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Abstract
Unsupervised hashing for cross-modal retrieval has received much attention in the data mining area. Recent methods rely 
on image-text paired data to conduct unsupervised cross-modal hashing in batch samples. There are two main limitations 
for existing models: (1) learning of cross-modal representations is restricted to batches; (2) semantically similar samples 
may be wrongly treated as negative. In this paper, we propose a novel category-level contrastive learning for unsupervised 
cross-modal hashing, which alleviates the above problems and improves cross-modal query accuracy. To break the limita-
tion of learning in small batches, a selected memory module is first proposed to take global relations into account. Then, 
we obtain pseudo labels through clustering and combine the labels with the Hadamard Matrix for category-centered learn-
ing. To reduce wrong negatives, we further propose a memory bank to store clusters of samples and construct negatives by 
selecting samples from different categories for contrastive learning. Extensive experiments show the significant superiority 
of our approach over the state-of-the-art models on MIRFLICKR-25K and NUS-WIDE datasets.

Keywords Cross-modal hashing · Unsupervised · Category-level

1 Introduction

With the demand for multi-modal data increasing, cross-
modal retrieval researches [13, 36, 38, 39] have attracted 
great attention in the data mining area. In cross-modal 
retrievals, representation in one modality (e.g. image) is 
used to retrieve similar representations in another modal-
ity (e.g. text). The costly storage and computation of these 
representations remain a challenge in this task. Thus, hash-
ing retrieval methods [1, 28, 34, 37] are introduced to map 
high-dimension cross-modal datapoints to low-dimension 

hash codes, which reduce storage demand and speed up 
retrieval. The mainstream cross-modal hashing methods can 
be divided into supervised [2, 12, 27] and unsupervised [6, 
33]. Supervised methods learn the hash codes using label 
information, which have gained promising performance but 
require a large amount of manually annotated labels. Unsu-
pervised methods leverage contrastive learning objective to 
minimize the distance between similar samples, which avoid 
the costly annotating process and attracts more attention in 
researches.

Unsupervised cross-modal hashing methods only use the 
image-text pairs for training, and the goal is to pull closer the 
similar samples. The key problem is how to judge the simi-
larity between image-text pairs without using labels. Thus, 
the similarity matrix plays a crucial role in training. Many 
models [17, 22, 32] work on optimizing the similarity matrix 
to improve performance. For example, DJSRH [22] added a 
joint semantics affinity matrix that is built on one input batch 
to enhance semantic information in the similarity matrix. 
DSAH [32] designed a semantic-alignment loss to exploit 
the connections between images and texts within one batch. 
JDSH [17] fused the similarity matrix of image-to-image, 
text-to-text and image-to-text in one batch, and it used the 
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distribution-based similarity decision method to enhance the 
discrimination ability of hash codes.

The mentioned models improve performance by using 
different ways of adding information to the similarity matrix, 
but they mainly use image-text pairs from one batch. Thus, 
only batch information is leveraged and the global relations 
in the entire data distribution are neglected, which results 
in information incompleteness. The recent study UCCH [9] 
alleviates this problem by using an additional module to save 
external data to bring in some relations out of batch. How-
ever, the added global relations which are randomly selected 
features from part of the data set is limited. Moreover, the 
model employs a random selection process to obtain nega-
tive samples for contrastive learning, which may wrongly 
treat some semantic similar samples as negative. From the 
above analysis, we can see that existing models face two 
primary challenges: (1) the learning of cross-modal repre-
sentation is limited to batches, and (2) semantically similar 
samples may be incorrectly classified as negative.

To face the above challenges, we propose a novel cate-
gory-level approach to effectively capture global relations 
and to improve the selection process of negative samples. 
As shown in Fig. 1, we first cluster cross-modal features 
from the encoder modules using K-means to obtain a 
pseudo-class label for each instance. Next, the cross-modal 
features are stored in a memory bank, and we acquire the 

hash codes of features using the hash function. We then 
conduct category-level contrastive learning by selecting 
samples from different categories as negatives. Mean-
while, we combined pseudo-class labels with the class 
centers obtained from a Hadamard matrix to optimize 
the hash code. In our approach, we learn the categorical 
relations of representations, not just relations in batch. In 
addition, negatives are chosen according to pseudo-classes 
labels rather than randomly. This helps alleviate the above-
mentioned problems. Our method uses the MIRFLICKR-
25K and NUS-WIDE datasets for image-text retrievals. 
The experiment results demonstrate that our proposed cat-
egory-level hash methods effectively capture the similarity 
relationship compared to existing hash methods, resulting 
in superior retrieval performance.

The primary contributions of this paper are as follows:

• We propose a novel category-level cross-modal infor-
mation retrieval model that utilizes the cluster center 
approach to completely capture the global relation, which 
effectively addresses the issue of the incompleteness of 
representation learning.

• We employ a memory bank to store the samples of differ-
ent categories, and select negative samples according to 
classes rather than randomly, thereby preventing semanti-
cally similar samples from being treated incorrectly.

Fig. 1  Overview of the proposed architecture. The Image Encoder 
Module (up) encodes images. The Text Encoder Module (down) 
encodes texts. The Selected Memory Module (middle) assigns 

pseudo labels and conducts category-level contrastive learning. The 
three loss functions (right) are the Contrastive Loss, the Bank Loss 
and the Center Loss
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• The experiment demonstrates that our method exhibits 
significant enhancements when compared with the cur-
rent state-of-the-art (SOTA) methods.

