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Abstract The imaging rate of structured illumination microscopy (SIM) reached 188 Hz recently. As the exposure
time decreases, the camera detects fewer virtual photons, while the noise level remains the same. As a
result, the signal-to-noise ratio (SNR) decreases sharply. Furthermore, the SNR decreases further
because of photobleaching and phototoxicity. This decreased quality of SIM raw data may lead to
surprising artifacts with various causes, which may confuse a new user of SIM microscopy. We sum-
marize three significant possible sources of severe artifacts in reconstructed super-resolution (SR)
images. Ultrafast motion of a biological sample or an uneven illumination pattern is the most difficult to
be identified. The estimated parameter could also be incorrect, leading to artifact of regular patterns.
Furthermore, reconstruction with the Wiener method generates stochastic artifacts due to the ampli-
fication of noise during the deconvolution process. To deal with these problems, we have established a
protocol to reconstruct ultrafast SIM raw data obtained in low SNR conditions. First, we checked the
quality of the raw data with the ImageJ plugin SIMcheck before reconstruction. Then, a modified
parameter estimation method was used to improve the precision of the parameters. Finally, an iterative
algorithm was used for SIM reconstruction under low signal-to-noise ratio conditions. This procedure
effectively suppressed the artifacts in the super-resolution images reconstructed from raw data of low
signal-to-noise ratio.

Keywords Ultrafast SIM, Low signal-to-noise ratio, Reconstruction

INTRODUCTION

Super-resolution (SR) fluorescence microscopy is a
powerful tool to obtain higher spatial resolution in
biological imaging. Many techniques, such as photoac-
tivated localization microscopy (PALM) (Betzig et al.
2006; Hess et al. 2006), stochastic optical reconstruc-
tion microscopy (STORM) (Huang et al. 2008; Rust et al.

2006), stimulated emission depletion (STED) (Klar and
Hell 1999), super-resolution optical fluctuation imaging
(SOFI) (Dertinger et al. 2009), and structured illumi-
nation microscopy (SIM) (Gustafsson 2000; Gustafsson
et al. 2008), have been proposed. Among current tech-
niques, SIM is often used in the living cell imaging
process because of its fast speed and need of illumina-
tion of low intensity. Compared with STED, PALM/
STORM methods that focus on modulation in the spatial
domain, SIM manipulates in the frequency domain to
boost resolution (Dan et al. 2014). Thus, the required
sample preparation and imaging process are the same
as for wide-field fluorescence microscopy. Consequently,

Junchao Fan, Xiaoshuai Huang and Liuju Li contributed equally to
this work.

& Correspondence: shantan@hust.edu.cn (S. Tan),
lychen@pku.edu.cn (L. Chen)

80 | April 2019 | Volume 5 | Issue 2 � The Author(s) 2019

Biophys Rep 2019, 5(2):80–90
https://doi.org/10.1007/s41048-019-0081-7 Biophysics Reports

http://crossmark.crossref.org/dialog/?doi=10.1007/s41048-019-0081-7&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s41048-019-0081-7&amp;domain=pdf
https://doi.org/10.1007/s41048-019-0081-7


any fluorescent sample imaged using wide-field micro-
scopy is compatible with SIM. Moreover, the temporal
resolution is as important as the spatial resolution in
living cell studies. Many SR techniques attain high spa-
tial resolution by sacrificing the temporal resolution,
such as PALM/STORM and SOFI (Kapanidis and Strick
2009). On the other hand, SIM is a notable for its fast
speed in imaging live cells (Kner et al. 2009).

Because of these advantages, SIM has been broadly
combined with many imaging modes, such as total-
internal reflection fluorescence microscopy (TIRF–SIM)
(Li et al. 2015), light sheet microscopy (Chen et al.
2014), and surface plasmon microscopy (Wei and Liu
2010). There are also a series of developments in
atypical SIM, for example, image scanning microscopy
(ISM) (Schulz et al. 2013) and SIM with speckle pattern
(blind-SIM) (Mudry et al. 2012). To reduce the artifacts
in the reconstructed results, there have been many
developments in SIM microscopy, including the strategic
and practical protocol of sample preparation and system
calibration (Demmerle et al. 2017), more accurate
parameter estimation methods for SIM (Chu et al. 2014;
Huang et al. 2018; Shroff et al. 2009; Wicker 2013;
Wicker et al. 2013; Zhou et al. 2016), SIM reconstruc-
tion based on Bayesian estimation (Orieux et al. 2012)
or with Richardson–Lucy deconvolution method for
Poisson noise (Perez et al. 2016), and some open-source
reconstruction programs (Křı́žek et al. 2016; Lal et al.
2016; Müller et al. 2016). Iterative reconstruction
methods have also been proposed to achieve better
artifact-suppression during the reconstruction of low
SNR data (Chu et al. 2014; Huang et al. 2018).

