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Abstract
Topic modeling aims to discover latent themes in collections of text documents. It has various applications across fields 
such as sociology, opinion analysis, and media studies. In such areas, it is essential to have easily interpretable, diverse, and 
coherent topics. An efficient topic modeling technique should accurately identify flat and hierarchical topics, especially use-
ful in disciplines where topics can be logically arranged into a tree format. In this paper, we propose Community Topic, a 
novel algorithm that exploits word co-occurrence networks to mine communities and produces topics. We also evaluate the 
proposed approach using several metrics and compare it with usual baselines, confirming its good performances. Commu-
nity Topic enables quick identification of flat topics and topic hierarchy, facilitating the on-demand exploration of sub- and 
super-topics. It also obtains good results on datasets in different languages.
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1  Introduction

Topic modeling discovers the themes of collections of 
unstructured text documents [36, 46, 79]. Topics can act as 
features for document classification and indices for informa-
tion retrieval. However, one of the most important functions 
of these topics is to assist in the exploration of large corpora. 

Researchers in all fields and domains seek to better under-
stand the main ideas and themes of document collections 
too large for a human to read and summarize. This requires 
topics that are interpretable and coherent to human users.

Interpretability is a necessary but not sufficient condition 
for a good topic model. Topics naturally exist in a hierar-
chy. There are larger, more general super-topics and smaller, 
more specific subtopics. “Sports” is a valid topic in that it 
represents a concept. “Football” and “Olympics” are also 
topics. They are not completely distinct from “Sports” but 
rather are sub-topics that fall within sports, i.e., they are 
child topics of the “Sports” parent topic in the topic hierar-
chy. Topics also relate to each other to varying degrees. The 
“movie” topic is more similar to the “television” topic than 
the “food” topic. This relationship structure is also key to 
understanding the topical content of a corpus. Topic mod-
eling methods that simply provide the user with a set of 
topics are not as useful and informative as those that can 
provide this hierarchy and structure.

When detecting and organizing the topics, diversity is 
crucial to avoid having several topics that are basically the 
same and thus preventing redundancy in the extracted topics. 
Having a variety of topics also enables a more thorough and 
nuanced comprehension of the corpus. Let’s imagine we uti-
lize topic modeling to identify the major themes in a corpus 
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of news articles regarding the economy. Without topic diver-
sity, we might end up with multiple topics that are essen-
tially the same, such as “jobs" and “employment." However, 
with topic diversity, we might also identify topics such as 
“tax policy," “trade agreements," and “consumer spending," 
which provide a more diverse and nuanced understanding of 
the economy beyond just the labor market.

The capability of topic modeling to accommodate multi-
ple languages is another crucial component. This ability is 
very useful when analyzing text corpora from geographi-
cal areas with several official languages or social media 
data from various communities. Topic modeling support-
ing different languages can also help researchers who need 
to analyze enormous volumes of data quickly on common 
computer hardware.

Recently, a new domain has emerged where topics can 
provide utility: conversational agents, which are computer 
programs that can carry on a human-level conversation. 
The conversation is an end in itself; the purpose of speak-
ing with a conversational agent is to converse, to be enter-
tained, to express emotion and be supported. The aware-
ness and use of the topics of discussion are key abilities 
that an agent must possess to be able to carry on a conver-
sation with a human. Previous work has used the detected 
topic of conversation to enrich a conversational agent’s 
responses [21]. However, more can be done with topics 
to improve the abilities of a conversational agent given 
the right topic model that provides a topic hierarchy and 
structure. It can be used to detect and control topic drift in 
the conversation so that the agent’s responses make sense 
in context. If the user is engaged with the current topic, 
then the agent can stay on topic or detect sub-topics to 
focus the conversation. The agent can detect super-topics 
to broaden the range of conversation. The agent should 
be able to move to related topics or, if the user becomes 
bored or displeased, jump to dissimilar topics. This type 
of control over the flow of the conversation is crucial to 
human communication and is needed for human-computer 
interaction as well.

In the literature, various models have been proposed to 
automatically discover topics in collections of text docu-
ments. The most widely used topic model, Latent Dirichlet 
Allocation (LDA), only provides a simple set of topics with-
out a hierarchy or structure and it has other drawbacks. The 
number of topics must be specified, requiring multiple runs 
with different numbers of topics to find the best topics. It 
performs poorly on short documents. Moreover it is not 
deterministic. Thus, different runs on the same corpus can 
produce different topics, especially if the order of the docu-
ments is different [48]. Finally, common terms can appear in 
many different topics, reducing the uniqueness of topics [57].

