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Abstract
Anomaly detection on attributed graphs is a crucial topic for practical applications. Existing methods suffer from semantic 
mixture and imbalance issue because they commonly optimize the model based on the loss function for anomaly discrimina-
tion, mainly focusing on anomaly discrimination and ignoring representation learning. Graph Neural networks based tech-
niques usually tend to map adjacent nodes into close semantic space. However, anomalous nodes commonly connect with 
numerous normal nodes directly, conflicting with the assortativity assumption. Additionally, there are far fewer anomalous 
nodes than normal nodes, leading to the imbalance problem. To address these challenges, a unique algorithm, decoupled 
self-supervised learning for anomaly detection (DSLAD), is proposed in this paper. DSLAD is a self-supervised method with 
anomaly discrimination and representation learning decoupled for anomaly detection. DSLAD employs bilinear pooling and 
masked autoencoder as the anomaly discriminators. By decoupling anomaly discrimination and representation learning, a 
balanced feature space is constructed, in which nodes are more semantically discriminative, as well as imbalance issue can 
be resolved. Experiments conducted on various six benchmark datasets reveal the effectiveness of DSLAD.

Keywords Anomaly detection · Graph neural networks · Graph mining · Self-supervised learning

1 Introduction

To display the intricate and interconnected data, attributed 
graphs are frequently employed. Recently, anomaly detec-
tion on attributed graphs has attracted lots of interest, which 
seeks to identify some minority patterns (such as nodes, and 
edges.) that deviate from the majority tremendously on the 
graph [1]. Anomaly detection on the attributed graph can 
be deployed in many real-world scenarios, such as spotting 
fraud in transaction networks, spotting incorrect citation 
relations among academic papers, and spotting users who 
deliver spam in postal transportation networks.

However, anomaly detection on attributed graphs is quite 
a challenging task that primarily faces three challenges. 
First, it is a heavy cost to obtain enough labels for anom-
alous nodes. Therefore, supervised models are not appli-
cable for anomaly detection, as evidenced by the fact that 
ground-truth labels and the class of anomalies are always 
unknown [2]. Second, anomalous nodes’ neighbors are com-
monly normal nodes. GNN-based algorithms largely rely 
on aggregating messages from neighbors [3–6]. The mes-
sages of abnormal nodes are mostly in the high-frequency 
part, which contradicts the low-pass filtering of graph neural 
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networks [7, 8]. As a consequence, anomalous nodes are 
buried by messages from normal nodes, leading anomalous 
nodes to be represented similarly to normal nodes, which is 
referred as semantic mixture. The workflow of GNN-based 
anomaly detection algorithms is shown in Fig. 1. A visuali-
zation of anomaly detection conducted by graph convolu-
tion network (GCN) on Cora is displayed in Fig. 2. It is 
easy to see that quite a few abnormal nodes are mixed with 
normal nodes. The representations with the semantic mix-
ture would interfere with anomaly detection, especially for 
the algorithms that mainly focus on anomaly discrimina-
tion. However, algorithms that only upgrade the parameters 
of the model through anomaly detection errors neglect the 
significant improvement that representation learning brings. 
Third, the number of anomalous nodes is far less than that 
of normal nodes. Traditional deep learning algorithms suf-
fer from imbalance issue [9–13] that the majority dominates 
the embedding training and the minority is often mistakenly 
identified as the majority. It is observed in Fig. 2 that the rep-
resentations of abnormal nodes are scattered among normal 
nodes. Therefore, it is urgent to propose an effective self-
supervised algorithm to address the above three challenges 
for anomaly detection.

Several methods for anomaly detection on attributed 
graphs have been proposed. These methods have achieved 
great success in anomaly discrimination, but they still have 
some drawbacks. The shallow methods, such as AMEN [14], 
are limited by the capacity for expressiveness. The node-
classification-targeted methods, such as DOMINANT [2], 
simply training model by graph reconstruction and taking 
reconstruction errors as anomaly scores, are not directly 
designed for anomaly detection. The anomaly-detection-
targeted methods, such as CoLA [15] optimize the model 
directly for anomaly detection, but they mainly revolve 
around anomaly discrimination, paying insufficient attention 
to representation learning, which leads to semantic mixture 
and imbalance issue.

To overcome the aforementioned challenges, in this paper, 
we propose a novel method DSLAD for anomaly detec-
tion. In DSLAD, both contrastive learning and generative 
learning are adopted to discriminate anomaly. Especially, 
DSLAD contrasts node-subgraph pairs and measures recon-
struction errors to calculate anomaly scores. The anomaly 

score is further categorized into context anomaly score and 
reconstruction anomaly score, deployed with bilinear pool-
ing and masked autoencoder respectively as anomaly dis-
criminator. Considering semantic mixture and imbalance 
issue, we introduce contrastive representation learning and 
decouple it with anomaly discrimination. The contrastive 
representation learning and anomaly discrimination work as 
two branches. The contrastive representation learning mod-
ule does not involve the output of anomaly discrimination, 
providing extra optimization for the graph neural network. 
Through decoupling anomaly discrimination and contrastive 
representation learning, DSLAD maps nodes into a balanced 
semantic space with a little semantic mixture.

