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Abstract
The cold-start problem in recommender systems has been facing a great challenge. Cross-domain recommendation can 
improve the performance of cold-start user recommendations in the target domain by using the rich information of users in 
the source domain. In cross-domain cold-start recommendation, users in target domain lack sufficient historical behaviors. 
Existing meta-learning-based methods depend on the feature distribution of training data and limit the adaptability in new 
tasks. To address these issues, we propose a meta-adversarial framework for cross-domain cold-start recommendation 
(MAFCDR) . Specifically, we employ a multi-level feature attention mechanism for independently learning the weights of 
long-term and short-term features to construct preferences of users in source domain. To migrate user representations, we 
train a meta-adversarial network that utilizes feature embeddings in the source domain as input and enhances the robust-
ness and stability of the model. Then, the personalized bridge function transfers the user preferences in the source domain 
to the target domain. We build three cross-domain tasks using Amazon dataset and conduct extensive experiments, which 
demonstrate the effectiveness of the proposed model in cold-start user recommendation.

Keywords Cross-domain recommendation · Cold-start recommendation · Multi-level attention · Meta-learning · 
Adversarial learning

1 Introduction

As the amount of information rapidly increases, recommen-
dation systems have become an important tool for informa-
tion filtering. They help users discover products and services 
that they may be interested in. Recommendation systems 
have achieved great success in modeling their preferences 
and intentions by taking advantage of users’ recent and long-
term behaviors. Existing methods usually use recurrent neu-
ral networks [1, 2] and attention mechanisms [3, 4] to model 
user preferences based on historical interaction sequences. 

However, there are two serious challenges in recommenda-
tion systems, namely data sparsity and cold-start problems 
[5]. Cold-start users have few or no interaction items, and 
cross-domain recommendation [6] has attracted widespread 
attention from academia and industry by leveraging the 
rich user behaviors in the source domain to help the target 
domain make recommendations, thereby alleviating the data 
sparsity and cold-start problems.

In recent years, a promising solution in cross-domain 
recommendation is to connect the source domain and the 
target domain by learning the bridge function which can 
transfer the appropriate knowledge across two domains. For 
example, the EMCDR [6] model trains a bridge function 
shared by all users to achieve knowledge transfer from the 
source domain to the target domain. However, it utilizes a 
shared bridge function, which not only fails to reflect users’ 
personalized recommendations, but also reduces the accu-
racy of recommendations, and can be considered as a coarse-
grained method. On the one hand, the relationship between 
user preferences in source domain and that in target domain 
is complex and changeable, and it is difficult for a single 
bridge function to accurately capture the relationships of 
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all users. On the other hand, it is unstable to use only some 
active users and popular items to train the bridge function, 
and ignores a large part of important users and items, which 
makes the generalization ability weak. In order to alleviate 
these shortcomings, PTUPCDR [7] proposes to leverage 
meta-network to learn personalized bridge functions for each 
user, and achieves good results.

Despite the validity of existing approaches, these studies 
have some limitations: (1) Most cross-domain approaches 
only consider long-term interests as users’ overall pref-
erences while ignoring sequential features, and they are 
limited in modeling dynamic short-term interests. For a 
new user, his current interests through short-term behav-
iors should be modeled, and then long-term interests will 
be continually complemented and extended to the recom-
mendations. For an old user, recommender can model both 
long-term interests and short-term behaviors so as to capture 
their latest interest changes. It is important and challenging 
to adaptively fuse these two aspects. (2) Bridge functions 
learned from meta-learning are usually unstable and cannot 
be adapted to new tasks. In addition, personalized bridge 
functions may be too fine-grained and lead to overfitting 
problems. Meta-learning requires to training the model on a 
large number of similar training tasks; however, the data of 
cold-start users is very sparse and the meta-learning-based 
methods rely heavily on the feature distribution of the train-
ing data, it ignores the ability to enhance adaptation to new 
tasks. Then, the bridge functions learned from meta-learning 
cannot accurately migrate user features across two domains.

Therefore, it is an urgent problem to provide more accu-
rate recommendations for cold-start users in the target 
domain while ensuring good processing granularity and 
avoiding overfitting problems.

Considering the dynamic representation of users’ sequen-
tial interactions over the past period of time and taking 
advantage of meta-learning, we propose a meta-adversarial 
framework for cross-domain cold-start recommendation 
(MAFCDR) to solve the cold-start user recommendation 
problem. Specifically, we used Gated Recurrent Unit (GRU) 
gating to extract long short-term preferences of users in 
source domain. Then, we constructed a multi-level feature 
attention mechanism to independently learn the weights of 
long-term and short-term features. By weighing these fea-
tures, we can build the users’ interest representations. To 
transfer users’ representations, we train an adversarial meta-
network with the user’s feature embedding in the source 
domain as the input, and we obtain the model parameters 
which can be applied to different tasks through the adversar-
ial game of generators and discriminators so as to enhance 
the robustness and stability of the model. The obtained per-
sonalized parameters are used as initialization parameters 
of the bridge function, which can capture the preference 
relationships between different domains. After training, we 

input the user embeddings from the source domain to the 
bridge function generated by the meta-network, and obtain 
the transformed user embeddings. The transformed user 
embeddings are used as the initial embeddings in the target 
domain. With these initial embeddings, our method is effec-
tive for cold-start users in the target domain.

