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ABSTRACT

Asthma is a heterogeneous disease comprising a

number of subtypes which may be caused by

different pathophysiologic mechanisms

(sometimes referred to as endotypes) but may

share similar observed characteristics

(phenotypes). The use of unsupervised

clustering in adult and paediatric populations

has identified subtypes of asthma based on

observable characteristics such as symptoms,

lung function, atopy, eosinophilia, obesity, and

age of onset. Here we describe different

clustering methods and demonstrate their

contributions to our understanding of the

spectrum of asthma syndrome. Precise

identification of asthma subtypes and their

pathophysiological mechanisms may lead to

stratification of patients, thus enabling more

precise therapeutic and prevention approaches.

Keywords: Adult asthma; Asthma; Clustering;

Endotypes; Paediatric asthma; Phenotypes

INTRODUCTION

Asthma is a heterogeneous disease, defined by

the most recent Global Initiative for Asthma

(GINA) global strategy for asthma management

and prevention consensus as a condition

characterised by the presence of respiratory

symptoms such as wheeze, shortness of breath,

chest tightness and cough that vary over time

and in intensity, together with variable airflow

obstruction [1]. However, various definitions of

asthma do not capture the heterogeneity of this

common complex condition. It is becoming

increasingly clear that asthma is not a single

disease, but a syndrome which consists of a

number of disease subtypes with similar

observable clinical characteristics [2]. These

observable characteristics of the disease are

often referred to as asthma phenotypes. The

term ’asthma endotype’ is not synonymous
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with phenotype, and it should be used to refer

to the distinct disease entity under the umbrella

diagnosis of asthma, which has defined

pathophysiological mechanisms that give rise

to clinical symptoms [3]. It should be

emphasised that the same observable

characteristic (i.e. phenotype) can arise as a

consequence of different underlying

pathologies (i.e. endotypes), which is

consistent with observations showing that

there are subtypes of asthma that share similar

clinical symptoms but have differing

underlying pathophysiological mechanisms

[4]. There are numerous examples in other

disease areas of a similar or identical clinical

presentation arising as a consequence of

different pathology (e.g. fever in childhood

can be caused by numerous different

mechanisms).

The traditional constructs of ‘asthma

phenotypes’ have been largely descriptive,

with little uniformity, and usually informed by

subjective observations of single dimensions of

the disease, such as triggering factors (e.g.

extrinsic and intrinsic asthma [5],

exercise-induced asthma [6]), patterns of

airway obstruction (e.g. reversible and

irreversible asthma [7]), or pathology (e.g.

eosinophilic and non-eosinophilic asthma [8]).

In paediatric asthma, changes over time in

symptoms such as wheeze have been used to

define phenotypes of wheezing illness during

childhood [9]. For example, based on clinical

observation of changes in the temporal pattern

of wheezing illness during childhood, as

confirmed in the birth cohort study (Tucson

Children’s Respiratory Study), Martinez et al.

divided children into three groups (or

phenotypes) of wheezing: transient early

wheezers, late-onset wheezers, and persistent

wheezers [10]. Although these phenotypes are

clinically meaningful in their association with

lung function and subsequent development of

asthma [11], their distinct underlying

pathophysiological mechanisms have not been

elucidated or confirmed—they cannot be

considered as endotypes.

Based on expert opinion and consensus,

Lotvall et al. [4] suggested the existence of six

asthma endotypes: aspirin-sensitive asthma,

allergic bronchopulmonary mycosis, allergic

asthma, asthma predictive index-positive

preschool wheezers, severe late-onset

hypereosinophilic asthma, and asthma in

cross-country skiers. However, the well-defined

pathophysiological mechanisms and

biomarkers which differentiate these proposed

endotypes have not been discovered, and there

is no universal agreement that these subtypes of

asthma represent true endotypes [12]. At this

time, the endotype concept remains largely

hypothetical, but may have a tangible value in

helping us to formulate strategies to better

understand the mechanisms underlying

different asthma-related diseases, and thus to

identify more effective stratified treatment

strategies [13].

