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Abstract Although near-atomic resolutions have been routinely achieved for structural determination of many
icosahedral viral capsids, structures of genomes and associated proteins within the capsids are still less
characterized because the genome information is overlapped by the highly symmetric capsid infor-
mation in the virus particle images. We recently developed a software package for symmetry-mismatch
structural reconstruction and determined the structures of the genome and RNA polymerases within an
icosahedral virus for the first time. Here, we describe the protocol used for this structural determi-
nation, which may facilitate structural biologists in investigating the structures of viral genome and
associated proteins.
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INTRODUCTION

Three-dimensional (3D) structural determination of
viruses aids in elucidating viral molecular mechanism
and pathogenesis. Cryo-electron microscopy (cryo-EM)
and X-ray crystallography are two major methods used
for the 3D structural determination of viruses. The
major advantages of cryo-EM are that the specimens
require no crystallization and are embedded in a thin
vitrified ice of buffer thus preserving their near-native
structure.

Recent instrumental and computational develop-
ments of cryo-EM have enabled the structural deter-
mination of viruses and other biological assemblies at
near-atomic to atomic resolutions (Grigorieff and

Harrison 2011; Bai et al. 2015; Bartesaghi et al. 2015),
comparable to the structures determined using X-ray
crystallography. A new generation of direct electron
detection (DED) camera has significantly improved
cryo-EM image quality. Compared with the traditional
charge-coupled device (CCD) camera, DED camera
allows reconstruction of higher resolution structures of
biological complexes including viruses, while using
fewer particle images (Veesler et al. 2013; McMullan
et al. 2014; Bartesaghi et al. 2015). Icosahedral viral
capsids were the first biological assemblies whose
structures have been determined at near-atomic reso-
lution using cryo-EM (Jiang et al. 2008; Liu et al. 2010;
Cheng et al. 2011) due to their high (60-fold) symmetry
and relatively large size, which promise a more accurate
orientation determination and higher contrast of the
particle images than other smaller low-symmetry bio-
logical assemblies.

Although the 3D structures of icosahedral viral cap-
sids have been studied extensively by using both EM
and X-ray crystallography for decades (Crowther 1971;
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Harrison et al. 1978; Baker et al. 1999; Thuman-
Commike and Chiu 2000), precise structures of viral
genomes and associated proteins within the capsids are
still less characterized. The difficulty can be attributed
to the fact that the viral genome and associated proteins
are encapsidated in a high symmetric layered (or multi-
layered) capsid. The high symmetry of the capsid is an
advantage for determination of orientations of virus
particle images using common-line based reconstruc-
tion algorithm (Crowther 1971; Fuller et al. 1996).
However, when it comes to the structural determination
of the genome and proteins within the capsid, the ori-
entation determination of the non-symmetric genome
information will be biased by the overlapping high-
symmetry capsid information in the virus particle ima-
ges. Here, we present our recently developed protocol
and software package for the structural determination
of icosahedral virus genome and associated proteins.

Development of the layer-based cryo-EM image
processing and symmetry-mismatch
reconstruction method

Symmetry mismatches are present between viral cap-
sids and genomes as well as within capsids. First
attempts of symmetry-mismatch reconstruction made at
virus structure determination were to reconstruct a
unique tail at an icosahedral vertex of bacteriophages
(Tao et al. 1998; Jiang et al. 2006). In the two previous
studies, Jiang et al. and Tao et al. reconstructed the
bacteriophage head structures taking advantage of the
icosahedral symmetry, and then the icosahedral sym-
metry was further relaxed to lower symmetries to
generate the reconstruction without symmetry imposi-
tion. Briggs et al. and Morais et al. reconstructed non-
icosahedral structures at a Kelp fly virus vertex (Briggs
et al. 2005) and a bacteriophage tail (Morais et al.
2001). They first boxed the vertex images from raw
cryo-EM particle images with known icosahedral ori-
entations, and then classified and reconstructed these
boxed vertex images. However, their structural resolu-
tions of non-symmetric regions of the viruses are rela-
tively low, probably because the orientation
determination of the target structural information was
biased as mentioned above. In order to reduce the effect
of the capsid information, Huiskonen et al. tried to
remove the icosahedrally ordered capsid parts from the
raw cryo-EM images of Cystovirus U8 by subtracting
equivalent projections of the icosahedral model from
the raw images (Huiskonen et al., 2007). The images of
the RNA packaging motor boxed from the resulting
image after subtraction were then classified and
reconstructed to obtain a 15 Å resolution structure. The

reconstruction resolution is low because the contrast
transfer function (CTF) modulation of the images was
not considered. In addition, the structures of encapsi-
dated non-symmetric viral genomes and associated
proteins remained unresolved.