The contributions of this work can be summarized as 
follows:

• We introduce contrastive representation learning into 
the anomaly detection task, which makes nodes more 
semantically distinguishable and vastly benefits anomaly 
discrimination.

• We decouple contrastive representation learning and 
anomaly discrimination, adopting a dynamic weight 
allocation strategy for these two task branches, ulteri-
orly resolving semantic mixture and imbalance issue in 
anomaly detection.

• We conduct a series of experiments on six datasets and 
the results demonstrate the superiority of DSLAD over 
the existing models.

2  Related Work

2.1  Graph Neural Networks

Recently, graph representation learning has achieved consid-
erable success with GNNs. The core idea of GNNs is aggre-
gating messages from neighbors to update node representa-
tions, which is based on the assortativity assumption. GNNs 
can be divided into two categories: spectral-based methods 
and spatial-based methods. The former category includes 
GCN [4], passing message by first-order approximation of 
Chebyshev filter. The latter category includes GAT [6] and 
GraphSAGE [16]. GAT utilizing the attention mechanism, 

Fig. 1  Workflow of GNN-based 
anomaly detection algorithms
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assigns weight to each edge when aggregating messages. 
GraphSAGE proposes an inductive representation learning 
manner to cope with tasks on large-scale graphs.

Apart from the above fundamental GNN models, many 
advanced GNN models are also proposed to learn the graph 
representations better. To avoid the sparsity issue and filter 
the noise information, [17] proposes a framework preserv-
ing low-order proximities, mesoscopic community structure 
information and attribute information for network embed-
ding. MTSN [18], a dynamic graph neural network, captures 
local high-order graph signals, learns attribute information 
based on motifs, and preserves timing information by tem-
poral shifting. To alleviate the over-smoothing issue, NAIE 
[19] adopts an adaptive strategy to smooth attribute informa-
tion and topology information, and develop an autoencoder 
to enhance the embedding capacity.

2.2  Graph Self‑supervised Learning

Self-supervised graph learning, a new learning paradigm 
that trains models without labels, has been widely used 
in computer vision [20] and natural language processing 
[21]. Self-supervised learning in graph can be categorized 
into: graph contrastive learning (e.g. SimGRACE [22]), 
graph generative learning (e.g. Graph Completion [23]) 
and graph predictive learning (e.g. CDRS [24]). Without 
augmentation, SimGRACE uses a formal encoder and a 

perturbation encoder to embed the graph, and then pulls 
close the same semantics while pushing away the different 
semantics between the two hidden spaces. Graph Comple-
tion removes features of the target node, and then recon-
structs it from the unmasked neighboring nodes. CDRS 
makes a pseudo node classification task collaborated with 
the clustering task to improve representation learning.

2.3  Anomaly Detection on Attributed Graph

Anomaly detection on attributed graph works for iden-
tifying patterns that notably diverge from the majority. 
Many methods have been proposed for anomaly detec-
tion, including the shallow methods and the deep meth-
ods. The shallow methods include [14], Radar [25], and 
ANOMALOUS [26]. AMEN measures the correlation of 
features between the target node and its ego-networks to 
detect anomalies. Radar analyzes the residuals of attrib-
ute information and its coherence with graph informa-
tion to detect anomalies. ANOMALOUS integrates CUR 
decomposition and residual analysis to detect anomalies. 
The shallow methods are limited by their expressive-
ness ability in graph embedding. The deep methods can 
be further divided into two classes. The first class deep 
methods include DOMINANT [2] and DGIAD [15, 27]. 
DOMINANT reconstructs the adjacency matrix and the 
attribute matrix, then distinguish anomaly through recon-
struction error. DGI contrasts node and graph for embed-
ding. Deployed with a trained discriminator, DGI can be 
used for anomaly detection and we rename this method as 
DGIAD in this paper. The first class deep methods, node 
classification models equipped only with an anomaly dis-
criminator, are not developed for anomaly detection and 
still don’t show satisfactory performance. The second class 
deep methods include HCM [28], CoLA [15], SL-GAD 
[29], ANEMONE [30],CONAD [31], Sub-cr [32] and 
GRADATE [33]. HCM trains GNNs with self-supervised 
learning and Bayesian learning to distinguish anomalies. 
CoLA, SL-GAD and ANEMONE contrast nodes and sub-
graphs to discriminate anomaly. CONAD augments graphs 
with prior knowledge for anomaly detection training. Sub-
cr enhances anomaly detection by multi-view contrastive 
learning and graph reconstruction. GRADATE extends 
contrastive learning to node-node level and subgraph-
subgraph level. The second class deep methods optimize 
model for anomaly detection, but neglect representation 
learning to overcome semantic mixture and imbalance 
issue.

Fig. 2  A visualization of the semantic mixture on Cora. Quite a por-
tion of anomalies are mixed with normal nodes and the anomalies can 
not be detected well
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3  Problem Definition

In this section, the problem definition of anomaly detection 
on attributed graph will be introduced. Given an attributed 
graph G = (V,X,A) , the target of anomaly detection is to 
learn a mapping mechanism F(⋅) to calculate the anomaly 
score si, i ∈ V for nodes in G . The anomaly score si describes 
the abnormal degree of the node i. It is easy to detect an 
anomaly, if the mapping mechanism F(⋅) is well designed 
and outputs accurate anomaly scores. For the convenience 
of reading this paper, all important notations are explained 
in Table 1.