In recent years, approaches to subtyping

asthma have evolved from subjective expert

opinion to more data-driven methodologies

such as machine learning [14, 15]. Statistical

machine-learning methods facilitate the

efficient exploration of data for the

identification and analysis of disease patterns.

These methods are able to draw upon the vast

array of data generated from birth and patient

cohorts in order to cluster, classify, regress, and

make predictions from data based on inherent

patterns within the large complex data set. This

is in contrast to the traditional methods based

on human observation and testing of

hypotheses using prior knowledge. Within the

context of asthma subtyping, methods such as

unsupervised clustering approaches, factor
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analysis, and principal component analysis

come into wide use within the last decade.

These are hypothesis-generating, with the

overarching notion that the inherent patterns

within the data may be a reflection of different

underlying aetiologies, genetic basis, and/or

immunopathophysiologies, and that identified

clusters may represent distinct asthma

endotypes. If this assumption is correct,

clustering methodologies could facilitate better

understanding of the disease mechanisms,

identification of novel therapeutic targets, and

better clinical trial design incorporating

group-specific targeted treatment, all of which

are essential steps towards delivery of stratified

medicine in asthma.

Here we present a review of the different

clustering methodologies—model-free and

model-based—and their applications in asthma

subtyping. We provide an overview of the major

studies and discuss the implications and

approaches used.

WHAT IS CLUSTERING?

Cluster analysis is a popular unsupervised

machine-learning method that seeks to

identify similar characteristics in subjects (or

variables) and to group them together on that

basis. In selecting groups, the primary aim is to

minimize intra-group variance while

simultaneously maximizing inter-group

variance. Clustering ‘classifies’ data by

labelling objects with cluster ‘labels’ or giving

each object a probability of belonging to a

certain cluster. Cluster labels are not known a

priori, and are derived solely from the data. This

is in contrast to supervised methods such as

logistic regression and support vector machines,

which seek to derive rules for classifying new

objects based on a set of previously classified

objects.

SELECTION OF VARIABLES/
FEATURES AND DIMENSION
REDUCTION

Cluster analysis lacks the ability to differentiate

between clinically relevant and irrelevant

variables; thus the choice of variables to input

into the clustering algorithm is one of the most

important considerations. Variable or feature

selection can be performed subjectively or

objectively. Subjective methods involve

choosing relevant variables based on expert

advice and published work. In contrast,

objective methods use data-driven approaches

to variable/feature selection, the most common

of which are stepwise methods (such as

backward and forward selection) and

dimension reduction techniques (such as

principal components analysis [PCA] and

factor analysis [FA]). Forward selection

progressively adds variables of greatest

significance (based on pre-set p values) to the

model. Backward selection starts with all

variables and progressively drops the least

significant ones until all the remaining

variables are statistically significant.

To reduce the large number of variables, the

majority of studies we reviewed employed

manual extraction based on expert advice. For

example, Moore et al. [16] manually reduced

the number of variables from 600 to 34 by

excluding variables with missing data and those

that were either deemed redundant because

information was captured by another variable

(multicollinearity) or considered not clinically

relevant. Other studies used dimension

reduction techniques such as PCA and FA,

which reduce data by generating small subsets

of generally uncorrelated variables from a large

data set of potentially correlated variables. It is

useful when we assume that there are

underlying latent (unobserved) constructs

Pulm Ther (2016) 2:19–41 21



(factors/components) in the data which cannot

be measured directly but which can influence

responses on measured variables. Although

these two methods were used almost

interchangeably in the literature we reviewed,

there are differences between them. As a general

rule, PCA is used to reduce data into smaller

subsets, while FA is used to determine the

unobserved factors which explain the data.

CLUSTERING METHODS

Three main clustering methods have generally

been used in asthma subtyping: hierarchical

approaches, non-hierarchical or

partitioning-based approaches, and

model-based or probabilistic approaches.

Hierarchical Clustering

Hierarchical clustering aims to create a

pyramidal or (as its name implies)

‘hierarchical’ grouping of homogeneous

clusters that can be displayed in a tree-like

graph (dendrogram). It does not require the

number of clusters to be specified a priori, and

cluster assignment is based on similarity of

measured characteristics. Within hierarchical

clustering there are two subcategories:

agglomerative and divisive methods (Fig. 1).

