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Abstract Secondary structures of RNAs are crucial to the understanding of their tertiary structures and func-
tions. At present, many theoretical methods are widely used to predict RNA secondary structures. The
performance of these methods has been evaluated but only for their ability of base-pairing prediction.
However, the topology of a RNA secondary structure is more important for understanding its tertiary
structure and function, especially for long RNAs. In this paper, we constructed a new non-redundant
RNA database containing 73 RNA with lengths of 50–300 nucleotides and benchmarked four popular
algorithms for both base pairing and topology. The results show that the prediction accuracy of sec-
ondary structure topology is only 38%, in contrast to 70% for that of base pairing. Furthermore, the
topological consistency is not strongly correlated to the base-pairing consistency. Our results will be
helpful to understand the limitations of RNA secondary structure prediction methods from a different
point of view and also to their improvements in future.
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INTRODUCTION

Now it is recognized that RNA plays more important
roles in the life process than expected (Li et al. 2017;
Zhao et al. 2016). Besides the messenger RNA, transfer
RNA, and ribosomal RNA in the genetic central dogma,
many new non-coding RNAs have been discovered to
have important roles in various biological processes.
Among them, there are large RNAs, like ribonuclease,
ribozyme, signal recognition particle RNA (SRP RNA),
and riboswitches. The tertiary structures of these RNA
molecules are very important for their biological
functions (Zhao et al. 2013). For example, the ribos-
witches are capable of binding the metabolites to
regulate gene expressions using a variety of secondary
and tertiary structures (Gong et al. 2014; Weinberg
et al. 2017). Due to the technology limitations, it is still
a challenge to determine RNA tertiary structures
experimentally. So, many groups developed computa-
tional strategies to predict RNA tertiary structures.
Since RNA folding is considered as a hierarchical pro-
cess (Tinoco and Bustamante 1999), most successful
approaches of predicting RNA tertiary structures are
based on secondary structures (Cao and Chen 2011;
Popenda et al. 2012; Wang et al. 2015, 2017; Xu and
Chen 2015; Zhao et al. 2012) and this can improve the
accuracy of RNA tertiary structure predictions
significantly.

REVIEW

The methods of RNA secondary structure prediction
have been well established (Mathews et al. 2016). The

most accurate secondary structure prediction method
is to use the multiple sequence analysis or shape-
directed to find the conserved motifs (Tan et al. 2017).
However, this is not always practical due to some
unique sequences and limited information at present.
Therefore, the physics-based free energy minimization
approach of RNA secondary structure prediction is still
widely used by biologists. The performances of this
type of secondary structure predictions have been
evaluated previously and were found to be about 70%
when comparing predicted and native base pairs on an
RNA database without riboswitches and ribozymes
(Mathews et al. 2004; Xu et al. 2012). Under such an
accuracy of base-pair prediction, if using the predicted
secondary structure information in the tertiary struc-
ture prediction, the topology of the former is critical to
the performance of the latter. Therefore, it is also
important to know how accurately the current algo-
rithms predict the topologies of RNA secondary struc-
tures besides base pairing. Here, we introduce a
topology consistency metrics to evaluate the consis-
tency of the topology of a predicted secondary struc-
ture with that of the corresponding experimental one.
We shall use a database consisting of 73 RNAs with
length of 50–300 nt extracted from the RCSB Protein
Data Bank (Westbrook et al. 2003) and including all
types of RNAs known by now, and predict their sec-
ondary structures using four popular methods based on
free energy minimization: Mfold (Zuker 2003), RNAfold
(Gruber et al. 2015), RNAstructure (Bellaousov et al.
2013), and RNAshapes (Janssen and Giegerich 2015).
We also analyze some possible reasons for the diffi-
culties of the prediction of correct topologies of RNA
secondary structures.
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RESULTS AND DISCUSSION