2  Related Work

In this section, we give an introduction to the unsupervised 
cross-modal hashing retrieval methods, including shallow 
methods, deep network methods and methods that use con-
trastive learning.

Shallow hashing methods Kumar et al. first proposed the 
CVH [14] model to map similar samples to similar hash 
codes. Later, some models [6, 21, 40] introduced hashing 
retrieval methods to cross-modal cases and improved hash 
functions to reduce storage space and speed up retrieval. 
However, these shallow models cannot capture nonlinear 
semantics. Thus, deep network methods were proposed.

Deep hashing methods Unsupervised deep cross-modal 
hashing (UDCMH) [30] first used the deep neural network 
to bridge the gap between modalities, which enabled feature 
joint learning to optimize with binarization. After that, an 
unsupervised generative adversarial cross-modal hashing 
approach (UGACH) [35] was proposed to exploit the under-
lying manifold structure of multi-modal data. However, 
these models did not make full use of the pair information. 
While contrastive learning [8, 16, 31] aims to leverage pair 
information, the success of contrastive hashing in tasks like 
image retrieval [11, 15, 19] inspired numerous researchers 
to investigate its application in cross-modal hashing.

Contrastive hashing methods Recent approaches [4, 24] 
had leveraged contrastive learning to align the embeddings 
of different modalities and focused on how to design a more 
high-quality instance similarity matrix to guide the training 
of hashing networks. Deep joint semantics reconstructing 
hashing (DJSRH) [22] first used the comparison method to 
integrate the original neighbourhood relations from different 
modalities. However, DJSRH failed to capture semantic cor-
relations among instances sufficiently and effectively. Later, 
JDSH [17] constructed a joint modal similarity matrix that 
fused similar information based on batches to generate more 
semantic representations. Only using features between data 
was insufficient to describe intricate data relationships, so 
Yu et al. devised a deep graph-neighbour coherence-pre-
serving network (DGCPN) [33] to regulate three types of 
similarities, still based on batches. The problem of mistreat-
ment of semantic similar samples still exists.

In summary, the existing methods that leverage contras-
tive learning are based on batches, which primarily con-
centrate on improving the batchsize similarity matrix and 
neglect the overall data semantic information. Although 
unsupervised contrastive cross-modal hashing (UCCH) [9] 
that introduced memory banks to take the place of binary 

values alleviated the problem of training only on batch to 
some extent, its added sample relation was still limited, 
and raised the problem of wrongly selected negatives. We 
can regard the previous methods as instance-level methods, 
ignoring the overall information relationship. In this paper, 
we propose a model to consider the relations in the entire 
data distribution information and utilize semantic relation-
ships between categories to improve the negative samples 
selection for contrastive learning.

3  Methods

In this section, we first give a task description in Sect. 3.1. 
Then we provide an overview of the proposed model archi-
tecture in Sect. 3.2. Finally, we present our three loss func-
tions: the Contrastive Loss, the Bank Loss and the Center 
Loss in Sect. 3.3.

3.1  Task Description

In cross-modal hashing retrieval, we use one modality(e.g. 
image) to retrieve the most similar data in another 
modality(e.g. text). Unsupervised cross-modal hashing 
retrieval is to find the sample relationship by mining the 
intrinsic characteristics of the data without relying on any 
label value. In unsupervised hashing, there is no label infor-
mation, so we have to rely on pairs of images and text. The 
following is the formal definition. The traditional image-text 
dataset is composed of image-text pairs, where each pair 
contains an image and the corresponding text information, 
denoted as D = {In, Tn}

z

n=1
 . Let I ={In}

z

n=1
 denote a set of 

images and T ={Tn}
z

n=1
 denote a set of texts. Given an image 

In , the goal is to retrieve Tm in T where Tm is the most similar 
to In . Similarly, given a text Tn , the goal is to retrieve the 
most similar Im in I.

3.2  Network Architecture

The overall architecture is shown in Fig. 1. Our network can 
be divided into three components: the image encoder mod-
ule, the text encoder module and the selected memory mod-
ule. The encoder modules are used to obtain cross-modal 
data representations and are described in Sect. 3.2.1. The 
selected memory module is our core component and will be 
explained in detail in Sect. 3.2.2.

3.2.1  Image Encoder Module and Text Encoder Module

The input to our network is Z pairs of images and texts 
{In, Tn}

z

n=1
 . We use the image encoder module and text 

encoder module to obtain image and text representations 
respectively. For images, we feed them into the VGG-19 
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[20] image encoder and a Multi-Layer Perceptron (MLP) 
to obtain the image representation HI = {hI

1
, hI

2
, ..., hI

z
} . For 

texts, we employ the Bag-of-Words (BoW) method that 
uses 0 and 1 to denote the existence and non-existence of 
a word in a sentence to get tags. The tags are then passed 
through the MLP layer to obtain text representations 
HT = {hT

1
, hT

2
, ..., hT

z
}.

3.2.2  Selected Memory Module

Wit h  pa i r s  o f  mu l t i -moda l  r ep resen t a t ions 
{(hI

1
, hT

1
)… (hI

z
, hT

z
)} as input, this module aims to generate 

high-quality hash codes and select negative samples for con-
trastive learning. The specific process is as follows, we first 
cluster the multi-modal pairs to get pseudo-category labels. 
We then store all the representations in a memory bank and 
generate hash codes using the hash function. Next, we con-
duct contrastive learning by selecting negative samples from 
different categories. Meanwhile, we use the pseudo labels 
and centers obtained from a Hadamard Matrix to optimize 
the hash codes. Now we explain each step in detail.