Agglomerative Method

The agglomerative method is a bottom-up

approach that starts with each data point

assigned to its own cluster, and iteratively

merges the two closest clusters until all the

data belong to a single cluster [17]. Once

clusters are formed, there is no inter-cluster

switching. The choice of which clusters to

combine is determined by measuring

distances, similarities/dissimilarities, and/or

using linkage criteria.

This method formulates decisions based on

the pattern of variables used, without

accounting for the overall distribution.

Divisive Method

This variant is a top-down approach whereby all

objects initially belong to one cluster, which is

then recursively divided into sub-clusters until

Fig. 1 Overview of the difference between agglomerative and divisive hierarchical clustering
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thedesirednumberof clusters is obtained [18]. By

initially having a single cluster, the model gains

insight into the spread and type of data, and

subsequently makes decisions on when and how

to divide the sub-clusters.

Similarity/Dissimilarity Measures

To determine whether objects within the same

clustered group are similar or dissimilar,

distance measures and linkage criteria (Table 1)

are used. Distance metrics measure the distance

between observations, while linkage criteria

measure the distance between clusters. In

order to define a similarity measure, the actual

similarities between objects can be evaluated

using a distance measure. Choosing a measure

for calculating the distance between data can

sometimes be arbitrary, as there are no general

theoretical guidelines. The Euclidean distance

measure, which is the default method in most

statistical packages, was used in all but one of

the studies reviewed here [19].

Non-Hierarchical Clustering

The prototype of non-hierarchical clustering is

k-means (Fig. 2), which is a partitioning method

in which the number of clusters is specified a

priori and the optimal solution is chosen. It is a

variance-minimizing algorithm whereby each

subject is assigned to its nearest cluster based on

the minimum squared Euclidean distance. This

method is sensitive to outliers and is generally

limited to numeric attributes.

Model-Based Clustering

Model-based clustering (also known as latent

class analysis or mixture modelling), is based on

the assumption that the observed data are

generated by a collection of models, with each

cluster corresponding to a different model. Each

resulting cluster is represented by a (most

commonly) parametric distribution, and can

be either spherical or ellipsoidal of varying sizes

and variance. The advantage of model-based

clustering is that it can produce probabilistic

cluster assignments for individuals—i.e. it

captures the uncertainty in assigning

individuals to clusters. Bayesian extensions

(e.g. Markov chain Monte Carlo [MCMC],

expectation-maximisation [EM]) of

model-based clustering can also be used to

incorporate prior distributions to reflect

uncertainty around model assumptions.

A major challenge in model-based clustering

is identifying and representing the underlying

model assumptions with reasonable

complexity. However, unlike a model-free

approach, log-likelihood-based statistics such

as the Bayesian information criteria (BIC) and

model evidence allow us to select the most

parsimonious set of assumptions by penalising

model complexity for accuracy. This is in

contrast to model-free clustering, where an

arbitrary distance measure is used to find

clusters. Importantly, choosing the best

statistically fitting model is not enough; there

must be an element of expert input into

choosing the number of clusters to maximise

the potential clinical relevance of the identified

subgroups.

Table 1 Most commonly used linkage criteria

Linkage criteria

Centroid Measures distance between the central

points of each cluster

Ward’s

method

Measures the distance between clusters as

the ANOVA sum of squares—i.e.

combining information over all cluster

members

Complete Measures the distance between the members

of clusters farthest apart

Pulm Ther (2016) 2:19–41 23



STABILITY OF RESULTING CLUSTERS

Cluster stability is an important aspect of

validity, because cluster methods can

generate groups in fairly homogenous data

sets. Furthermore, there is always a risk of

identifying less meaningful clusters. Stability

in this context refers to clusters not

disappearing when, for example, outliers are

added, data is sub-set, or random error is

introduced to every point to simulate

measurement error [21]. The most common

means of doing this is to apply the same

cluster method to a sample data set taken

from the original one (also termed

bootstrapping), and identifying similar

clusters using similarity measures. The

similarity values are then compared, and

stability is taken to be the mean similarity in

the new data set [21].

