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Abstract
With the exponential increase in the urban population, urban transportation systems are confronted with numerous challenges. 
Traffic congestion is common, traffic accidents happen frequently, and traffic environments are deteriorating. To alleviate 
these issues and improve the efficiency of urban transportation, accurate traffic forecasting is crucial. In this study, we aim 
to provide a comprehensive overview of the overall architecture of traffic forecasting, covering aspects such as traffic data 
analysis, traffic data modeling, and traffic forecasting applications. We begin by introducing existing traffic forecasting surveys 
and preliminaries. Next, we delve into traffic data analysis from traffic data collection, traffic data formats, and traffic data 
characteristics. Additionally, we summarize traffic data modeling from spatial representation, temporal representation, and 
spatio-temporal representation. Furthermore, we discuss the application of traffic forecasting, including traffic flow forecast-
ing, traffic speed forecasting, traffic demand forecasting, and other hybrid traffic forecasting. To support future research in 
this field, we also provide information on open datasets, source resources, challenges, and potential research directions. As 
far as we know, this paper represents the first comprehensive survey that focuses specifically on the overall architecture of 
traffic forecasting.

Keywords Traffic forecasting · Graph neural network · Traffic data

1 Introduction

With the ongoing growth of urban populations, transporta-
tion problems in major cities, such as traffic congestion [1, 
2] and air pollution [3, 4], are becoming increasingly severe. 
Intelligent transportation systems (ITS) are emerging as a 
crucial infrastructure in developing smart cities, and traf-
fic forecasting plays a significant role in its advancement. 

Conducting early intervention through traffic prediction can 
enhance the efficiency of urban transport systems, guide 
scheduling, and staff preallocation.

Accurate traffic prediction requires traffic big data as its 
support and foundation. Bello et al. [5] and Zhang et al. [6] 
had identified the five characteristics of big data, referred to 
as 5 V features, including large volume, large velocity, large 
variety, veracity, and value. The 5 V features highlight the 
notable increase in data volume. Specifically, traffic data 
is a sort of big data. It also has the feature of multi-source, 
heterogeneity, and multi-modal, which are all from differ-
ent sources, such as sensors installed on the road (e.g., loop 
detectors), transactions in urban public transportation sys-
tems (e.g., bus or subway), smartphones equipped with GPS 
receivers, etc. Furthermore, traffic big data exhibits vari-
ous forms of data representation, encompassing text, video, 
numbers, and symbols. Therefore, how to perceive, collect, 
and manage traffic big data is a significant issue. Besides, 
analyzing and exploiting the value of traffic big data presents 
another significant challenge.

In recent decades, numerous studies have been conducted 
to address the aforementioned challenges in traffic forecast-
ing. Early, traffic forecasting was directly treated as a time 
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series, and thus, there were many traditional time series 
forecasting methods applied here, e.g., Auto-Regressive 
Integrated Moving Average (ARIMA) [7]. Later, machine 
learning methods of data-driven models like Support Vector 
Regression (SVR) [8] were employed to handle more com-
plex traffic data. Even though these models are built accord-
ing to strict mathematical theories, the performance of these 
models heavily relies on feature engineering and is often 
limited by the feature representation capacity. Consequently, 
their performance in real-world applications remains unsat-
isfactory due to the reliance on certain unrealistic assump-
tions. To overcome these limitations, many researchers 
have turned to deep learning techniques for modeling high-
dimensional spatio-temporal data. For example, Recurrent 
Neural Networks (RNNs) (e.g., LSTM [9], Gated Recurrent 
Unit (GRU) [10]) have been utilized to capture the temporal 
feature of traffic data. Additionally, Convolutional Neural 
Networks (CNNs) have been applied to represent the spatial 
features of grid-based traffic data effectively. More recently, 
Graph Convolutional Networks (GCN) have gained popular-
ity for learning spatial correlations in graph-based data.

There have been numerous surveys on traffic forecast-
ing[11–20], but few studies focus on the holistic archi-
tecture of traffic forecasting. As depicted in Fig. 1, for 
traffic prediction, researchers generally first analyze the 
characteristics of traffic data. Subsequently, they consider 
how to design a model that can effectively capture spa-
tial and temporal features. Finally, they devote attention 
to developing a loss function that enables accurate traf-
fic prediction. In light of the above pipeline, we aim to 
present a comprehensive overview based on the overall 
architecture of traffic forecasting. To be more specific, 

our initial analysis mainly focuses on traffic data collec-
tion, traffic data formats, and traffic data characteristics. 
Then, we conclude the methods of spatial representation 
modeling, temporal representation modeling, and spatio-
temporal representation modeling, respectively. Lastly, we 
summarize the specific prediction tasks related to traffic 
data, such as traffic flow forecasting, traffic speed forecast-
ing, traffic demand forecasting, and other hybrid traffic 
forecasting.

The contributions of this work are listed as follows: 

1. We summarize and analyze traffic forecasting tasks by 
considering the overall architecture, including traffic 
data analysis, traffic data modeling, and traffic forecast-
ing applications.

2. We review the open datasets and source resources for 
traffic forecasting.

3. The existing problems and challenges of traffic forecast-
ing are presented, and the future research direction and 
idea are also discussed.

The rest of this paper is organized as follows: In Sect. 2, 
the paper introduces related surveys and traffic forecasting 
tasks. Sect. 3 shows traffic data analysis, including traffic 
data collection, traffic data formats, and traffic data charac-
teristics. Traffic data modeling is explored in Sect. 4. The 
applications of traffic forecasting are introduced in Sect. 5. 
Section 6 provides public datasets for traffic forecasting. 
Sect. 7 discusses the challenges of the current traffic fore-
casting models and presents the future research directions. 
Section 8 is the conclusion of this paper.

Fig. 1  The overall architecture of traffic forecasting
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2  Related Work

In this section, we first make related surveys about traf-
fic forecasting and then discuss the distinctions between 
existing surveys and our work. Additionally, we provide a 
preliminary about traffic forecasting, categorizing it into 
single-step and multi-step forecasting tasks.

2.1  Related Survey

The existing traffic forecasting surveys can be divided 
into three categories: deep learning-based, graph neural 
network-based, and task-based reviews. The deep learning-
based short-term traffic forecasting was roughly classified 
into five generations in [15]. Three deep learning model 
categories for traffic forecasting were highlighted, includ-
ing grid-based, graph-based, and multivariate time series 
models in [14]. The data preparation process methods and 
five traffic forecasting models were concluded in [16]. 
This survey covered spatio-temporal datasets collection 
technology, urban map division, and other various traffic 
data issues (e.g., data missing, data imbalance, and data 
uncertainty) as three traffic data preparation process meth-
ods. Moreover, it provided five traffic forecasting methods: 
statistics-based methods, machine-based methods, deep 
learning-based methods, reinforcement learning-based 
methods, and transfer learning-based methods. Yin et al.
[17] reviewed traditional and deep learning methods for 
traffic forecasting. The traffic prediction techniques were 
categorized into four groups in [18], including machine 
learning, computational intelligence, deep learning, and 
hybrid methods. Traffic volume prediction and speed pre-
diction problems were discussed in [19]. The models were 
only divided into statistical models, machine learning-
based methods, and graph neural networks-based methods.