The contribution of this paper can be summarized as 
follows:

• We propose a meta-adversarial framework for cross-
domain cold-start user recommendation. Personalized 
bridge functions for each user are generated by our 
model.

• We design multi-level feature attention to extract the long 
short-term preferences of users in the source domain, and 
transfer it to the preference representations of users in the 
target domain.

• We conduct extensive experiments on three cross-domain 
tasks using the Amazon dataset to validate the effective-
ness of the proposed model.

2  Related Work

There are three lines of work that are most related to our 
work in this paper: cross-domain recommendations, cold-
start recommendations and meta-learning.

2.1  Cross‑Domain Recommendations

Cross-domain recommendations (CDRs) provide effective 
solutions for data sparsity and cold-start challenges. The 
basic idea of CDRs is to utilize the richer training data in 
source domain to improve the recommendation accuracy in 
the sparse target domain. Most of the existing CDR methods 
are based on collaborative filtering, while others use transfer 
learning-based CDR methods. Transfer learning-based CDR 
methods solve recommendation tasks in the target domain 
by transferring auxiliary knowledge that is different from but 
related to the target domain and improve the recommenda-
tion performance of the target domain. EMCDR [6] learns 
the mapping function on overlapping users, which maps 
user preferences across domains. SSCDR [8] uses overlap-
ping users as anchors to calculate the preference character-
istics of cold-start users through semi-supervised learning 
and k-nearest neighbor clustering to achieve cross-domain 
recommendation. DDTCDR [9] developed a new potential 
orthogonal mapping to extract users’ preferences in multiple 
domains while retaining the relationship between users in 
different potential spaces. Similar to the multi-task approach 
[10], these approaches focus on well-designed deep net-
work structures. In this paper, we design a framework that 
can explicitly model knowledge transfer between different 
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domains, rather than using a special deep network structure 
to implicitly transfer knowledge.

2.2  Generative Adversarial Network

Generative adversarial networks (GANs) [11] are becoming 
increasingly popular in cross-domain recommendation. Tra-
ditional GAN models usually require a lot of training data 
to learn the data distribution, especially in the case of high-
dimensional space and complex data distribution, and the 
training process is often unstable. ACDN [12] dynamically 
generates adversarial samples during training to improve 
the generalization ability of cross-domain recommender 
systems. GAR [13] tricks the recommender by adversari-
ally training the generator so that the generated cold-item 
embeddings have a similar distribution as the warm item 
embeddings. ELECRec [14] trains the generator as an aux-
iliary model with the discriminator for reasonable alternative 
items are sampled, and the trained discriminator is consid-
ered as the final model.

2.3  Meta‑learning

In recent years, the meta-learning in recommendation sys-
tems [15] has attracted people’s attention. Most of these 
works focus on scenarios with few training samples, because 
it is natural to turn these tasks into few-shot learning prob-
lems. The inspiration for meta-learning comes from the 
human learning process, which can quickly learn new tasks 
based on a small number of examples. In existing meta-
learning works, metric-based methods [16] learn metrics 
or distance functions on tasks, while model-based methods 
[17] aim to design an architecture or training process for fast 
generalization across tasks. Finally, the optimization-based 
approach [18] directly adapts the optimization method to 
achieve fast adaptation. In contrast, we consider the con-
cept of meta-learning based on parameter optimization for 

recommendation system, which can serve the personalized 
recommendation model by reflecting each user’s item inter-
actions. The optimization-based meta-learning algorithm 
considers the distribution of model N and tasks p(T). It 
attempts to find the ideal parameters of model N, as shown 
in Fig. 1. The optimization-based meta-learning algorithm 
performs local and global updates. Starting from random 
initial parameters � , the algorithm extracts several tasks from 
the distribution of tasks Ti ∼ p(T) . For each task i = 1,…T  , 
the algorithm updates the parameter � to �∗ locally by gra-
dient ∇�Li

(
f�
)
 , where T is the number of sampling tasks, 

and Li
(
f�
)
 represents the training loss of task i. After local 

updating, for all sampling tasks, the algorithm updates the 
parameter � globally based on L�

i

(
f�∗

)
 , i.e., the test loss of the 

parameter �∗ of task i, so that the globally updated param-
eters are suitable for various tasks.

The optimization-based meta-learning algorithm uses two 
sets for each task, namely support set and query set. The sup-
port set and query set are used to calculate the training loss 
and test loss on each task, respectively. In the local update 
process, the algorithm adjusts the parameters of model in 
support set (learning process). In the global update process, 
the algorithm trains the parameter (from learning to learn-
ing) by minimizing the loss of the adaptive parameter on the 
query set. When the learning-learning process reaches the 
termination condition of the previous task, the algorithm 
only accepts the support set of the new task. Using a support 
set, the model can adapt to new tasks. Note that the algo-
rithm allows not to store the parameters of each task. On the 
contrary, these parameters are calculated by the support set.