4  Method

In this section, a thorough introduction to DSLAD will be 
given. As shown in Fig. 3, DSLAD consists of four mod-
ules, discrimination pair sampling, GNN-based embedding, 
anomaly discrimination and contrastive representation learn-
ing. On attributed graph, contrastive learning at the node-
subgraph level is powerful for graph representation learning 
[34, 35]. It has been discovered that detecting anomalies 
at the node-subgraph level is effective [15]. To detect the 
anomaly, we sample discrimination pairs at node-subgraph 
level. The target nodes and their sampled subgraphs are 
then embedded into low-dimension vectors via GNN. Next, 
the embedding vectors of target nodes and their sampled 
subgraphs are fed into anomaly discrimination and contras-
tive representation learning. By contrastive representation 

learning, the semantic mixture and imbalance issue can be 
lightened, and decoupling anomaly discrimination and con-
trastive representation learning can further alleviate it.

4.1  Discrimination Pair Sampling

The key to anomaly detection is finding the patterns sig-
nificantly different from the majority. Therefore, discrimi-
nation pairs are crucial to this task. Graph objects can be 
categorized into edge, node, subgraphs, and graph. Any two 
of them, excluding edge, can be selected to constitute dis-
crimination pairs. We sample discrimination pairs at node-
subgraph level. The procedure is as follows:

• Target node selection A set of nodes are randomly 
selected from the input graph every epoch without 
replacement so that each node has the same chance of 
being chosen.

• Subgraph sampling For every selected target node, a 
neighboring subgraph is sampled via random walks with 
restart (RWR) [36] as augmentation, avoiding introduc-
ing extra anomalies. Other sampling methods also can be 
considered. The size of the neighboring subgraph is fixed 
to K, which determines the scope of the target node for 
matching.

• Attribute mask The attributes of the target node are 
masked with zero vectors in the sampled subgraph, mak-
ing it more difficult to identify the information of the tar-
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Fig. 3  Framework of DSLAD. There are four components in 
DSLAD: discrimination pairs sampling, GNN-based embedding, 
anomaly discrimination and contrastive representation learning. 
DSLAD firstly selects a set of target nodes and samples neiboring 
subgraphs of them. Next, the nodes and the sampled subgraphs are 
embedded into low dimension vectors by GNN for anomaly detection 

and contrastive representation learning. Finally, the discriminators 
measures the distance between node-subgraph pairs to discriminate 
anomaly while target nodes are pulled close to positive samples and 
pushed away from negative samples (when training only). Especially, 
anomaly discrimination and representation learning are decoupled
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get node in the subgraph. This mechanism will improve 
the ability of anomaly detection [15, 29].

Target nodes and neighboring subgraphs are combined as 
discrimination pairs for anomaly discrimination. A positive 
pair includes a node and a subgraph sampled from it, while 
a negative pair includes a node and a subgraph sampled from 
other nodes. A toy sample of positive pair and negative pair 
is displayed in Fig. 4 for a better understanding.

4.2  GNN‑Based Embedding

For anomaly discrimination and contrastive representation 
learning, obtained target nodes and their neighboring sub-
graphs are mapped into low-dimensional embedding space 
by GNNs.

We apply a GCN encoder and a GCN autoencoder to embed 
the graph and reconstruct the attribute matrix, respectively.

Target node vi is embedded as a graph with only one node. 
The GNN propagation formula can thus be simplified to MLP:

And ei ∈ ℝ
d is used to denote the output of GCN encoder, 

which is the node level representation vector of vi.
On the K-nodes subgraph Gi sampled from node vi , the 

adjacency matrix is denoted by A{i} ∈ ℝ
K×K and the attribute 

matrix is denoted by X{i} ∈ ℝ
K×d(0) . Then, the GNN operator 

is applied to:

where Ã{i} = A{i} + IK , and H(0)

{i}
= X{i}.

The output of the GCN encoder is denoted by Zi ∈ ℝ
K×d , 

which is the context representation matrix of subgraph Gi . 
And the output of the GCN autoencoder on Gi is denoted by 
U{i} ∈ ℝ

K×d(0) , which is the reconstructed attribute matrix of 
Gi.

The readout module summarizes Zi into its subgraph-level 
representation gi ∈ ℝ

d . We take average pooling as the read-
out module. The subgraph-level representation can then be 
formulated as:

where ci is the index of vi in neighboring subgraph Gi.

(1)h
(l+1)

i
= �

(
h
(l)

i
W(l)

)
.