CLUSTERING METHODS
IN ASTHMA SUBTYPING

The Use of Principal Components

Analysis/Factor Analysis in Asthma

Subtyping

Studies which used PCA/FA as stand-alone

analyses for demonstrating the heterogeneity

of asthma syndrome and its risk factors are

summarised in Table 2 [22–40]. Sample sizes

ranged from 69 to 16,635, and the number of

variables used initially ranged from 5 to 97. The

number of resulting components/factors ranged

from one to six.

The PCA was first used in the context of

asthma by Smith et al. to examine whether

syndromes of coexisting respiratory symptoms

could be discovered using the response to a

large number of questions ([100) from

Fig. 2 A silhouette plot used for non-hierarchical cluster-
ing (k-means) (from [20], with permission). A silhouette
plot shows how close observations from neighbouring
clusters are to each other using a measure of -1 to ?1. A
value of ?1 indicates that observations are far away, 0

indicates that the observations are very close to the
boundary of deciding exactly which cluster they belong to,
and -1 indicates that the observations may be assigned to
the wrong cluster
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validated questionnaires administered in a birth

cohort (Manchester Asthma and Allergy Study

[MAAS]) [22]. The analysis demonstrated that

symptom components (wheeze, cough, wheeze

with allergens, wheeze with irritants, chest

congestion) were better indicators of the

presence and developmental changes in

observable secondary asthma phenotypes

(such as lung function, airway reactivity, and

immunoglobulin E (IgE)-mediated

sensitisation) than the presence of individual

symptoms such as wheeze.

Using factor analysis, Bailey et al. [32] found

that the intensity of asthma symptoms, asthma

management, and airflow impairment (forced

expiratory volume [FEV1]) were independent

components of the disease. This was also seen in

the study by Grazzini et al. [36], where lung

function (FEV1) was a factor independent from

asthma symptoms in a mixed teenager-adult

population of 69 asthmatics. Lung function was

also independent of inflammatory markers

(fraction of exhaled nitric oxide [FeNO], sputum

eosinophils) in other studies [33, 39, 40]. The

study by Juniper et al. [37], which included 763

patients older than 12 years who participated in

clinical trials, showed that, despite medication,

daytime and nighttime symptoms were distinct

and independent factors of asthma. Clemmer

et al. [31] used PCA to demonstrate that a clinical

‘endophenotype’ relating to corticosteroid

responsiveness best predicted corticosteroid

response in all replication populations. Other

studies in Brazilian [26], British [28], and Japanese

[41] children have shown that ‘Western diets’

were independently associated with an increased

risk of wheezing by school age.

More recently, both PCA and FA have been

used as dimension reduction techniques to

generate small subsets from a large number of

variables; these small subsets

(components/factors) were then used for further

clustering. For example, Just et al. used PCA to

reduce 40 variables to 19, characterising age and

body mass index (BMI), asthma duration,

medication use, hospitalisation, atopy, and lung

function [42], which were then used in

hierarchical clustering. This approach acts as

feature extraction in that it can initially

visualize/reveal clusters prior to the cluster

analysis.

Asthma Subtype Classification

with Model-Free Approaches

The studies identified from our literature search

which used model-free approaches for subtyping

asthma are shown in Table 3 [16, 19, 43–61]. Of 22

studies, 12 were carried out in adult populations.

Population sample sizes ranged from 57 to 1843.

The approach of choice was Ward’s hierarchical

method with some form of data reduction,

whether with PCA, multiple regression analysis,

discriminant analysis, factor analysis, or decision

trees. k-means clustering was performed in 9 of 22

studies, but always as a supplementary method.

The resultingnumbers of clusters ranged from two

to six.