We regard each task as estimating user preferences in 
the recommendation system. Inspired by this, we propose 
a MAML-based recommendation system that can quickly 
estimate the preferences of new users based on only a few 
user-item interactions. The MAML-based recommendation 
system considers that different users have different optimal 
parameters. Therefore, our MAML-based model provides 

Fig. 1  Diagram of the opti-
mization-based meta-learning 
algorithm
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personalized recommendations for each user based on their 
unique consumption history.

3  Preliminaries

The CDR problem studied in this paper includes a source 
domain and a target domain. Each domain has a user set 
U =

{
u1, u2,…

}
 , an item set V =

{
v1, v2,…

}
 and a rating 

matrix R. rij ∈ R represents the interaction between user ui 
and item vj . In order to distinguish these two domains, the 
user set, item set and rating matrix of the source domain 
are represented as Us , Vs , Rs , respectively, and the target 
domain is represented as Ut , Vt , Rt . The set of overlapping 
user between the two domains is defined as Uo = Us ∩ Ut . 
For items, Vs and Vt are disjoint, which means that there are 
no overlapping items between the two domains.

This paper leverages the embedding method to convert 
users and items into low-dimensional dense vectors. ud

i
∈ ℝ

k 
and vd

j
∈ ℝ

k represent the embedding of user ui and item vj , 
respectively, where k represents the embedding dimension 
and d ∈ {s, t} represents the domain label. Given users’ 
behavior sequences, we can generate dense vectors that 
encode the users’ preferences and can be used (along with 
other rich features) to predict users’ preference scores for 
items in the target domain.

4  The Proposed Model

4.1  Model Framework

Inspired by adversarial learning and meta-learning research, 
we propose a novel model framework as shown in Fig. 2. 
The framework attempts to combine the long-term (static) 
and short-term (dynamic) preferences of the user for the next 
item recommendation [19].

Given user u, we first obtain his/her long and short-term 
preferences representations, i.e., pl and pe , according to his/
her behavior sequence in the source domain. Then, a multi-
level attention structure is adopted to fuse long-term and 
short-term features and we obtain a generalized user repre-
sentation pu where the contribution of long-term and short-
term features is determined by dynamic learnable weight. In 
order to capture the complex relationship between different 
user preferences in source and target domains, we propose 
an adversarial training framework containing a generator 
that generates internal model initialization parameters and a 
discriminator that maintains meta-task invariance. Through 
adversarial training, a personalized bridge function is gen-
erated between users’ embeddings in source and target 
domains. After training, we input the user embedding in 

the source domain into the bridge function and can obtain 
the transformed user embedding, which is used as the initial 
embedding in the target domain. Through the initial embed-
ding, our method is effective for cold-start users who do not 
interact in the target domain.

4.2  User Preference Learning

To capture the users’ personalized preferences, we extract 
long-term and short-term feature vectors from the users’ 
interactive sequences. In this way, our model can not only 
obtain stable long-term preferences of users, but also mine 
dynamic short-term preferences, which can improve the 
diversity and novelty of recommendations.

In this module, the users’ long-term sequences are used as 
input, and the users’ short-term preferences are captured by 
GRU gating. In order to integrate the long-term and short-
term preferences of users, we design a multi-level attention 
structure that can determine the contribution of long-term 
and short-term features of users through dynamic learnable 
weighting factors.

4.2.1  Long Short‑Term User Representation Learning

Due to the excellent performance of RNN in user sequen-
tial behavior modeling, it has attracted great attention in 

Embedding layer

GRU

1st level attention

2nd level attention

Generator

Discriminator

Support loss
Query loss

…
User interaction sequences

Support set Query set

Fig. 2  Model framework
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academia and industry in recent years. The update process 
can be defined as follows:

where g is the activation function, xk is the latest user behav-
ior, hk−1 is the last hidden state, b is the bias term, W and 
U are trainable parameters. Among all RNN-based mod-
els, LSTM (long short-term memory) and GRU are most 
commonly used in RS. Compared with LSTM, GRU has 
less ‘gating’ inside and fewer parameters than LSTM, but 
can achieve the same function as LSTM, and is easier to 
train in comparison, which can greatly improve the train-
ing efficiency. Therefore, we apply GRU to users’ historical 
interactive sequences to extract short-term preferences. The 
equations are as follows:

where ri ∈ Rd and zi ∈ Rd are gates controlling past and 
present information, Wr,Wz,Wh̃

∈ Rd×(d+1) are learnable 
weights, �(⋅) is a sigmoid function, [⋅, ⋅] denotes a connec-
tion, ⊗ denotes element-wise multiplication, and the initial 
hidden state h0 is zero-initialized.

The short-term user preferences extracted by GRU are 
obtained by linear transformation using the output hidden 
layer state hi as follows:

where W ∈ Rd and b ∈ Rd are learnable parameters.
As long-term preferences are inherent and static, we 

directly use the item sequence embedding of user interaction 
as the user’s long-term preference, denoted as pl.

4.2.2  Long Short‑Term Preference Fusion

The users’ long-term preferences and short-term preferences 
reflect different aspects of information, and their dimensions 
are not exactly the same. We cannot simply use weighted 
summation to fuse them.