Features of native secondary structures

There are several types of RNAs in the non-redundant
RNA database, including riboswitch, tRNA (transfer
RNA), HCV-IRES (hepatitis C viral-internal ribosome
entry site) RNA, Ribonuclease, Ribozyme, Ribosomal
RNA, SRP (signal recognition particle) RNAs, Group
introns, and others (listed in Table 1). RNA secondary
structure can be divided into helical stems and various
kinds of loops, such as internal loops, bulge loops,
and multi-way junction loops. The helical stems are
formed by complementary canonical Watson–Crick and
non-canonical Watson–Crick base pairs. The internal
loops or bulge loops are unpaired nucleotides between
helical stems. The multi-way junction loops are the con-
nections between three or more helical stems. Table 2
provides the features of the secondary structures of RNAs
in the database. It shows that about 58% of the total 6936
nucleotides are involved in forming base pairs, and,
therefore, about half of the nucleotides are involved in
base pairs and other half in different types of loops. The
correct formations of both helices and loops are crucial to
the overall topology of the secondary structures.

Current algorithms prefer to consider the canonical
base pairs (A–U, C–G, and G–U base pairs) in RNA sec-
ondary structure predictions. However, there are nearly
10% of the 2028 native base pairs that are non-
canonical base pairs (A–G, A–C, A–A, U–U, C–U, C–C, and
G–G base pairs). This implies that the prediction accu-
racy of base pairs cannot be higher than 90% by using
current secondary structure prediction methods.

Base-pairing consistency of native and predicted
secondary structures

Table 3 shows the base-pairing consistency of native
and predicted secondary structures by the four methods
stated above. It is shown that the mean values of the
sensitivity and positive predictive value (PPV) are sim-
ilar for the four algorithms and both are around 0.70.
This is in agreement with previous results (Mathews
et al. 2004) where they used a RNA database without
riboswitches and ribozymes. Among the nine types of
RNA, the values of the sensitivity (0.56–0.60) and PPV
(0.44–0.49) for ribosomal RNA are significantly lower
than other types for all the four algorithms. One of the
reasons for this may be due to the base-pairing or ter-
tiary interactions with proteins or other RNAs because
of compact assembly of ribosomal RNAs and proteins in
ribosomes. For HCV-IRES RNA, RNAshapes, Mfold, and

RNAfold have much lower sensitivity (0.54–0.57) and
PPV (0.60) except RNAstructure. For other types of RNA,
the performances of the four algorithms are similar.

To further analyze the base-pairing consistency of the
native and predicted secondary structures, the data in
Tables 2 and 3 are also visualized in different ways in
Fig. 1. Figure 1A shows the number of base pairs versus
the lengths for the native secondary structures in the