Paediatric Studies

The Trousseau Asthma Program (TAP) in France

used Ward’s hierarchical clustering as the

method of choice [42, 50, 53]. In the TAP

preschool population of 551 wheezers, ‘three

clusters of wheezing’ were identified: mild

episodic viral wheeze, atopic multiple-trigger

wheeze, and non-atopic uncontrolled wheeze

[50]. The mild episodic viral wheeze class was

identified in one British [62] and one French

cohort [63] using model-based approaches (see

below), and the non-atopic uncontrolledwheeze

cluster was reproduced in a separate TAP cohort

[53]. The multiple-trigger wheeze was previously

identified using supervised methods in the Avon

Pulm Ther (2016) 2:19–41 25
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Longitudinal Study of Parents and Children

(ALSPAC) [64]. This cluster described children

with either early- or late-onset persistent

wheezing characterised by atopy and poor lung

function. A similar description of wheezing was

used in the MAAS cohort to demonstrate that

persistent wheezing and multiple early atopy

were associated with diminished lung function

by age 11 years [65].

The clusters of wheezing described in the

TAP cohort remained stable at age 5 years [53].

However, at school age, the clusters were

different: ‘asthma with severe exacerbations

and multiple allergies’, ‘severe asthma with

bronchial obstruction’, and ‘mild asthma’ [42].

These accounted for two ‘phenotypes’: asthma

with severe exacerbations, and multiple allergic

severe asthma with bronchial obstruction [42].

It is important to note, however, that not only

were the children from a separate cohort within

the TAP, but the clustering methodology was

also different; PCA was used for data reduction

and a two-step clustering approach including

k-means [42]. Furthermore, differing post hoc

analyses were used.

The Severe Asthma Research Program (SARP)

is a US multi-centre study comprising both

children and adults with persistent asthma. The

study by Fitzpatrick et al. [46] included 161

children aged 6–17 years. Variables were

selected subjectively with no data reduction

technique, and the authors derived ‘composite

variables’ from binary and questionnaire data

discerned by physicians. After Ward’s

hierarchical clustering, four clusters were

identified: ‘late-onset symptomatic asthma’,

‘early-onset atopic asthma and normal lung

function’, ‘early-onset atopic asthma with mild

airflow limitation and comorbidities’, and

‘early-onset atopic asthma with advanced

airflow limitation’. These results and the

accompanying clinical characteristics exhibitedT
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by the children were consistent with previously

reported data from clinical observations

[66–68]. However, these results differed from

findings in a Turkish cohort of children aged

6–18 years with moderate–severe asthma [19].

In contrast to previous studies, the predictive

ability of clusters and of original variables in

relation to asthma severity in this population

was relatively poor [19]. The authors concluded

that the search for asthma subtypes needs

careful selection of variables, which should be

consistent across studies, and that a cautious

interpretation of results is warranted [19].

Studies in Adults

The initial work that sparked further interest in

clustering methodology was the study

conducted by Haldar et al. in Leicester, UK

[43]. A two-step Ward’s hierarchical and

subsequent k-means cluster analysis was

performed in three different data sets

(refractory asthmatics from secondary care,

primary care data, refractory asthmatics from

clinical trial). After variable selection to identify

‘most clinically relevant’, PCA was performed,

which reduced the variables into five

components. Results of the subsequent cluster

analysis revealed three clusters in the primary

care data set and four clusters in the secondary

care data. Two clusters were identified in each

data set: ‘early-onset atopic asthma’ and ‘obese

female with no eosinophilic inflammation’. The

primary care data set identified a third ‘benign

asthma’ cluster, while the secondary care set

identified an ‘early-onset,

symptom-predominant group with minimal

eosinophils’ cluster as well as a ‘late-onset,

male predominant, eosinophilic inflammation

with few symptoms’ cluster. These results were

then validated in the clinical trial data set,

which revealed a three-cluster model similar to

that in the secondary care set.

Expanding on Haldar’s findings, the SARP

study [16], which included 726 patients older

than 12 years, began with 628 variables, which

were reduced to 34 by excluding missing data,

text data, and redundant and ‘irrelevant’