Neural networks have pushed forward the state-of-the-
art in topic modeling. A relatively new algorithm called 

Top2Vec [2] uses word embeddings but suffers from topic 
overlap [23]. Another embedding-based approach, BER-
Topic [31], requires specialized hardware. Both Top2Vec 
and BERTopic are suitable for short-text data analysis [22, 
69]. Neural topic models, such as nTSNTM [15], produce 
more coherent topics than LDA but retain many of its weak-
nesses, such as the need to specify the number of topics 
and the tendency to find models with many redundant top-
ics [12]. These models also require more computational 
resources and specialized hardware. Hierarchical topic 
models, such as Hierarchical LDA (HLDA) [29], Pachinko 
Allocation Model (PAM) [45], and Hierarchical Pachinko 
Allocation (HPA) [55], have not demonstrated good hier-
archical relationships in terms of topic specialization and 
affinity between super and subtopics.

Thus, although neural topic models have produced topics 
of greater coherence, they retain many of the weaknesses 
of LDA, such as the need to specify the number of topics, 
while having a tendency to find redundant topics [12] and 
demanding greater computational resources and specialized 
hardware.

These drawbacks have inspired us to search for a new 
approach to topic modeling. We desire a method that can 
operate quickly on commodity hardware and that determinis-
tically provides not only a set of topics but their relationships 
and a hierarchical structure. It should also supports different 
languages while maintaining topic diversity and interpret-
ability. Given these expectations, it seems natural to take an 
information network-based approach.

Our topic modeling algorithm, Community Topic (CT), 
mines communities from networks constructed from term 
co-occurrences. These topics are collections of vocabulary 
terms and are thus easily interpretable by humans. The frac-
tal nature of the network representation provides a natural 
topic hierarchy and structure. The topic hyper-vertices form 
a network with connections of varying strength between the 
topic vertices derived from the aggregated edges between 
their constituent word vertices. Super-topics can be mined 
from this topic network. Indeed, each topic itself is also a 
sub-graph with regions of varying density of connections 
that can be mined to find sub-topics. Our algorithm has only 
a single hyperparameter and can run quickly on simple hard-
ware which makes it ideal for researchers from all fields for 
exploring a document collection. With proper data pre-pro-
cessing, this algorithm is also language-agnostic, enabling 
it to be applied to diverse linguistic datasets.

In this paper, Sect. 1 presents a review of the current 
state-of-the-art in topic modeling. Section 2 describes our 
algorithm, how it constructs term co-occurrence networks 
and mines topics from them. It explains how our method 
discovers topic hierarchies and can adapt on-the-fly based 
on user requirements. To assess our algorithm’s effective-
ness, we evaluated it both for simple and hierarchical topic 
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discovery, and for different languages. Our evaluation met-
rics include coherence, interpretability, diversity, hierarchi-
cal specialization, and affinity. Our experimental results, 
presented in Sect. 5 after our evaluation protocol detailed in 
Sect. 4, demonstrate that our approach outperforms exist-
ing methods in finding a more coherent topic structure and 
establishing a stronger relationship between parent and 
child topics. Thus, our algorithm yields flat or hierarchical 
topics efficiently and enables on-demand sub- and super-
topic discovery. It should be noted that the open-sourced 
python library along with code and usage tutorial is avail-
able online.1

2 � Related Work

Topic modeling emerged from the field of information 
retrieval and research to more effectively represent docu-
ments for indexing, query matching, and document classifi-
cation. The performance of topic models on these tasks has 
been surpassed by deep neural models but topic models have 
become extremely popular tools of applied research both 
inside and outside of computing science [34]. For a good 
overview of the subject, we refer the reader to the recent 
survey of Churchill and Singh [16].