In order to solve this problem, we developed a new
symmetry-mismatch reconstruction method and for the
first time we determined the structures of genome and
polymerase within an icosahedral dsRNA cypovirus (Liu
and Cheng 2015). In the subsequent sections, we have
described a detailed protocol of this reconstruction
method by using the cypovirus as an example.

Applications and advantages of the protocol

The method has been released as a software package
running under Microsoft Windows. The package is
designed to reconstruct the 3D structure of lower or
non-symmetry viral genome and associated proteins
enclosed in higher symmetry viral capsid from 2D cryo-
EM images. Nevertheless, it can be used for the recon-
struction of other biological assemblies exhibiting sim-
ilar symmetry mismatches. We believe that viruses have
a functional state with a relatively organized genome
structure that can be determined, and the key for the
structure determination is how to catch this state
biochemically.

Limitations of the protocol

This protocol requires that the viral capsid is icosahe-
dral and has been reconstructed at a high resolution
from cryo-EM images of virus particles, of which the
orientations and centers used for the capsid recon-
struction have been determined by virus reconstruction
software packages, for example, RELION (Scheres
2012), EMAN (Ludtke et al. 1999), and FREALIGN
(Grigorieff 2007).

EXPERIMENTAL DESIGN

Before reading the following protocol, we suggest the
readers to refer to the basic principle of the protocol in
the supplementary materials of our published paper
(Liu and Cheng, 2015). The protocol includes two
modules: the first module describes the steps to extract
the non-symmetric genome structure information from
the cryo-EM images by eliminating the symmetric cap-
sid information. According to the approximation of
weak phase objects, a cryo-EM image of a virus particle
can be considered the sum of a genome image and a
capsid image. Therefore, the genome image can be
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obtained by subtracting the capsid image, which can be
obtained by projecting the 3D density map of the capsid
on the capsid orientation and applying CTF modulation
on the projection, from the cryo-EM image of a virus
particle. The second module describes the steps to
iteratively determine orientations of all genome images
and reconstruction. Since the 60 equivalent orientations
of the icosahedral capsid are known and the asymmetric
genome structure has a fixed orientation related to the
symmetric capsid, the correct orientation of the genome
can be determined by searching the 60 equivalent ori-
entations of the capsid (Liu and Cheng 2015). By using
this protocol and software package, we could determine
structure of genome and RNA polymerases within the
cypoviruses.

MATERIALS

Totally, 420 cryo-EM micrographs of a cypovirus were
collected using Tecnai Arctica 200 kV electron micro-
scope equipped with Falcon II camera at a magnification
of 78,000 corresponding to a pixel size of 0.932 Å/pixel.
Approximate 5000 virus particle images with a size of
1024 9 1024 pixels were boxed out from the 420
micrographs. The defocus value for each micrograph
was determined using the CTFIT program in the EMAN
package (Ludtke et al. 1999). In order to speed up the
computational process, the images were subsampled by
2. All 2D image stacks and 3D density maps used in this
protocol were stored in the MRC format.

EQUIPMENT AND SOFTWARE SETUP

The following procedure requires a computer running
Microsoft Windows and our symmetry-mismatch
reconstruction software package. Unpacking the soft-
ware package to a folder and setting a path to this folder
in the Windows system are required before using the
software package. This procedure assumes that users
have experiences in cryo-EM image processing and
single particle reconstruction.

PROCEDURE

This section describes the step-by-step image process-
ing procedure (Fig. 1). The lines in italic font are com-
mand lines, which must be input in the command
prompt window in a directory where a stack of raw
images are stored.