(2)H
(l+1)

{i}
= �

(
D̃

−
1

2 Ã{i}D̃
−

1

2H
(l)

{i}
W(l)

)
,

(3)gi = readout(Zi) =
1

K − 1

K∑
j=0,j≠ci

Zi [j, ∶],

Table 1  Statements of important notations

Notations Statements

G = (V,X,A) An attributed graph
v
i

The i-th node in G
G
i

The subgraph originated from v
i

K The number of nodes in G
i

X ∈ ℝ
N×d(0) The attribute matrix of G

A ∈ ℝ
N×N The adjacency matrix of G

X{i} ∈ ℝ
K×d(0) The attribute matrix of G

i

A{i} ∈ ℝ
K×K The adjacency matrix of G

i

h
(l)

{i}
∈ ℝ

1×d(l) The embedding of v
i
 in the l− th layer

W(l)) ∈ ℝ
d(l−1)×d(l) The weight matrix in the l-th layer

H
(l)

{i}
∈ ℝ

N×d(l) The hidden matrix in the l-th layer of G
i

Zi ∈ ℝ
K×d The context representation matrix of G

i

U{i} ∈ ℝ
N×d(0) The reconstructed attribute matrix of G

i

g
i
∈ ℝ

1×d The subgraph-level representation of G
i

e
i
∈ ℝ

1×d The node-level representation of v
i

x
i
 ∈ ℝ

1×d(0) The attribute of v
i

W
d
∈ ℝ

d×d The weight matrix of bilinear pooling

s
con(−)

i
The negative context anomaly score of v

i

s
con(+)

i
The positive context anomaly score of v

i

srec
i

The reconstruction anomaly score of v
i

s
i

The anomaly score of v
i

Fig. 4  A toy sample of positive 
pair and negative pair. The sub-
graph is sampled by RWR that 
originates from the black node

(a) Positive pair (b) Negative pair
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4.3  Anomaly Discrimination

In this subsection, We will describe how DSLAD discrimi-
nates anomaly. Context anomaly and reconstruction anomaly 
are two subtypes of anomaly discrimination. Here is more 
information on them in depth:

4.3.1  Context Anomaly

Anomalies differ from the other majority significantly. The 
anomalous nodes are supposed to be far away from normal 
nodes in the embedding space. To assess how a discrimination 
pair matches, we take bilinear pooling as the discriminator.

Given a node vi and the relevant neighboring subgraph Gi , 
the context anomaly score of this discrimination pair can be 
calculated as:

where Wd ∈ ℝ
d×d is a learnable weight matrix, and �(⋅) is 

non-linear and non-negative activation function. Here we 
use Sigmoid as the activation function.

We use graph contrastive learning at the node-subgraph 
level, taking both positive and negative discrimination pairs 
into account. For target node vi , we take P positive discrimi-
nation pairs and Q negative discrimination pairs to compute 
context anomaly score. The positive score scon(−)

i
 and the nega-

tive score scon(+)
i

 are formulated as:

where {g(−)} ∈ ℝ
d and {g(+)} ∈ ℝ

d denote the positive 
neighboring subgraph set and the negative neighboring sub-
graph set for the target node vi , respectively. For simplicity, 
we set P = Q = 1.

In this part, our optimization goal is maximizing the agree-
ment with the context anomaly score and the ground-truth 
label (label 1 for positive pairs and 0 for negative pairs). The 
loss function of context anomaly score can be formulated as:

4.3.2  Reconstruction Anomaly

Inspired by [23, 29], we introduce the reconstruction error as 
a supplementary mechanism to anomaly discrimination. For 

(4)scon
i

= disc(gi, ei) = �(giWdei
T ),

(5)s
con(−)

i
=

1

Q
�

⎛⎜⎜⎝
�

gj∈{g
(−)}

gjWde
T
i

⎞⎟⎟⎠
,

(6)s
con(+)

i
=
1

P
�

⎛⎜⎜⎝
�

gj∈{g
(+)}

gjWde
T
i

⎞⎟⎟⎠
,

(7)Lcon = −
1

2|V|
∑
i∈V

(
log

(
s
con(+)

i

)
+ log

(
1 − s

con(−)

i

))

the target node vi , we mask its attributes on the neighboring 
subgraph Gi . DSLAD tries to reconstruct the attributes of the 
target node vi , from the other nodes on Gi . l2-norm is adopted 
to quantitatively measure the distance between the original 
information and the reconstructed information.

The index of vi in the neighboring subgraph Gi is ci . The 
reconstructed attribute vector of vi in neighboring subgraph 
Gi is denoted by U{i}[ci, ∶].

In order to train the masked autoencoder for reconstruc-
tion anomaly, we adopt MSE as the loss function for this 
portion. It can be written as:

where xi ∈ ℝ
d(0) is the original attribute vector of node vi.

4.4  Contrastive Representation Learning

In the context anomaly module, the loss function in Eq. (7) 
mainly focuses on anomaly discrimination and pays less 
attention to representation learning. Moreover, all nodes 
are assumed to contribute equally. After message passing, 
semantic mixture and imbalance issue inevitably occur. To 
impede the normal nodes from dominating the representa-
tion learning, we implement the contrastive representation 
learning module and set the number of positive samples and 
negative samples equal.