Due to the spatial graph structure being non-Euclidean, 
graph neural networks and their variants have emerged 
to represent the spatio-temporal relation in traffic predic-
tion. Recently, many surveys about graph neural networks 
for traffic prediction have been conducted. The spatio-
temporal graph neural network models were divided into 
graph convolutional recurrent neural network, fully graph 
convolutional network, graph multi-attention network, and 
self-learning graph structure in [11]. A GNN-based traf-
fic forecasting survey was given in [12], which discussed 
diverse traffic forecasting applications, such as traffic flow 
forecasting, traffic speed forecasting, traffic demand fore-
casting, and other hybrids. Jiang et al. [13] summarized 
open data and big data tools applied in traffic estimation 
and prediction, provided different data types that are 
utilized for traffic estimation and forecasting tasks, and 

opened a new GPS trajectory dataset for further research. 
Jin et al. [20] introduced spatio-temporal graph data gen-
eration methods and the deep-learning architectures in 
spatio-temporal graph neural networks (STGNN). It also 
thoroughly analyzed existing STGNN methods for tempo-
ral learning, spatial learning, and spatio-temporal fusion. 
Further, it examined some recently emerging approaches 
that integrated STGNN with other advanced learning 
frameworks. It mainly focused on STGNNs in various 
fields, including public safety, healthcare, transportation, 
environment, climate, and others.

In conclusion, as is mentioned in Table 1, these existing 
surveys mainly focus on methods or task classification with-
out delving into the overall architecture of traffic forecasting. 
The differences between our study and existing surveys are 
that we present the overall architecture of traffic forecasting, 
including traffic data analysis, traffic data modeling, and traf-
fic forecasting applications.

2.2  Traffic Forecasting

Traffic forecasting is an essential component of intelligent 
transportation systems, which generally predict the future 
traffic state (e.g., traffic speed, traffic flow, traffic demand, 
etc.) at a particular time interval when given historical 
observed data and other related external data. Traffic fore-
casting tasks are usually classified into short-term forecast-
ing [21, 22] and long-term forecasting [23, 24] based on 
prediction time interval length. The time interval of short-
term traffic forecasting is generally 5 min or 15 min, and the 
time interval of long-term traffic forecasting is 1 h or even 
more. In addition, according to the number of the predic-
tion time interval, traffic prediction tasks can be divided into 
single-step traffic prediction [21, 22] and multi-step traffic 

Table 1  Comparison between this and other related surveys

Survey Deep 
learning-
based

GNN-based Task-based Overall 
architecture-
based

Bui et al. [11] ✓ ✓ ✗ ✗
Jiang et al. [12] ✓ ✓ ✓ ✗
Jiang et al. [13] ✓ ✓ ✓ ✗
Jiang et al. [14] ✓ ✓ ✗ ✗
Lee et al. [15] ✓ ✗ ✗ ✗
Xie et al. [16] ✓ ✓ ✗ ✗
Yin et al. [17] ✓ ✗ ✗ ✗
George et al. 

[18]
✓ ✗ ✗ ✗

Boukerche 
et al. [19]

✓ ✓ ✓ ✗

Jin et al. [20] ✓ ✓ ✓ ✗
This survey ✓ ✓ ✓ ✓
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prediction tasks [23–25], which is shown in Fig. 2. We intro-
duce the concepts of single-step traffic prediction in Defini-
tion 1 and the multi-step traffic prediction problem addressed 
in traffic prediction tasks in Definition 2.

Definition 1 (Single-step Traffic Prediction) Given historical 
observed traffic data of n time steps X = (xt−n, xt−n+1, ..., xt) , 
single-step traffic prediction problem aims to predict traffic 
data in the next time interval t + 1.

Definition 2 (Multi-step Traffic Prediction) Given observa-
tions of historical time steps X = (xt−n, xt−n+1, ..., xt) , multi-
step traffic prediction problem targets to predict traffic data 
of the next m time steps, denoted as Y = (xt+1, xt+2, ..., xt+m).

3  Traffic Data Analysis

Before designing traffic prediction models, researchers 
are usually required to obtain traffic data, investigate the 
feature/pattern of traffic data, and mine existing issues of 
traffic data. Therefore, in this section, we initially ana-
lyze traffic data collection scenes and summarize various 
approaches to address different data preprocessing issues. 
Secondly, we conclude two traffic data formats and dis-
cuss distinctions between traffic region data and point data. 
Finally, we present traffic data characteristics and provide 
some examples. As the Fig. 3 is shown.

Fig. 2  the example of single-
step prediction and multi-step 
prediction

Fig. 3  Traffic data analysis for traffic forecasting
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3.1  Traffic Data Collection

Many sensors have been deployed in the real world. Traffic 
data is mainly collected by urban sensing or automatic fare 
collection. Traffic data collection is mainly derived from 
fixed urban sensing, mobile urban sensing, and passive urban 
sensing. Firstly, surveillance installed on the road collects 
traffic speed and traffic flow data, which is a kind of fixed 
urban sensing. Secondly, share-bike or taxi-driven vehicles 
in the city collect traffic speed and traffic flow data, which 
is a kind of fixed urban sensing. Moreover, transactions in 
urban transportation systems and smartphones equipped 
with GPS receivers are passive urban sensing.

3.1.1  Traffic Data Pre‑processing

The collected traffic data face biased samples, data sparsity, 
and data missing challenges. To deal with these problems, 
researchers developed many models for data pre-processing 
[26].

For biased samples of traffic data, Zhou et  al. [27] 
designed a causal spatio-temporal graph learning framework 
(CauSTG) to achieve invariance in spatio-temporal data. For 
data sparsity, Liu et al. [28] proposed contrastive learning 
methods that introduced four data augmentation methods 
for spatio-temporal graph prediction. For data missing, main 
works contain traditional machine learning methods (e.g., 
Principal Component Analysis (PCA) [29], Matrix or Tensor 
Factorization (MF or TF) [30]) and deep learning methods 
[31, 32]. On the one hand, some scholars employ RNN and 
its variants to cope with traffic missing data imputation. For 
instance, kong et al. [31] developed a dynamic graph convo-
lutional recurrent imputation network (DGCRIN) to impute 
missing traffic data. On the other hand, the adversarial learn-
ing method is integrated to traffic missing data imputation. 
Yuan et al. [32] proposed generative loss and center loss to 
minimize reconstructed errors of imputed entries and ensure 

each imputed entry and its neighbors conform to local spa-
tio-temporal distribution.

3.2  Traffic Data Formats

Based on data formats of traffic data, which are categorized 
into traffic region data and traffic point data, as is shown in 
Fig. 4. Traffic region data is like the grid data [33]. Traffic 
point data can include sensors and subway/bus stations [19].

The difference between traffic region data and traffic point 
data is that they are in different spatial dimensions. The for-
mer is in a regular grid form, while the latter is irregular. 
Therefore, it can be considered that traffic region data is a 
special form of traffic point data when it is regularly dis-
tributed in spatial dimensions. That is, traffic point data is a 
more general representation than traffic region data.

To sum up, among the two typical traffic data, traffic 
region data is the more special type of traffic data because 
of its arrangement rules in time and space dimensions. 
Traffic point data is a kind of spatio-temporal data that is 
irregularly arranged in spatial dimensions, and it is a more 
general representation than traffic region data. Therefore, 
the relationship between traffic region data and traffic point 
data is from special to general. Thus, this paper adopts the 
idea of ’from special to general’ and gradually summarizes 
the related work of two kinds of traffic data.