2.1 � Early Approaches

One early approach is Latent Semantic Analysis (LSA) 
[18] which decomposes the term-by-document matrix to 
find vectors representing the latent semantic structure of 
the corpus and can be viewed as (uninterpretable) topics 
that relate terms and documents. Another matrix decompo-
sition method is Non-negative Matrix Factorization [44]. 
Researchers unsatisfied with the lack of a solid statistical 
foundation to LSA developed Probabilistic Latent Semantic 
Analysis (pLSA) [33] which posits a generative probabilis-
tic model of the data with the topics as the latent variables. 
A drawback of pLSA is that the topic mixture is estimated 
separately for each document. Latent Dirichlet Allocation 
(LDA) [7], not to be confused with Linear Discriminant 
Analysis, was developed to remedy this. LDA is a fully gen-
erative model as it places a Dirichlet prior on the latent topic 
mixture of a document. The probability of a topic z given a 
document d, p(z|d;�) , is a multinomial distribution over the 
topics parameterized by � where � is itself a random variable 
sampled from the prior Dirichlet distribution. The number 
of topics must be specified and the model provides no topic 
hierarchy or structure.

There have been many methods developed that attempt 
to improve upon LDA. Promoting named entities to become 

the most frequent terms in the document has been tried [40]. 
In [89], the authors use a process to identify and re-weight 
words that are topic-indiscriminate. To improve the perfor-
mance of LDA on tweets, the authors of [52] pool tweets 
into longer documents. Supervised LDA (sLDA) is an LDA 
extension that incorporates supervised information such as 
class labels [51]. In the same vein, the MetaLDA model [93] 
incorporates also meta information such as document labels. 
Structural Topic Models (STM) [67] is an LDA extension 
that models the structure of the covariates and their rela-
tion to topics while Relational Topic Models (RTM) mod-
els co-occurrence patterns between documents [13]. The 
author-topic model [73] extends LDA by conditioning 
the topic mixture on document author and, the Correlated 
Topic Model (CTM) [5] takes into account the correlations 
between topics but its computational cost may limit its scal-
ability. Finally, the Dynamic Topic Model [6] allows for the 
modeling of topic evolution over time.

2.2 � Hierarchical Topic Detection

Topic modeling algorithms like LDA [7] or pLSA [33] are 
not designed to detect topic hierarchies. They are only able 
to capture correlations among words but not over the top-
ics due to the fact that the topics in the documents share 
a common distribution, usually a Dirichlet distribution. To 
overcome this limitation, it is necessary to model the distri-
bution of the hierarchy of topics; which can be done using 
the nested Chinese restaurant process (nCRP) [8, 29] or the 
nested hierarchical Dirichlet process (nHDP) [62]. Likewise, 
several hierarchical methods have been developed to find 
super and sub-topics in documents. The Hierarchical LDA 
model (HLDA) [29] models the topic hierarchy using a tree 
structure. The depth of the tree must be specified but the 
number of topics is discovered. Another flexible generaliza-
tion of LDA is the Pachinko Allocation Model (PAM) [45]. 
Like HLDA, PAM allows for a hierachy of topics but this 
hierarchy is represented by a directed acyclic graph rather 
than a tree of fixed depth, allowing for a variety of relation-
ships between topics and terms in the hierarchy, although 
this structure must be specified by the user. Besides these 
two important representatives of hierarchical topic models, 
there are also their derived versions such as (HLLDA) [63] 
or (HPA) [55]. Hierarchical Labeled-LDA (HLLDA) intro-
duced label prior in HLDA whereas Hierarchical Pachinko 
Allocation (HPA) [55] extends PAM to generate a hierarchy 
of medoids, useful for identifying global and local structures 
in the data. However, HPA can be computationally expen-
sive and requires hyperparameter tuning. For more details 
on these hierarchical models and their variants, we refer the 
reader to the survey of Liu et al. [47]. However, we could 
notice that, in addition to the parameterization and the com-
putational cost inherent in this family of models, hierarchical 1  https://​github.​com/​DATAM​I01/​DSA.

https://github.com/DATAMI01/DSA
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type models have other disadvantages, such as topic incoher-
ence, unreasonable hierarchical structure, and issues related 
to the depth of the hierarchy, as pointed out by [80].

2.3 � Multilingualism and Short Documents

Although many of the topic models discussed above have 
been successful in analyzing documents, their applicabil-
ity to different languages remains unclear. Multilingual 
topic models (MTMs) have been proposed to overcome this 
limitation by uncovering latent topics across languages and 
revealing commonalities and differences across cultures 
[61, 71]. In a recent study [90], Yang et al. improved upon 
previous MTMs by learning weighted topic links and con-
necting cross-lingual topics only when the dominant words 
defining them are similar, resulting in better classification 
performance than LDA and previous MTMs.