In this work, we use attention mechanisms [20] to address 
this problem. Attention-based models can not only capture 
the relationships between different components, but also 
selectively construct features to emphasize key information 
and weaken redundant information. In this paper, to describe 
user interests more carefully, we design a multi-level atten-
tion structure to determine the contribution of long-term 
and short-term features by dynamically learnable weight-
ing factors.

(1)hk = g
(
Wxk + Uhk−1 + b

)
,

(2)

ri = 𝜎
(
Wr ⋅

[
hi−1, Su

])
, zi = 𝜎

(
Wz ⋅

[
hi−1, Su

])
,

h̃i = tanh
(
Wh̃ ⋅

[
ri ⊗ hi−1, Su

])
,

hi =
(
1 − zi

)
⊗ hi−1 + zi ⊗ h̃i,

(3)pe = W ⋅ hi + b,

We first augment the long-term feature representation 
using a first-level attention mechanism to capture key item 
information, then apply second-level attention to assign 
different weights, thus fusing the user representations are 
obtained. The first-order attention formula is as follows:

where p′

l
 denotes the embedding obtained after the first-

level attention mechanism and W1 denotes the dynamically 
learned weight parameter.

Long-term user representations correspond to long-term 
preferences, while short-term user representations indicate 
dynamic and recent preferences. These two types of rep-
resentations are complementary and their fusion may have 
a stronger expressive power. After obtaining the enhanced 
long-term user preferences, in order to further determine the 
proportion of cross-domain long-term preferences and short-
term preferences, i.e., which of them occupies the majority 
in users’ preferences, we use second-level attention to help 
make judgements.

For more details, we calculate these weighting parameters 
using the following equations.

where V1,V2,V3 ∈ R
Dh×Dpl are matrix parameters that imple-

ment the dimensional mapping, h1, h2, h3 ∈ RDh are vector 
parameters, and �1,�2,�3 are scalar parameters.

It is worth noting that the weight is calculated with 
exp (⋅) , which makes W∗ may be greater than 1. This is a 
relatively benign consideration, because these weights can 
compensate for dimension differences to some extent. Of 
course, dynamic learning can be less than 1 if necessary.

4.3  Meta‑adversarial Training Process

The relationship between user preferences in different 
domains varies from user to user, and thus the process of 
preference transfer needs to be personalized. Intuitively, 
there is some connection between preference relationships 
and user characteristics, and existing approaches use meta-
networks to capture this relationship [7, 21, 22]. However, 
the distribution of tasks for meta-learning is often complex 
and variable, with very sparse data in each task, which 
makes the parameters learned by the meta-network unsta-
ble and cannot be adapted to new tasks, thus reducing the 
recommendation performance. To address this problem, 

(4)p
′

l
= W1pl,

(5)pu = W2pl
′

+W3pe,

(6)

W1 = exp
(
h1

TReLU
(
V1 ⋅ pl

)
+ 𝜑1

)
,

W2 = exp
(
h2

TReLU
(
V2 ⋅ [pl

′ ⊕ pe]
)
+ 𝜑2

)
,

W3 = exp
(
h3

TReLU
(
V3 ⋅ [pl

′ ⊕ pe]
)
+ 𝜑3

)
,
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we propose a meta-adversarial network in which the gen-
erator takes the users’ transferable features as input and 
generates different model parameters for different tasks, 
while the discriminator discriminates whether the gener-
ated parameters have ‘task invariance,’ i.e., whether the 
parameters can maintain a certain stability across tasks. If 
the ‘task invariance’ is maintained, the discriminator will 
give positive feedback; otherwise, the discriminator will 
give negative feedback. We use a multilayer perceptron 
(MLP) to construct the encoder and discriminator.

Formally, for a given user feature pui , we apply the fol-
lowing procedure to obtain the initial parameters of the 
personalized bridge function:

where the generator is a two-layer feedforward network 
parameterized by �

The loss of generators is:

In order to make the generated personalized parameters 
applicable to various tasks, we let the discriminator iden-
tify � as false parameters to deceive the generator so that 
the generator learns shared features of multiple tasks during 
training, and is able to continuously improve the genera-
tor’s ability, and continuously adapt to the specific needs 
of the current task by iterative adversarial methods. Then, 
the bridge function can more accurately transfer user prefer-
ences to the target domain in the face of new tasks.

The discriminator is defined as Eq. 9

where the discriminator is a two-layer feedforward network 
parameterized by � , and � is the parameter generated by the 
generator.

The purpose of the discriminator is to predict whether 
� is a ‘real’ or ‘generated’ parameter. Since the generated 
parameters are eventually used to transfer the user repre-
sentation, we directly use the embedded representation of 
the user in the target domain as the real sample to train the 
discriminator. The discriminator is trained with a binary 
cross-entropy loss as follows:

The discriminator loss is calculated as Eq. 10.

The adversarial loss is shown in Eq. 11.

(7)pG
(
� ∣ pui

)
MLP enc

(
pui ;�

)
,

(8)Lgen = −

N∏

i=1

(
� = ut

i

)
log

(
pG(�)

)
.