3.3  Traffic Data Characteristic

Based on the characteristics of traffic data, traffic data 
can be categorized into multi-source data, heterogeneity, 
multi-modal data, and complex spatio-temporal depend-
ence. Researchers primarily utilize traffic big data from 
various sources, including sensors like loop detectors 
deployed in the city, transactions in urban public trans-
portation systems, and smartphones equipped with GPS 
receivers. The structure of traffic big data is diverse, with 
heterogeneous data such as non-linear spatial data and 

Fig. 4  The example of traffic 
data formats



 L. Peng et al.

different traffic patterns. Non-linear spatial data refers to 
station relations that are not regular and can be located 
anywhere, similar to a graph. Different traffic patterns 
indicate that various stations exhibit distinct travel pat-
terns at different times. For instance, residential areas may 
have a strong correlation with business areas in the morn-
ing but correlate with shopping malls in the evening due 
to people returning home after dinner. Additionally, traf-
fic big data encompasses various data types, such as text, 
video, numbers, and symbols [34]. Traffic data represents 
typical spatio-temporal data constantly changing with time 
and space, resulting in multi-scale temporal relationships 
and dynamic, evolutive spatial relationships. Among them, 
temporal correlation mainly refers to the changes in traffic 
status over time, resulting in data showing a certain degree 
of proximity, periodicity, and trend. The spatial correlation 
is manifested as the mutual influence of traffic conditions 
between various nodes of the urban road network. Besides, 
the functional semantics of a city can also affect its spa-
tial relationships, resulting in nodes at longer distances 
exhibiting similar spatial patterns due to the same urban 
functions. The spatial relation also keeps the local and 
global correlation, such as road and region.

In addition, traffic data is also susceptible to external 
factors such as weather, emergencies, holidays, etc., fur-
ther increasing the complexity of traffic data. To sum up, 
how to design an effective traffic model to obtain spatio-
temporal correlations after traffic data analysis is the main 
problem for traffic data mining.

4  Traffic Data Modeling

Traffic data is a kind of spatio-temporal data contains spa-
tial and temporal dimensions. Thus, we categorize traffic 
data modeling into three groups: spatial representation, 
temporal representation, and spatio-temporal representa-
tion. The spatial representation generally deals with grid 
data or graph data. Scholars usually employ convolution 
neural networks to learn the feature of grid data and learn 
complex and dynamic spatial dependencies of graph data 
through graph neural networks or their variants [35–42]. 
The temporal representation treats time as sequence data, 
researchers usually utilize RNN[43], TCN[44], Causal 
TCN or their variants [45, 46]. The spatio-temporal rep-
resentation means that models can simultaneously cap-
ture spatial and temporal features simultaneously, such as 
STSGCN [47] and STJGCN [48]. Finally, we also discuss 
research about the combination of spatio-temporal with 
other promising methods, such as Meta-learning[49], 
ODE[23], Self-supervised learning [28], Continue learn-
ing [50] and so on.

4.1  Spatial Representation

In this section, we summarize methods of spatial represen-
tation from two parts, namely, spatial structure and spatial 
model.

4.1.1  Spatial Structure

The spatial structure of traffic region data is regular and a 
kind of grid data. For traffic point data, spatial relationships 
are irregular and dynamic in different time dimensions, 
exhibited through graph structure. The spatial information 
incorporates some latent semantic features except for inher-
ent geographic features. Thus, many researchers mainly 
focus on traffic graph construction. We summarize traffic 
graph as static graphs[35–39], virtual graphs [35, 39–42, 
51], hierarchical graph [53, 54, 57], or dynamic graphs [55, 
56, 58–61], which are discussed in this survey and the exam-
ple is shown in Fig. 5.

The physical graph, adjacency graph, and neighborhood 
graph are static graphs that can capture station geographic 
information. Static graphs are constructed from real-world 
transportation systems, such as road networks and urban 
public transportation systems. The functional similarity 
graph (e.g., POI), temporal pattern similarity graph (e.g., 
Dynamic Time Warping, DTW), distance graph, origin–des-
tination graph, and heuristic graph are virtual graphs, which 
mainly mine the similarity of different nodes or the implicit 
nodes relation from various aspects. Hierarchical graphs can 
construct the natural hierarchical structure of traffic systems 
and reflect the interaction between micro and macro lay-
ers (e.g., road segments and regions). Dynamic graphs are 
primarily generated from data to tackle the uncertainty of 
spatial dependence, where node connections evolve with dif-
ferent temporal dimensions.

We make detailed summaries about diverse traffic graph 
definitions and provide how to construct the various traffic 
graphs in the existing works. We also provide references for 
each type of traffic graph in Table 2. 

Table 2  The summary of traffic graph

No Graph types Reference

1 Static graph [35–38, 41, 42]
2 Distance graph [37, 39, 40]
3 Functional similarity graph [35, 36, 39, 42, 51]
4 Temporal pattern similarity graph [39, 52]
5 Origin–destination graph [35–37, 42]
6 Heuristic graph [39]
7 Hierarchical graph [53, 54]
8 Dynamic graph [39, 55, 56]
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1. Static Graph: The static graph represents geographic 
connections. Neighbor matrix At can be defined as fol-
lows: 

 where At
ij
 means an element in adjacency matrix at time 

t, vi and vj are different nodes in the graph. The different 
works treat the static graph as different names, such as 
physic graph [35], neighbourhood graph [36, 38] and 
adjacency graph [37, 41, 42].

2. Distance Graph: The traffic patterns of adjacent sta-
tions can be highly correlated. For example, residents 
within a region may have similar daily travel patterns. 
Thus, the distance graph is an important factor for traffic 
prediction based on the perspective of geography. The 
distance weight matrix D is calculated using a Gaussian 
Kernel [62] as follows: 

 where DS(vi, vj) indicates the shortest travel distance 
between different stations vi and vj , � is the standard 
deviation of travel distances. There are different distance 
graph representation types, such as travel distance graph 
[37] and distance graph [39, 40].

3. Functional Similarity Graph: Generally, locations 
with similar functionalities or utilities (e.g., shopping 

(1)At
ij
=

{
1, if vi and vj are adjacent,

0, otherwise.

(2)Dij = exp

(
−
DS(vi, vj)

2

�2

)

malls, schools, parks, hospitals, etc.), have strong spatio-
temporal correlations. Geng et al. [36] defined the func-
tional similarity graph As by using the POI similarity. 
The formulation is below: 

 where Pvi
 , Pvi

 are the POI vectors of regions vi and vi 
respectively, Sim(.) is similarity function. Moreover, 
Shao et al. [39] enhanced functional similarity graph WF

ij
 

by using Pearson correlation coefficients [63] to con-
struct the global contextual function similarity graph. 

 where K is the total number of functions, then the vector 
of the number of global contextual similarity functions 
of vertex vi is indicated as Fi =

{
fi,1, fi,2, ..., fi,k, ..., fi,K

}
 . 