For the target node vi , we choose the neighboring sub-
graph Gj ( j ≠ i ) sampled from node vj as the negative sam-
ple, in consistency with the context anomaly module. We 
propose two optional augmentation strategies to generate 
the positive sample. One augmentation strategy, denoted 
by local_aug , selects the neighboring subgraph Gi as the 
positive sample. Another augmentation strategy, denoted 
by global_aug , embeds the entire graph without the mask 
and then takes the embedding of vi as the positive sample. 
The local_aug aggregates messages from a part of neigh-
bors and removes the influence of attributes of the target 
node, while the global_aug aggregates messages from all 
neighbors within a specific hop and retains the influence of 
attributes of the target node. The key difference relies on 
the influence of attributes of the target node and neighbor 
selection. e−

i
 denotes representation vector of negative sam-

ple, and e−
i
= gj, j ≠ i . e+

i
 denotes representation vector of 

positive sample, and

where gi ∈ ℝ
d is computed by Eq. (3) and f denotes GCN 

encoders in the context anomaly module. For a better under-
standing of the augmentation views, the procedure for gen-
erating positive and negative samples is displayed in Fig. 5.

(8)Lrec = −
1

|V|
∑
i∈V

||U{i}[ci, ∶] − xi||2,

(9)e+
i
=

{
gi local_aug

f (X,A)[i, ∶] global_aug
,
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Both the number of positive samples and negative 
samples are set to 1 for simplicity and fairness. We adopt 
infoNCE [37] as the loss function of contrastive representa-
tion learning:

where � is a temperature parameter greater than 0.

4.5  Decoupling

In this subsection, we explain why and how we decouple 
anomaly discrimination and contrastive representation learn-
ing. When behaviors and label semantics are excessively 
inconsistent in anomaly detection tasks, [38] has shown that 
training graph representation learning and anomaly discrimi-
nation jointly may lead to performance degradation. Moreo-
ver, the problem of class imbalance can also be resolved sig-
nificantly by decoupling representation learning and anomaly 
discrimination. At the beginning of training, discriminators 
are prone to predict arbitrarily, producing erroneous results 
while contrastive representation learning forms a balanced 
semantic space [39, 40]. During training, discriminators make 
increasingly accurate predictions while performance gained by 
contrastive representation learning decays [41, 42]. Gradually 
shifting to anomaly discrimination from contrastive learn-
ing enhances the effectiveness. Based on the above analysis, 
instead of jointly training by classification loss, we decouple 
anomaly discrimination and contrastive representation learn-
ing and give them dynamic weights. The workflow of our 
decoupled anomaly detection algorithm is shown in Fig. 6.

Let � denotes the ratio of current epoch to the number of 
training epochs, whose value indicates the training process. 
�(�) is the factor balancing the anomaly discrimination loss 
and the contrastive representation learning loss, where �(⋅) is 
a mapping function. The final loss function can be written as:

(10)LCL =
1

|V|
|V|∑
i∈V

−log
exp(ei⋅e

+
i
∕�)

exp(ei⋅e
+
i
∕�) + exp(ei⋅e

−
i
∕�)

,

(11)L = �(�)(�Lcon + (1 − �)Lrec) + �(1 − �(�))LCL,

where � and � are the hyperparameters that control the role 
of different anomaly scores, and scale contrastive representa-
tion learning, respectively. And �(�) increases with �.

4.6  Anomaly Score Calculation

We could calculate the final anomaly score for each node 
after training.

For node vi , context anomaly score scon
i

 and reconstruction 
anomaly score srec

i
 can be inferenced as follows:

where scon(−)
i

 and scon(+)
i

 are calculated by Eqs. (5) and (6) 
respectively. The score function can simultaneously con-
sider the impact of both positive and negative pairs. For 
normal nodes, the similarity of positive pair matching is 
high, while the similarity of negative pair matching is low. 
For anomalous nodes, the similarity of positive and negative 
pair matching are both low.

where the index of vi in the neighboring subgraph Gi is ci , 
the reconstructed attribute vector of vi in neighboring sub-
graph Gi is U{i}[ci, ∶] , and xi is the original attribute vector 
of node vi.

By MinMaxScalar, we transform the context anomaly 
score Scon to [0,1] for standardization:

where scon
min

 and scon
max

 are the min and the max of context anom-
aly scores, respectively. Similarly, reconstruction anomaly 
score Srec is also transformed to [0,1] by MinMaxScalar:

(12)scon
i

= s
con(−)

i
− s

con(+)

i
,

(13)srec
i

= ||U{i}[ci, ∶] − xi||22,

(14)scon
i

=
scon
i

− scon
min

scon
max

− scon
min

,

(15)srec
i

=
srec
i

− srec
min

srec
max

− srec
min

,

Fig. 5  Procedure of generating 
positive samples and negative 
samples
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where srec
min

 and srec
max

 are the min and the max of reconstruction 
anomaly scores, respectively.

Combining transformed context anomaly score and 
reconstruction anomaly score, we can get the final anomaly 
score si of node vi:

Neighboring subgraph is sampled stochasticly. To reduce 
the sampling variance, we take the averaging anomaly score 
over R times as the final anomaly score.

5  Experiments

In this part, a succession of experiments are carried out on 
six real-world datasets to examine the effectiveness of our 
model.

5.1  Datasets

Six frequently used real-world datasets for anomaly iden-
tification, including four citation network datasets and two 
social network datasets, are applied to evaluate our model.

