2.28 2.88 4.10 3.43 4.03 5.48

SymmDock 3.40 4.42 5.72 5.15 5.61 6.43
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shape complementarity to filter and sort docking poses.
The docking results for bound docking and unbound
docking are shown in Fig. 3. It can be seen from the
figure that CHDOCK performed much better than
CHDOCK_lite. With the help of our scoring function
ITScorePP (Huang and Zou 2008), the success rate of
bound docking for top 1 prediction increased from
21.70% to 55.19% and for unbound docking, the suc-
cess rate increased from 11.32% to 30.66%. The great
improvement of CHDOCK compared to CHDOCK_lite
demonstrates the important role of our scoring function.

Discussions

CHDOCK and M-ZDOCK are both the three-dimensional
(3D) FFT-based docking algorithms and adopt the sim-
ilar sampling strategy. However, the difference between

CHDOCK and M-ZDOCK is that CHDOCK adopts a better
shape complementarity score LSC (Yan and Huang
2018) and a more powerful scoring function ITScorePP
(Huang and Zou 2008). In our previous study on hetero
protein complexes (Yan and Huang 2018), LSC has
shown its better performance than PSC (Chen and Weng
2003) used in M-ZDOCK. ITScorePP also showed a
better performance in scoring decoys and finding the
near native structures (Huang and Zou 2008). There-
fore, the better performance of CHDOCK than M-ZDOCK
would be attributed to both the shape complementarity
score LSC and our scoring function ITScorePP. Although
CHDOCK has achieved better performance than the
other three docking programs, the success rate for top 1
prediction is still not high, especially for unbound
docking. There are much room to improve the existing

Fig. 2 The average RMSD of first ‘hit(s)’ of our CHDOCK and three other symmetric docking methods tested on our protein docking
benchmark of 212 Cn symmetric complexes for bound docking (A) and unbound docking (B). For each method, from left to right are for
the results of top 100, 10, and 1 prediction, respectively

Fig. 3 The success rate as a function of the number of top predictions for our CHDOCK and CHDOCK_lite tested on our protein docking
benchmark of 212 Cn symmetric complexes for bound docking (A) and unbound docking (B)
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methods and develop new docking programs in the
future.

Examples of the docking model

Figure 4 shows the top binding modes predicted by our
CHDOCK for both bound and unbound docking on three
example targets. It can be seen from the figure that the
predicted complexes overlap well with the experimental
native structures, and give a ligand RMSD of 0.42 and
4.03 Å for C2 symmetric target 1MSC, 0.92 and 3.38 Å
for C4 symmetric target 1OVO, and 0.95 and 1.20 Å for
C6 symmetric target 1KQ1, respectively. The good con-
sistency between the predicted and native structures in
both bound and unbound docking demonstrates the
reliability of our CHDOCK.

CONCLUSION

We have developed a hierarchical docking algorithm for
predicting the complex structures of homo-oligomers
with Cn symmetry, which referred to as CHDOCK. The Cn
symmetric binding modes were first generated by an
FFT-based docking algorithm, in which a shape com-
plementarity scoring function was used to consider

long-range interactions. Then, the binding modes with
best shape complementarity were optimized with our
iterative scoring function for protein–protein interac-
tions. Our symmetric docking algorithm CHDOCK was
evaluated on a diverse benchmark of 212 Cn symmetric
protein complexes from the PDB, and was compared
with three state-of-the-art symmetric docking approa-
ches including M-ZDOCK, SAM, and SymmDock. It shows
that CHDOCK achieved a significantly better perfor-
mance than the other three docking methods in both the
number and the quality of successful predictions for
bound docking and unbound docking. The results
demonstrate the strong predictive power of our hier-
archical docking algorithm CHDOCK in modeling Cn
symmetric protein complexes.