variables. Half of the variables were

composite. Ward’s method and post hoc

discriminant analysis for tree analysis was

performed to describe five clusters highly

determined by frequency of symptoms,

medication use, and lung function. Both

studies identified a group of obese women

with adult-onset asthma and less atopy, as well

as a group of severe late-onset atopic

asthmatics with poor lung function. However,

SARP did not use sputum eosinophilia, which

was an important feature in the Leicester

study. A few years later, the SARP group used

a different approach, and identified six clusters

[60]. k-means clustering partitioned the 378

subjects, while Ward’s method clustered the

112 variables into 10 InfoGain (information

gain—measures how well variables predict

clusters)-ranked variable clusters based on

symptoms, atopy, medication use, lung

function, corticosteroid use and cause, Th2

inflammation, inflammatory markers, and

demographics. Preprocessing of the data

included imputing variables with less than

5% missing data while excluding those with

more than 5%. Markov blanket algorithms

identified redundant variables. Three clusters

overlapped with previous results (severe

asthmatics, female late-onset with normal

lung function), while two were novel

(late-onset severe eosinophilic asthmatics with

nasal polyps, severe atopic Hispanics). It is

interesting to note that similar clusters were

seen in children from SARP and the Asthma

Severity Modifying Polymorphisms (AsthMaP)

Project [45], though the degree of lung

function impairment was less.
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Patrawalla et al. [49] based their clustering

and variable selection technique on SARP, and

identified clusters similar to those found by Wu

et al. [60], though the Hispanic women had

milder disease. This was explained by the fact

that the sample was from an urban New York

City population with a higher proportion of

Hispanics.

The results obtained in the Leicester and

SARP populations were reproduced in part in a

Dutch cohort of patients with severe asthma

that included more thorough inflammatory

markers [58]. The resulting three clusters

confirmed the existence of two previously

reported clusters: ‘severe eosinophilic

inflammation-predominant asthma with few

symptoms and poor lung function’, and ‘obese

late-onset asthma with low eosinophils

additionally provoked by comorbidities such

as gastrointestinal oesophageal reflux disease

(GORD)’. The third cluster in the Dutch cohort

(‘mild adult-onset well-controlled asthma’),

which was not found in Leicester or SARP, had

been seen in studies in Asian populations which

included smoking status in their analysis

[54, 55].

The recurring obesity-related subtypes were

explored in more detail in two US trials

comprising 250 adults [52]. With the

incorporation of detailed data on

inflammation, major differences were found

between the obese and non-obese populations.

Non-obese asthmatics had significantly better

lung function. Obese patients with early-onset

asthma and poor lung function had greater

degrees of systemic inflammation (represented

by the inverse association between hsCRP and

GCRa); this was directly associated with

increased glucocorticoid resistance (measured

by reduced MKP-1 expression via

dexamethasone).

Asthma Subtyping and Model-Based

Approaches

Latent Variable Modelling

This topic was recently discussed in detail in

another review article, which identified a total of

36 studies within the last 5 years that used

model-based approaches to asthma subtyping

(four in adult populations, 32 in children) [69].

Sample sizes in these studies ranged from 201 to

11,632.Methods included latent class analysis (14

studies), longitudinal latent class analysis (11

studies), latent class growth analysis (one study),

latent growth mixture modelling (eight studies),

andmixturemodels (two studies). The number of

resulting classes ranged from three to eight, and

were in most cases characterised by

physician-diagnosed asthma, atopy, and/or

FeNO. The most common outcome was ‘wheeze

phenotype’ [64, 71–82], followed by ‘atopy class’

[64, 76, 81–86].

In these studies, the wheeze classes (often

referred to as ‘phenotypes’, although by

definition these were not observable, but

latent) were described as either early-onset

(transient [78, 87, 88] or prolonged [70]),

late-onset (characterised as wheeze after age 3

years, persisting into later childhood)

[70, 74, 78, 80, 83], or persistent (controlled

and troublesome, characterised by diminished

lung function by school age) [9, 74]. Early-onset

wheeze was found to be predictive of poor lung

function, but not atopy, eczema, or rhinitis at

age 6–8 years [87]. Late-onset wheeze was

associated with bronchial hyperresponsiveness

and, in some cohorts, poorer lung function at

age 6 years [64]. The persistent wheeze

phenotype was consistently characterized by

diminished lung function by school age [9, 74].