The function similarity graph is designed in these works 
[35, 36, 39, 42, 51]

4. Temporal Pattern Similarity Graph: The existing 
works mainly utilized the DTW algorithm [52] to cap-
ture temporal similarities among traffic time series of 
different node pairs. The similarity score S(i, j) between 
station i and j is as follows: 

(3)As
ij
= Sim(Pvi

,Pvj
) ∈ [0, 1]

(4)WF
ij
∶=

⎧
⎪⎨⎪⎩

∑K

k=1 (fi,k−F̄i)(fj,k−F̄j)√∑k

i=1 (fi,k−F̄i)
2
√∑k

j=1 (fj,k−F̄j)
2

if i ≠ j,

0, otherwise.

(5)S(i, j) = exp(−DTW(Xi,Xj))

Fig. 5  The example of traffic 
graph
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 Moreover, Shao et al. [39] used Pearson correlation 
coefficients [63] to design temporal similarity matrix 
WT , which is as follows: 

5. Origin–Destination Graph: The origin–destination dis-
tribution of ridership is vital for traffic prediction. Thus, 
Liu et al. [35] defined a correlation ratio matrix C, the 
formulation is as follows: 

 where OD(i, j) is the total number of passengers that 
travel from station j to station i. The origin–destination 
graph has various names, such as correlation graph [35, 
42], transportation connectivity [36], population flow 
graph [37].

6. Heuristic Graph: To utilize heuristic knowledge and 
human insights, Shao et al. [39] defined a new graph 
model called the heuristic graph. The formulation is as 
follows: 

 The distribution distance is calculated by the Euclidean 
distance dH

ij
=

√(
�1 − �2

)2
+
(
�1 − �2

)2 . �2
H

 is a param-
eter to adjust the distribution of WH

ij
.

7. Hierarchical Graph: Guo et al. [53] constructed the 
interaction between micro and macro layers of GCNs, 
which integrated the different scales of features of road 
segments and regions for improving traffic forecasting 
performance.

8. Dynamic Graph: Xie et al. [55] employed a dynamic 
graph relationship learning module to learn dynamic 
spatial relationships between metro stations without a 
predefined graph adjacency matrix.

4.1.2  Spatial Model

We summarize the existing spatial representation methods 
and divide them into five categories: Grid-based methods, 
GNN-based methods, Attention-based methods, Multi-graph 
fusion methods, and Graph learning-based methods. We 
describe the details of the spatial modeling methods for the 
above five categories. 

(6)WT
ij
∶=

⎧
⎪⎨⎪⎩

∑P

p=1 (ti,p−T̄i)(tj,p−T̄j)√∑P

i=1 (ti,p−T̄i)
2
√∑P

j=1 (fj,p−T̄j)
2

if i ≠ j,

0, otherwise.

(7)C(i, j) =
OD(i, j)∑N

k=1
OD(i, k)

(8)WH
ij
∶=

⎧⎪⎨⎪⎩

exp

�
−

���dHij
���
2

�2
H

�
for i ≠ j,

0, otherwise.

1. Grid-Based Methods: Traffic region data and image-
like data have certain similarities in the data structure, 
and a region can be regarded as a pixel in the image. 
Therefore, Convolutional Neural Networks (CNNS), 
which have made breakthroughs in the field of image 
processing, have also been applied to representation 
learning of traffic region data, that is grid-based spa-
tial representation methods. For example, Zhang et al. 
[64] proposed an ST-ResNet model based on residual 
convolution unit for crowd flow forecasting. Guo et al. 
[65] developed a spatio-temporal three-dimensional con-
volution neural network (ST-3DNet) to extract spatio-
temporal features from traffic grid data. Some scholars 
combined CNN and LSTM to present a novel convolu-
tion long and short-time memory network (ConvLSTM)
[66] to process spatio-temporal grid data. In general, 
these methods can learn effective feature representations 
by capturing temporal and spatial correlation in traffic 
grid data due to the powerful expressive ability of CNN.

2. GNN-Based Methods:  Traffic point data is an irregu-
lar structure in the spatial dimension. Traditional CNN 
models cannot be directly used for representation learn-
ing of traffic graph data. Recently, due to graph convolu-
tion networks’ strong ability to represent graph structure 
features, there are many GNN-based methods for traffic 
prediction. GNNs leverage a neighborhood aggregation 
strategy to sample and aggregate neighboring nodes fea-
tures [67–69]. DCRNN [43] viewed traffic flow patterns 
as a diffusion process and utilized bidirectional random 
walks to learn spatial dependency on a directed graph. 
This is the first attempt to combine GNNs with RNNs 
for traffic forecasting. STGCN [44] developed an inte-
gration of GNNS and CNN to capture spatio-temporal 
correlation for traffic forecasting, which is a typical art 
for GNNs and CNN-based traffic forecasting.

3. Attention-Based Methods: After the GNN-based 
works, some researchers employ attention mechanisms 
to capture complex and dynamic spatial and temporal 
correlation. For instance, GMAN [24] leveraged atten-
tion mechanisms to capture spatial and temporal rela-
tionships for traffic forecasting. ASTGCN [70] employed 
spatial attention, temporal attention, and graph convolu-
tion network to extract dynamic spatio-temporal depend-
encies for traffic prediction.

4. Multi-Graph Fusion Methods: As is mentioned in 
Sect. 4.1.1, scholars designed manifold traffic graphs to 
learn various spatial features. How to integrate multiple 
traffic graphs is crucial for accurate traffic prediction. 
In this survey, we classify multi-graph fusion methods 
into three groups: static and virtual graph fusion meth-
ods, static graph and dynamic graph fusion methods, 
and static, virtual, and dynamic fusion methods. Firstly, 
there are many static and virtual graph fusion methods 
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[35–38, 40]. Geng et al. [36] designed neighborhood 
graph, functional similarity graph, and transportation 
connectivity to explicitly model the complex spatial 
relation and leveraged the contextual gated RNN to learn 
the temporal relation. For the second class, Li et al. [56] 
proposed the static graph and dynamically generated 
graph fusion to model complex and dynamic spatial 
features and used the RNN model to capture temporal 
information for traffic forecasting. For the third class, 
Shao et al. [39] constructed a static graph and four vir-
tual graphs, then fused the five graphs into the dynamic 
learned graph to capture the spatial feature.

5. Graph Learning Methods: The graph structure is 
dynamic with different time series. Thus, a lot of graph 
learning works emerge. We divide graph learning meth-
ods into two groups: adaptive graph learning methods 
and graph generation methods. For adaptive graph 
learning works, they adaptively learn graph node fea-
tures and spatial dependencies. For example, AGCRN 
[71] developed two adaptive modules to automatically 
learn node features and spatial dependencies. Wu et al. 
[72] designed an adaptive matrix to extract the hidden 
spatial dependency for traffic forecasting, which opened 
up graph learning research direction and brought a 
significant impact in traffic forecasting domains. For 
graph learning methods, they dynamically generate 
traffic graphs in different time dimensions to capture 
dynamic spatial correlation. For instance, Wu et al.[45] 
employed node embedding and edge relation learning to 
represent dynamic spatial dependencies. Ye et al. [46] 
designed a graph learning method based on multi-scale 
temporal dependency to learn the evolution of spatial 
relations, and the proposed model could reduce graph 
learning parameters. Zhang et al. [73] utilized static 

structure learning to generate shared spatial structure 
and employed dynamic structure learning to model the 
unique structure of each node.