(9)pD
(
�, ut

i

)
= MLP dis (�;�),

(10)
L dis =

N∑

i=1

−
∏(

� = ut
i

)
log

(
pD

(
ut
i

))

−
∏(

� ≠ ut
i

)
log

(
1 − pD(�)

)
.

With the adversarial approach, the meta-generator and the 
meta-discriminator can contribute to each other and improve 
the generative power of the generator. After obtaining the 
personalization parameters for the adaptation task, a bridge 
function is used to transfer the user preferences in the source 
domain to the target domain. The bridge function can be 
defined as any structure, and since the multilayer perceptron 
(MLP) can learn more complex features, improve training 
speed and accuracy, and also fine-tune on less data, it can 
perform better in new domain. We migrate user preferences 
directly using the trained generator as a bridge function and 
� will be used as a parameter to the generator instead of an 
input. The generated bridge function varies from user to user 
and depends on the user’s characteristics.

The users’ embedding representations in the source domain 
are sent to the bridge function to obtain the transformed user 
embedding representation. The transformed embedding rep-
resentation is considered as the initial embedding of the user 
in the target domain.

The transformed personalized user embedding can be 
obtained through the bridge function:

where us
i
 denotes the embedding of user ui in the source 

domain, ût
i
 denotes the transformed user personalized 

embedding. Finally, ût
i
 is used for prediction.

Existing bridge-based methods [21, 23] directly utilize the 
transformed user embedding ût

i
 to minimize the loss. However, 

due to the limited number of items for some cold-start user 
interactions, the user embedding ut

i
 may be unreasonable and 

inaccurate, and the learned unreasonable embedding can nega-
tively affect the model. Therefore, we utilizes a task-oriented 
optimization approach to optimize the whole model.

To train the model, we use a task-oriented training proce-
dure directly using the ratings of the final recommendation 
task as the optimization objective. The loss function can be 
formulated as follows:

where Rt
o
=
{
rij|ui ∈ Uo, vj ∈ Vt

}
 denotes the interaction of 

overlapping users in the target domain, rij the true rating of 
user i on item j, and r̂ij is the prediction rating.

In the end, we combine the two loss functions by a linear 
interpolation to obtain the hybrid loss function:

where � is a hyper-parameter to control the relative impor-
tance of each loss function.

(11)L adv = L gen + L dis .

(12)ût
i
= MLPenc

(
us
i
;𝜃
)
,

(13)Lrec =
1

|Rt
o
|
∑

rij∈R
t
o

(
rij − r̂ij

)2
,

(14)L = �Lrec + (1 − �)Ladv,
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4.4  Training

The meta-network should be optimized for a large number of 
training tasks. We put this concept into the model to reflect 
personalized user preferences with only a small amount of 
interaction. The model of this paper considers the user’s con-
sumption history, constructs M(M > 10 ) group training task. 
We randomly select 10 items in the sequence as the query 
set, and the rest is the support set. That is, in order to reflect 
the user’s interest, the model updates the parameters in the 
meta-adversarial network according to the user’s unique con-
sumption history. In addition, unlike MAML [24], this paper 
extends the idea of matching networks [25] without limiting 
the length of the project consumption history, i.e., the length 
of the support set is not fixed.
Algorithm 1  Meta-adversarial networks (MAN) for parame-
ter-generated meta-learning

We denote the parameters of the generator and discrimina-
tor as � and � , respectively, and during each meta iteration, a 
meta-batch is first sampled from the meta-training dataset, then 
trained internally on that task, locally updating the parameters 
of the generator and discriminator by computing L and per-
forming a gradient descent step on the support set as follows:

where 𝛼 > 0 and 𝛽 > 0 are the step sizes (learning rate) of 
the gradient descent. This local update can be considered as 
a personalized iteration, which can be repeated several times. 
Now we have new generators and discriminators and then 
globally update the pre-trained model on the new interac-
tion sequence based Lrec , the purpose of this process is to 
find the ideal parameters to obtain good recommendation 
performance after several local updates for all users.

(15)

� ⟵ � − �∇�

∑

i=B

�Ladv

��
,

� ⟵ � − �∇�

∑

i=B

�Ladv

��
,

The meta-optimization is performed on the generator 
and discriminator parameters, i.e., � and � , while the goal 
is to use the updated generator to generate the personal-
ized parameters � used for migrating preference. In fact, the 
purpose of the meta-phase is to optimize the parameters of 
the task-oriented meta-adversarial network so that a set of 
one or a small number of gradient steps simulating a cold-
start user will yield the most effective behavior on a real-
world cold-start user. Finally, we obtain the overall training 
algorithm, i.e., Algorithm 1, for the model, which allows 
updating the meta-parameters by small batches of stochastic 
gradient descent.

5  Experiments

This section evaluates the proposed framework for solv-
ing cold-start user problems under different tasks. Firstly, 
the experimental setup and baselines are introduced. Then, 
extensive experiments are conducted on the Amazon dataset.