Atopic sensitisation was the second most

common phenotype investigated by latent
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variable modelling, based on the hypothesis

that distinct subtypes may be present. Simpson

et al. applied a hidden Markov chain model to

cluster children in MAAS into five sensitization

classes using skin tests and specific IgE data at

ages 1, 3, 5, and 8 years [83]. The underlying

assumption was that children in each class had

the same probability of becoming sensitized or

resolving sensitization at each age (and to a

similar panel of inhalant and food allergens),

and that this differed between classes. Children

in one of the four classes (comprising *25% of

sensitised participants), which the authors

assigned as ‘multiple early atopy’, were much

more likely to have asthma and worse lung

function than children in any of the other

classes [65, 83]. An almost-identical five-class

model was identified by extending the analysis

in MAAS through to age 11 years and, in

another British birth cohort (Isle of Wight

study), indicating stability over time and

across different populations [84, 89]. However,

these classes of sensitisation can be identified

only by using statistical inference on

longitudinal data, and differentiation between

classes at any single cross-sectional point is

currently not possible. This underscores the

need to develop diagnostic tools that delineate

different classes at any cross-sectional time

point among the patient population, in order

to facilitate the application of these findings in

clinical practice [89–92].

In the adult population, Newby et al.

performed a cluster analysis using mixture

models on a multi-centre longitudinal

observational study of 349 asthma patients in

the British Thoracic Society Severe Refractory

Asthma Registry [93]. Variables were initially

restricted to those with less than 30% missing

data that were non-categorical, and factor

analysis was then applied. The resulting five

factors (airflow obstruction, exacerbation

frequency, IgE/BMI, treatment scaling, blood

eosinophilia) were used in the cluster analysis to

describe five clusters: (1) ‘early-onset atopic’, (2)

‘obese, late-onset’, (3) ‘normal lung function

least severe asthma’, (4) ‘late-onset,

eosinophilic’, and (5) ‘airflow obstruction’. The

best-fitting models were chosen by the Akaike

information criterion (AIC) or BIC, and the

clusters were validated using a classifier on a

separate data set from the same registry. Cluster

stability for the whole group was only 52%,

with cluster 2 accounting for 71% as the

highest, while cluster 4 accounted for only

25%. A significant proportion of subjects in

clusters 1, 4, and 5 moved to clusters 2 and 3 at

follow-up, indicating greater obesity, lower

blood eosinophilia, better lung function, and

fewer exacerbations. Taking into account small

differences in variables used, the results were

broadly in accordance with previously reported

clusters derived using model-free approaches

[16, 43]. Gaussian mixture model clustering was

also used to investigate cytokine response

patterns of peripheral blood mononuclear cells

to mite allergens, with results suggesting that

asthma was associated with a broad range of

immunophenotypes [94]. Various

machine-learning approaches were also used

to identify patterns of IgE responses to a large

number of individual allergen molecules in

component-resolved diagnostics microarrays

and to associate these with asthma and allergic

diseases [14].

CHALLENGES IN ASTHMA
CLUSTERING

Mixed Types of Data

Medicine generates many different types of

data, including binary, numerical, and

categorical variables, non-normal
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distributions, missing values, and outliers, and

applying a model that combines these is

challenging. One solution may be to

transform the raw variables into a single type

(i.e. all binary variables). Prosperi et al. [19]

showed that, although results were vastly

different when comparing the raw and binary

variables, they were still clinically consistent

with each other. However, in certain instances,

changing continuous variables into binary

variables would require the creation of

categories. For example, if we take FEV1 and

categorise it based on levels of obstruction

(e.g. 80%, 60–80%, below 60%, above 80%),

we assume that an FEV1 of 60% has the same

clinical significance as an FEV1 of 79%, which

is not necessarily true. Other issues with

dichotomizing variables include a loss of

information, leading to a reduction in

statistical power, a loss of linear relationships

between two groups, and underestimation of

outcome variability between groups [95].

Another way to minimize this problem is to

create clinically meaningful categories, but

this will likely introduce an element of

subjectivity.

Lack of Robustness to Choice of Variables

and Clustering Methods

Different input parameters, even within the

same data set, may produce different results. For

example, in the SARP, the same hierarchical

clustering techniques on the same data set

produced different clusters [16, 46]. The major

differences were in the preprocessing of the data

and the cluster input. Wu et al. also included

inflammatory markers in their analysis, which

would account for better atopy delineation [60].