Table 1 PDB ID of RNAs in the database

PDB Type Length PDB Type Length

Unbound RNA

3E5C Riboswitch 54 1KH6 HCV-IRES 53

1U8D Riboswitch 68 1P5O HCV-IRES 77

3IVN Riboswitch 69 1U9S Ribonuclease 161

1Y26 Riboswitch 71 2QUS Ribozyme 69

2GIS Riboswitch 94 2OIU Ribozyme 71

3F2Q Riboswitch 112 1C2X Ribosomal 120

2QBZ Riboswitch 161 2IL9 Ribosomal 142

3DIG Riboswitch 174 1Z43 SRP RNA 101

1YFG tRNA 75 1KXK Group intron 70

1EHZ tRNA 76 1GRZ Group intron 247

2 K4C tRNA 76 1S9S Others 101

2TRA tRNA 79 1FOQ Others 109

3A3A tRNA 90

Bound RNA in RNA–protein and RNA–RNA complexes

3EGZ Riboswitch 65 3A2K tRNA 77

3K0J Riboswitch 87 2ZUE tRNA 78

3IWN Riboswitch 93 1H3E tRNA 86

2DLC tRNA 69 1WZ2 tRNA 88

3EPH tRNA 69 3ADB tRNA 92

2DU3 tRNA 71 1M5 K Ribozyme 92

2ZNI tRNA 72 2GCS Ribozyme 125

1B23 tRNA 74 2NZ4 Ribozyme 141

1GIX tRNA 74 1DK1 Ribosomal 60

2D6F tRNA 74 1UN6 Ribosomal 61

3AKZ tRNA 74 3BBO_c Ribosomal 103

1GAX tRNA 75 3JYX_3 Ribosomal 113

2AZX tRNA 75 3BBO_b Ribosomal 117

1EIY tRNA 76 1NKW Ribosomal 124

1F7U tRNA 76 1S1I Ribosomal 125

2DER tRNA 76 3JYX_4 Ribosomal 157

2WRN tRNA 76 3KTW SRP RNA 96

3KFU tRNA 76 1L9A SRP RNA 128

1C0A tRNA 77 1U6B Group intron 197

1H4Q tRNA 77 2RKJ Group intron 246

1J1U tRNA 77 3HJW Others 58

1J2B tRNA 77 3HAY Others 71

2FMT tRNA 77 2IHX Others 75

2WWL tRNA 77 3CUL Others 92
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database. As expected, the base-pair number increases
as the sequence length and has a high linear correlation
coefficient of 0.86. The slope of the fitting line describes
the probability of the base pairs formation, which is
about one base pair for every four nucleotides as
mentioned above. Figure 1B shows the consistent base-
pair number (the number of true positives) of predicted
base pairs versus that of native base pairs in the data-
base. The two numbers also have a high linear corre-
lation with a correlation coefficient of 0.83. It also
shows that the base-pairing consistency does not
decrease quickly with the number of the native base
pairs or length of RNA because many short RNAs also
have low base-pairing consistency. This is shown more
clearly in Fig. 1C and D, which gives the base-pair sen-
sitivity versus RNA length and the number of native
base pairs, respectively. They show that about 20%
short RNAs (\100 nt) has sensitivity less than 0.5.
These results indicate that even for short RNAs
(\100 nt) the base pairs cannot be correctly predicted
by using current algorithms completely. For long RNAs
([100 nt), since the number of long RNA chains in the
database is small, more long RNA sequences are needed
to give a reliable conclusion about the base-pairing
consistency.

Topological consistency of native and predicted
secondary structures

Table 3 also shows the topological consistency of the
native and predicted secondary structures. It shows that
on average only about 38% of the predicted secondary
structures have identical topologies with those of
the native ones (Fig. 2A). This consistency rises up to
60%–70% if we include those predicted secondary
structures that have similar topologies with the native
ones (Fig. 2B). The topological consistency levels of the

predicted secondary structures of the group intron and
ribosomal RNA are the lowest ones for all the four
algorithms besides ribonuclease which has only one
sequence in the database. The reason for this low
topological consistency is that the PPV, i.e., the per-
centage of predicted base pairs occurs in the native
secondary structure, is only 69%. In other words, in the
predicted base pairs there are about 31% that are
inconsistent with the native ones. This inconsistent base
pairing may form different internal bulge and multiple
loops from the native ones and lead to different overall
topologies of the secondary structures. Figure 2 gives
three examples of topological consistency of the native
and predicted secondary structures by RNAshapes.
Figure 2A is an example (the ribozyme RNA (PDB ID:
2QUS)) that the topologies of the native and predicted
secondary structures are identical and there are only
two missing non-canonical base pairs C12–A53 and
A38–A51 in the predicted secondary structure in com-
parison with the native one (marked in red color). In
this case, the sensitivity of the predicted base pairs is
about 0.91. Figure 2B shows an example (ribosomal
RNA (PDB ID: 1DK1)) that the topologies of the native
and predicted secondary structures are similar but
there are base-pairing shifts (the region in red color). In
this case, the sensitivity of the predicted base pairs is
about 0.72. There is a bulge C50 in the native secondary
structure. However, in the predicted secondary struc-
ture, C50 forms a base pair with G22 and there is an
internal loop (U23, G24, A48, and C49) formed with
shifted base pairs G25–C47, G26–C46, and A27–U45.
Figure 2C is an example (tRNA (PDB ID: 3BBV)) that the
topologies of the native and predicted secondary
structures are completely different. The native sec-
ondary structure has a four-way junction but the pre-
dicted result is a long helical stem only with internal
loops and bulge loops. In this case, the sensitivity of the
predicted base pairs is about 0.52.