By restricting the excitation to only a small fraction of
the cellular volume (Li et al. 2015), TIRF–SIM achieves
SR with reduced phototoxicity and out-of-focus back-
ground. However, the faster imaging rate and shorter
exposure time render the signal-to-noise ratio of raw
TIRF–SIM data to become extremely low. In addition,
low-dose or low-efficiency fluorochromes can also be an
important cause of a low signal-to-noise ratio. We find
that parameter estimation and Wiener deconvolution,
which are commonly used, cannot work well in low
signal-to-noise ratio conditions (Gustafsson et al. 2008;
Lal et al. 2016; Müller et al. 2016). Furthermore, uneven
field illumination and low modulation may also affect
the reconstruction of raw data. During the data recon-
struction process, researchers, especially novice users,
may not recognize these factors that may introduce
magnified artifacts. Thus, we need to check the quality
of raw data and use a modified parameter estimation
and deconvolution method during the reconstruction
process to reduce artifacts in the reconstruction results.

We used SIMcheck to judge the quality of raw data
and employed an effective algorithm for parameter
estimation and deconvolution that was specifically
developed for the low SNR condition (Ball et al. 2015).
Then, we listed the advantages of each method in the
following section and proposed a full reconstruction
protocol for reconstruction under the low SNR condi-
tion. Compared with the commonly used method, this
protocol can more efficiently minimize the artifacts in
reconstructed SR images.

SUMMARIZED PROCEDURE

(1) Capture the ultrafast SIM raw data.
(2) Compute the MIV and MCNR value of raw images

with the SIMcheck software in ImageJ plugin
[TIMING] *10 s
[CRITICAL STEP] The sample may have a fast
movement or an uneven illumination pattern, and a
non-white area in MIV result could indicate the
precise location of these flaw, which will cause
serious artifacts in the reconstructed SR images.
These areas of reconstructed SR images should be
recognized as invalid areas corresponding to the
non-white areas in MIV result. The value of MCNR
could determine the deconvolution method in the
reconstruction process.

(3) Estimate the parameters with a modified method
[TIMING] *60 s
A modified method could guarantee the precision
of parameter estimation even the SNR of SIM raw
data is extremely low.

(4) A deconvolution method was chosen correspond-
ing to the MCNR value of SIMcheck.
[CRITICAL STEP] If the value exceeded 4, theWiener
filter in Fair-SIM or RL deconvolution is sufficient. In
contrast, the iterative method (TV and Hessian)
should be considered if the MCNR is below 4.

THEORY AND RECONSTRUCTION FOR TIRF–SIM

Image theory

Structured illumination microscopy (SIM) is a wide-field
SR imaging method that measures the details in the
frequency domain, using the Moiré pattern (Gustafsson
2000). The patterns transform the high-frequency
components to low-frequency information during the
exposure process. The patterns can be described as a
sinusoidal function and are discretized by a spatial light
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modulator (SLM). Ih,u is the sinusoidal intensity pattern
for illumination and is described by the following
equation:

Ih;u rð Þ ¼ I0 1� ch � cos 2pph � r þ uhð Þ½ �; ð1Þ

where r : (x, y) is the two-dimensional space position
vector, I0 is the illumination intensity, ch is themodulation
depth, uh is the starting phase, and ph represents the
pattern wave vector in the illumination pattern orienta-
tion h. Let g(r) represents the fluorescence density dis-
tribution of the sample; then, the observed emission
distribution Dh,u(r) can be described as follows:

Dh;uðrÞ ¼ gðrÞIh;uðrÞ
� �

� hðrÞ; ð2Þ

where h(r) is the point spread function of the SIM set-
up and � is the convolution operator. The Fourier
transform of the observed raw data distribution Dh,u(r)
is given by the following equation:

Dh;uðkÞ ¼ ½gðkÞ � Ih;uðkÞ� � HðkÞ; ð3Þ

where H(k) is the optical transfer function (OTF) and
Ih,u(k) is the Fourier transform of the illumination
sinusoidal intensity pattern in Eq. 1. Dh,u(k) can be
represented as follows:

Dh;uðkÞ ¼ I0 gðkÞ � ch
2
gðk � phÞe�iuh � ch

2
gðk þ phÞeþiuh

h i

� HðkÞ;
ð4Þ

where g(k � ph) is the �ph frequency shift of g(k) and
contains information components that are normally
outside of the OTF H(k). To separate g(kþ ph), g(k� ph),
and g(k), three different phases, uh

(1), uh
(2), and uh

(3),
respectively, are applied to the illumination pattern as
substitutes for uh in Eq. 1. Then, the raw data distribu-
tions Dh;u 1ð Þ ðkÞ, Dh;u 2ð Þ ðkÞ, and Dh;u 3ð Þ ðkÞ are obtained,

respectively, with three different phases, uh
(1), uh

(2), and
uh
(3), with the illumination pattern orientation h. The

phases uh
(1), uh

(2), and uh
(3) are unknown; however, the

phasedifferencesuh
(2) - uh

(1) = 120�anduh
(3) - uh

(2) =120�
aredetermined ina typical case, andthen thedifferentphases
in one orientation can be described as follows:

Dh;u 1ð Þ kð Þ
Dh;u 2ð Þ kð Þ
Dh;u 3ð Þ kð Þ

2

4

3

5 ¼ I0M
g kð Þ � H kð Þ

g k � phð Þ � H kð Þ
g k þ phð Þ � H kð Þ

2

4

3

5; ð5Þ

where the matrix M is

M ¼

1 � ch
2
e�iu 1ð Þ

h � ch
2
eþiu 1ð Þ

h

1 � ch
2
e�iu 2ð Þ

h � ch
2
eþiu 2ð Þ

h

1 � ch
2
e�iu 3ð Þ

h � ch
2
eþiu 3ð Þ

h

2

6664

3

7775
: ð6Þ

After the sample data distributions Dh1;u 1ð Þ ðkÞ, Dh1;u 2ð Þ kð Þ,
and Dh1;u 3ð Þ kð Þ from the image are obtained in the first
orientation h1, the process is repeated twice for two
illumination orientations, h2 and h3, to cover the whole
SR-frequency domain. The nine frames of raw TIRF–SIM
data are gathered after the repetition of the three ori-
entations and will be used together to reconstruct one
frame of an SIM SR image via the following procedure.

Reconstruction

The conventional procedure for reconstruction can be
divided into two important steps. First, we estimate the
three unknown parameter values: the pattern wave
vector ph, the start phase uh

(1), and the modulation depth
ch. Second, the raw data are reconstructed with these
parameters via the Wiener filter.

Parameter estimation

In the first step, we use the three raw data distributions:
Dh1;u 1ð Þ kð Þ, Dh1;u 2ð Þ kð Þ , and Dh1;u 3ð Þ kð Þ that have the same

orientation h1. These three raw data distributions are a
linear combination of the different frequency distribu-
tions g(k) and g(k � ph1 ), including the low-pass optical
transfer function H(k). Taking the phase differences
uh
(2) - uh

(1) = 120� and uh
(3) - uh

(2) = 120�, Eq. 5 can be
rewritten as follows:

Dh1;u 1ð Þ kð Þ
Dh1;u 2ð Þ kð Þ
Dh1;u 3ð Þ kð Þ

2

4

3

5 ¼ I0
1 e�0i e0i

1 e�
2pi
3 e

2pi
3

1 e�
4pi
3 e

4pi
3

2

4

3

5

g kð Þ � H kð Þ
g k � ph1
� �

� H kð Þ � �ch1
2

e
�iu 1ð Þ

h1

g k þ ph1
� �

� H kð Þ � �ch1
2

eþiu 1ð Þ
h1

2

6664

3

7775
:

ð7Þ

The frequency-shifted component g k � ph1

� �
is the

high-frequency counterpart of g(k), which means
g k � ph1

� �
has common information in the sections that

overlap with g(k). We can calculate the cross-correlation
of the overlap sections to estimate the pattern wave
vector ph1. The cross-correlation of C1 kð Þ ¼ g kð Þ � H kð Þ �

H k þ p0
h1

� �
with the p0

h1 shifted variant C2 k þ p0
h1

� �
¼

g k þ p0
h1 � ph1

� �
� H k þ p0

h1

� �
� H kð Þ � �ch1

2 e�iu 1ð Þ
h1 is the

maximum when p0
h1 equals ph1 at any given modulation

depth ch and starting phase u 1ð Þ
h1
.

After a subpixel accuracy estimation of the pattern

wave vector ph1, the starting phase u 1ð Þ
h1

and modulation

depths ch1 are estimated by linear regression of the
overlap at different coordinate k in the frequency
domain. Similarly, the parameter estimation process for
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the other two orientations, h2 and h3, is the same as for
the orientation h1.

Reconstruction with the Wiener filter

Once the parameters are estimated, we can separate the
nine SR-frequency components ih,m from the known

parameters u 1ð Þ
h1

and ch1 :

ih;m0

ih;m�1

ih;mþ1

2

4

3

5 ¼ I0 �
g kð Þ � H kð Þ

g k � phð Þ � H kð Þ
g k þ phð Þ � H kð Þ

2

4

3

5; ð8Þ

where mth= -1, 0, ?1 denotes the order of the bands.
Then, we shift ih,m to the proper place Sh,m with the
known wave vector p0

h1 :

Sh;m0

Sh;m�1

Sh;mþ1

2

4

3

5 ¼ I0 �
g kð Þ � H kð Þ

g kð Þ � H k þ phð Þ
g kð Þ � H k � phð Þ

2

4

3

5: ð9Þ

In the above equation, Sh,m is the frequency band of the
shifted components corresponding to the h direction
and the mth order, h = 1–3 is the pattern orientation,
and mth= -1, 0, ?1. The Wiener filter can combine the
different components into a SR image through a
weighted average process during the deconvolution, as
indicated in the following equation:

g rð Þ ¼ ifft

P
m;h H

� k þmphð ÞSh;m
P

m;h H k þmphð Þj j2 þ a2
A kð Þ

 !