As is shown in Fig. 6, scholars first divide the city into 
several grids and utilize deep learning-based approaches 
to learn grid-based spatial correlation [33]. However, 
deep learning-based methods can’t deal with non-Euclid-
ean spatial dependencies. Thus, the GNN-based study 
emerges to capture complex graph structure features, such 
as DCRNN [43] by combining GNN and RNN, STGCN 
[44] with integrating GNN and CNN for traffic prediction. 
Afterwards, some researchers develop attention-based 
methods to model spatio-temporal relations. The above 
works mainly concentrate on the single or static graph. 
They can’t represent complex and implicit spatial features. 
Therefore, multi-graph fusion methods are employed to 
construct various graph structures (e.g., Virtual Graph 
[35], Hierarchical Graph [53]) and fuse diverse graph 
structures to learn spatial dependencies. Traffic patterns 
are not the same for different stations/nodes, and spatio-
temporal dependencies are dynamic and evolve in different 
time series. So graph-learning traffic prediction methods 
are applied to achieve accurate traffic prediction through 
node embedding and edge relation learning [45].

4.2   Temporal Representation

In this section, we review methods of temporal representa-
tion from two parts, namely, temporal feature and temporal 
model.

Fig. 6  A timeline of important research on spatial model for traffic prediction
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4.2.1  Temporal Feature

Temporal features are categorized into closeness, periodic-
ity, trend, daily, weekly, and holiday. The closeness is that 
the neighboring time series traffic trend can not change dra-
matically. As is shown in Fig. 7a, the traffic trend of adjacent 
days has only slight changes and is relatively stable. The 
periodicity is that traffic patterns are periodic fluctuations 
during different time scales. As is shown in Fig. 7b, each 
weekday’s traffic patterns are similar and present the perio-
dicity. The trend means traffic patterns have some fluctua-
tion rule, such as the trend is increased during the morn-
ing peak. As shown in Fig. 7c, traffic flow on each Monday 
has a growth trend and a downward trend on each Saturday. 
The daily means the last day’s traffic pattern may be similar 
to the next day’s traffic pattern, which can be observed in 
Fig. 7d. The weekly relation in traffic patterns may be simi-
lar among weekdays and weekends, which can be illustrated 
in Fig. 7d. The traffic trend can change significantly on dif-
ferent holidays, as depicted in Fig. 7f.

4.2.2  Temporal Model

Traffic data is a typical time series data. Compared to 
time series data, 1) traffic data possesses not only tempo-
ral attributes such as closeness, periodicity, and trend but 
also exhibits intricate spatial relationships that are dynamic, 
heterogeneous, and hierarchical. Therefore, it is necessary 
for traffic data prediction models to incorporate spatial and 
temporal information learning simultaneously. It is worth 
mentioning that certain multivariate time series prediction 

techniques that take spatial representation into account can 
apply to traffic prediction. For instance, MTGNN [45] and 
ESG [46] have shown impressive results on specific traffic 
datasets. However, these studies primarily focused on learn-
ing dynamic spatial features while neglecting other criti-
cal spatial attributes of traffic data, such as heterogeneity 
and hierarchy. Therefore, it is imperative to meticulously 
design specialized models that accurately represent spatial 
heterogeneity and hierarchy. 2) In some domains, such as 
electricity, incorporating spatial modeling is not required for 
predicting time series tasks. In fact, including spatial rep-
resentation can even degrade the model’s performance [74, 
75]. These models are also unsuitable for traffic forecasting 
as they do not consider complex spatial modeling. In this 
section, we conclude the temporal representation methods 
as RNN-based, TCN-based, Causal TCN-based, and Self-
attention-based methods. 

1. RNN-Based Methods: RNN-based methods are tra-
ditional methods that regard temporal dimension as 
sequence data. Early RNN and its various variants were 
widely utilized to represent temporal features. Ye et al. 
[38] employed three long short-term memory network 
(LSTM)-based modules to learn three temporal proper-
ties (e.g., closeness, daily periodicity, weekly trend) of 
target stations. Zhang et al. [33] designed three resid-
ual networks to learn the closeness, period, and trend 
properties for traffic forecasting. Liu et al. [35] lever-
aged GRU to capture temporal features. Yao et al. [66] 
learned the spatial relations and the temporal correla-
tions with CNN and LSTM [76] modules, respectively. 

Fig. 7  The example of temporal feature
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Zhao et al. [77] leveraged GRU to learn dynamic tempo-
ral dependence for traffic forecasting. RNNs have been 
extensively utilized in different research on traffic pre-
diction for temporal learning. Nonetheless, these models 
have a notable drawback: the recurrent structures require 
the computation of sequences at each time step, result-
ing in a significant increase in computational cost and a 
subsequent decrease in model efficiency. Compared to 
RNN and its variants, Temporal Convolutional Networks 
(TCN) can effectively tackle this issue with their parallel 
1D-CNN structures.

2. TCN-Based Methods: TCN-based methods employ 
parallel 1D-CNN structures to capture temporal features. 
Zhao et al. [77] proposed a temporal graph convolutional 
network for temporal representation, which combined 
GNN with gated RNN for traffic forecasting. STGCN 
[44] designed gated temporal convolutions to learn sig-
nificant temporal features. Although TCN is an efficient 
parallel neural architecture for time series learning, it 
does not consider the temporal order of spatio-temporal 
graph data and multi-scale temporal features. In con-
trast, Causal Tcn-based methods can explicitly model 
the causal relation of temporal data and learn multi-scale 
temporal dependencies.

3. Causal TCN-Based Methods: Causal TCN-based 
methods mainly integrate the difference kernel size 
convolution operators to get more extensive temporal 
features. Wu et al. [72] applied the dilated causal con-
volution to model temporal features of nodes. Wu et al. 
[45] modified 1D convolutions with different convolu-
tional kernels to capture temporal patterns of multiple 
frequencies. Ye et al. [46] employed the dilated con-
volution to obtain multi-scale temporal features. While 
Causal TCN-based methods effectively capture the 
causal and multi-scale relation of time series, they fall 
short of adequately representing long-range temporal 
dependencies.

4. Self-Attention-Based Methods: Self-attention-based 
methods are designed to achieve long-time series predic-
tion, which are popular methods for long-range temporal 
representation. The typical model is Transformer [78]. 
Grigsby et al. [79] employed the transformer to learn 
longer temporal information. STDGRL [55] leveraged 
the transformer to model long-range temporal dependen-
cies.

In conclusion, RNN-based methods [33, 35] can obtain 
sequence features of temporal dimensions. However, RNN-
based methods rely on the output aggregated from the 
previous time step at each time step, making it difficult to 
parallelize calculations. Thus, TCN-based temporal repre-
sentation methods [44, 77] are employed to learn the tempo-
ral features by parallel 1D-CNN structures. Considering the 

causal affection and multi-scale attribute, causal TCN-based 
methods [45, 46, 72] are proposed to learn the broader range 
receptive field and obtain multi-scale temporal features. 
Furthermore, self-attention-based methods such as Trans-
former [78] are designed to capture long-range temporal 
representation.