Some discussions

The results above show that it is still a challenge to
predict the topology of RNA secondary structures
correctly and the identical topology consistency of
predicted secondary structures with native ones is
only about 38% on average. Therefore, the RNA ter-
tiary structure prediction based on pure predicted
secondary structures is greatly limited. Even the sim-
ilar topology consistency of the predicted secondary
structures with the native ones can reach 60%–70%,
but in this case the predicted secondary structures
usually introduce different or additional bulge and
internal loops that may also decrease the accuracy of

Table 2 The summary of native secondary structures

RNA type Sequence number Nucleotides Base pairs

Riboswitch 11 1048 327

tRNA 31 2386 679

HCV-IRES 2 130 46

Ribonuclease 1 161 48

Ribozyme 5 498 140

Ribosomal RNA 10 1122 270

SRP RNA 3 325 122

Group intron 4 760 218

Others 6 506 178

Total 73 6936 2028

METHODS Y. Zhao et al.

126 | June 2018 | Volume 4 | Issue 3 � The Author(s) 2018



the RNA tertiary structure prediction based on them.
Therefore, from a topological point of view, the success
rate of RNA tertiary structure prediction based on pure
predicted secondary structures can reach more than
38% or 60%–70% if wrong internal and bulge loops
are ignored.

The results above (Fig. 2) also show that the topo-
logical consistency is unnecessarily always correlated to
the base-pair consistency, as indicated in Fig. 3. For
example (Fig. 4), the sensitivity and PPV of the pre-
dicted base pairs of a ribozyme (PDB ID: 2GCS) are
about 0.86 and 0.65, respectively, but the small number
of inconsistent base pairs makes the topology of the
predicted secondary structure significantly different
from the native one (Figs. 4B, C). Furthermore, we
analyzed the statistical correlation of sensitivity/speci-
ficity and topological consistency (including both iden-
tical and similar topologies) for RNAshapes (0.64/0.54),
Mfold (0.65/0.52), RNAfold (0.50/0.45), and
RNAstructure (0.78/0.63), respectively (Fig. 3). The low

correlation values indicate that the topological consis-
tency is not strongly correlated to the base-
pairing consistency and small number of wrong-paired
bases can change the topologies significantly.

One of the reasons that affects the base-pairing and
topological predictions may be due to the base-pairing
or tertiary interactions with other molecules (Pered-
erina et al. 2002). Figure 4A is the native complex
structure of a ribozyme (PDB ID: 2GCS) and its amino
RNA inhibitor. It shows that G3 to U13 and G14 form
canonical and non-canonical base pairs with the amino
RNA inhibitor in the native secondary structure and
cannot form the hairpin structure in the predicted
structure (Fig. 4C). Similarly, C16–A18 form tertiary
interactions with U31–G33 and cannot form the
internal loop G17–C58 and A18–U57 in the predicted
structure. These indicate that accurate prediction of
the topology of secondary structures of RNA molecules
also needs to consider their interactions with other
molecules, although the number of these interactions is

Table 3 The base-pairing and topological consistencies by different RNA secondary structure prediction algorithms

RNA type RNAshapes Mfold

Sensitivity PPV Identical(similar) topology
consistency

Sensitivity PPV Identical(similar) topology
consistency

Riboswitch 0.73 0.76 0.45(0.73) 0.71 0.74 0.45(0.64)

tRNA 0.69 0.67 0.39(0.48) 0.68 0.66 0.39(0.55)

HCV-IRES 0.54 0.60 0.50(0.50) 0.54 0.60 0.50(0.50)