: ð10Þ

In the above equation, H is the optical transfer function,
* is the conjugate transpose, k is the frequency domain
coordinates, ph is the pattern wave vector of the h pat-
tern orientation, a is the Wiener parameter, and A(k) is
an apodization function used to eliminate artifacts
(Gustafsson et al. 2008).

ULTRAFAST SIM

Artifact analysis

The reconstruction results for ultrafast structured illu-
mination microscopy (ultrafast SIM) are disturbed by
artifacts that seriously affected the data analysis. Thus,
the causes of these artifacts need to be analyzed and
solved individually. In summary, the artifacts originate
mainly from two sources: optical imperfection and noise
disturbance in the imaging process.

Optical imperfection causes a regular artifact that can
be found in the reconstructed images. However, these
artifacts can confuse new users of SIM microscopy.
SIMcheck, a plugin for ImageJ, was developed to check a

series of important criteria of the raw data and recon-
struction results to find the origins of these artifacts
(Ball et al. 2015).

Noise includes readout noise, dark current and shot
noise. These types of noise can be regarded as white
noise, which is frequency dependent in the frequency
domain and unique random in the time domain. These
kinds of noise lead to the raw data being distinctly
disturbed with a mix of Poisson and Gaussian noise,
especially for ultrafast exposure times.

This mixing noise in the spatial domain will render
precise estimations of the pattern wave vector more
difficult during the reconstruction of ultrafast SIM data.
If the pattern wave vector ph1 is not estimated accu-
rately, the subsequent estimation of the starting phase
umd and the modulation depth c will deviate severely
due to the error ph1. Then, the 0 and ±1 spatial fre-
quency components will not be perfectly separated and
will be shifted to an incorrect location with an error
vector ph1 in Fourier space, leading to regular artifacts
in the reconstructed SR images. These artifacts, which
are caused by the deviation of the initial parameter
determination, are obviously distinguished in the SIM
reconstructed images. An error in the pattern wave
vectors will lead to a patterned artifact, such as a
snowflake shape, an error in the initial phase will lead
to an asymmetric ring artifact, and an error in the
modulation contrast will lead to a change in the
smoothness or shape of the high-frequency signal
(Huang et al. 2018). In addition, this mixing noise will
be amplified by the classic Wiener deconvolution
method. Thus, the reconstructed SR images have dis-
turbing artifacts that obscure the structure of biological
sample.

Motion artifacts or uneven patterns

Before reconstructing raw images of ultrafast SIM, we
propose that the following pivotal criteria provided by
the SIMcheck software should be checked. A motion and
illumination variation (MIV) feature in SIMcheck obtains
normalized intensity of the phase-shifted images
acquired for each plane for the different illumination
patterns and highlights uneven field illumination or
movement during acquisition with a colored subregion
map. Modulation contrast is another important param-
eter of the raw data quality, as it critically affects the
amount of the frequency-shifted information that can be
reassigned during the reconstruction process. The pro-
cess of calculating the modulation contrast-to-noise
(MCN) ratio within the image and translating this
information to a heat map provides an average
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modulation contrast-to-noise ratio (MCNR) as a crite-
rion for evaluating image quality.

Modified parameter estimation

Under the high-NA TIRF–SIM configuration, overlapping
regions of different spectra decrease. Furthermore, even
fewer excited photons are captured per exposure during
the ultrafast exposure time. The low SNR raw data in the
spatial domain will render precise estimations of the
parameters more difficult; thus, the modified parameter
estimation method needs to be considered. The filter
method and the averaged method can be simply applied
in the conventional reconstruction process under this
low SNR condition (Chu et al. 2014; Huang et al. 2018).
In addition, iterative and non-iterative methods have
been proposed to estimate the parameters even when
the pattern ratio in an experimental setup is unknown
(Wicker 2013; Wicker et al. 2013). An image recombi-
nation transform algorithm can obtain the initial phase
of fringe with high precision even with high background
and weak modulation depth (Zhou et al. 2016).

Reconstruction software

A number of software exists for users to reconstruct SR
images. Fair-SIM, an open-source plugin for ImageJ,
contains extensive functions for the reconstruction
process. This plugin can process the TIRF–SIM, two-
dimensional SIM and three-dimensional SIM data cap-
tured from a homemade setup or a commercial SIM
microscope, such as OMX and Zeiss. With the parameter
determination approximated by the OTF, Fair-SIM can

estimate the parameters ph1 , u
1ð Þ
h1

and ch1 rapidly. Then,

SR images can be reconstructed continuously with the
Wiener deconvolution or Richardson Lucy deconvolu-
tion depending on the noise level.