5.1  Experimental Setup

5.1.1  Datasets

The Amazon review dataset [26] is one of the most widely 
used public datasets for e-commerce recommendations, and 
this paper uses the Amazon-5 core dataset with at least five 
ratings per user or item. The dataset contains 24 different 
item domains. Three popular categories are chosen for this 
paper: movies_and_tv (movies), cds_and_vinyl (music) and 
books (books). Three CDR tasks are defined: task 1: mov-
ies→music, task 2: book→movies and task 3: books→music. 
As shown in Table 1, the number of ratings in the source 
domain is significantly larger than the number of ratings in 
the target domain. Unlike many existing works that select 
only a portion of the dataset for evaluation, this paper uses 
all the data directly to simulate real-world applications.

5.1.2  Evaluation Metrics

Firstly, to measure the regression predictive ability of the 
model, we select MAE and RMSE as evaluation metrics. 
Then, to verify the ranking ability of the model, we select 
AUC and NDCG@10 as evaluation metrics. They are widely 
used in recommender system to evaluate the performance 
of model.
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5.1.3  Baseline Models

The baselines can be divided into two groups: single domain 
and cross domain. In the first group, the source and target 
domains are considered as single domains respectively, and 
the popular matrix factorization (MF) method is utilized. 
The second group includes state-of-the-art CDR methods 
for cold-start users. As the proposed model belongs to the 
bridge-based CDR methods, this paper focuses on compar-
ing the proposed model with the bridge-based methods. 
Therefore, the following methods are chosen as the baselines 
for comparison.

Single domain:

• TGT: TGT [27] is a MF model, trained using only target 
domain data.

• CMF: CMF [28] is an extension of MF. In CMF, the 
user’s embedding vector can be shared across source and 
target domains. Cross-domain:

• SSCDR: SSCDR [8] is a method based on semi-super-
vised bridge.

• DCDCSR: DCDCSR [21] belongs to a bridge-based 
approach, which considers the sparsity of individual 
users’ ratings in different domains.

• EMCDR: EMCDR [6] is a commonly used cold-start 
CDR method. MF is first used to learn the embedding, 
and then the network is used to connect the user embed-
ding from source domain to target domain.

• RecGURU: RecGURU [29] learns users’ long short-term 
preference through adversarial training, achieving infor-
mation sharing and cross-domain collaboration in user 
representations.

• ELECRec: ELECRec [14] is a generative task. The gen-
erator is trained as an auxiliary model with the discrimi-
nator to sample reasonable alternatives, and the trained 
discriminator is considered as the final RS model.

• PTUPCDR: PTUPCDR [7] belongs to the bridge-based 
cold-start CDR approach, which generates a personalized 
bridge function by using a meta-network of user feature 
embeddings and enables personalized preference transfer 
for each user.

5.1.4  Implementation Details

The proposed framework is implemented by PyTorch. For 
each task and method, the initial learning rate of the Adam 
[30] optimizer is tuned by a grid search in the range {0.001, 
0.005, 0.01, 0.02, 0.1}. In addition, the dimensionality of 
the embedding is set to 10. For all methods, the small batch 
size is set to 512. The same fully connected layer is used 
to facilitate comparison of EMCDR, DCDCSR, SSCDR, 
PTUPCDR and MAFCDR, where the mapping function for 
MAFCDR is generated by a meta-network. The meta-net-
work is a two-layer linear model with hidden cells of 2 × k , 
where k denotes the embedding dimension, and the output 
dimension of the meta-network is k × k.

To evaluate the performance of the proposed model, a 
portion of the overlapping users are then removed from the 
target domain and they are used as test users, while the rest 
of the overlapping user samples are used to train the meta-
learner. In the experiments, the proportion of test (cold-start) 
users � is set to 20%, 50% and 80% of the total overlapping 
users. Overlapping users with item consumption history 
lengths between 13 and 100 are selected in the training data. 
For each overlapping user in the training data, 10 random 
items from the interactive sequences are used as the query 
set and the rest of the items are used as the support set, i.e., 
length of item consumption history is the value between 3 
and 90, which shows good performance even though the 
length of the support set is not fixed.

5.2  Comparative Experiments

Tables 2 and 3 show the performance of MAFCDR on the 
three cross-domain recommendation tasks. For each task, 
we report the average results of five random runs. The best 
performance is shown in bold. ∗ indicates 0.05 level paired 
t test of MAFCDR against the best baseline. The Improve 
column indicates improvement relative to the best baseline. 
The following observations can be made from the experi-
mental results.

• TGT is a single-domain model that uses only data from 
the target domain and its performance is not satisfactory. 
Compared to TGT, all other cross-domain methods can 
utilize data from the source domain, resulting in better 
results. Therefore, utilizing data from source domains 

Table 1  Cross-domain task 
information

CDR tasks Domain Item User Rating

Source Target Source Target Overlap Source Target Source Target

Task1 Movie Music 50,052 64,443 18,031 123,960 75,258 1,697,533 1,097,592
Task2 Book Movie 367,982 50,052 37,388 603,668 123,960 8,898,041 1,697,533
Task3 Book Music 367,982 64,443 16,738 603,668 75,258 8,898,041 1,097,592
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is an effective way to alleviate data sparsity and can 
improve the performance of target domain recommen-
dations.