Ribonuclease 0.88 0.84 0.00(1.00) 0.88 0.84 0.00(1.00)

Ribozyme 0.81 0.76 0.40(0.60) 0.81 0.75 0.40(0.60)

Ribosomal RNA 0.58 0.47 0.10(0.70) 0.60 0.49 0.10(0.70)

SRP RNA 0.75 0.85 0.33(0.67) 0.76 0.89 0.33(0.67)

Group intron 0.69 0.68 0.00(0.25) 0.70 0.69 0.00(0.25)

Others 0.89 0.92 1.00(1.00) 0.89 0.92 1.00(1.00)

Total 0.71 0.69 0.38(0.60) 0.71 0.69 0.38(0.62)

RNA type RNAfold RNAstructure

Sensitivity PPV Identical(similar) topology
consistency

Sensitivity PPV Identical(similar) topology
consistency

Riboswitch 0.69 0.71 0.45(0.73) 0.69 0.73 0.36(0.73)

tRNA 0.69 0.65 0.35(0.48) 0.78 0.75 0.48(0.81)

HCV-IRES 0.57 0.60 0.50(0.50) 0.85 0.91 0.50(1.00)

Ribonuclease 0.88 0.84 0.00(1.00) 0.88 0.82 0.00(1.00)

Ribozyme 0.72 0.67 0.20(0.40) 0.80 0.74 0.20(0.60)

Ribosomal RNA 0.56 0.44 0.10(0.70) 0.57 0.44 0.00(0.50)

SRP RNA 0.70 0.81 0.00(0.67) 0.66 0.77 0.00(0.33)

Group intron 0.70 0.67 0.00(0.25) 0.69 0.66 0.00(0.25)

Others 0.83 0.86 0.83(0.83) 0.83 0.86 0.67(1.00)

Total 0.69 0.66 0.33(0.58) 0.73 0.70 0.34(0.71)
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small in comparison with that of the total native base
pairs.

CONCLUSION

In this paper, we evaluate the physics-based free energy
minimization secondary structure prediction methods
by comparing the base-pairing as well as topological
consistencies. We built a non-redundant RNA tertiary
structure database consisting main types of RNAs to
construct our statistical analysis. The benchmark tests
show that the percentages of correct predictions of the
base-pair predictions and topology are about 70% and
38% on average, respectively. Furthermore, the topo-
logical consistency is not strongly correlated to the
base-pairing consistency under current accuracy of
base-pair prediction. Relatively high accuracy of base-
pair prediction does not mean correct topology of sec-
ondary structure. This suggests that experimental

information about secondary structure is usually
needed to build accurate tertiary structures of RNAs.
Our results will be helpful to understand the limitations
of RNA secondary structure prediction methods and
their applications in RNA tertiary structure prediction.

MATERIALS AND METHODS

Database of experimental RNA tertiary
structures

In order to evaluate the performance of different RNA
secondary structure prediction methods fairly, we built
a non-redundant RNA tertiary structure database from
the experimental RNA tertiary structures in the RCSB
Protein Data Bank (PDB) (Westbrook et al. 2003). The
RNAs with size of 50–300 nt are practical for RNA ter-
tiary structure prediction (Zhao et al. 2012). Therefore,
we first collected all the RNA structures with lengths

Fig. 1 Statistics of the secondary structure prediction results. The line in A is linearly fitting and the line in B is diagonal. The unit of
length and base-pair number is nucleotide. Sensitivity describes what percentage of native base pairs occurs in the predicted secondary
structure
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between 50 and 300 nucleotides in the PDB database.
The current non-redundant RNA tertiary structure
databases of statistical potential used the sequence
identity of 95% and 80% to reduce redundancy (Ber-
nauer et al. 2011; Capriotti et al. 2011; Wang et al.
2015). Here, we used a lower sequence identity of 75%
to remove possible homology structures in the selected

RNAs. Although a lot of efforts, it is still a challenge to
predict the pseudoknots. And so the RNAs with pseu-
doknots are not included in the non-redundant RNA
tertiary structure database. The database totally con-
tains 73 RNA tertiary structures (Table 1), including 25
in unbound state and 48 in RNA–protein and RNA–RNA
complexes.