4.3  Spatio‑Temporal Representation

We analyze spatio-temporal representation methods of two 
types: spatio-temporal modeling simultaneously and spatio-
temporal with other advanced technologies. To capture the 
spatio-temporal dependencies simultaneously, Song et al. 
[47] developed a spatio-temporal GNN model to learn 
localized and heterogeneous spatio-temporal dependencies 
synchronously. For the combination of spatio-temporal with 
other advanced algorithms, we divide it into four classes: 
Meta-learning-based methods, ODE Network-based meth-
ods, Self-supervised-based methods, and continuous Learn-
ing-based methods. 

1. Meta-Learning Based Methods: To extract the traffic 
meta-knowledge and learn the diversity of spatio-tempo-
ral correlations, some scholars employ Meta-learning for 
traffic prediction. For instance, Fang et al. [49] designed 
two meta-learning-based modules to fuse multi-source 
external data with temporal and spatial features. ST-
MetaNet [80] utilized a meta graph attention network to 
learn complex spatial correlations.

2. Ordinary Differential Equation (ODE) Network-
based Methods: Graph convolutional networks gener-
ally perform better by using more stacks of layers, while 
the performance suffers a decrease from the depth of 
layers. Inspired by neural ODE network [81], Fang et al. 
[23] designed the tensor-based ordinary differential 
equation network to learn spatio-temporal relationships 
dynamically. To combine continuous modeling and neu-
ral ODE network, Jin et al. [82] integrated a neural ODE 
network with GNN for traffic forecasting.

3. Self-Supervised Based Methods: To solve data scar-
city and heterogeneity issues, some researchers consider 
using self-supervised learning for traffic prediction. For 
example, Liu et al. [28] integrated contrastive learning 
with spatio-temporal GNN networks to improve the 
accuracy and robustness of traffic forecasting. It had a 
strong generalization ability and could be a plug-in for 
many existing spatio-temporal methods. SPGCL [83] 
maximized the distinctive gap between positive and neg-
ative samples and constructed an optimal graph with a 
self-paced strategy for traffic forecasting. Ji et al. [84] 
proposed a spatio-temporal contrastive learning frame-
work, which could better represent traffic patterns and 
capture traffic data heterogeneity features.
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4. Continual Learning Based Methods:  Continual 
learning, also named life-long learning and incremental 
learning, can train the model sequentially by stream-
ing increased data from different tasks. Chen et al. [50] 
introduced continual learning to obtain efficient updates 
and effective prediction for streaming traffic data.

In summary, it’s crucial to mine the spatio-temporal data 
characteristics, discover traffic patterns based on traffic data, 
and leverage suitable and promising technology (e.g., ODE, 
Contrastive learning, Continual learning) to model the effec-
tive traffic prediction framework.

5  Traffic Forecasting Applications

Traffic prediction contains various applications. Here, we 
summarize the main applications of the existing traffic pre-
diction work, including traffic flow forecasting, traffic speed 
forecasting, traffic demand forecasting, and other hybrid traf-
fic forecasting. We also sort out and analyze the typical study 
for traffic forecasting in Table 3.

5.1  Traffic Flow Forecasting

Traffic flow typically connects to the number of vehicles, 
crowds, and passengers passing through a particular space, 
such as a road segment, sensor point deployed on the road, 
or bus/subway station in an observed time interval. Accurate 
traffic prediction can help to reveal real-time traffic demands 
and be critical for traffic management, public safety, route 
planning, line scheduling, and staff preallocation.

For spatial representation of traffic flow forecasting, 
researchers usually utilize grid-based [33], multi-graph 
[35] and dynamic graph methods [55]. For instance, Zhang 
et al. [33] partitioned cities into regular grid maps based on 
geographical coordinates and organized the collected traffic 
data as Euclidean 2D or 3D tensors, so that CNNs can be 
applied to extract spatial topologies. Du et al. [85] designed 
a hybrid multi-modal learning method to learn spatio-tem-
poral dependencies for short-term traffic flow forecasting 
jointly.

These grid-based methods are suitable for predicting 
traffic region data but cannot model the non-linear graph 
structure. Therefore, several multi-graph fusion methods are 
proposed to learn the spatial physical and semantic informa-
tion. For example, PVCGN [35] could effectively capture 
complex ridership correlation from tailored traffic graphs. 
Specifically, a physical graph was directly constructed based 
on the real-world station topology connection. In addition, a 
similarity graph and a correlation graph as complementary 
graphs were designed to reveal the similarity and correlation 
of inter-station passenger flow. This paper incorporated a 
static graph and two virtual graphs into the graph convolu-
tion gated recurrent unit to learn the spatio-temporal rela-
tion and applied a fully connected gated recurrent unit (FC-
GRU) to model the global evolution information. Finally, a 
Seq2Seq model with GC-GRU and FC-GRU was employed 
for metro ridership forecasting.

This particular method of predicting traffic by combin-
ing multiple graphs relies on predefined spatial dependen-
cies, which are based on prior knowledge. However, the 
spatial relationships between traffic data constantly evolve 
at different time steps. Therefore, Xie et al. [55] designed 
a dynamic graph convolutional network to learn spatial 

Table 3  The typical work for 
traffic forecasting

Applications Model Spatial representation Temporal representation

Traffic flow forecasting HMDLF [85] Grid-Based GRU 
ST-ResNet [33] Grid-Based LSTM
PVCGN [35] Multi-Graph GRU 
STDGRL [55] Graph Learning Transformer
STGR [86] GCN LSTM

Traffic speed  forecasting DCRNN [43] GCN GRU 
STGCN [44] GCN TCN
MTGNN [45] Graph Learning Causal TCN
STSGCN [47] GCN TCN
STGODE [23] ODE TCN
GMAN [24] Graph Attention Transformer

Traffic demand forecasting ST-MGCN [36] Multi-Graph GRU 
DSTGNN [58] Dynamic Graph Transformer
ESG [46] Graph Learning Causal TCN
CCRNN [87] GCN GRU 
ST-SSL [84] Contrastive Learning Contrastive Learning
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features, leveraged transformer to obtain long-range tem-
poral information, and employed gated fusion to combine 
spatial features and temporal dependencies for urban subway 
station passenger flow forecasting.

The typical methods for temporal representation of traffic 
flow forecasting are RNN and its variants for short-term traf-
fic flow prediction [35, 85, 86]. and the self-attention-based 
methods for long-term traffic flow prediction [55]. Li et al. 
[86] utilized the GNN and residual lstm for the traffic flow 
prediction. First, this paper calculated the correlation coef-
ficient with min-max normalization to remove spatial hetero-
geneity. Then, it employed z-score transformation to elimi-
nate daily periodicity for stronger temporal auto-correlation.

In addition, some researchers regard traffic flow predic-
tion as a service-level/line-level task [88, 89]. For example, 
Luo et al. [89] proposed a spatio-temporal hashing multi-
graph convolution network, where two types of sub-graphs 
were constructed from perspectives of physical adjacency 
and semantic similarity, respectively. This model explic-
itly captures spatio-temporal dependencies among bus sta-
tions/lines. Luo et al. [88] designed the MDL-SPFP model 
to jointly predict the arriving bus service flow, line-level 
on-board passenger flow, and line-level boarding/alighting 
passenger, which combines three modules, attention mecha-
nism, residual block, and multi-scale convolution, to capture 
various complex non-linear spatio-temporal dependencies 
well.