The first step is to cluster the representations to get 
pseudo labels for pairs. We first concatenate the output of 
the two encoder modules to get the multi-modal representa-
tion H, which is shown in Eq. 1.

We then use k-means clustering algorithm [3] to cluster 
H into m groups. Specifically, the representations are pre-
divided into m groups. The initial cluster centers are deter-
mined by randomly selecting m objects. Then, we iteratively 
calculate the distance between each representation and the 
cluster centers, assigning each representation to the cluster 
center that is closest to it. The cluster centers are updated 
for the next round’s calculation. In this way, each multi-
modal representation is given a pseudo-class label, denoted 
as L = {l1, l2, ..., ln} . The value of parameter m is set to 24 
in our research paper.

The second step is to store all the multi-modal represen-
tations in the memory bank. Unlike the traditional methods 
that usually learn representations in the batch data, we store 
global multi-modal information of different categories by 
building a memory bank, which alleviates batch learning 
restriction. The image-text representations stored in the bank 
will later be used to provide negative samples for contras-
tive learning. The input of memory bank is the multi-modal 
representations obtained by the encoders. Given query 
h∗
i
, ∗∈ i, t , We aim to directly retrieve the correlated/positive 

keys from K = {k1, k2, ..., kn} . The i-th key ki corresponds to 
the i-th image-text pair. We update the memory bank by the 
momentum update method as follows:

(1)H = concat(HI ,HT )

This training objective of the memory bank accomplishes 
searching by keys. That is, given a multi-modal representa-
tion h, we obtain the key ki and use the key to retrieve rele-
vant queries in the memory bank Kn . The retrieved result is 
denoted as {k+

i
} . Next, we optimize the negative samples 

selection process for contrastive learning by selecting nega-
tive samples in different categories of the memory bank. The 
negative samples(denoted as {k−

j
}K
j=−1

 ) consist of distin-
guished class samples, which enhance the discriminative 
power of contrastive learning and avoid similar samples 
being mis-selected. Using a hash function f composed of a 
sign function and MLP, we obtain image hash codes BI = bi

n
 

and text hash codes BT = bt
n
 for each pair. The hash code 

b∗
n
, ∗∈ i, t has length q for the convenience of retrieval.
The third step is to optimize the class hash centers and 

pull the class hash centers as far away as possible, this pro-
vides optimized class hash centers for the next hash codes 
training process. In brief, we train the image and text hash 
codes based on the optimized class hash centers and the 
pseudo-class labels from the first step. We initialize the hash 
class centers from the Hadamard matrix. In this way, we 
can ensure that the class centers vector is composed of 1 
and − 1. In addition, any two rows (or columns) of the Had-
amard matrix are orthogonal according to the features of the 
orthogonal square. Thus, the constructed class vectors are 
orthogonal to each other.

Now we optimize the hash centers to maximize the dis-
tances between class hash centers. We refer to [25], a method 
which optimizes the class hash center with the constraint 
that the Hamming distance between any two centers is not 
less than the minimum distance d. This method uses Gilbert-
Varshamov bound [23] to obtain a large d. Each of these 
hash centers corresponds to one class respectively.

Given samples in m classes, we optimize m hash cent-
ers C = {c1, c2, ..., cm} of our hash codes by maximizing the 
optimization target and with the restricted condition shown 
in Eq. 4.

where q is the hash code length, d is the minimal distance 
and ||.||H represents the Hamming distance. We use the 
Gilbert-Varshamov bound [23] to determine a large minimal 
distance d while ensuring the feasibility of our optimization 
procedure. Specifically, there are m q-bit codes that the 

(2)vi� =�vi� + (1 − �)
h
x
i
+ h

y

i

2

(3)ki =sign(vi)

(4)
max

c1,...,cm∈{−1,1}
q

1

m(m − 1)

∑
i

∑
j∶j≠i

‖‖‖ci − cj
‖‖‖H

s.t.
‖‖‖ci − cj

‖‖‖H ≥ d(1 ≤ i, j ≤ m, j ≠ i),
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minimal Hamming distance of any two codes is d, as long 

as m, q and d satisfy 2
q

c
≤
∑d−1

i=0

�
q

i

�
 . Hence, to obtain a 

large d, we only need the maximum of d to satisfy the equa-
tion. Due to the monotone increasing function 

f (d) =
∑d

i=0

�
q

i

�
 , we have

Since d⋆ is an integer 1, 2, 3, ..., q, we can find its value by 
exhaustively searching. This objective makes hash centers 
of different categories as far as possible.

We further leverage the following facts to improve the 
implementation of Eq. 4. 

1. The hamming distance ‖‖‖ci − cj
‖‖‖H is equivalent to −cT

i
cj . 

Maximizing the hash distance is equivalent to minimiz-
ing the inner product [26].

2. 4
‖‖‖ci − cj

‖‖‖H =
‖‖‖ci − cj

‖‖‖
2

2

= cT
i
ci + cT

j
cj − 2cT

i
cj = 2q − 2cT

i
cj  

[25], where, ‖.‖2 is �2 norm.
3. The inner product of two hash centers is bounded by an 

upper limit to ensure accuracy, which limits the minimal 
hamming distance d with ‖‖‖ci − cj

‖‖‖H ≥ d.