Fig. 2 Three examples of native (left) and predicted (right) secondary structures. Their overall topologies are identical (A), similar (B),
and different (C). The consistent and inconsistent base pairs are colored in blue and red, respectively. Their free energies are also listed
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Secondary structure prediction and analysis

The free energy minimization approach of RNA sec-
ondary structure prediction is the most popular method
when RNA homologous information is limited (Mathews
and Turner 2006), e.g., Mfold (Zuker 2003), RNAfold
(Gruber et al. 2015), RNAstructure (Bellaousov et al.
2013), and RNAshapes (Janssen and Giegerich 2015).
Mfold uses a dynamic programming algorithm to gen-
erate a set of candidates of secondary structure for an
RNA, and then calculates their free energies by adding
up those of independent subunits using the nearest
neighborhood approximation. The free energies of the
subunits were determined experimentally. RNAstruc-
ture is similar to Mfold but uses alternative set of
thermodynamic parameters. RNAfold is also based on
the minimum free energy model but it can compute the
equilibrium partition functions and base-pairing prob-
abilities. RNAshapes is different from the three

algorithms above. It first clusters potential secondary
structures of an RNA into different abstract shapes and
finds a minimum free energy structure as the repre-
sentative of each shape. Then, it can calculate the shape
probability or use other biological information to iden-
tify the possible native secondary structure from the
representatives. Here, we use these four algorithms to
evaluate the performance of secondary structure pre-
diction. The experimental secondary structures (called
as ‘‘native secondary structures’’) were generated from
the experimental tertiary structures in the RNA data-
base using the sequence to structure (S2S) algorithm
(Jossinet and Westhof 2005). S2S can display the RNA
data, like sequences, secondary structures, and tertiary
structures. In addition, we analyzed the Watson–Crick
base pairs (Leontis and Westhof 2001) (A–U, C–G, and
G–U base pairs) and non-Watson–Crick base pairs
(Leontis et al. 2002) (A–G, A–C, A–A, U–U, C–U, C–C, and
G–G base pairs). In order to observe the consequence of
RNA–protein or RNA–RNA tertiary interactions on pre-
dicted RNA secondary structures, we also calculated the
hydrogen bonds between RNA and protein or RNAs in
the complexes by the hydrogen bond calculation algo-
rithm HBPLUS (McDonald and Thornton 1994). The free
energy of RNA secondary structure was calculated by
using the RNAeval algorithm in Vienna RNA package
(Gruber et al. 2015).

We analyzed base-pairing consistencies between
native and predicted secondary structures of the RNA
structures in the database. The base-pairing consistency
was measured by both sensitivity (STY) and positive
predictive value of precision (PPV) (Parisien et al.
2009).

STY sensitivityð Þ ¼ TP
TP þ FN

PPV precisionð Þ ¼ TP

TP þ FP

The base pairs found in both native and prediction
sets are true positives (TP). The base pairs found in
native sets but not in prediction sets are false negatives
(FN). The base pairs found in prediction sets but not in
native sets are false positives (FP). Sensitivity (STY)
describes what percentage of native base pairs occurs in
the predicted secondary structure. Specificity (PPV)
denotes what percentage of predicted base pairs occurs
in the native secondary structure.