The following is a brief overview of the six datasets:

• Citation network datasets Cora, Citeseer, Pubmed [43] 
and ACM [44] are four public citation network datasets, 
composed of scientific publications. In the four citation 
networks, the published papers are transformed into 
nodes while edges represent the citation relationships 
between papers. And the description text of papers can 
be transformed into nodes features.

• Social network datasets BlogCatalog and Flickr [45] are 
acquired from the websites for sharing blogs and images, 
respectively. In the two datasets, each user is represented 
by a node, and links among nodes illustrate the relation-

(16)si = �scon
i

+ (1 − �)srec
i
.

ships between corresponding users. Users often describe 
themselves with personalized information, such as post-
ing blogs and public photos. Features can be extracted 
from such information.

Considering that there are no ground-truth anomaly labels 
in above six real-world datasets, injecting synthetic anom-
aly nodes into datasets to simulate real anomalies is used 
widely. We follow the perturbation processing in [2, 15] to 
inject anomalies with both attribute anomalies and structure 
anomalies into the six datasets. For the attribute anomaly 
injection, we select Ma nodes and replace their features with 
stochasticly selected remote nodes. For the structure anom-
aly injection, we pick up Ma nodes and divide them into Mc 
clusters averagely. Nodes within the same cluster are con-
nected with each other. The statistics of these contaminated 
datasets are depicted in Table 2.

5.2  Baselines

We choose some of the state-of-the-art methods as baselines 
to compare with our proposed DSLAD on the above six 
real-world datasets. These methods are divided into three 
categories:

(1) The shallow method: The shallow method detects 
anomalies without deep learning. We pick up the following 
three models for comparison:

Fig. 6  Workflow of our 
decoupled anomaly detection 
algorithm

Table 2  The statistics of datasets

Dataset Anomalies nodes Features Edges

Cora 150 2,708 1,433 5,429
Citeseer 150 3,327 3,703 4,732
Pubmed 600 19,717 500 44,338
ACM 600 16,484 8,337 71,980
BlogCatalog 300 5,196 8,189 171,743
Flickr 450 7,575 12,407 239,739
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• AMEN [14] compares the correlation of features of the 
target nodes and their ego-networks to identify the nodes 
with low scores as anomalies.

• Radar [25] analyzes the residuals of attribute information 
and its coherence with graph information to detect the 
abnormal nodes as anomalies.

• ANOMALOUS [26] utilizes CUR decomposition and 
residual analysis to distinguish the irregular nodes as 
anomalies.

(2) The node-classification-targeted method: The node-
classification-targeted methods simply expand the node 
classification model with an anomaly detection module to 
detect anomalies. We choose the following two models for 
comparison:

• DOMINANT [2] learns node embeddings by autoencod-
ers and take the reconstruction errors as the anomaly 
scores.

• DGIAD [15, 27] uses DGI to learn node embeddings and 
takes the bilinear pooling to compute the anomaly scores.

(3) The anomaly-detection-targeted method: The anomaly-
detection-targeted method is designed to detect anomalies 
directly, even without considering node classification. We 
select the following three models for comparison:

• CoLA [15] learns node embedding by GCN and contrasts 
nodes and subgraphs to discriminate anomaly.

• ANEMONE [30] expands CoLA with the patch-level con-
trast.

• SL-GAD [29] expands CoLA with the reconstruction 
error.

• Sub-cr [32] adopts graph diffusion for contrastive learn-
ing and enhances the anomaly detection by graph recon-
struction.

• GRADATE [33] expands CoLA to node-node level con-
trast and subgraph-subgraph level contrast.

5.3  Evaluation Metrics

We utilize ROC-AUC, a widely used metric for anomaly 
detection, to quantify the performance of DSLAD and the 
baselines. The ROC curve is depicted by the true positive 
rate (y-variable) and the false positive rate (x-variable). 
AUC is the area enclosed by the ROC curve the x-axis. AUC 
always falls between 0 and 1. The better performance is indi-
cated by the higher AUC.

5.4  Experiments Setting

We set neighboring subgraph size k ∈ Z+ in [2,10]. Layers 
of GNN encoders and GNN decoders are set as 3 on Flickr, 
and 1 on the other five datasets. The hidden dimension d is 
set as 64 while test rounds R = 256 . The batch size is 300. 
We choose �(�) = � and select � from {0.5, 1, 1.5, 2, 2.5, 3} . 
Our proposed model is implemented in server with Ubuntu 
20.04.1 LTS, Pytorch 1.10, dgl0.4.3post2, Intel(R) Xeon(R) 
Gold 6132 CPU @ 2.60GHz, and GeForce RTX 2080 Ti. 
We execute DSLAD over 8 times to measure the effective-
ness statistically.

5.5  Comparison Results

To verify the effectiveness of our model in anomaly detec-
tion task, we conducted comparison experiments for all 
baselines and DSLAD with AUC metric on six benchmark 
datasets and results are shown in Table 3. Based on the 
results, we can make the following observations:

• Compared with the most advanced baselines, our method 
outperforms baselines on all benchmark datasets with a 
large margin. It reveals the effectiveness of our method.

• The shallow methods AMEN, Radar, and ANOMA-
LOUS perform worse than other baselines because of 
the limitation of expressiveness capacity.