Thus, Eq. 4 can be simplified as follows:

To simplify the implementation, we adopt an optimization 
procedure that alternately updates one of the hash centers ci 
while keeping other centers cj(1 ≤ j ≤ m;j ≠ i) fixed. Specifi-
cally, when all cj(j ≠ i) are fixed, the subproblem w.r.t. ci can 
be formulated as:

To solve the subproblem in Eq. 7, we utilize the �p − box 
algorithm proposed in [29]. The �p − box algorithm showed 
that the binary constraint z ∈ {−1, 1}q is equivalent to 
z ∈ [−1, 1]q

⋂�
z ∶ ‖z‖pp = q

�
 . The proof of the �p − box 

algorithm can refer to [25]. We set p = 2 for simplicity. By 
dropping the binary constraint, we can reformulate Eq. 7 into 
the following equivalent form.

(5)

⎧⎪⎨⎪⎩

2q

c
≤
∑d⋆−1

i=0

�
q

i

�

2q

c
>
∑d⋆−2

i=0

�
q

i

�

(6)

min
c1,c2,...,cm∈{−1,1}

q

∑
j∶j≠i

cT
i
cj

s.t. cT
i
cj ≤ (q − 2d)

(1 ≤ i, j ≤ m, i ≠ j).

(7)
min

ci∈{−1,1}
q

∑
j∶j≠i

cT
i
cj

s.t. cT
i
cj ≤ q − 2d(1 ≤ j ≤ m, j ≠ i),

where Sb =
{
z ∶ −1q < z < 1q

}
 and Sp =

�
z ∶ ‖z‖2

2
= q

�
 , 1q 

represents a q-dimensional vector with all ones. We obtain 
Sb and Sp by using the �p − box algorithm above.

An equality constraint can replace the inequal-
ity constraint by adding an auxiliary variable z3 . The 
inequality constraints cT

i
cj ≤ (q − 2d) is equal to the 

equality constraint cT
i
C∼i + z3 = (q − 2d)1m−1 where 

C∼i = [c1, c2, ..., ci − 1, ci + 1, ..., cm]  a n d  z3 ∈ Rm−1
+

 , 
Rc−1
+

=
{
z ∶ z ∈ [0,+∞)m−1

}
 , further reformulating the prob-

lem in Eq. 8 as:

The augmented Lagrange function w.r.t. Equation 9 is:

where y1, y2, y3 are Lagrange multipliers.
We update each variable ci, z1, z2, z3 in the following way.
1. Update hi : We update ci by fixing other variables except 

ci , the subproblem of L in Eq. 10 w.r.t.ci is an unconstrained 
objective. The gradient of L w.r.t. ci is

By setting this gradient to zero in Eq. 11, we can update ci by

(8)

min
ci,z1,z2

∑
j∶j≠i

cT
i
cj

s.t. cT
i
cj ≤ (q − 2d)

(1 ≤ j ≤ m, i ≠ j)

ci = z1, ci = z2, z1 ∈ Sb, z2 ∈ Sp,

(9)

min
ci,z1,z2,z3

∑
j∶j≠i

cT
i
cj

s.t. cT
i
C∼i + z3 = (q − 2d)1m−1

(1 ≤ j ≤ m, i ≠ j)

ci = z1, ci = z2, z1 ∈ Sb, z2 ∈ Sp, z3 ∈ Rm−1
+

.

(10)

L
(
ci, z1, z2, z3, y1, y2, y3

)
=
∑
j≠i

cT
i
cj

+ yT
1

(
ci − z1

)
+

�

2
‖‖ci − z1

‖‖22
+ yT

2

(
ci − z2

)
+

�

2
‖‖ci − z2

‖‖22
+ yT

3

(
cT
i
C∼i + z3 − e

)

+
�

2

‖‖‖c
T
i
C∼i + z3 − e

‖‖‖
2

2

s.t. z1 ∈ Sb, z2 ∈ Sp, z3 ∈ Rm−1
+

,

e = (q − 2d)1m−1

(11)

�L
(
ci
)

�ci
= 2�ci + �C∼iC

T
∼i
ci +

∑
j≠i

cj

+ y1 + y2 + C∼iy3

− �(z1 + z2 + C∼ie − C∼iz3)
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2. Update z1, z2, z3 : The subproblem of L in Eq. 10 w.r.t. 
z1, z2, z3 is:

Then, we set the gradients to zero in Eq. 13, we can obtain 
update z1, z2, z3 by

Following [29], we project z1, z2, z3 into Sb, Sp,Rm−1
+

 respec-
tively. All of these projections have closed-form solutions:

3. Update y1, y2, y3 : The Lagrange multipliers y1, y2 and y3 
can be updated by

Overall, we can learn class hash centers by maximizing the 
optimization target. Next, we will describe the loss functions 
based on class hash centers and the pseudo-class label that 
improve image hash codes BI and text hash codes BT.

3.3  Loss Functions

For training, we use the contrastive loss to align images and 
texts, the bank loss to maintain the storage accuracy and effi-
ciency of the memory bank, and the center loss to minimize 

(12)

ci ← (2�Iq + �C∼iC
T
∼i
)−1

(�(z1 + z2 + C∼ie − C∼iz3)

−
∑
j≠i

cj − y1 − y2 − C∼iy3

(13)

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

L
�
z1
�
= yT

1

�
ci − z1

�
+

�

2
��ci − z1

��22
L
�
z2
�
= yT

2

�
ci − z2

�
+

�

2
��ci − z2

��22
L
�
z3
�
= yT

3

�
cT
i
C∼i + z3 − e

�

+
�

2

���c
T
i
C∼i + z3 − e

���
2

2

s.t. z1 ∈ Sb, z2 ∈ Sp, z3 ∈ Rm−1
+

(14)