Topological consistency analysis

The topological consistency measures the topological
similarity of the native and predicted secondary struc-
tures. Since it is difficult to find a simple index to clearly

Fig. 3 Statistical linear fitting of sensitivity/specificity and topo-
logical consistency for RNAshapes, Mfold, RNAfold, and RNAstruc-
ture, respectively
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distinguish the difference of RNA secondary structures,
we divide the topological consistency into three types:
identical, similar, and different (Fig. 2). The topology of
a predicted secondary structure is considered to be
identical to that of the native one if the former has the
same loops with the latter (Fig. 2A). In this case, the
predicted secondary structures may have a few addi-
tional base pairs that do not occur in the native ones or
a few of the native base pairs that do not form. The
topology of a predicted secondary structure is consid-
ered to be similar to that of the native one if the former
has the same multi-way junction loops with the latter
but different internal and bulge loops (Fig. 2B). Finally,
the topology of a predicted secondary structure is con-
sidered to be different from that of the native one if the
former has different multi-way junction loops with the
latter (Fig. 2C).

Acknowledgements This work is supported by the NSFC under
Grant Nos. 31570722 and 11374113.

Compliance with Ethical Standards

Conflict of interest Yunjie Zhao, Jun Wang, Chen Zeng, and Yi
Xiao declare that they have no conflict of interest.

Human and animal rights and informed consent This article
does not contain any studies with human or animal subjects
performed by any of the authors.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unre-
stricted use, distribution, and reproduction in any medium, pro-
vided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and
indicate if changes were made.

References

Bellaousov S, Reuter JS, Seetin MG, Mathews DH (2013)
RNAstructure: web servers for RNA secondary structure
prediction and analysis. Nucleic Acids Res 41:W471–W474

Fig. 4 A Tertiary interactions between a ribozyme (PDB ID: 2GCS) and ligand RNAs. B and C are the native and predicted secondary
structures of 2GCS, respectively. The consistent and inconsistent base pairs between them are colored in blue and red, respectively

Evaluation of RNA secondary structure prediction METHODS

� The Author(s) 2018 131 | June 2018 | Volume 4 | Issue 3

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Bernauer J, Huang X, Sim AY, Levitt M (2011) Fully differentiable
coarse-grained and all-atom knowledge-based potentials for
RNA structure evaluation. RNA 17:1066–1075

Cao S, Chen SJ (2011) Physics-based de novo prediction of RNA 3D
structures. J Phys Chem B 115:4216–4226

Capriotti E, Norambuena T, Marti-Renom MA, Melo F (2011) All-
atom knowledge-based potential for RNA structure predic-
tion and assessment. Bioinformatics 27:1086–1093

Gong Z, Zhao Y, Chen C, Duan Y, Xiao Y (2014) Insights into ligand
binding to PreQ1 Riboswitch Aptamer from molecular
dynamics simulations. PLoS ONE 9:e92247

Gruber AR, Bernhart SH, Lorenz R (2015) The ViennaRNA web
services. Methods Mol Biol 1269:307–326

Janssen S, Giegerich R (2015) The RNA shapes studio. Bioinfor-
matics 31:423–425

Jossinet F, Westhof E (2005) Sequence to structure (S2S): display,
manipulate and interconnect RNA data from sequence to
structure. Bioinformatics 21:3320–3321

Leontis NB, Westhof E (2001) Geometric nomenclature and
classification of RNA base pairs. RNA 7:499–512

Leontis NB, Stombaugh J, Westhof E (2002) The non-Watson-Crick
base pairs and their associated isostericity matrices. Nucleic
Acids Res 30:3497–3531

Li X, Bu D, Sun L, Wu Y, Fang S, Li H, Luo H, Luo C, Fang W, Chen R,
Zhao Y (2017) Using the NONCODE Database Resource. Curr
Protoc Bioinform 58:12.16.1–12.16.19

Mathews DH, Turner DH (2006) Prediction of RNA secondary
structure by free energy minimization. Curr Opin Struct Biol
16:270–278

Mathews DH, Disney MD, Childs JL, Schroeder SJ, Zuker M, Turner
DH (2004) Incorporating chemical modification constraints
into a dynamic programming algorithm for prediction of RNA
secondary structure. Proc Natl Acad Sci USA 101:7287–7292