MATERIALS AND METHODS

FFT-based translational search

The putative symmetrical complexes were constructed
from a monomer or subunit in 3D translational space by
a modified version of our general FFT-based docking
algorithm (Yan et al. 2017; Yan and Huang 2018).
Specifically, we first made two copies of the subunit or

Fig. 4 Comparisons between the top predicted binding modes and native structures for three targets 1MSC (C2 symmetry) (A), 1OVO
(C4 symmetry) (B) and 1KQ1 (C6 symmetry) (C). The native structure is colored in pink and the predicted structure is colored by chains.
For each column, the upper and lower ones are for bound docking and unbound docking, respectively
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monomer. One was called ‘‘receptor’’ subunit and the
other ‘‘ligand’’ subunit. For docking with Cn symmetry,
the receptor subunit was fixed and the ligand subunit
was rotated by an angle of 360�/n around the z-axis. To
perform an FFT-based search, both the receptor and
ligand subunits needed to be mapped onto a 3D grid of
N � N � N grid points (Chen and Weng 2003;
Katchalski-Katzir et al. 1992). The grid points within the
VDW radius of any protein atoms were considered
inside the molecule, and the others were considered as
outside the protein. Here, the VDW radii for standard
protein atoms were taken from the study by Li and
Nussinov (1998). Then, the inside-protein grid points
were divided into three parts: surface layer, near-
surface layer, and core region. It is defined that a grid
point belonged to the surface layer if any of its neigh-
boring grid points is outside the protein. Similarly, a grid
point belonged to the near-surface layer if any of its
neighbors is in the surface layer. All the other grid
points except the surface and near-surface layers inside
the protein were defined as the core region. According
to the above definitions, one can see that the near-
surface layer and core region were normally occupied
by the protein atoms, and the surface layer separated
the inside protein from the outside space. Then, each
grid point for the receptor (R) and ligand (L) subunits
was assigned a complex value as:

Rðl;m;nÞ

¼

�
P

i;j;k
exp½�ðr�1Þ2�þ J ðforsurfacelayerÞ;

�1þ2J�
P

i;j;k
expð�r2Þ ðfornearsurfacelayerÞ;

�1þ10J ðforproteincoreÞ;
0 ðoutsidetheproteinÞ;

8
>>>>>><

>>>>>>:

ð1Þ

and

Lðl;m;nÞ

¼

1� J ðforsurface layerÞ;
1þ2J�

P

i;j;k
expð�r2Þ ðfornearsurface layerÞ;

1�10J ðforproteincoreÞ;
0 ðoutsidetheproteinÞ;

8
>>>><

>>>>:

ð2Þ

where J2 ¼ �1, l, m, and n are the indices of the 3D grid
(l;m; n ¼ 1; . . .;N), and r is the distance between the
grid points of (i, j, k) and (l, m, n). Here, i 2 l � 3; l þ 3½ �,
j 2 m� 3;mþ 3½ � and k 2 n� 3; nþ 3½ � for the surface
layer, and i 2 l � 1; l þ 1½ �, j 2 m� 1;mþ 1½ � and k 2
n� 1; nþ 1½ � for the near-surface layer, respectively.

And also, the grid point (i, j, k) should belong to near-
surface layer or protein core.

With the above mapping of the proteins on the grid,
the shape complementarity score between two neigh-
boring subunits of a symmetric complex around the z-
axis can be generally expressed by the following equa-
tion (Chen and Weng 2003; Katchalski-Katzir et al.
1992):

E o;pð Þ ¼Re
PN

l¼1

PN

m¼1

PN

n¼1
R l;m;nð Þ�L lþo;mþp;nð Þ

� �

�Im
PN

l¼1

PN

m¼1

PN

n¼1
R l;m;nð Þ�L lþo;mþp;nð Þ

� �

;

ð3Þ

where o and p are the number of grid points by which
the ligand (L) is shifted with respect to the receptor
(R) in the x–y plane, respectively. There is no shift in the
z-axis because the rotational axis is parallel to the z-axis,
which reduces the sampling space in one translational
dimension. The correlation of Eq. 3 can be calculated by
an FFT-based algorithm. A higher correlation score
means a better shape complementarity between two
grids for a relative translation of (o, p) (Katchalski-
Katzir et al. 1992).