⎧⎪⎪⎨⎪⎪⎩

z1 ← PSb

�
ci +

1

�
y1

�

z2 ← PSp

�
ci +

1

�
y2

�

z3 ← PRm−1
+

�
e − cT

i
C∼i −

1

�
y3

�

(15)

⎧⎪⎪⎨⎪⎪⎩

z1 ← min(1,max(−1, ci +
1

�
y1))

z2 ←
√
q

ci+
1

�
y2

���ci+
1

�
y2
���2

z3 ← max(0, e − cT
i
C∼i −

1

�
y3)

(16)

⎧⎪⎨⎪⎩

y1 ← y1 + �(ci − z1)

y2 ← y2 + �(ci − z2)

y3 ← y3 + �(cT
i
C∼i − z3 − e)

the distance between features and their corresponding class. 
Now we explain them respectively.

3.3.1  The Contrastive Loss

The contrastive loss is a traditional loss function in image-
text matching that has been used by many previous works 
for optimization. It aims to bring the positive sample pairs 
closer together and pull the negative sample pairs away.

We apply the contrastive learning loss to maintain appar-
ent similarity among image-text pairs. The function is as 
follows:

where S is a diagonal similarity matrix to evaluate the simi-
larity of the image and text. S = 1 means that they are similar 
and conversely S = 0 means that they are not similar. We 
calculate the cosine similarity matrix cos(BI ,BT ) to denote 
the similarity between BI ,BT and describe the neighbour-
hood structure in the Hamming space. We minimize the 
error between the diagonal similarity matrix S and cosine 
matrix cos(BI ,BT ).

3.3.2  The Bank Loss

The memory bank is a dictionary-like structure designed for 
storing image-text pairs. Each key in the bank corresponds 
to an image-text pair. The Bank Loss function aims to 
retrieve the most relevant key to the query h∗

i
(∗∈ {x, y}) 

directly from all keys Kn . In {k1, k2, ..., kn} , there is a positive 
sample key k+

i
 that matches the query h∗

i
(∗∈ {x, y}) . As men-

tioned previously, when querying, only one sample is posi-
tive while the rest are negative keys {k−

j
}.

We utilize an efficient loss function called InfoNCE [18], 
as referenced in [9], which maximizes instance-level dis-
crimination and minimizes cross-modal variation:

P
(
n ∣ h∗

n

)
 is the probability of h∗

n
 being recognized as the n-

th point. The probability calculation method is defined as 
follows:

where ∗∈ I, T  and �  represents a temperature 
hyper-parameter.

The Bank Loss is an unsupervised loss used for learning 
features given a batch of data without labels. It can be con-
sidered as the negative log-likelihood of the non-parameter 

(17)L
co
= min

BI ,BT

‖‖�S − cos(BI ,BT )
‖‖2,

(18)L
b
= −

z∑
n=1

logP
(
n ∣ h∗

n

)

(19)P =
exp(⟨h∗

n
, k+

n
∕�⟩)

exp(⟨h∗
n
, k+

n
∕�⟩) +∑z

m=1
exp(⟨h∗

n
, k−

n
∕�⟩)
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softmax classifier. For each i-th image-text pair (i.e., hx
i
 , hy

i
 ), 

the loss force the pair to correspond with its respective positive 
sample (i.e., k+

i
 ) in key.

3.3.3  The Center Loss

To make representaions close to their corresponding hash cent-
ers, we incorporate the Center Loss into traditional loss func-
tions. The objective of the Center Loss is to enhance similarity 
within similar instances and increase dissimilarity between 
dissimilar ones by leveraging category information.

Using the m hash centers mentioned in the method, we 
assign a center to one of the m image classes. We use the 
center loss function, which ensures output hash codes are 
close to their corresponding class centers while being far 
away from other hash centers. Specifically, given m hash cent-
ers c1, c2, ..., cm , N sample with respective output hash codes 
b1, b2, ..., bN . The function is defined as:

with

where S(.) represents the scaled cosine similarity metric, 
S(.) = cos().

With the Center Loss, our hash codes can capture the global 
information, never make up for the partial information of local 
data, and have better discriminability.

In all, the objective function of our hashing network is a 
combination of the three loss functions:

The conventional loss function for image-text research solely 
comprises contrastive loss, which is the first component of 
our proposed approach. Our novel loss function, considered 
from the global perspective, captures the category-level 
relationships and incorporates bank loss to facilitate effec-
tive matching. The utilization of Bank Loss and Center Loss 
acquires comprehensive global relationships. Our loss incor-
porates supplementary representations of distinct classes, 
addressing the limitation associated with batchsize learning. 
Additionally, Combining these losses alleviates misclassifi-
cation errors arising from similarities among samples.

(20)
L
ce
= −

1

z

z∑
n=1

m∑
i=1

ln,ilogPn,i

+ (1 − ln,i)log(1 − Pn,i)

(21)Pn,i =
e−S(bn,ci)∑m

k=1
e−S(bn,ck)

.

(22)L = L
co
+ L

b
+ L

ce

4  Experiments

In this section, we present our experiment results. Datasets 
are described in Sect. 4.1. Evaluation metrics and imple-
mentation details are presented in Sect. 4.2. The analysis 
of results is in Sect. 4.3.

4.1  Datasets

We use two wide-used cross-modal hashing datasets, the 
MIRFLICKR-25K and NUS-WIDE for experiments.