Genome image extraction

(1) Moving the virus particle centers to the images
centers. In order to avoid different definitions of the
particle center in other reconstruction software pack-
ages, the centers of the virus particle images are moved
to the center of the images.

img2d rawImgBin2.stck outputimgstck=virusImgBin2.
stck inputort=ort0.dat outputort=ort.dat norm=0,1 trans
=y

‘‘rawImgBin2.stck’’ is a stack of the subsampled par-
ticle images with an image size of 512 9 512. ‘‘vir-
usImgBin2.stck’’ is the output stack of the virus particle
images whose particles are centered in the images.
‘‘ort0.dat’’ is a text file containing particle orientations,
centers, and image defocus values (astigmatism) of
these particle images (hereafter orientation file). ‘‘ort.-
dat’’ is a generated orientation file containing the same
orientations and defocus values as those of ‘‘ort0.dat’’
but with the center parameters updated to 0,0.
‘‘norm=0,1’’ indicates that the images in ‘‘raw-
ImgBin2.stck’’ are normalized to a mean value of 0 and a
standard deviation of 1; ‘‘trans=y’’ is an option used to
center the particles in the images.

The format of orientation file in this protocol is uni-
form. The first column contains the serial numbers of
the virus particle images. The second, third, and fourth
columns contain the Euler angles defining the orienta-
tions of these virus particles. The fifth and sixth col-
umns contain centers defining the central positions of
the virus particles in the images. The seventh column
contains the correlation coefficients of the cross-
correlation between the virus images and the model
images. The eighth column contains serial numbers of
the micrographs. The ninth, 10th, and 11th columns
contain defocus values X, Y, and astigmatism angles of
the particle images, respectively.

(2) Reconstructing a high-resolution density map of
the capsid.

recCartesian_fast virusImgBin2.stck ort.dat vir-
usMap.mrc maxFR=220 imgmask=212 apix=1.864
applyCTF=y sym=I mincc=0.2 Cs=2.7 vol=200, ampw=0.1,
norm=0,1

‘‘virusImgBin2.stck’’ and ‘‘ort.dat’’ are stack of virus
particle images and its orientation file generated in Step
(1), respectively. ‘‘virusMap.mrc’’ is the output density
map of virus; ‘‘maxFR=220’’, ‘‘imagemask=212’’,
‘‘apix=1.864’’, ‘‘applyCTF=y’’ and ‘‘sym=I’’ specify the
maximum Fourier radius (here, 220 corresponds to a
resolution of 4.3 Å) used for reconstruction, mask
radius for the virus particle images (in pixel), pixel size
of the virus particle images, application of CTF
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correction, and applied symmetry during reconstruction
(icosahedral), respectively. ‘‘Cs’’ and ‘‘vol’’ are the objec-
tive lens spherical aberration coefficient in mm and
accelerating voltage of the electron microscope. ‘‘am-
pw=0.1’’ specifies the ratio of amplitude contrast. For
cross-correlation (CC)-based particle orientation and
center determination, ‘‘mincc=0.2’’ indicates that only
those particle images with CC values higher than or
equal to 0.2 are included in the reconstruction. For
common-line-based particle orientation and center
determination (Crowther 1971; Thuman-Commike and
Chiu 2000), ‘‘mincc=0.2’’ indicates that only those par-
ticle images with cosine values of phase residuals higher
than or equal to 0.2 are included in the reconstruction.

The reconstructed density map of the cypovirus capsid
is shown in Fig. 2.

(3) Masking the inner genome densities within the
density map.

img3d virusMap.mrc outputmap=capsidMap.mrc
imask=136 mask=212

‘‘virusMap.mrc’’ is the density map of virus generated
in Step (2). ‘‘imask’’ and ‘‘mask’’ specify radii of the
genome and the capsid. This command eliminates the
density within and outside the capsid and generates a
density map of the capsid (‘‘capsidMap.mrc’’).

(4) Projecting the masked capsid density map
according to the icosahedral orientation of each particle
image.

Fig. 1 Flow chart of image processing and 3D reconstruction. (1)–(11) correspond to Steps (1)–(11) in the procedure
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cent_slice_icos2f capsidMap.mrc ort.dat proj.stck
mask=212 norm=0,1

‘‘capsidMap.mrc’’ is the capsid density map generated
in Step (3). ‘‘proj.stck’’ is a stack of the projection images
of the capsid map generated in this step. ‘‘ort.dat’’, which
is generated in Step (1), indicates the projection orien-
tations; therefore, these projection images have orien-
tations identical to their corresponding virus particle
images.