Another important aspect of topic modeling is its applica-
tion to short documents. To address this, various methods 
have been proposed, such as Sentence-LDA [66], which 
models topics at the sentence-level, and Dirichlet Multino-
mial Mixture Model (DMM) [91], Biterm topic model [88], 
and Dirichlet Process Multinomial Mixture Model (DPMM) 
[66], which are specifically designed for short text topic 
modeling.

2.4 � Recent Approaches

In recent years, new topic models have emerged based on 
neural networks [83]. For instance, the Embedded Topic 
Model (ETM) [19] combines word embeddings trained using 
the continuous Skip-gram algorithm [54] with the LDA prob-
abilistic generative model. Another approach is to use a vari-
ational autoencoder (VAE) [38, 39] to learn the probability 
distributions of a generative probabilistic model, as with the 
neural variational document model (NVDM) [53], the stick-
breaking variational autoencoder (SB-VAE) [56], ProdLDA 
[72], and Dirichlet-VAE [12]. These models discover top-
ics that are qualitatively different than those found by tradi-
tional LDA, although there is debate as to whether they are 
truly superior [34]. Other approaches use word embeddings 
learned by a neural network but do not use the probabilis-
tic generative model framework. For example, the Top2Vec 
algorithm [2] clusters document vectors learned by the 
Doc2vec algorithm [43]. Correlation Explanation (CorEx) 
is another topic model that produces informative topics about 
a set of documents [27]. However, it may face difficulties 
in accurately identifying topics in datasets where words are 
generated by multiple topics or where topics have overlap-
ping words. In this family, we can also mention BERTopic, 
an unsupervised method that does not require the number of 
topics to be specified a priori [31]. It uses pre-trained BERT 

embeddings but may not perform as well on domain-specific 
or low-resource datasets where pre-training may be limited.

Neural models that provide a topic hierarchy have also 
been developed. In [92], the authors develop Weibull hybrid 
autoencoding inference (WHAI) to model multiple layers 
of priors for deep LDA and thus multiple layers in a topic 
hierarchy. However, the number of hyperparameters, compli-
cated training process, and need for special hardware make 
this type of model unsuitable for applied researchers seeking 
a tool for corpus exploration. TSNTM [35], nTSNTM [15] 
are two other models designed to detect topic hierarchies. 
They exploit a doubly-recurrent neural network (DRNN) 
to parameterize the topic distribution over an infinite tree. 
Based on the same principle, HTV [64] is a neural topic 
model designed for jointly detecting topic hierarchies and 
visualization. The identification of subtopics was also 
addressed by embedding the words and topics in the same 
vector space, of the Euclidean type for SawETM [20], an 
extension of ETM [19], or hyperbolic for [87]. However 
as highlighted by Wu et al [86], the topic hierarchy cannot 
grow dynamically since their layers must be fixed before 
training. Moreover, it should be noted that although these 
models have achieved high coherence scores, they are also 
computationally expensive and require tuning of many 
hyperparameters.

Finally, among all the models in the literature, the one 
that is closest to ours is hSBM [28] since it also discovers 
topics by looking for communities in network. But, unlike 
CT, hSBM detects communities using a stochastic block 
model (SBM) and therefore, as the probabilistic topic mod-
els previously mentioned, it suffers from the same shortcom-
ings that led us to propose our model Community Topic 
(CT), described in the next section.

3 � Community Topic

Community Topic (CT) is a topic modeling algorithm that 
leverages community detection to identify topics in a given 
corpus. CT is based on the assumption that words which are 
used or which occur in a same sentence or a same sequence 
of words, are more likely to relate to the same topic. This 
underlying assumption is justified by the works of Harris 
(1954) on the distributional structure who states that it is 
possible to define a linguistic structure solely in terms of pat-
terns of co-occurrences of its elements [32]. It is also on this 
assumption that most current language embedding models, 
such as Word2Vec, are based [54]. Indeed, they rely on the 
hypothesis that semantically similar words co-occurs in the 
documents and thus they should be close to each others in 
the embedding space.
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CT supports both flat and hierarchical topic modeling 
and the code is available in an open-sourced library2 with 
a tutorial.3

CT follows several steps to identify topics in the corpus 
as discussed in below subsections, just after a brief reminder 
of notions from social network analysis, useful in the sequel.

3.1 � Network and Communities

A comprehensive review of network theory is beyond the 
scope of this paper and we refer the reader to [58, 84] for 
more details. We just define sufficient terminology to be able 
to understand our method.