• MIRFLICKR-25K [10]: This dataset is obtained from 
the Flickr website. It gathers a total of 25,000 photos. 
Additionally, each image is paired with a correspond-
ing tag, creating image-text pairs. We apply similar 
pre-processing operations to our data as in UCCH [9]. 
Input images are the original images, while texts are 
processed with the Bag-of-Words (BoW) method, and 
text tags as 1386-dimension vectors are derived.

• NUS-WIDE [5]: The dataset comprises 269,648 web 
images that are categorized into 81 classes. Each image 
is associated with a corresponding text tag. Preproc-
essing for NUS-WIDE follows the same steps as in 
MIRFLICKR-25K. Note that in NUS-WIDE, the final 
dimension of the text tag vector is 1000.

4.2  Experimental Setting

4.2.1  Evaluation Metrics

The Mean Average Precision (mAP) [7] is a comprehen-
sive metric that captures the average precision across all 
classes. It is the aggregated weighted average of all the 
accuracies (AP). In terms of learning to rank, it pertains 
to the precision averaged over multiple queries.

The updated calculation approach for mAP was offi-
cially submitted at the 2012 PASCAL VOC Challenge. 
This updated calculation presupposes the existence of 
M-positive examples within N samples, and for the M posi-
tive examples, the recall values are (1/M, 2/M, ..., M/M), 
denoted as P(k). For each value P(k), we multiply the cor-
relation coefficients to compute the corresponding inte-
grated accuracy and then average them to obtain the final 
AP value. The formula is shown as follows:

(23)AP@K =

∑k

1
P(k) ∗ rel(k)∑

rel(k)
.
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We use the above calculation method of mAP to measure the 
overall quality of our learned model.

4.2.2  Implementation Details

We use PyTorch to implement our model. For the dataset, we 
randomly select 10000 and 10500 instances as the training 
set for MIRFLICKR-25K and NUS-WIDE. Meanwhile, we 
randomly select non-overlapping 2000 and 2100 instances 
as the test sets of the two datasets. The batchsize is 128 in 
training, and we use SGD for the optimizer. The learning 
rate is set to 10−4 and is gradually reduced during training. 
We used the pre-trained weights provided by VGG-19.

4.3  Experimental Results

This section presents the results of our experiments. Two 
cross-modal query tasks (Image2Text and Text2Image) are 
conducted on the two datasets to compare the performance 
of our model and other baselines. First, we give a compre-
hensive analysis of the overall model performance compared 
with the current SOTA model. Then, since our model is the 
category-level approach, we specifically analyze the effects 
of the category-level methods and the traditional instance-
level methods. Next, we show the P-R curve of traditional 
retrieval performance. Finally, we analyze the effect of each 
of our specific parts.

4.3.1  Comparison to the SOTA Methods

To evaluate the effectiveness of our methods, we conduct a 
comparative analysis with current state-of-the-art (SOTA) 
unsupervised cross-modal hashing approaches. The com-
parative SOTA methods we choose include both shallow 
models and deep networks. CVH and CMFH represent 
two shallow hashing models in unsupervised cross-modal 
hashing. DJSRH, JDSH, DGCPN and UCCH are methods 
based on deep networks, which are also contrastive learn-
ing methods. In detail, deep network methods are divided 
into the traditional methods (such as DJSRH and JDSH) 
and the introduction of additional relations methods (such 

as DGCPN which introduces graph relations and UCCH 
which introduces additional information randomly). For 
a fair comparison, all methods use VGG-19 as the image 
encoder. The evaluation metric is the Mean Average Preci-
sion @ all (mAP@all).

The results shown in Table 1 is the mAP@all metric on 
MIRFLICKR-25k in two cross-modal information retrieval 
tasks, for hash codes with lengths of 16 bit, 32 bit, and 64 bit. 
I2T means using the image to retrieve text, while T2I refers 
to using the text to query image. Compared to the shallow 
cross-modal hashing method, it shows the proposed method 
has better performance. For example, the average increase 
in the hash length of the various hash codes is 36.72% and 
37.95% for I2T and T2I in CMFH, respectively. This shows 
that the deep network framework brings better results. Com-
pared to the deep network cross-modal hashing method, it 
also shows our method achieves superior retrieval accuracy. 
Compared with the methods DJSRH, and JDSH, which are 
only in leveraging batchsize data, the performance in the 
I2T tasks has shown an improvement of 13.09% and 11.18% , 
while in the T2I tasks, it has improved by 13.03% and 8.04% . 
It illustrates that our approach can improve performance by 
capturing not only the relationships within a batch but also 
the whole relationship. The proposed method demonstrates 
a significant improvement of 5.017% and 7.07% on the I2T 
and T2I tasks respectively, when compared to DGCPN with 
additional relations. In contrast with the highest performance 
UCCH, the average accuracy has been enhanced by 1.64% 
and 1.83% in the I2T and T2I tasks. This shows that intro-
ducing relationships from the perspective of categories is 
more logical than introducing graph relationships or random 
information. These results demonstrate the superior perfor-
mance of our method over existing baseline methods on the 
MIRFLICKR-25k dataset.