• CMF uses auxiliary data by combining data from dif-
ferent domains into a single domain, while the CDR 
approach is specifically designed. It can be observed that 
the CDR method can outperform CMF for most tasks, 

this is because CMF ignores potential domain shifts 
by treating the data from both domains as identical. In 
contrast, the bridge function can transform the source 
embedding into the target feature space, effectively alle-
viating the effect of domain shifts. It is therefore essen-
tial to investigate CDR by making more effective use of 
auxiliary domains.

Table 2  Regression performance comparison of different models on 3 cross-domain tasks

β (%) Metric TGT CMF DCDCSR SSCDR EMCDR RecGURU ELECRec PTUPCDR MAFCDR Improve (%)

Task 1 20 MAE 4.4803 1.5209 1.4918 1.3017 1.2350 1.2320 1.3084 1.1504 0.9998* 13.10
RMSE 5.1580 2.0158 1.9210 1.6579 1.5515 1.5545 1.5539 1.5195 1.3421* 11.68

50 MAE 4.4989 1.6893 1.8144 1.3762 1.3277 1.3696 1.4662 1.2903 1.1740* 9.02
RMSE 5.1736 2.2271 2.3439 2.0105 1.8021 1.6640 1.8258 1.7546 1.6266* 7.30

80 MAE 4.5020 2.4186 2.7194 1.8247 1.6851 1.7154 1.7624 1.6006 1.5013* 6.21
RMSE 5.1891 3.0936 3.3065 2.5901 2.3154 2.2160 2.2208 2.2107 2.1363* 3.37

Task 2 20 MAE 4.1831 1.3632 1.3971 1.2390 1.1162 1.0404 1.3350 1.0740 0.9479* 11.75
RMSE 4.7536 1.7918 1.7346 1.6526 1.4120 1.2598 1.5544 1.3829 1.2314* 10.96

50 MAE 4.2288 1.5813 1.6731 1.2137 1.1832 1.2434 1.7134 1.1014 0.9770* 11.30
RMSE 4.7920 2.0886 2.0551 1.5602 1.4981 1.4921 1.9152 1.4395 1.2896* 10.42

80 MAE 4.2123 2.1577 2.3618 1.3172 1.3156 1.2243 1.6470 1.1999 1.0718* 10.68
RMSE 4.8149 2.6777 2.7702 1.7024 1.6433 1.5801 1.9126 1.5916 1.4585* 8.37

Task 3 20 MAE 4.4873 1.8284 1.8411 1.5414 1.3524 1.4467 1.5834 1.2681 1.0736* 15.34
RMSE 5.1672 2.3829 2.2955 1.9283 1.7853 1.7188 1.7989 1.6944 1.4873* 12.23

50 MAE 4.5073 2.1282 2.1736 1.4739 1.4723 1.7496 1.8369 1.4347 1.1759* 18.04
RMSE 5.1727 2.7275 2.6771 2.2823 2.0159 2.0766 2.2221 1.9303 1.6569* 14.17

80 MAE 4.5204 3.013 3.1405 2.0846 1.8850 1.8535 1.9910 1.7550 1.5143* 13.72
RMSE 5.2308 3.6948 3.5842 2.7068 2.5194 2.3401 2.4432 2.3883 2.1599* 9.57

Table 3  Ranking performance comparison of different models on 3 cross-domain tasks

β (%) Metric TGT CMF EMCDR RecGURU ELECRec PTUPCDR MAFCDR Improve (%)

Task 1 20 AUC 0.7737 0.7769 0.8014 0.8112 0.8172 0.8114 0.8316* 1.76
NDCG@10 0.2049 0.2066 0.2255 0.2672 0.3400 0.3403 0.3629* 6.64

50 AUC 0.7440 0.7430 0.7853 0.7818 0.8018 0.8113 0.8228* 1.41
NDCG@10 0.1706 0.1872 0.2068 0.2233 0.2440 0.2559 0.2672* 4.41

80 AUC 0.7391 0.7336 0.7620 0.7999 0.8190 0.8199 0.8286* 1.06
NDCG@10 0.1872 0.1722 0.2305 0.2368 0.2326 0.2429 0.2506* 3.17

Task 2 20 AUC 0.7437 0.7697 0.8175 0.8219 0.8154 0.8275 0.8335* 0.72
NDCG@10 0.1913 0.2002 0.2403 0.2652 0.2590 0.2706 0.2801* 3.51

50 AUC 0.6914 0.6939 0.7211 0.7201 0.7196 0.7303 0.7492* 2.58
NDCG@10 0.2193 0.2104 0.2414 0.2459 0.2652 0.2702 0.2869* 6.18

80 AUC 0.6235 0.6259 0.6793 0.6831 0.7100 0.7097 0.7267* 2.35
NDCG@10 0.2144 0.2089 0.2444 0.2565 0.2480 0.2611 0.2696* 3.25

Task 3 20 AUC 0.7199 0.7295 0.7936 0.7800 0.8024 0.8135 0.8351* 2.42
NDCG@10 0.2150 0.2049 0.2270 0.2392 0.2462 0.2169 0.2595* 5.40

50 AUC 0.6396 0.6384 0.6788 0.7004 0.7255 0.7115 0.7348* 1.70
NDCG@10 0.1525 0.1596 0.1633 0.1867 0.2016 0.1725 0.2092* 3.76%

80 AUC 0.6369 0.6292 0.6734 0.6799 0.6784 0.6955 0.7111* 2.24%
NDCG@10 0.1474 0.1446 0.1575 0.1850 0.1972 0.1913 0.1995* 1.16%
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• By observing the results of the t test with a 95% confi-
dence level, it can be seen that MAFCDR significantly 
outperforms the best baseline in most cases, indicating 
that MAFCDR is an effective solution for cold-start rec-
ommendations.