A network is represented by a graph G = (V ,E) where V 
is the set of vertices and E is the set of edges. A network may 
be unweighted, in which case there is a binary alternative 
between the existence or non-existence of an edge ei,j 
between any two vertices vi, vj ∈ V  that indicates a relation-
ship between those vertices. A network may be weighted, in 
which case an edge ei,j has an associated weight wi,j which is 
a numeric value that characterizes in some way the relation-
ship between vertices vi and vj . The degree of a vertex vi , 
denoted ki , is the number of edges connected to that vertex, 
i.e., ki = |{ei,j ∶ vj ∈ V}| . The internal degree of a vertex 
vi , denoted kint

i
 , is the number of edges that connect vi to 

another vertex of the same community. The weighted 
degree of a vertex vi , denoted kw

i
 , is the sum of the weights 

of all edges connected to that vertex, i.e., kw
i
=
∑

vj∈V
wi,j . 

The internal weighted degree of a vertex vi , denoted kw,int
i

 , 
is the sum of the weights of all edges that connect vi to 
another vertex of the same community. The embeddedness 
of a vertex vi is kint

i
∕ki . The weighted embeddedness of a 

vertex vi is kw,int
i

∕kw
i
.

Community structure is the tendency of networks to con-
sist of groups of vertices where the density of edges within 
the group is much higher than the density of edges between 
groups. These groups of highly-connected vertices are called 
communities. There is no single formal accepted definition 
of a community or how dense the connections must be to 
form a community. Certainly a fully connected group of 
vertices, i.e., a clique, would constitute a community, but 
communities need not be so densely connected. We are inter-
ested in finding all of the communities of the network. This 
global partitioning of the network into communities is called 
community detection. Many different community detec-
tion algorithms have been developed over the years and are 
reviewed in [17, 25, 26, 74].

Our community detection-based topic modeling algo-
rithm Community Topic (CT) has three main steps. First, a 

network is constructed from the document corpus. After the 
network is constructed, CT applies a community detection 
algorithm to find the communities in the network. Finally, 
the communities are filtered out and, each topic (i.e., com-
munity) is sorted so that the most important and relevant 
terms for the topic come first and the topics are returned. 
By this way, CT can identify both flat topics within a corpus 
but by adding a fourth step it can also discover hierarchi-
cal topics. These different steps are detailed below and, the 
pseudo-codes for each type of topic modeling are given in 
Algorithm 1 for flat topics and in Algorithm 2 for hierarchi-
cal topics.

3.2 � Co‑occurrence Network Construction

First, a network is constructed from the document corpus 
with terms as vertices. An edge exists between a pair of 
vertices vi and vj if the terms ti and tj co-occur in the same 
sentence or within a sliding window applied on the text. 
The weights of edges are derived from the frequency of co-
occurrence. One method is to use the raw count as the edge 
weight. However, this does not adjust for the frequency of 
the terms themselves so more common terms will tend to 
have higher edge weights. An alternative weighting scheme 
is to use normalized pointwise mutual information (NPMI) 
between terms (Eq. 1).

NPMI assigns higher values to pairs of terms ti and tj whose 
co-occurrence, p(ti, tj) , is more frequent than what would 
be expected if their occurrences in the texts were random, 
p(ti)p(tj) . This is normalized to adjust for the frequencies 
of the terms in the corpus. The edges of the network are 
thresholded at 0, i.e., those edges with weights less than or 
equal to 0 are removed from the network. This is because 
the community mining algorithm we will use to discover 
topics uses modularity Q [59] to discover the more densely 
connected regions of the network. This formula uses the 
product of the weighted degrees of two vertices to determine 
the expected value of the strength of their connection if the 
graph was random, which does not work if a vertex has a 
negative weighted degree.

Here m is the sum of weights of all edges in the network, Ai,j 
is the weight of the edge connecting vi and vj , kwi  ( kw

j
 ) is the 

sum of weights of edges incident to vi ( vj ), Ci ( Cj ) is the 
assigned community of vi ( vj ), and � is an indicator function 

(1)NPMI(ti, tj) =

log
p(ti,tj)

p(ti)p(tj)

−log(p(ti, tj))

(2)Q =
1

2m

∑

ij

(
Ai,j −

kw
i
kw
j

2m

)
�(Ci,Cj)

2  https://​github.​com/​DATAM​I01/​DSA.
3  https://​shr19​11.​github.​io/​commu​nityt​opic/​api-​refer​ence/.

https://github.com/DATAMI01/DSA
https://shr1911.github.io/communitytopic/api-reference/
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that returns 1 when the two arguments are equal and 0 
otherwise.