• The node-classification-targeted methods DOMINANT 
and DGIAD perform better than shallow methods. 
DOMINANT reconstructs attribute matrix and adja-
cency matrix, not directly targeting to detect anomalies. 
DGIAD contrasts the nodes and the whole graph, utiliz-
ing very little local information.

• The anomaly-detection-targeted methods CoLA, ANEM-
ONE, SL-GAD, Sub-cr and GRADATE make a step 
further. However, they mainly concentrate on training 
anomaly discriminator, still constrained by semantic mix-
ture and imbalance issue.

5.6  Differences in the Distribution of Anomaly 
Scores

The anomaly score measures the agreement among target 
nodes and positive (negative) samples. The semantic mix-
ture can be revealed by the differences in the distribution of 
anomaly scores. To explore the semantic mixture between 
normal and abnormal nodes, we use the Wasserstein dis-
tance to describe the difference in the distribution of anom-
aly scores. The Wasserstein distance between the scores of 
normal and abnormal nodes on six datasets is demonstrated 
in Table 5. It can be observed that the result of Wasserstein 
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distance meets with the result in Table 3. In terms of anom-
aly scores, there is a significant difference between normal 
nodes and abnormal nodes. The semantic mixture can be 
alleviated by our method.

5.7  Augmentation Strategy

In this subsection, we assess the effectiveness of the aug-
mentation strategy to our method. As illustrated in Fig. 7a, 
our model is not sensitive to the augmentation strategy 
on Cora, and performs better with local_aug than with 
global_aug on the other datasets except for Flickr.

The main reason may be that Flickr has the most complex 
attribute information, which is more important than structure 
information. And on the other five datasets, structure infor-
mation has a greater impact on the other five datasets than 
attribute information.

Based on the above observations, we choose global_aug 
as augmentation strategy on Flickr, and local_aug as aug-
mentation strategy on the rest five datasets.

5.8  �(ˇ) Strategy

In this subsection, we investigate how different map-
ping functions �(�) would effect our model. Constant 
e.g. 0.5, linear growth e.g. � , and activation function e.g. 
1 − exp(−�), sigmoid(�),and tanh(�) are taken into consider-
ation. As demonstrated in Fig. 7 (b), when setting �(�) = � , 
the best results are acquired, although our model is not sensi-
tive to �(�) on Pubmed and Flickr. Linear �(�) also has the 
best generalization.

5.9  Ablation Studies

In this subsection, we conduct ablation studies for better 
understanding the effectiveness of each components in our 
method. Here, three variants are defined as:

• DSLAD w/o cl: remove contrastive representation learn-
ing and set �(�) = 1.

• DSLAD w/o con: remove context score.
• DSLAD w/o rec: remove reconstruction score.

DSLAD w/o cl can be regarded as a variants with only anom-
aly detection. DSLAD w/o con can be regarded as a variants 
without context score. DSLAD w/o rec can be regarded as a 
variants without reconstruction score.

Table 3  Comparison 
experiment results of anomaly 
detection by AUC metric on six 
benchmark datasets

The best performance and the second-best performance methods are marked by bold and underlined fonts 
respectively. P-value=0.0331 (popmean=mean+std), and the std can be seen in Table 4

Methods Cora Citeseer Pubmed BlogCatalog Flickr ACM

AMEN [2016] 0.6266 0.6154 0.7713 0.6392 0.6573 0.5626
Radar [2017] 0.6587 0.6709 0.6233 0.7401 0.7399 0.7247
ANOMALOUS [2018] 0.5770 0.6307 0.7316 0.7237 0.7434 0.7038
DOMINANT [2018] 0.8155 0.8251 0.8081 0.7468 0.7442 0.7601
DGIAD [2019] 0.7511 0.8293 0.6962 0.5827 0.6237 0.6240
CoLA [2021] 0.8799 0.8968 0.9512 0.7854 0.7513 0.8237
SL-GAD [2021] 0.9130 0.9136 0.9672 0.8184 0.7966 0.8538
ANEMONE [2021] 0.9057 0.9189 0.9548 0.8067 0.7637 0.8709
Sub-cr [2022] 0.9080 0.9331 0.9677 0.8139 0.7872 0.8047
GRADATE [2023] 0.9062 0.9233 0.9578 0.7517 0.7348 0.8722
Ours 0.9196 0.9481 0.9772 0.8275 0.8631 0.8809

Table 4  Standard deviation and P-value on six datasets

Mean Std P-value(mean+std)

Cora 0.9196 0.0028 0.0331
Citeseer 0.9481 0.0027
Pubmed 0.9772 0.0004
ACM 0.8809 0.0022
BlogCatalog 0.8275 0.0041
Flickr 0.8631 0.0017

Table 5  Wasserstein distance ( ×10−2 ) between the scores of normal and abnormal nodes on six datasets

Cora Citeseer Pubmed BlogCatalog Flickr ACM

Ours 19.0854 19.6866 26.8413 14.7390 15.2717 15.8089



Decoupling Anomaly Discrimination and Representation Learning: Self‑supervised Learning…

As shown in Table 6, DSLAD outperforms other variants, 
indicating that all components play an important role in our 
method and they could make mutual promotion. Remov-
ing contrastive representation learning and setting �(�) = 1 
causes remarkable performance degradation. Obviously, 
decoupling anomaly detection and representation learning 
tremendously promotes anomaly discrimination by reducing 
class imbalance and lightening semantic mixture. Addition-
ally, removing either context or reconstruction scores per-
formance would result in performance degradation with the 
former being more noticeable.This demonstrates that context 

score and reconstruction score complement each other, while 
context scores are more effective for anomaly detection.