A two-filter step with Richardson Lucy deconvolution
(RL deconvolution) method exists for effective param-
eter estimation (Perez et al. 2016). If the raw data are
corrupted with Poisson noise or an out-of-focus back-
ground, this two-filter steps method can effectively
move a fluctuating reconstruction spectrum artifact
caused by an out-of-focus background or a discontinu-
ous artifact caused by Poisson noise.

The iterative method has also been applied in the
reconstruction of SR images, such as TV and Hessian
deconvolution (Chu et al. 2014). These iterative meth-
ods were based on Gaussian noise and used a priori
knowledge, such as the continuity of the biological
sample and the PSF, to establish an optimization func-
tion. These iterative methods can restrain the artifacts

more effectively than the above methods but require
more computation.

A protocol for parameter estimation
and reconstruction

We proposed a procedure to choose a suitable recon-
struction method. First, we used SIMcheck to compute
the MCNR and MIV values. A non-white MIV area indi-
cates possible blurring of the SR images due to motion
artifacts or an uneven pattern, and this error was
resolved by increasing the imaging frame rate or
checking the illumination pattern. Then, a modified
parameter estimation method was used to improve the
estimation precision (refer to the section of ‘‘Modified
parameter estimation’’). Finally, a deconvolution method
corresponding to the MCNR value of SIMcheck was
chosen. If the value exceeded 4, the Wiener filter in Fair-
SIM or RL deconvolution is sufficient. In contrast, the
iterative method (TV and Hessian) should be considered
if the MCNR is below 4. The TV deconvolution method is
appropriate for a flaky structure, and the Hessian–SIM
method is applied for situations with flakiness or a line
structure. Furthermore, if the biological sample moves
slower than 65 nm per frame, time-axis continuity can
be used in the Hessian method to better minimize the
artifacts in the reconstruction (Huang et al. 2018).

EXPERIMENTS

We tested our reconstruction protocol on a synthetic
sample that combined different structures and low
signal-to-noise ratio actin with a 0.5-ms exposure time.

The synthetic sample used for the simulations is
shown in Fig. 1A, with a maximum intensity of 109 a.u..
To imitate the actual exposure process, the phantom
was illuminated with the pattern presented in Eq. 1. The
simulated excitation wavelength kex was 488 nm, the
emission wavelength kem was 515 nm, and the numer-
ical aperture (NA) was 1.7. We then added Poisson
distributed noise to the illuminated images. We also
added a background value of 99 a.u. to all pixels, in
combination with Gaussian noise with a standard
deviation from 1 to 20 a.u. At the same time, we also
considered that there may be fast movements or an
uneven illumination pattern, which will cause serious
artifacts in the reconstructed SR images, during the raw
data-capture process. We illuminated a shifting struc-
ture with three different pattern phases and orienta-
tions to simulate a rapid movement during the SIM raw
data-capture process. We then followed the above pro-
tocol with the SIMcheck software to calculate the MIV of
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the SIM raw images and the reconstruction of SR images
from the simulation data.

In addition, we also applied two different parameter
estimation methods to the synthetic images of different
noise levels to evaluate the bias of each method com-
pared with the ground truth. Then, we used the non-
iterative Wiener method provided by Fair-SIM and the
Hessian method separately to reconstruct the noisy
synthetic image. Finally, we used the following evaluation
criteria to judge the quality of the reconstruction images.

The biological sample actin was exposed for 0.5 ms,
and data were taken continually seven times before the
subsequent phase, and orientation information were
collected. We averaged the seven frames with the same
phase and orientation into one frame, which had a
higher SNR and could be regarded as the ground truth.
We also extracted one frame from every seven frames to
represent ultrafast raw data with a 0.5-ms exposure
time. The excitation wavelength kex was 488 nm, the
emission wavelength kem was 515 nm, and the numer-
ical aperture NA was 1.7. We applied the conventional
reconstruction process and the proposed protocol to
these raw data and compared the artifacts of the

different reconstruction methods with the following
evaluation criteria.

Evaluation criteria

To compare the performances of different methods, we
adopted the following criteria: the peak signal-to-noise
ratio (PSNR), and the structural similarity (SSIM) (Wang
et al. 2004).

PSNR is defined as

PSNR ¼ 10 log10
l2max

MSE

� �
; ð11Þ

where lmax is the maximum possible pixel value of the
image and MSE is the mean-squared error between the
reconstructed image and the original image. A higher
PSNR means less difference between the reconstructed
image and the original image.

SSIM is defined as

SSIM ða; bÞ ¼ 2lalb þ C1ð Þ 2rab þ C2ð Þ
l2a þ l2b þ C1
� �

r2a þ r2b þ C2
� � ; ð12Þ

where a and b are two windows of size 11 9 11 pixels
in the same position of two images. la and lb are the
averages of window a and b, respectively. ra

2 and rb
2 are

the variances of window a and b, respectively. rxy is the
covariance between the two windows. C1 and C2 were
chosen as C1 = (0.01lmax)

2 and C2 = (0.03lmax)
2,

respectively. A higher SSIM means that the region of
these two images is more similar.