The distribution of edge weights differs greatly between 
the raw count and NPMI. The raw count weights follow a 
power law distribution with the vast majority of edges having 
very low weight and very few edges with very high weight. 
This mirrors the power law distribution of term frequencies. 
Given this distribution of term frequencies, a given edge 
weight value can carry very different information. An edge 
weight of 2 could indicate a significant relationship between 
two terms that occur 5 times each. Between two terms that 
occur hundreds of times each, an edge weigh of 2 would be 
noise. When we convert the edge weights to NPMI values, 
they are scaled to the range [−1,+1] and high values are 
assigned to edges that represent frequent co-occurrence rela-
tive to the frequencies of the connected terms. This distribu-
tion resembles a bell curve. We see very few edge weights 
less than or equal to 0 that will be removed by thresholding. 
This indicates that conditioned on co-occurring at least once, 
two terms are likely to co-occur more often than would be 
expected by chance. In our experiments we found slightly 
better results using the NPMI edge weights.

3.3 � Community Mining

Once the co-occurrence network is constructed, CT discov-
ers topics by applying a community detection method.

A community is a group of vertices that have a greater 
density of connections among themselves than they do to 
vertices outside the group. Many community detection algo-
ritms exist and have been surveryed in other papers such as 
[17, 25, 26] or [74]. CT employs the Leiden algorithm [77] 
as this was found to work best in experimentation but other 
algorithms can be used. The Leiden algorithm has a resolu-
tion parameter that is used to set the scale at which com-
munities are discovered. Smaller values of this parameter 
lead to larger communities being found and larger values 
lead to smaller communities. For illustration, Fig. 1 shows 
the distribution of community sizes found when using a Lei-
den resolution parameter of 1.0 on the BBC News dataset.4 
CT returns 5 large topics that correspond to the five article 
categories of the dataset. In Fig. 2, we see that a resolution 
parameter of 1.5 returns a greater number of small topics 
with a greater variance of topic size, from hundreds of terms 
to just a few. This represents the only hyperparameter nec-
essary for CT and is less a value that needs to be carefully 
tuned for good performance but is rather a way for the user 
to get communities of a desired size. However, other com-
munity detection algorithms can be used instead of Leiden, 
such as Louvain [9] which does not require a parameter, it 
is easy to make CT free parameter. It should however be 
noted that the choice of the community detection algorithm 
can impact the topics and topic quality. In our experiments, 
we retained Leiden since it has shown better performances 
than Louvain [77], itself being in general better than Gir-
van–Newman [9].

Fig. 1   Distribution of community sizes found by Leiden with resolu-
tion parameter 1.0 on BBC News dataset

Fig. 2   Distribution of community sizes found by Leiden with resolu-
tion parameter 1.5 on BBC News dataset

4  https://​www.​kaggle.​com/​compe​titio​ns/​learn-​ai-​bbc/​data.

https://www.kaggle.com/competitions/learn-ai-bbc/data
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Algorithm 1   Flat Community Topic

Require: Preprocessed corpus D, parameters window, weight, threshold
G ← buildNetwork(D, window, weight, threshold)
Communities ← communityDetection(G)
Topics ← {}
for community ∈ Communities do
if |community| > 2 then
sort(community)
Topics.add(community)

end if
end for
return Topics

3.4 � Topic Filtering and Term Ordering

Once the communities are discovered, small communi-
ties of size 2 or less are removed as outliers. Probabilistic 
graphical topic models such as LDA produce topics that are 
probability distributions over vocabulary terms. The most 
important terms for a topic are simply those that have the 
highest probabilities. The communities discovered by the 
Leiden algorithm are sets of vertices, so CT needs a way of 
ranking the terms represented by those vertices. To do so, we 
take advantage of the graph representation and use internal 
weighted degree to rank vertices/terms, which is calculated 
as the sum of weights of edges incident to a vertex that con-
nect to another vertex in the same community/topic. This 
gives higher values to terms that connect strongly to many 
terms in the same topic and are thus most representative of 
that topic. Once the filtering and ordering is complete, the 
set of topics is returned to the user.