Table 2 presents the results of the I2T and T2I tasks con-
ducted on the NUS-WIDE dataset, including 16 bit, 32 bit, 
and 64 bit hash codes. Compared to the SOTA unsuper-
vised shallow cross-modal hash method CMFH, our model 
achieves approximately double the average performance 
across different hash lengths for I2T and T2I tasks respec-
tively. Similarly, when compared to the highest performance 

Table 1  Results compared 
with SOTA models in 
MIRFLICKR-25 dataset

Model I2T T2I

16 bit 32 bit 64 bit 16 bit 32 bit 64 bit

CVH 0.620 0.608 0.594 0.629 0.615 0.599
CMFH 0.557 0.557 0.556 0.553 0.553 0.553
DJSRH 0.665 0.673 0.681 0.662 0.671 0.692
JDSH 0.669 0.678 0.691 0.673 0.677 0.678
DGCPN 0.709 0.717 0.731 0.713 0.712 0.732
UCCH 0.739 0.751 0.756 0.737 0.755 0.756
Our 0.750 0.762 0.772 0.752 0.763 0.774
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deep cross-modal hash method UCCH, our method achieves 
an average enhancement in hash code length of 2.79% and 
2.73% in the I2T and T2I tasks. The results in Table 2 also 
demonstrate the superior performance of our method. Over-
all, it reflects the same conclusion as presented in Table 1. It 
is noteworthy that our method is more effective on the NUS-
WIDE dataset compared to the MIRFLICKR-25k dataset. 
This observation further demonstrates the significance of 
capturing the global correlation when dealing with larger 
volumes of data.

In summary, on the one hand, the results presented in 
Tables 1 and 2 show that our method is significantly better 
than the shallow methods. On the other hand, our method 
comparison with the SOTA deep network methods(such 
as traditional methods and the introduction of additional 
relations methods) has significantly improved. This dem-
onstrates the efficacy of our approach in capturing global 
relationships at the category level, thereby yielding sig-
nificant outcomes. The results consistently demonstrate the 
superior performance of our method compared to existing 
baseline approaches, highlighting substantial and notewor-
thy improvements.

4.3.2  Analysis of the Effect of the Category‑Level Strategy

Our approach employs the category hierarchy strategy to 
enhance data information, thereby alleviating the limita-
tion of batch size and preventing samples wrongly treated. 
Therefore, the application of a category-level strategy is an 
important component of our approach. To validate the effec-
tiveness of our method employing a category-level strategy, 
we conduct a comprehensive comparison at both instance-
level and category level within the same network framework 
and experimental conditions.

This part involves the analysis of results on the MIR-
FLICKR-25k and NUS-WIDE datasets. The results of 
MIRFLICKR-25k are visually depicted in Fig. 2, while 
the results of the NUS-WIDE dataset are in Fig. 3. For 
instance-level approach, we refer to the current best model 
UCCH [9]. UCCH also stores additional information in the 
form of a bank, which prevents unfair comparison brought 

Table 2  Results compared with 
SOTA models in NUS-WIDE 
dataset

I2T T2I

16 bit 32 bit 64 bit 16 bit 32 bit 64 bit

CVH 0.487 0.495 0.456 0.470 0.475 0.444
CMFH 0.339 0.338 0.343 0.306 0.306 0.306
DJSRH 0.568 0.580 0.604 0.585 0.578 0.617
JDSH 0.594 0.609 0.612 0.592 0.616 0.627
DGCPN 0.610 0.614 0.635 0.617 0.621 0.642
UCCH 0.658 0.669 0.679 0.666 0.674 0.688
Our 0.683 0.689 0.690 0.690 0.696 0.701

Fig. 2  Comparison of category-level and instance-level approach in 
MIRFLICKR-25k dataset

Fig. 3  Comparison of category-level and instance-level approach in 
NUS-WIDE dataset
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increased information. Both UCCH and our model use the 
same VGG-19 to get the image representation, and then get 
the hash codes through the hash function. For category-level 
experiments, we follow the steps described in Sect. 3. The 
experiments show that the category-level approach achieved 
notable performance improvements.

We use the radar charts to show the effects of category-
level strategy on the MIRFLICKR25 and NUS-WIDE data-
sets, which is shown in Figs. 2 and 3. The radar charts com-
pare the two strategies(instance-level and category-level) 
using six axes. Each axis indicates different bit sizes for I2T 
and T2I information retrieval tasks. Specifically, the bit sizes 
consideration encompass 16 bit, 32 bit, and 64 bit in I2T and 
T2I information retrieval. The results show the distinctions 
between the two methods across multiple dimensions. Note 
that the central point remains constant, closer to the center 
indicates a decrease in performance, while closer to the outer 
edges signifies better performance for the model.

The blue lines depicted in Figs. 2 and 3 illustrate the tra-
ditional instance-level cross-modal hashing method, while 
the red lines in the radar chart represent the category-based 
hashing method proposed by our research. These charts 
show notable visual contrast between the red lines and blue 

lines. The red lines in both figures are outside the blue lines, 
which means the performance improvement is particularly 
significant, especially in the 16 bit. The observed outcome 
can be attributed to the red line using the category-level 
approach, in contrast to the blue line employing the con-
ventional instance-level approach. In comparison to the 
superior instance-level UCCH method, the clear distinction 
between the lines shows a significant performance improve-
ment, indicating that our category-level approach exhibits a 
significantly higher performance than the best instance-level 
method. Thereby it highlights the efficacy of category-level 
information. The category-level method achieves higher 
query accuracy in cross-modal information retrieval and 
adaptly captures the correlation between all instances.