Simulation experiment

For reconstructions of the SR images, the results will
contain a large number of artifacts scattered randomly
throughout the SR images. Under the high signal-to-noise
ratio condition, the signal of reconstructed SR images is
relatively strong, and the artifacts are not obvious in the
reconstructed SR images. However, when the signal-to-
noise ratio is reduced, the signal is relatively weaker, and
the artifacts are more pronounced. The continuous sig-
nals of the reconstructed SR images become discontinu-
ous because of the artifacts, which is the primary
problem that we designed this protocol to solve. There-
fore, we simulated data obtained with a very low photon
number and applied Poisson and Gaussian noises with
different standard deviations, which represented the
ultrafast SIM raw data acquired with different exposure
times. In addition, there are other several underlying
problems, such as an uneven illumination pattern or fast
movement of the biological structure during the

Fig. 1 The non-white MIV and motion artifacts caused by a fast-
moving ring structure. A First frame of the SIM raw data before
pattern illumination. B Magnified region from the nine-frame raw
image. The ROI of the nine frames are different from each other to
simulate a fast-moving biological structure, and a yellow box was
plotted at the same position to highlight the difference between
the upper left and the low right images. C MIV result from the
nine-frame raw data. The non-white area represents the motion
artifacts in the reconstructed SR images. D Magnified view of the
reconstructed SR images. Motion artifacts are evident around the
fast-moving structures in D, and the MIV result is also non-white
in the same area shown in C. Scale bar, 2 lm
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acquisition process, which lead to severe artifacts in
reconstructed SR images.

We first used the structured pattern to illuminate
nine different images to simulate the capture process of
fast-moving biological samples. Then, we use SIMcheck
to calculate the MIV result of the raw images before
reconstructing the SIM SR images. If the color of whole
MIV result was white, we confirmed that there was no
problem that may cause serious artifacts in the SIM raw
images. Otherwise, a non-white area of MIV means that
motion artifacts exist in the reconstructed SR images
(Fig. 1).

By comparing the nine-frame raw data in Fig. 1B, we
can see that the reconstructed SR image will produce
motion artifacts (Fig. 1D) when there are fast-moving
structures in the nine frames of SIM raw data. Addi-
tionally, the MIV result will also produce a non-white
area at the corresponding position (Fig. 1C). Therefore,
SIMcheck is a necessary step to pre-check SIM raw data
before reconstructing SR images.

After pre-checking the raw data, the next procedure
is to estimate the pattern wave vector p, the starting

phase u 1ð Þ
h1

and the modulation depths ch1 from the SIM

raw data. We first estimated the pattern wave vectors of
these series of simulation data with different noise
levels using the Fair-SIM software. However, the con-
ventional method had errors in the estimated results
when the standard deviation was larger than 10 (the
third column in Table 1). Thus, we used the modified
parameter estimation method by averaging the raw data
corresponding to their patterns and phases (Huang et al.
2018) and then estimated the pattern wave vectors of
the averaged raw data using the Fair-SIM software (the
fourth column in Table 1).

As we can see from the table, a negligible error
(0.14%) in the pattern wave vector was obtained with
the conventional parameter estimation method when
the standard deviation was below than 10, which could
hardly generate artifacts caused by the pattern wave

vector error (Huang et al. 2018). However, as the stan-
dard deviation of Gaussian noise increased (simulation
of the lower SNR of raw images with shorter exposure
times), the conventional parameter estimation method
differed more from the ground truth parameter. When
the standard deviation of Gaussian noise was greater
than 10, an error of 46 pixels was generated compared
with the ground truth. This error in the pattern wave
vector can generate a serious error in the estimated

starting phase u 1ð Þ
h1

and modulation depths ch1 , which

could produce periodic artifacts in the reconstructed SR
images. These artifacts were much more significant and
severe because these SR images contained not only
artifacts generated by noise but also artifacts due to the
deviations of the parameters from the ground truth. We
can see that artifacts due to errors in parameter esti-
mation have a great impact on the reconstructed SR
images, even completely obscuring the structures and
details in the reconstructed SR image (Fig. 2).

In contrast, the pattern wave vectors estimated using
the average method (the fourth column in Table 1)
always had a miniscule deviation (0.02%) from the
ground truth (the second column in Table 1), even when
the standard deviation of Gaussian noise was 20 (not
shown in Table 1).

Under ultrashort exposures, the noise source of raw
images may be dominated by Poisson but not Gaussian
noise. Thus, we simulated raw images that had max
pixel value of 29–44 a.u. and were corrupted with
Poisson noise. We used the Fair-SIM to estimate this
series of noisy raw data with custom and averaged
method, and the results are presented as shown in
Table 2.