5.10  Visualization of Representations

In order to verify that the semantic mixture and imbalance 
issue are resolved by decoupling anomaly detection and 
representation learning, we demonstrate the visualization 
of embeddings on Cora in Fig. 8. In Fig. 8a, CoLA can’t 
form sufficiently distinguishable clusters of the anomalous 
nodes. There are still quite a few anomalous nodes sporadi-
cally mixed with the normal nodes. The anomaly detection 

Fig. 7  Performance compari-
son between different positive 
augmentation strategies and 
mapping function �(⋅)

Table 6  Ablation studies on six 
benchmark datasets. How each 
module would effect the whole 
model is explored

Bold values indicates the best performance
Variants DSLAD w/o cl, DSLAD w/o con and DSLAD w/o rec are generated by removing contrastive 
representation learning and set �(⋅)=1, removing context score and removing reconstruction score, respec-
tively

Variants Cora Citeseer Pubmed BlogCatalog Flickr ACM

DSLAD 0.9196 0.9481 0.9772 0.8275 0.8631 0.8809
DSLAD w/o cl 0.8948 0.9357 0.9726 0.8163 0.7883 0.8232
DSLAD w/o con 0.8275 0.8036 0.8050 0.7474 0.744 0.7463
DSLAD w/o rec 0.9060 0.9023 0.9545 0.7982 0.6954 0.8565

Fig. 8  The visualization of 
embeddings: a embeddings 
of CoLA on Cora, b context 
embeddings of DSLAD on Cora
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algorithms, which mainly optimize the model by anomaly 
discrimination, are often limited by insufficient expressive-
ness. In Fig. 8b, it can be observed that both the normal 
nodes and the anomalous nodes are denser and can be bet-
ter discriminated by DSLAD than by CoLA. Decoupling 
anomaly detection and representation learning significantly 
solves the problems of semantic mixture and imbalance.

5.11  Parameter Sensitivity

In this subsection, a series of experiments are conducted 
to study the effect of hyperparameters.

5.11.1  Subgraph Size K

DSLAD is executed on six benchmark datasets with sub-
graph size K within [2,10]. It is seen from Fig. 9 that AUC 
grows until the peak and then drops with subgraph size K 
increasing. DSLAD achieves the AUC peak at K = 5 on Cit-
eseer and Flickr, at K = 7 on Pubmed, and K = 4 on the rest 
datasets. These results show that too small subgraph con-
tains insufficient information, restricting anomaly detection; 
Too large subgraph contains tedious information, which 
would hurt our model; Applicable subgraph size guarantee 
DSLAD in best performance.

5.11.2  Effect of Hyperparameter ̨  and �

Besides hyperparameter subgraph size K, we also discuss 
� and �.

To explore the effect of hyperparameter � , we select its 
value from {0.2,0.4,0.6,0.8}. As illustrated in Fig. 10, when 
� = 0.6 , DSLAD has the best performance on Citeseer, 
BlogCatalog, and Flickr. When � = 0.8 , DSLAD has the 

Fig. 9  Performance comparison using different subgraph size on the 
six benchmark datasets

(a) Cora (b) Citeseer (c) Pubmed

(d) BlogCatalog (e) Flickr (f) ACM

Fig. 10  Parameter sensitivity studies for hyperparameter � and � . The values of AUC are correlated with colors by viridis
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best performance on Cora, Pubmed, and ACM. This shows 
that no matter any datasets, the context anomaly score has a 
greater impact than the reconstruction anomaly score, sup-
porting the assertion that the context score affects more.

To explore the effect of hyperparameter � , we select 
its value from {0.5,1.0,1.5,2.0,2.5,3.0}. As illustrated in 
Fig. 10, DSLAD has the best performance when � = 3.0 , 
� = 3.0 , � = 2.0 , � = 1.0 , � = 2.5 , � = 1.5 on Cora, Citeseer, 
Pubmed, BlogCatalog, Flickr and ACM respectively. A suit-
able setting of the hyperparameter � could prompt hidden 
space mapping and provide significant benefits for anomaly 
detection.

6  Conclusion

In this paper, a novel framework called DSLAD is proposed 
for graph anomaly detection. DSLAD is composed of four 
modules: discrimination pair sampling, GNN-based embed-
ding, anomaly discrimination and contrastive representation 
learning. Both contrastive learning and generative learning 
are employed to discriminate anomaly. They complement 
one another and improve the effectiveness. The contrastive 
representation learning, greatly alleviating the semantic 
mixture and imbalance problem, generates a more balanced 
semantic space and facilitates node embedding. By decou-
pling anomaly discrimination and contrastive representa-
tion learning, the performance of DSLAD is undoubtedly 
improved. In the future, we will explore a unified represen-
tation learning framework for anomaly detection and node 
classification.
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