4.3.3  Retrieval Performance

In addition to the mAP indicators, we also calculate pre-
cision and recall to measure retrieval performances. The 
precision-recall (PR) curves are utilized as the metrics for 
hash lookup to evaluate the effectiveness of cross-modal 
information retrieval. The results are reported on the 
MIRFLICKR-25k and NUS-WIDE datasets. The results of 

Fig. 4  Resulte@32 on MIR-
FLICKR-25k dataset

Fig. 5  Resulte@64 on MIR-
FLICKR-25k dataset
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MIRFLICKR-25k are in Figs. 4 and 5, while the results of 
NUS-WIDE dataset are in Figs. 6 and 7.

The precision-recall curves with code lengths 32 bit and 
64 bit are drawn to evaluate the performance of the cross-
modal hashing methods on the MIRFLICKR-25K, as shown 
in Figs. 4 and 5. The better the performance, the positioning 
of the line more in the upper right corner. If the precision-
recall (PR) curves of one model completely cover the PR 
curves of the other models, it can be inferred that this model 
shows superior performance. We can see that the PR curves 
of our method are higher than all those of baselines in the 
MIRFLICKR-25K dataset. Our methods provide superior 
performance compared to SOTA methods with various code 
lengths.

Figures 6 and 7 illustrate the PR curves for various modes 
of comparison. The results demonstrate that the proposed 
approach outperforms existing contrast methods. It suggests 
that the category-based hash approach can achieve higher 
retrieval accuracy in cross-modal retrieving and effectively 
capture the correlation between instances.

4.3.4  Ablation Study

In this section, we investigate the contributions of different 
loss functions in the design.

To evaluate the performance of each component compre-
hensively, we compare the model we proposed with its three 
variants in the MIR and NUS-WIDE datasets, as shown in 

Fig. 6  Resulte@32 on NUS-
WIDE dataset

Fig. 7  Resulte@64 on NUS-
WIDE dataset

Table 3  Ablation study results 
in MIRFLICKR-25 dataset

i2t t2i

16 bit 32 bit 64 bit 16 bit 32 bit 64 bit

Our 0.750 0.762 0.772 0.752 0.763 0.774
w/o Center loss 0.738 0.750 0.761 0.741 0.753 0.764
w/o Bank loss 0.606 0.637 0.642 0.594 0.637 0.644
w/o Contrastive loss 0.739 0.752 0.764 0.739 0.751 0.763
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Tables 3 and 4. The first line of each table is the method this 
paper proposed. The second line eliminates the Center Loss. 
The third line removes the Bank Loss. Eliminating the bank 
loss necessitates the removal of the memory bank module, 
which contributes no additional information. However, it 
also impacts our capacity to capture global relationships. and 
the fourth line excludes the Contrastive Loss.

The results in Table 3 show that integrating three loss 
functions in our model improves performance on the MIR-
FLICKR-25K dataset. From the mAP@all results in the first 
row and the second row, we have observed that the Center 
Loss is improved by 1.55% and 1.37% on average, in i2t and 
t2i tasks. It shows the effective implementation of the Center 
Loss significantly contributes to enhancing the performance 
of our model. The Center loss enables the gathering of simi-
lar information in the dataset, resulting in a convergence of 
similar representations and a separation of dissimilar ones. 
This process can facilitate the data distribution in multiple 
clusters, thereby capturing category-level information.

Based on the mAP@all results presented in the first row 
and the third row, we find that the Bank Loss is improved 
by 21.19% and 22.21% on average, in i2t and t2i tasks. This 
shows that Bank Loss plays a crucial role in changing the 
retrieval of one modality to another modality into the corre-
sponding retrieval of one modality to one key, which makes 
the retrieval performance better. To a certain extent, it plays 
an important role in facilitating image-text alignment and 
introducing additional information. In addition, the feature 
stored in the memory bank, if the bank loss is removed, is 
equivalent to not adding additional relations, which has a 
great impact on obtaining the overall relationship. Therefore, 
the impact of removing the bank is large.

The mAP@all results presented in the first and fourth rows 
illustrate that the Contrastive Loss average improves 1.28% and 
1.59% in i2t and t2i tasks. It demonstrates that the Contrastive 
Loss can help improve the matching of different modalities data 
to some extent. However, the Bank Loss also plays a certain role 
in different mode matching. Thus, the Contrastive Loss in this 
context exhibits limited enhancement.

The results from Table 4 in the NUS-WIDE dataset also 
support similar conclusions. The Center Loss, the Bank Loss 
and the Contrastive Loss correspond to an average increase 
of 2.92%,4.78% and 0.37% , respectively. However, it is 
worth noting in Table 4 that The effectiveness of Center Loss 

is significantly greater than that of Contrastive Loss. On one 
hand, the impact of Center Loss surpasses that of Contrastive 
Loss, possibly due to increased data volume and heightened 
significance of category relationships. Therefore, the traditional 
Contrastive Loss effect is reduced. On the other hand, our Bank 
Loss in matching may have contributed to its role in the match-
ing process. It is crucial to emphasize the increasing significance 
of Center Loss functions in enhancing performance as the size 
of the dataset grows.

5  Conclusion

This paper proposed a cross-modal hash retrieval model based 
on the category-level to address the problem of incomplete 
information in traditional instance-level contrastive learning. 
We proposed a selected memory module to give pseudo labels 
to image-text pairs. With the help of pseudo labels and class 
centers obtained from a Hadamard Matrix, we conducted cate-
gory-level contrastive learning. Experiment results showed that 
the selected memory module and the three loss functions we 
used contributed to alleviating the problems we observed. We 
conducted comprehensive experimental analyses on the MIR-
FLICKR-25K and NUS-WIDE datasets results demonstrate 
the effectiveness of our method. In the future, we will further 
discuss how to enhance the optimization of positive samples.
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