Below, we discuss the differences among the passenger 
flow forecasting tasks at station, line, and bus service lev-
els. The passenger flow forecasting at the station level is 
to predict the passenger flow of each station without dis-
tinguishing the passenger flow of different lines, while the 
passenger flow at the line level is to distinguish the passen-
ger flow of different stations on different lines, which is a 
more fine-grained passenger flow forecasting. The passenger 
flow forecast of bus service level will further distinguish 
the passenger flow of different stations, lines, and vehicles. 
Therefore, the ridership prediction at the line/bus service 
level will incorporate additional prior knowledge, such as 
the specific line and vehicle information. Moreover, regard-
ing spatio-temporal modeling, the inclusion of intermediate 
hubs and their influence will be considered.

5.2  Traffic Speed Forecasting

Traffic speed is generally based on the average speed of vehi-
cles through certain locations, such as a sensor point in the 
observed time interval. This task is mainly about vehicles, 
researchers develop spatio-temporal modeling methods to 
predict the speed of vehicles, which is beneficial for travel 
planning.

For the spatial representation of traffic speed forecast-
ing, sensors installed on the highway road are irregular. The 

different sensors are connected through a graph structure. 
Thus, scholars generally use graph neural networks to cap-
ture the spatial correlation for traffic speed prediction. For 
the temporal representation of traffic speed forecasting, some 
TCN-based [44], causal TCN-based methods [45, 46] are 
proposed to capture different receptive temporal features. 
For instance, Liu et al. [43] proposed a bidirectional dif-
fusion convolution framework to model spatial depend-
ency and a sequence-to-sequence architecture with GRU 
was employed to extract temporal dependency for traffic 
speed forecasting. This is a pioneering work of traffic speed 
prediction based on the graph neural network. Afterward, 
researchers established different models based on the dis-
tinct characteristics of traffic speed data. To learn spatio-
temporal relations synchronously, STSGCN [47] elaborately 
constructed a spatio-temporal synchronous modeling mech-
anism to learn localized spatio-temporal correlations and 
designed multiple modules with different periods to model 
spatio-temporal heterogeneity for traffic speed forecasting.

Due to shallow GNNs incapable of capturing long-range 
spatial correlations, Fang et al. [23] developed a tensor-
based ordinary differential equation (ODE) network to model 
spatio-temporal dependencies for traffic speed forecasting. 
This work applied deeper networks to learn spatio-temporal 
features synchronously, which constructed a semantical 
adjacency matrix to obtain spatial features and elaborately 
designed a temporal dilated convolution structure to extract 
long-term temporal dependencies. To obtain the dynamic 
spatio-temporal dependencies, Lu et al. [90] combined the 
graph sequence neural network with a horizontal attention 
mechanism and a vertical attention mechanism to process 
graph sequences for traffic speed prediction.

5.3  Traffic Demand Forecasting

Traffic demand is the number of passengers with pick-up or 
drop-off demands, such as ride-sharing, taxi, or bike sharing, 
for a particular region in the observed time interval. Accu-
rate traffic demand prediction can help to guide an efficient 
disposition of supplies.

For the spatial representation of traffic demand fore-
casting, scholars usually employ grid-based [85], multi-
graph fusion [36], and dynamic graph methods [58]. For 
the temporal representation of traffic demand forecasting, 
general methods are RNN and its variants [36, 91]. Early, 
Du et al. [91] designed a dynamic transition CNN to obtain 
spatial distributions for traffic demand forecasting and to 
learn dynamic demand evolution. This grid-based traffic 
demand prediction method utilizes deep learning methods 
to model the spatial and temporal correlation. Then, Geng 
et al. [36] constructed a neighboring graph, a functional 
similarity graph, and a transportation connectivity graph to 
learn the non-Euclidean spatial dependencies. This work is 
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a grid-based spatial structure. The neighborhood graph was 
designed based on spatial proximity. The functional simi-
larity was used by point-of-interest similarity vectors. The 
transportation connectivity was constructed based on the 
connection through motorways, highways, or public trans-
portation. It utilized GNN to learn the three graph features 
fused the outputs and applied a contextual gated RNN to 
model temporal features for ride-hailing demand forecasting. 
This study employs various predefined geographic adjacency 
or other function graphs to represent the complex spatial 
semantic information, but it ignores the dynamic spatial and 
temporal modeling. Therefore, Huang et al. [58] developed a 
dynamical spatial-temporal GNN model to achieve the traffic 
demand prediction task.

5.4  Other Hybrid Traffic Forecasting

Besides the above three classes of traffic forecasting tasks, 
we summarize the other hybrid traffic forecasting tasks, such 
as traffic accident forecasting and delay time forecasting. 

1. Traffic Accident Forecasting: The target of traffic acci-
dent forecasting is to predict the traffic accident numbers 
in the history time series. Wang et al. [51] designed a 
model to learn spatio-temporal dependencies from geo-
graphical and semantic perspectives for traffic accident 
forecasting. Zhou et al. [92] constructed a unified frame-
work to solve urban accidents sparse issues from finer 
granularities and multiple steps aspects for traffic acci-
dent forecasting.

2. Delay Time Forecasting: The delay time of certain lines 
in the railway system is vital for urban public transporta-
tion management. Heglund et al. [93] utilized the sub-
graph idea and constructed a graph-based formulation 
of a subset of the British railway network to predict the 
cascading delay time of the railway.

6  Public Datasets

To facilitate the participation and contribution of other 
researchers, we collect and organize manifold relevant open 
datasets about traffic forecasting tasks. A detailed descrip-
tion of these open datasets is provided in the following. The 
list of traffic forecasting datasets is shown in Table 4. 

 1. TaxiBJ [33]: This dataset contains the taxi inflow and 
outflow generated from more than 34,000 taxicab GPS 
data in Beijing from Jul 1st, 2013 to Oct 30th, Mar 
1st, 2014 to Jun 30th, 2014, Mar 1st, 2015 to Jun 30th, 
2015 and Nov 1st, 2015 to Apr 10th, 2016. This grid-
based dataset has 32 × 32 grids, and the taxi flow data 
are counted every 30 min.

 2. SHMetro [35]: This dataset records 811.8 million 
transaction records of the metro system in Shanghai. 
It contains 288 metro stations and 958 physical edges. 
The time is from Jul 1st, 2016, to Sep 30th, 2016. The 
time interval of each station’s inflow and outflow is 
15 min.

 3. HZMetro [35] This dataset records 58.75 million 
transaction records of the metro system in Hangzhou. 
It contains 80 stations and 958 physical edges. The 
time slice size of each station inflow and outflow is 
15 min. The time is from January 1 to January 25, 
2019.

 4. SHSpeed [94]: This dataset contains 10-minute traffic 
speed data for taxi trajectory data from 1 April 2015 to 
30 April 2015. It includes 156 urban road segments in 
the central area of Shanghai.

 5. METR-LA [43]: This dataset contains traffic speed 
or volume derived from the Los Angeles County road 
network highway. It involves 207 loop detectors. The 
time slice is 5 min. The time is from Mar 1st, 2012 to 
Jun 30th, 2012.