The pattern wave vectors estimated using the aver-
age method (the fourth column in Table 2) always had a
miniscule deviation (0.02%) from the ground truth (the
second column in Table 2). As the pixel value decreased
(simulation of the raw images with shorter exposure
time), the conventional parameter estimation method

Table 1 Comparison of
estimated pattern wave
vectors by different estimation
methods with different
Gaussian noises

Standard deviation of Gaussian noise Ground truth Conventional method Averaged method

6 95.475 95.544 95.456

7 95.475 95.567 95.456

8 95.475 95.567 95.456

9 95.475 95.611 95.456

10 95.475 95.611 95.456

11 95.475 141.766 95.456

12 95.475 141.747 95.456

13 95.475 145.181 95.456

14 95.475 145.181 95.456

PROTOCOL J. Fan et al.

86 | April 2019 | Volume 5 | Issue 2 � The Author(s) 2019



(the third column in Table 2) differed more from the
ground truth parameter (the second column in Table 2),
when the Max pixel value of raw data was smaller than
34, 50 pixels of error was generated compared with the
ground truth. Notably, the estimation results of the third
and fourth columns of Tables 1 and 2 were all calcu-
lated by the same algorithm provided by the Fair-SIM
software, and the only difference was that the modified
method simply averages the raw data according to the
phase and direction of the pattern wave vectors. The

averaged parameter estimation method only needs to
average the SIM raw images according to their pattern
and phase along the time axis; accurate results could
then be obtained even with the same conventional
parameter estimation method. The average method is
simple and effective and has huge promising potential
for combination with other algorithms (Chu et al. 2014;
Shroff et al. 2009; Wicker 2013; Wicker et al. 2013;
Zhou et al. 2016).

To distinguish the artifacts caused by the erroneous
parameters from artifacts caused by the Wiener
deconvolution, we used simulation data with Gaussian
noise with a standard deviation of 2, which could cause
a clear difference between these two artifacts in the
reconstructed SR images. We artificially changed the
pattern wave vector to a 2% error from the ground
truth and then used the following three methods to
reconstruct the low SNR raw data: (1) an error pattern
wave vector and the Wiener deconvolution method;
(2) modified parameter estimation and the Wiener
deconvolution method; and (3) modified parameter
estimation and the iterative Hessian algorithm. Then,
the reconstructed SR images reconstructed by these
three methods were compared with the ground-truth
image using the above evaluation criteria.

As seen in Fig. 2, the Wiener method reconstructed
SR image with an error parameter has the most sig-
nificant artifacts and the lowest evaluation criteria
compared with the ground truth (Fig. 2B). The reason is
that SR image reconstructed by this method contains
not only artifacts generated by noise but also artifacts
due to the deviations in the parameter estimation.
Comparing Fig. 2B with 2C, we found that artifacts due
to parameter estimation errors have a greater impact on
the reconstructed SR images. We cannot completely
obscure the structures and details in the reconstructed
SR image. Furthermore, we also found that artifacts
were also generated in the SR images even with a small
error in the parameter estimation, which came from the
amplification of the noise by the Wiener deconvolution
(Fig. 2C). As shown in the yellow box in Fig. 2C, con-
tinuous lines in the ground truth may also be inter-
mittent due to the existence of artifacts. Therefore, an
improved parameter estimation method is needed to
obtain the correct parameters during the
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Fig. 2 Reconstructed SR images with different protocols and
corresponding criteria compared with the ground truth. A Ground
truth. B Reconstruction via erroneous parameters and the Wiener
deconvolution method. C Reconstruction via the correct param-
eters and the Wiener deconvolution method. D Reconstruction via
the correct parameters and the Hessian reconstruction method.
E PSNR and SSIM criteria of SR images by three different methods
compared with the ground truth (n = 8). Scale bar, 2 lm

Table 2 Comparison of
estimated pattern wave
vectors by different estimation
methods with Poisson noise

Max pixel value of raw data Ground truth Conventional method Averaged method

44 95.475 95.542 95.511

39 95.475 95.257 95.473

34 95.475 88.675 95.425

29 95.475 145.372 95.376
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reconstruction, and modified deconvolution algorithms
are needed to achieve a stronger suppression effect of
artifacts, which is shown in Fig. 2D with the use of the
iterative Hessian algorithm. The evaluation criteria
(Fig. 2E) also indicated the proposed protocol attained
the highest value compared with that of the other two
methods.

Ultrafast exposed actin with SIM

The number of photons received by the sCMOS camera
was further reduced in the ultrafast exposed raw data of
actin. Under this condition, the intensity of the noise will
affect the structured illumination pattern and actin

structure in the SIM raw data. When estimating the
parameters of SIM raw data using conventional methods
and performing reconstruction with the Wiener decon-
volution, severe artifacts are generated in the recon-
structed SR results. We then used the following two
protocols to reconstruct this low SNR biological sample:
(1) the Wiener deconvolution method with the averaged
parameter estimation method and (2) the modified
parameter estimation and iterative Hessian reconstruc-
tion algorithm.