Mathews DH, Turner DH, Watson RM (2016) RNA secondary
structure prediction. Curr Protoc Nucleic Acid Chem 67:1–19

McDonald IK, Thornton JM (1994) Satisfying hydrogen bonding
potential in proteins. J Mol Biol 238:777–793

Parisien M, Cruz JA, Westhof E, Major F (2009) New metrics for
comparing and assessing discrepancies between RNA 3D
structures and models. RNA 15:1875–1885

Perederina A, Nevskaya N, Nikonov O, Nikulin A, Dumas P, Yao M,
Tanaka I, Garber M, Gongadze G, Nikonov S (2002) Detailed
analysis of RNA–protein interactions within the bacterial
ribosomal protein L5/5S rRNA complex. RNA 8:1548–1557

PopendaM, SzachniukM, AntczakM, PurzyckaKJ, Lukasiak P, Bartol
N, Blazewicz J, Adamiak RW (2012) Automated 3D structure
composition for large RNAs. Nucleic Acids Res 40:e112

Tan Z, Fu Y, Sharma G, Mathews DH (2017) TurboFold II: RNA
structural alignment and secondary structure prediction
informed by multiple homologs. Nucleic Acids Res
45:11570–11581

Tinoco I Jr, Bustamante C (1999) How RNA folds. J Mol Biol
293:271–281

Wang J, Zhao Y, Zhu C, Xiao Y (2015) 3dRNAscore: a distance and
torsion angle dependent evaluation function of 3D RNA
structures. Nucleic Acids Res 43:e63

Wang J, Mao K, Zhao Y, Zeng C, Xiang J, Zhang Y, Xiao Y (2017)
Optimization of RNA 3D structure prediction using evolu-
tionary restraints of nucleotide-nucleotide interactions from
direct coupling analysis. Nucleic Acids Res 45:6299–6309

Weinberg Z, Nelson JW, Lunse CE, Sherlock ME, Breaker RR (2017)
Bioinformatic analysis of riboswitch structures uncovers
variant classes with altered ligand specificity. Proc Natl Acad
Sci USA 114:E2077–E2085

Westbrook J, Feng Z, Chen L, Yang H, Berman HM (2003) The
protein data bank and structural genomics. Nucleic Acids Res
31:489–491

Xu X, Chen SJ (2015) Physics-based RNA structure prediction.
Biophys Rep 1:2–13

Xu Z, Almudevar A, Mathews DH (2012) Statistical evaluation of
improvement in RNA secondary structure prediction. Nucleic
Acids Res 40:e26

Zhao Y, Huang Y, Gong Z, Wang Y, Man J, Xiao Y (2012) Automated
and fast building of three-dimensional RNA structures. Sci
Rep 2:734

Zhao Y, Wang J, Chen X, Luo H, Zhao Y, Xiao Y, Chen R (2013)
Large-scale study of long non-coding RNA functions based on
structure and expression features. Sci China Life Sci
56:953–959

Zhao Y, Li H, Fang S, Kang Y, Wu W, Hao Y, Li Z, Bu D, Sun N, Zhang
MQ, Chen R (2016) NONCODE 2016: an informative and
valuable data source of long non-coding RNAs. Nucleic Acids
Res 44:D203–D208

Zuker M (2003) Mfold web server for nucleic acid folding and
hybridization prediction. Nucleic Acids Res 31:3406–3415

METHODS Y. Zhao et al.

132 | June 2018 | Volume 4 | Issue 3 � The Author(s) 2018


	Evaluation of RNA secondary structure prediction for both base-pairing and topology
	Graphical abstract
	Abstract
	Introduction
	Review
	Results and discussion
	Features of native secondary structures
	Base-pairing consistency of native and predicted secondary structures
	Topological consistency of native and predicted secondary structures
	Some discussions

	Conclusion
	Materials and methods
	Database of experimental RNA tertiary structures
	Secondary structure prediction and analysis
	Topological consistency analysis

	Acknowledgements
	References