Rotational sampling strategy

To perform a global sampling approach for putative
binding modes, one needs to search the six-dimensional
(i.e., 3 translational ? 3 rotational) space. The exhaus-
tive search in 3D translational space can be performed
by an FFT-based approach, as described in the previous
section. The exhaustive search in the rotational space
will be conducted in the space of Euler angles by taking
into the Cn symmetry restriction account. Specifically,
the monomer subunit is rotated by an interval of Euler
angles (/=0, Dh, Dw) in the rotational space, where the
angular definition is based on the so-called ‘‘x-axis
convention’’. Namely, / is the first rotation about the z-
axis, h 2 0; p=2½ � is the second rotation about the former
x-axis (now x0), and w [ (0,2p] is the third rotation
about the former z-axis (now z0). It is unnecessary to
sample the / angles as the rotational axis is z-axis. In
addition, h only needs to be sampled within 0; p=2½ �
instead of 0; p½ � because of the rotational symmetry. All
these reduce the sampling space in the rotational space.

Then, for each rotation of the monomer subunit, an
FFT-based algorithm was used to calculate the shape
complementarity between the grids of the receptor and
the ligand in the translational space. During the docking
calculation, an angle interval of 10� was used for rota-
tional sampling, and a spacing of 1.2 Å was adopted in
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discretizing proteins onto grids for FFT-based transla-
tional search. Evenly distributed Euler angles were used
for the rotational search, resulting in a total of 360
orientations in the rotational space. For each rotation,
up to the top 100 translations with best shape com-
plementarities were kept and optimized by our scoring
function ITScorePP (Huang and Zou 2008). The binding
mode that corresponds to the best energy score in an
FFT-based translational search was kept for each rota-
tion of the ligand subunit, yielding a total of 360 ligand
binding modes for a docking run. Our FFT-based dock-
ing algorithm is computationally efficient and on aver-
age can complete a full docking calculation in 30 min on
a 2.6 GHZ Intel CPU core.

Scoring function

All the binding modes generated from the initial stage
were evaluated by ITScorePP (Huang and Zou 2008)
and minimized according to their binding scores by a
SIMPLEX optimization method. The binding energy
score is a summation of the binding scores over all the
interfaces between the subunits of the predicted com-
plex. The final ranked binding modes were clustered
with an RMSD cutoff of 5 Å, where the RMSD was cal-
culated using the backbone atoms. If two binding modes
have a ligand RMSD of \5 Å, the one with the better
score is kept.

Benchmark

Based on the protein complexes in the PDB, we have
also constructed a non-redundant benchmark for our
symmetric protein–protein docking. Briefly, all the
homo-oligomeric protein complexes with Cn symmetry
were collected from the crystal structures with resolu-
tion better than 2.5 Å. The symmetry type of a complex
was determined by its biological unit. The symmetric
homo-oligomer complexes were then clustered accord-
ing to their SCOP (version 1.75) family IDs (Lo Conte
et al. 2000). For the complexes belonging to the same
family, the one with the best resolution was selected as
the representative, corresponding to a bound case of
our benchmark, in which each subunit was called the
bound structure of the complex. For the bound structure
in each bound case, the unbound structure was identi-
fied by searching against the PDB database for the
asymmetric structures using the BLASTP (protein–
protein BLAST) algorithm of the BLAST package (Ca-
macho et al. 2009). If an asymmetric structure had
[95% sequence identity with the bound structure and
covered [95% of the sequence alignment, the asym-
metric structure was regarded as a candidate of the

unbound structure. If there were multiple unbound
structures for a subunit protein, the one with the high
resolution was selected as the representative. This
yielded a total of 212 homo-oligomeric protein com-
plexes with Cn symmetry (http://huanglab.phys.hust.
edu.cn/SDBenchmark/) (Yan and Huang 2019). All the
structures in the benchmark have their original coor-
dinates without any random rotation.

Evaluation criteria

The quality of a predicted binding mode was measured
by the ligand RMSD (LRMSD). Here, the RMSD was cal-
culated based on the backbone atoms of the ligand
subunit after optimal superimposition of the receptor
subunit and the native structure. The docking perfor-
mance was evaluated by the success rate, i.e., the frac-
tion of the targets with at least one hit in the test set
when a certain number of top predictions were con-
sidered. Here, a hit is a prediction with a ligand RMSD of
\10 Å (Huang 2014).
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