As mentioned previously, the choice of

variables has been generally limited to

consideration of expert opinion based on

previous work. Furthermore, there is a

practical consideration involved in that the

variables chosen must correspond to the type

of data in the cohort, given that some studies

included all variables [58, 60, 61] in the data set,

while others chose those that were ‘most

relevant’ [42, 43, 48, 54, 55, 57]. This resulted

in patient exclusion, particularly when there

was a requirement to remove variables with

missing data. Although some studies

implemented imputation techniques in order

to overcome this [60, 93], the impact on clinical

outcome was not fully explored, which should

be taken into account when interpreting the

results.

In most studies, the choice of distance

measure was not specified, and so it was

assumed that the default measures in

statistical packages were used (i.e. Euclidean

distance). Only two studies [19, 44] specified

varying the distance measures (Gower and/or

Jaccard) to observe the effect. One study group

used centroid linkage as their similarity

measure, whereas the rest were based on

Ward. Consequently, we cannot say whether

the methods employed were the most reliable,

as there is a repository containing hundreds of

options.

Prosperi et al. hypothesized that clusters

resulting from various studies differed because

of variation in investigator choice of factors,

encoding/categorization/transformation of

variables, and methodology [19]. They

proceeded to verify this using different

hierarchical clustering and data reduction

approaches on a cohort of children aged 6–18

years from the Paediatric Asthma Clinic in

Ankara, Turkey. Data reduction was performed

by both FA and PCA, resulting in five

‘dimensions’ of variables accounting for 35%

of the variance. Multiple hierarchical clustering

analyses were performed by varying the variable
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encoding scheme, distance linkages, feature

selection, and dimensionality reduction space.

Although the authors demonstrated that small

variations in linkage-distance functions did not

affect the resulting clusters [19], they tested

only two, and it is possible that other linkage

criteria may have influenced the results. Most

significant was the fact that changes in variable

encoding schemes and transformations resulted

in different clusters [19]. While it is possible to

test the strength of the methods employed by

bootstrapping and/or multiple repetitions, this

does not necessarily translate into more

plausible results overall.

This is where model-free clustering runs into

issues, and where a model-based approach

might provide more structured methods, as

MCMC and EM algorithms are applicable to

all modelled distributions. However, in latent

class analysis, there is no agreement on the

optimal way to determine the number of

classes. The most common method is the BIC,

though other methods such as the AIC,

likelihood tests, bootstrapping, and entropy

have been used extensively, which may

account for the different classes across

populations.

Differing Subtypes Across Populations

It is clear that different clusters are identified

across different populations (see Table 3). Other

than differences in statistical methodologies,

these disparities may be due to differences in

features/variables selected to inform the mode

(for example, the choice of lung function

variables differed among studies, and

post-bronchodilator FEV1 was included in only

a few of these [43]). Of note, in addition to

influencing heterogeneity in identified clusters,

the non-inclusion of some of the potentially

important variables (e.g. post-bronchodilatorT
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lung function) may result in failure to capture

some important underlying mechanisms.

Additionally, most studies were conducted in

patients with severe or moderate–severe

asthma, and the same subtypes may not be

seen in the mild asthma population (Table 3).

It is also important to note that clusters

identified cross-sectionally at a specific time

point may not always be seen at different time

points. Further longitudinal analysis is required

to visualize how the clusters vary over time.

CONCLUSION

Our understanding of asthma has come a long

way, and data-driven hypothesis-generating

clustering methods have aided in identifying

distinct subtypes. However, we must exercise

caution when translating these results into

clinical practice, as statistical inference on a

large data set is needed to identify disease

subtypes, and biomarkers that would allow

differentiation of such subtypes at any

cross-sectional time point are in most cases

not available. Further challenges to the optimal

use of clustering methodologies include

tailoring models to individual data sets and

incorporating genetic, epigenetic, and more

detailed molecular-level data. The resulting

models should then be able to accommodate

large volumes of data in order to discern the

developmental profiles of each individual,

facilitating a genuinely personalised approach

to asthma management.
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