3.5 � Topic Hierarchy

This basic formulation of CT produces a set of topics like 
vanilla LDA. However, there exists a natural structure to 
the graph representation and it is straightforward to adapt 
CT to return a hierarchy. By taking advantage of the com-
munity structure generated on the graph or the community 
detection algorithm, it is possible very simply to obtain a 
hierarchy of topics. There are two ways to do this. Firstly, 
by iteratively applying community detection to each topic 
sub-graph, CT discovers the next level of the topic hierar-
chy. This can be done to a specified depth or we can allow 
CT to uncover the entire hierarchy by stopping the growth 
of the topic tree once the produced sub-topics are smaller 
than three terms. An example of 3 levels of topics dis-
covered on the BBC corpus is show in Fig. 6. The level 1 
topics correspond to the 5 article categories of the corpus. 

Level 2 (in green) and then 3 (in orange) show increasingly 
specific sub-topics. These levels 2 and 3 were respectively 
obtained by applying CT to the subgraphs associated with 
the topics "Business" and "Tech" and then "Web".

If a low Leiden resolution parameter is initially used, 
CT produces many small topics i.e., communities in the 
first partition. Applying the iterative community detection 
process to the network of topic vertices groups these small 
sub-topics into super-topics. We can see an example of 
this in Fig. 7 that shows the clustering of the initial small 
topics discovered on the BBC corpus into super-topics 
which roughly correspond to the 5 article categories of 
the corpus. The topic hierarchy can also be constructed 
in a bottom-up fashion. This amounts to exploiting the 
iterative nature of community detection algorithms like 
Leiden, which optimizes a quality function such as modu-
larity in three elementary steps: (1) local moving of nodes; 
(2) refinement step and (3) aggregation of the network. In 
the local moving step, individual nodes are moved to the 
community that yields the largest increase in the quality 
function. In the aggregation step, an aggregate network is 
created based on the partition obtained in the local moving 
phase. Thus, each community in the partition obtained at 
the end of second step becomes a node in the aggregate 
network built in the third step. The three steps are repeated 
until the quality function cannot be increased further and 
at each iteration of these three steps a coarser partition is 
built leading to a hierarchy. For more detail on the iterative 
process of Leiden and the construction of the hierarchy, 
we refer the reader to [77].

Note that if a low Leiden resolution parameter is ini-
tially used, CT produces many small topics i.e., communi-
ties in the first partition. Applying the iterative community 
detection process to the network of topic vertices groups 
these small sub-topics into super-topics. We can see an 
example of this in Fig. 7 that shows the clustering of the 
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initial small topics discovered on the BBC corpus into 
super-topics which roughly correspond to the 5 article cat-
egories of the corpus. The pseudocode of CT for discover-
ing hierarchical topics is given in Algorithm 2.

Algorithm 2   Hierarchical Community Topic

Require: Preprocessed corpus D, parameters window, weight, threshold, n level
level 1 ← findFlatTopics(D, window, weight, threshold)
HierarchicalTopics ← {}
for n ∈ range(2, n level) do

nextLevel ← findNextLevelTopics(currentLevel)
HierarchicalTopics.add(nextLevel)
currentLevel ← nextLevel

end for
return HierarchicalTopics

3.6 � CT Complexity

The complexity of CT depends on the size of the graph and 
the underlying community detection algorithm. As indi-
cated in Sect. 4.2, a preprocessing of the documents not only 
allows to reduce the number of vertices of the graph but 
also leads to better results. As for the community detection 
algorithm, if we know that the optimization of modularity 
is NP-hard [11], it is also admitted in the literature that the 
convergence of a heuristic like Louvain is quasi-linear (in 
O(nlog(n) where n is the number of vertices) on real net-
works [3], making Louvain one of the most efficient commu-
nity detection algorithms [41, 89], just after Leiden which 
is even faster [77].

4 � Evaluation Protocol

We extensively evaluate Community Topic through empiri-
cal experiments to identify the optimal hyperparameters and 
also compare CT with various baselines. Our experiments 
encompass flat topic modeling, hierarchical topic modeling, 
and analysis of different languages. All the data and code 
used in the experiments are publicly available on our GitHub 
repository.5

4.1 � Datasets

We use four datasets to assess the effectiveness of vari-
ous topic modeling approaches, namely 20Newsgroups,6 

Reuters21578,7 BBC News,8 and EuroParl.9 The 20News-
groups dataset comprises 18,846 posts from the Usenet 
discussion forum covering 20 distinct topics such as "athe-
ism" and “hockey". The Reuters21578 dataset consists of 
21,578 financial articles that were published on the Reuters 

newswire in 1987 and cover economic and financial top-
ics such as “grain" and “copper". The BBC News dataset 
comprises 2,225 articles grouped into five categories: “busi-
ness", “entertainment", “politics", “sport", and “tech". The 
EuroParl parallel corpus is extracted from the transcripts 
of European Parliament proceedings. We have randomly 
selected 19,000 documents from EuroParl as the training 
dataset and 6,000 documents as the test dataset. This corpus 
includes versions in 21 European languages, and hence we 
have used this particular dataset to compare the performance 
of Community Topic and other baselines across multiple 
languages.