Table 4  The list of traffic forecasting datasets

Application Datasets URL

Traffic flow forecasting TaxiBJ [33] https:// github. com/ luckt roy/ DeepST/ tree/ master/ scrip ts/ papers/ AAAI17
SHMetro [35] https:// github. com/ ivech an/ PVCGN
HZMetro [35] https:// github. com/ ivech an/ PVCGN

Traffic speed forecasting SHSpeed [94] https:// github. com/ xxArb iter/ grnn
METR-LA  [43] https:// github. com/ liyag uang/ DCRNN
LargeST [96] https:// github. com/ liuxu 77/ Large ST
PeMS http:// pems. dot. ca. gov/

Traffic demand forecasting Bike-NYC [91] https:// www. citib ikenyc. com/ system- data
Taxi-NYC [91] https:// www. nyc. gov/ html/ tlc/ html/ about/ trip_ record_ data. shtml

Other traffic forecasting T-drive [95] https:// www. micro soft. com/ en- us/ resea rch/ publi cation/ t- drive- traje 
ctory- data- sample/

https://github.com/lucktroy/DeepST/tree/master/scripts/papers/AAAI17
https://github.com/ivechan/PVCGN
https://github.com/ivechan/PVCGN
https://github.com/xxArbiter/grnn
https://github.com/liyaguang/DCRNN
https://github.com/liuxu77/LargeST
http://pems.dot.ca.gov/
https://www.citibikenyc.com/system-data
https://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/
https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/
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 6. Performance Measurement System (PeMS):  This 
dataset contains over 18,000 vehicle detector stations 
from the freeway system from all major metropolitan 
areas of California. The time is from 2001 to 2019. 
The samples are collected every 30 s and aggregated 
to 5 min. Each record includes a timestamp, station 
ID, district, freeway, direction of travel, total flow, and 
average speed.

 7. Bike-NYC [91]:The dataset derives from the NYC 
Bike system and involves 416 stations. The period is 
from 1st Jul. 2013 to 31st Dec. 2016.

 8. Taxi-NYC [91]: The taxi trip collects from both the 
yellow and green taxis in New York and records pick-
up and drop-off dates/times, pick-up and drop-off loca-
tions, trip distances, itemized fares, rate types, payment 
types, and driver-reported passenger counts for each 
trip. The time is from 2009.

 9. T-drive [95]: This dataset contains many taxicab tra-
jectories derived from 30,000 taxis in Beijing. The 
time is from Feb 1st, 2015, to Jun 2nd, 2015. It is uti-
lized to learn smart driving directions and provide a 
user with the practically fastest route to a given desti-
nation at a given departure time.

 10. LargeST [96]: This is a large-scale traffic forecasting 
dataset with 8,600 sensors, which consist of sensor ID, 
latitude, longitude, district, country, highway location, 
lane, type, direction. It’s divided into three subsets, 
including Greater Los Angeles (GLA), Greater Bay 
Area (GBA), and San Diego (SD). This dataset pro-
vides a vital foundation for large-scale traffic predic-
tion research.

7  Challenges and Future Directions

In this section, we discuss some general challenges for traffic 
forecasting tasks. Besides we also present the possible future 
research directions.

7.1  Challenges

We have investigated the realms of traffic data analysis, 
traffic data modeling, and its various applications. Despite 
the notable progress made in traffic prediction, several chal-
lenges remain that demand attention. We have outlined these 
challenges below: 

1. Heterogeneous Data: Traffic forecasting tasks can lev-
erage traffic data and external factors, such as weather 
and POI, to train the model. However, traffic data is 
usually confronted with missing data, sparse data, and 

noise. Therefore, heterogeneous traffic data fusion has 
been a challenging problem in the traffic domain.

2. Multi-task Prediction: In traffic forecasting fields, a 
multi-task model usually integrates all traffic informa-
tion and jointly trains multiple transportation forecasting 
models. For instance, Li et al. [97] employed knowledge 
adaption to adaptive learn the knowledge from a sta-
tion-intensive source to station-sparse sources for traffic 
demand prediction. Wang et al. [98] developed continual 
learning to train the model sequentially when data from 
various tasks obtains in a streaming manner. The main 
challenges are how to model the diverse data formats 
and the various inherent spatio-temporal correlations in 
different traffic forecasting tasks.

3. Model Interpretability: Machine learning, deep learn-
ing, and graph convolution network models have been 
highly successful in learning complex traffic data for 
traffic forecasting. However, these models are black 
box and end-to-end models, lacking interpretability and 
explainability, which have received increasing attention. 
While there have been studies on the explainability of 
Graph Neural Networks (GNN) in other domains [99–
101], there is still limited research in the traffic predic-
tion area. Therefore, a primary challenge lies in applying 
explainability techniques to the task of traffic forecasting 
[102, 103].

7.2  Future Directions

In this section, we suggest the following directions for fur-
ther investigation in traffic prediction. 

1. Large-Scale Graph-Based Traffic Forecasting: Most 
of the existing studies mainly consider how to deal with 
small-scale traffic graph data. However, many monitor-
ing/stations in the smart city can construct a large-scale 
traffic graph. Therefore, it is essential to design a model 
to handle the traffic prediction task of a large-scale traf-
fic graph.

2. Self-Supervised Based Traffic Forecasting: Graph 
contrastive learning has been verified effective for 
improving the performance of deep learning models 
[104], especially, data augmentation for GNNs has been 
identified as useful for semi-supervised node classifi-
cation task [105]. However, graph contrastive learning 
has been explored less for spatio-temporal graphs. In 
particular, temporal dependencies and adaptive data 
augmentation are not utilized in existing graph aug-
mentation methods. Thus, adaptive data augmentation 
techniques can be leveraged to identify the importance 
of edges/nodes to boost the performance of traffic fore-
casting.
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3. Knowledge Guided Traffic Forecasting: In traffic big 
data, there is a lot of traffic knowledge, such as explicit 
or implicit traffic knowledge. The explicit traffic can be 
the external data, such as weather, air quality, POI, etc. 
The implicit traffic knowledge is defined as the hidden 
or latent knowledge, such as traffic potential fields [84, 
106], traffic causal knowledge [107], traffic knowledge 
graph [108–111], etc. How to mine, represent, and inte-
grate traffic knowledge is a hot direction for accurate 
traffic forecasting.

4. Large Model Guided Traffic Forecasting: In the urban 
spatio-temporal prediction domain, Huawei company 
proposed the Pangu large model [112] for weather fore-
casting, which employed a three-dimensional deep net-
work to handle the complex weather pattern. The traffic 
data is multi-source (e.g., weather, accidents, etc.) and 
multi-modal, number, image, video, etc.). Thus, how to 
integrate the large model with traffic data to achieve traf-
fic prediction is a promising research direction.

8  Conclusion

This paper presented a comprehensive review of the over-
all architecture of traffic forecasting. We first summarized 
related survey works about traffic prediction, pointed out 
the differences between our study and these existing sur-
veys, and gave the traffic forecasting preliminary. Then, three 
critical parts of traffic forecasting were summarized: traffic 
data analysis, traffic data modeling, and traffic forecasting 
applications. We investigated traffic data from traffic data 
collection, traffic data formats, and traffic data character-
istics. Moreover, we reviewed traffic data modeling from 
spatial representation, temporal representation, and spatio-
temporal representation. The applications of traffic forecast-
ing were discussed, including traffic flow forecasting, traffic 
speed forecasting, traffic demand, and other hybrid traffic 
forecasting. Furthermore, we provided the latest collection 
of open datasets for traffic forecasting. The challenge and 
future direction were also further pointed out in the follow-
ing research.
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