(5) Extracting genome images from the virus images.
cc proj.stck stck2=virusImgBin2.stck ort2=ort.dat

lp=220 norm=0,1 mask=212 applyCTF=y imgsub-
proj=genomeImg.stck trans=1,1

‘‘proj.stck’’ is the stack of capsid projection images
generated in Step (4) and ‘‘virusImgBin2.stck’’ is the
stack of virus images. ‘‘genomeImg.stck’’ is a stack of
genome images generated in this step by subtracting the
projection images from the virus particle images. Before
subtracting, the program applies CTF to the projection
images (‘‘proj.stck’’) and scales the pixel values on the
projection images to the same grayscale with capsid
information on the virus particle image. Pixel size,
accelerating voltage, spherical aberration, ratio of
amplitude contrast, B factor, and inner and outer radii
values need to be input when the program is running.
Amplitudes of 0.1 and B factor of 0 are recommended
here. The two input radii define a circular region used
for scaling the capsid information in virus particle
images (‘‘virusImgBin2.stck’’) to the same grayscale with
the corresponding capsid projections (‘‘proj.stck’’) (see
Supplementary Fig. 13 of our previous paper (Liu and

Cheng, 2015)). The inner and outer radii of 136 and 160
(in pixel) are recommended here. ‘‘trans=1,1’’ indicates
that all genome will be moved to the center of the
images. The extracted genome images (‘‘geno-
meImg.stck’’) will be used to determine the orientations
of the genome images in Step (8).

Initial model generation

(6) Reconstructing a complete virus structure (includ-
ing the capsid and genome) using the virus particle
images. The initial orientation for each virus particle
image is randomly selected from the 60 icosahedral
equivalent orientations of its capsid because the orien-
tations computed from the virus capsid are all located
within an asymmetric unit.

icos2f_randort ort.dat ortRand.dat
‘‘ort.dat’’ contains orientations of virus particle ima-

ges within an asymmetric unit. ‘‘ortRand.dat’’ contains
orientations, each of which is randomly selected from
the 60 icosahedral equivalent orientations of each ori-
entation in the ‘‘ort.dat’’.

recCartesian_fast virusImgBin2.stck ortRand.dat cap-
sidGenome.mrc maxFR=40 imgmask=212 norm=0,1
applyCTF=y Cs=2.7 vol=200 apix=1.864 ampw=0.1

‘‘virusImgBin2.stck’’ is the stack of virus images.
‘‘ortRand.dat’’ contains orientations of the virus images.
‘‘capsidGenome.mrc’’ is a generated density map of the
complete virus structure.

(7) Generating a density map of the genome (initial
model).

img3d capsidGenome.mrc outputmap=genomeMap.
mrc mask=136

‘‘mask=136’’ indicates that the densities out of radius
136 pixels will be masked. ‘‘genomeMap.mrc’’ is the
generated density map of the genome.

Orientation determination and 3D
reconstruction of genome

(8) Projecting the 3D genome model to generate 60
projection images for each genome image according to
the 60 equivalent icosahedral orientations of the capsid.
The cross coefficients between each genome image and
the 60 projection images are calculated here. The ori-
entation of the projection image best-matched with each
genome image is assigned the corresponding orienta-
tion to the genome image for further analysis.

align_core genomeMap.mrc genomeImg.stck ort.dat
genomeOrt.dat lp=15 mask=136 applyCTF=y norm=0,1
mode=cpc centshift=y apix=1.864 Cs=2.7 vol=200
ampw=0.1

Fig. 2 Structure of the cypovirus capsid
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‘‘genomeMap.mrc’’ is the structural model for the
orientation determination of the genome images
(‘‘genomeImg.stck’’). The orientations of the best-

matched projection images are stored in
‘‘genomeOrt.dat’’. ‘‘mode=cpc’’ indicates that the cross
coefficient is calculated using cross phase correlation.
‘‘centshift=y’’ indicates that the center of the genome
is allowed to shift when calculating cross coefficient.
‘‘lp=15’’ specifies the low-pass filter (in Fourier
radius). ‘‘mask=136’’ indicates that only image region
within a radius of 136 pixels in the genome images
(‘‘genomeImg.stck’’) is used to calculate cross phase
correlation.