5.3  Ablation Experiments

The ablation experiments further explore the impact of the 
various components of the proposed MAFCDR model on 
performance. Specifically, the following models will be 
evaluated.

• -Mulatt: It replaces the multi-level feature attention struc-
ture in the model with a self-attentive mechanism and 
uses long-term sequential user features as input to the 
self-attentive mechanism.

• -GAN: The GAN is removed from the model and is 
replaced with a two-layer linear network as a meta-net-
work.

• -MAN: The meta-network is removed from the model, 
and we transfer the user preferences learned through 
the multi-level attention structure to the target domain 
through simple matrix multiplication.

• -TOO: We replace the task-oriented optimization loss 
with a mapping-oriented optimization process to mini-
mize the distance, using the transformed user embedding 
ût
i
 to approach the target embedding ut

i
.

Table 4 shows the results of the ablation experiments for the 
introduced variants on the three cross-domain recommenda-
tion tasks. Differences in overall recommendation perfor-
mance can be observed when sub-modules or features are 
gradually subtracted from the complete model. It indicates 
the effectiveness of the individual modules for cold-start 
cross-domain recommendations.

5.4  Parameter Experiments

We explore the impact of the number of local updates on 
Task 1. Figure 3 shows the performance of our method on 
two metrics by varying the number of personalized itera-
tions. Even with few local updates, the model achieves 

significant improvements on both metrics. After a single 
iteration of the data, the method achieves significantly lower 
MAE and RMSE values. After one iteration, a slightly dif-
ferent result is observed by increasing the number of local 
updates, contrary to the results of the existing MAML [31], 
whose performance improves with increase in number of 
iterations. Our model can be adapted quickly to the user, as 
just one local update is sufficient. Fast adaption allows the 
proposed method to be applied to online recommendations 
based on user ratings.

5.5  Generalization Experiments

The comparison experiments mainly applied to MF for 
experimental evaluation. However, MF is a non-neural 
model, and the matrix decomposition algorithm is one of 
the most effective methods in recommendation recom-
mendations. Therefore, to demonstrate the compatibility of 
MAFCDR with other bridge-based methods, i.e., EMCDR, 
PTUPCDR and MAFCDR are applied to two more complex 
neural models: GMF [32] and YouTube DNN [33]. GMF 
assigns different weights to different dimensions in the dot 
product prediction function, which can be seen as a gener-
alization of the ordinary MF. YouTube DNN is a two-tower 
model. For GMF, the parameters trained by meta-learn-
ing can directly transfer the user embedding to the target 

Table 4  Ablation experiments 
on three cross-domain tasks

-Mulatt -GAN -MNet -Too Task 1 Task 2 Task 3

MAFCDR – – – – 0.9998 0.9479 1.0736
√

– – – 1.0904 1.0078 1.2016
√ √

– – 1.1504 1.0740 1.2681
√ √ √

- 2.8827 3.6706 2.7425
√ √ √ √

3.0284 3.7532 2.9409

Fig. 3  The performance of our model according to vary the number 
of local updates on the task1
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domain. For YouTube DNN, the bridge function will trans-
form the output of the user tower. Generalization experi-
ments are conducted on the non-neural model (MF) and 
the neural model (GMF, YouTube DNN). From the results 
shown in Fig. 4, the following conclusions can be obtained:

• The bridge-based CDR approaches can be applied to a 
variety of baseline models. For different baseline mod-
els, EMCDR, PTUPCDR and MAFCDR are effective 
in improving the performance of recommendations for 
cold-start users in the target domain. As GMF and You-
Tube DNN are two popular and well-designed models 
in large-scale real-world recommendations, they achieve 
better performance than that of ordinary MF.

• The generalized MAFCDR can achieve satisfactory per-
formance. On the one hand, with various base models, 
generalized MAFCDR can consistently achieve better 
results. On the other hand, the cold-start problem is 
highly challenging and the results of MAE are sufficient 
to demonstrate the effectiveness of the generalized MAF-
CDR in cold-start scenarios.

6  Conclusion

To better transfer user preferences from the source domain 
to the target domain, we proposed to train a meta-learning 
parameter for each user using a meta-adversarial framework. 
A meta-generator containing user feature embeddings was 
learnt to obtain personalized parameters that vary from user 
to user, and a bridge function was used to initialize the user 
embeddings to enable personalized transfer of user prefer-
ences. Extensive experiments were conducted on real data-
sets to evaluate the proposed model, and the results validate 
the effectiveness of the proposed model for cold-start cross-
domain recommendation. In the future, we plan to integrate 
more content information into the framework to further alle-
viate the cold-start problem.
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