As shown in Fig. 3, even with the correct parameter
estimation, with the averaged method, artifacts are also
generated in the reconstructed SR images because of the
amplification of noise by the Wiener deconvolution
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Fig. 3 Reconstructed SR images with different protocols and the corresponding criteria compared with the SR images with a long
exposure time. A SR image with a long exposure time of 3.5 ms, which was chosen as the ground truth. B SR image with a short exposure
time of 0.5 ms, which was reconstructed by the Wiener deconvolution method. C SR image with a short exposure time of 0.5 ms, which
was reconstructed by the Hessian reconstruction method. D SSIM criteria of SR images by the Wiener and Hessian methods compared
with the ground truth (n = 16). E Magnified view of the yellow box area of A–C. Scale bars: A 2 lm; E 1 lm
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(Fig. 3B). Therefore, an improved parameter estimation
method is needed to obtain the correct parameters
during the reconstruction, and better deconvolution
algorithms to suppress artifacts are needed. The use of
iterative Hessian algorithms can better reduce artifacts,
as shown with Fig. 2C and the SSIM criteria (Fig. 3D).

DISCUSSION

Compared with the classic reconstruction method, the
proposed protocol can estimate the parameters accu-
rately and reconstruct SIM SR images with minimized
artifacts. As experimentally demonstrated, this protocol
has the dual benefits of avoiding the periodic artifacts
caused by parameter errors and suppressing the arti-
facts caused by the underdetermined problem of the
deconvolution method. Predictably, when the time
resolution of the SIM microscope is further increased
and the exposure time is further reduced, the proposed
protocol can still suppress artifacts.

Among several parameter estimation methods, the
filter method and the average method are simple
improvements of the conventional parameter estimation
methods but can effectively solve the problem of the
bias in parameter estimation. The filter method needs to
set a threshold range and may fail once the signal-to-
noise ratio drops to a certain extent. The averaging
method utilizes the principle that the parameters of the
SIM microscope are maintained for a long period of time
during the imaging process, and the N 9 9 original
images are averaged over time according to their phases
and angles into N averaged images, which can convert
the Gaussian noise to 1/HN compared with that in the
original images. The iterative and non-iterative param-
eter estimation methods proposed by Wicker do not
depend on prior information about the phase difference
of the illumination vector, which is necessary when the
phase difference in each direction is not certain. The
image recombination transform algorithm can obtain
the initial phase of fringe with high precision, even with
high background and weak modulation depth.

The RL method is originally used to constrain the
artifacts in the reconstructed SR image caused by the
Poisson noise in the original images. However, the RL
algorithm has a drawback: as the number of iterations
increases, the reconstructed result does not converge.
The iterative TV and Hessian algorithms converge to
results with fewer artifacts but have their own advan-
tages and disadvantages. The TV method utilizes first-
order partial differentiation without decreasing the
resolution of SR images but results in block structures
and staircase effects in the reconstructed SR results.

Thus, the TV method is suitable for biological samples
that contain massive dense structures. The Hessian
algorithm utilizes second-order partial differentiation to
make the image more natural and is more effective in
removing artifact. Moreover, the Hessian algorithm also
does not depend on specific structures. Dense struc-
tures, microtubules or protein scaffolds can be applied.
However, the unsuitable parameters of the Hessian
algorithm result in a reduction in the image resolution.
Therefore, choosing the right parameters is very
important, and the recommended parameters settings
are provided in a reference paper (Huang et al. 2018).

However, under the condition of a high signal-to-
noise ratio, the conventional reconstruction method can
well reconstruct the SR image without artifacts. Under
such circumstance, using of advanced iterative decon-
volution algorithms does not help to reduce artifacts
further. In fact, the proposed protocol may require a
more complicated procedure and more calculation time.
In our opinion, it is a better choice to use the conven-
tional reconstruction method provided by Fair-SIM
under conditions of a long exposure time or high signal-
to-noise ratio.

CONCLUSION

An ultrafast imaging rate and shorter exposure time
make the signal-to-noise ratio of raw TIRF–SIM data
extremely low. The noise in the raw data increases,
resulting in erroneous parameter estimation and arti-
facts within the deconvolution results. Moreover, the
raw data may be illuminated by an uneven pattern.
These issues cannot be solved by a junior user of SIM
microscopy. Considering this condition, we summarized
the parameter estimation algorithms and deconvolution
methods proposed for low signal-to-noise ratio raw data
in this study. We also proposed a reconstruction pro-
tocol, combining some effective algorithms in a recon-
struction procedure to minimize the artifacts of SR
images. The experiment showed that the SR images
reconstructed from the proposed protocol outper-
formed that of the commonly used method, as indicated
by the evaluation criteria. We also utilized the proposed
protocol to process biological images that were cap-
tured with 0.5 ms exposure times, which demonstrated
fewer artifacts in reconstructed SR images than those
reconstructed by the conventional Wiener method.

The given protocol enables a further reduction in the
exposure time and an improvement in the time resolu-
tion. We expect it to be widely used in long-term SR
imaging of live cells in the future.
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