This step is time intensive. Users can write a script to
run it in parallel. For example, if the ‘‘genomeImg.stck’’
contains 5000 images, the script can be written as
follows:

start align_core genomeMap.mrc genomeImg.stck ort.-
dat genomeOrt_1.dat lp=15 mask=136 applyCTF=y
norm=0,1 mode=cpc centshift=y apix=1.864 Cs=2.7
vol=200 ampw=0.1 first1 last=1000
start align_core genomeMap.mrc genomeImg.stck ort.-
dat genomeOrt_2.dat lp=15 mask=136 applyCTF=y
norm=0,1 mode=cpc centshift=y apix=1.864 Cs=2.7
vol=200 ampw0.1 first=1001 last=2000
start align_core genomeMap.mrc genomeImg.stck ort.-
dat genomeOrt_3.dat lp=15 mask=136 applyCTF=y

Fig. 3 Density maps of the genome and RdRps from the initial model to reconstruction of 28 cycles. The dsRNA fragments are visible in
the reconstruction of the 28th cycle

Fig. 4 Structure of the genome within the capsid. Half of the
icosahedral capsid (gray) is removed to show the structures of
genomic dsRNA and RdRps (purple)
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norm=0,1 mode=cpc centshift=y apix=1.864 Cs=2.7
vol=200 ampw=0.1 first=2001 last=3000
start align_core genomeMap.mrc genomeImg.stck ort.-
dat genomeOrt_4.dat lp15 mask=136 applyCTF=y
norm=0,1 modecpc centshift=y apix=1.864 Cs=2.7
vol=200 ampw=0.1 first=3001 last=4000
start align_core genomeMap.mrc genomeImg.stck ort.-
dat genomeOrt_5.dat lp=15 mask=136 applyCTF=y
norm=0,1 mode=cpc centshift=y apix=1.864 Cs=2.7
vol=200 ampw=0.1 first=4001 last=5000

In each command, ‘‘first’’ and ‘‘last’’ indicate the first
and last images to be processed in the ‘‘ort.dat’’. Users
can generate the combined ‘‘genomeOrt.dat’’ of all gen-
ome images by running type genomeOrt_1.dat
genomeOrt_2.dat genomeOrt_3.dat genomeOrt_4.dat
genomeOrt_5.dat[ genomeOrt.dat.

(9) Reconstructing the genome using the newly
assigned orientations and centers (‘‘genomeOrt.dat’’).

recCartesian_fast virusImgBin2.stck genomeOrt.dat
virusMap-1.mrc maxFR=40 imgmask=212 norm=0,1
applyCTF=y mincc=0.09 bound=3 Cs=2.7 vol=200
apix=1.864

‘‘bound=3’’ indicates that the genome images, whose
centers shift more than 3 pixels, are not included in the
reconstruction.

(10) Masking the capsid structure surrounding the
genome structure.

img3d virusMap-1.mrc outputmap=genomeMap-1.mrc
mask=136

The generated genome structure (‘‘genomeMap.mrc’’)
serves as structural model for next round of orientation
determination of the genome images.

(11) Iterating Steps (8) to (10) until the orientations
of each genome image stabilizes and no further
improvement of the genome structure can be obtained.
For each of the iteration, the output map generated in
Step (10) is used as the structural model in Step (8). The
‘‘lp’’ of ‘‘align_core’’ and ‘‘maxFR’’ of ‘‘recCartesian_fast’’
can be improved steadily when the genome orientations
in the ‘‘genomeOrt.dat’’ does not change during the
iterations. The intermediate results during iterations are
shown in Fig. 3.

ANTICIPATED RESULTS

On performing this protocol, users can reconstruct a
cryo-EM density map of the cypovirus genome structure
(Fig. 4). The double helices of both dsRNA fragments
located close to the inner capsid surface and interacting
with the RNA polymerase can be observed. This proto-
col is also applicable for the genome structure

determination of other icosahedral viruses with struc-
turally homogenous genomes.
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