4.2 � Preprocessing

To prepare a text corpus for topic modeling, there are numer-
ous techniques that have been found to be effective in the 
literature. We use spaCy10 to lowercase and tokenize the 
documents and to identify sentences, parts-of-speech (POS), 
and named entities. We employ the appropriate spaCy 
model depending on the language of the input dataset. Only 
noun-type entities, such as EVENT, FAC (buildings), GPE 
(geo-political entities), LOC (non-GPE locations), ORG 
(organizations), PERSON, PRODUCT, and WORK OF 
ART, are detected and merged into single tokens, for exam-
ple, “united”, “states”, “of”, and “america” become “united 
states of america”.

5  https://​github.​com/​DATAM​I01/​DSA
6  https://​scikit-​learn.​org/0.​19/​datas​ets/​twenty_​newsg​roups.​html

7  https://​huggi​ngface.​co/​datas​ets/​reute​rs215​78
8  https://​www.​kaggle.​com/​compe​titio​ns/​learn-​ai-​bbc/​data
9  https://​www.​statmt.​org/​europ​arl/
10  https://spacy.io/

https://github.com/DATAMI01/DSA
https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html
https://huggingface.co/datasets/reuters21578
https://www.kaggle.com/competitions/learn-ai-bbc/data
https://www.statmt.org/europarl/
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While stemming and lemmatization have been com-
monly used in the topic modeling literature, the authors 
of [70] found that they do not improve topic quality and 
hurt model stability so we do not stem or lemmatize. We 
remove stopwords and terms that occur in over 90% of docu-
ments. This formula is more effective in larger corpora but 
is only proportional to

√
�d� . Following [34], we remove 

terms that appear in fewer than 2(0.02|d|)1∕log10 documents. 
It was shown in [49] that topic models constructed from 
noun-only corpora were more coherent so we detect and tag 
parts-of-speech to be able to filter out non-noun terms as in 
[14]. This is intuitive as adjectives and verbs can be used 
in many different contexts, e.g., one can “play the piano”, 
“play baseball”, “play the stock market”, and “play with 
someone’s heart”, but music, sports, finance, and romance 
are separate topics. Even with nouns there are issues with 
polysemy, i.e., words with multiple meanings and thus mul-
tiple different common contexts. To help with this problem, 
we use Gensim11 using NPMI to extract meaningful n-grams 
[10]. An n-gram is a combination of n adjacent tokens into 
a single token so that a term such as “microsoft_windows” 
can be found and the computer operating system can be dis-
tinguished from the windows of a building. We apply two 
iterations so that longer n-grams such as “law_enforcement_
agencies” can be found. To support different languages, we 
use connector words specific to each language. For English 
we use connector words from Gensim library and for other 
languages we translate these connector words into that lan-
guage for consistency purpose. Currently, our pre-processing 
module supports five languages: English, Italian, French, 
German, and Spanish. We compare the quality of topics 
to ensure that different algorithms are not more sensitive 
to generic terms and that there are no topical adjectives or 
verbs with n-gram combinations.

4.3 � Hyperparameter Tuning

We performed extensive experiments on the four datasets 
mentioned above by training them with and without parts-
of-speech filtering. Co-occurrence networks were created 
using both raw count and NPMI edge weights, with thresh-
old values of 0 and 2 for count networks and 0 and 0.35 for 
NPMI networks. We used a sentence co-occurrence defi-
nition and sliding windows of size 5 and 10. Community 
detection was performed using WalkTrap [65] and Leiden 
[77] algorithms with resolution parameters of 1, 1.5, 2, and 
2.5. The Leiden resolution parameter determines the scale of 
discovered communities, with larger values yielding more, 
smaller communities.

Topics were ordered by various metrics such as degree, 
weighted degree, internal degree, internal weighted degree, 
embeddedness, and weighted embeddedness. The results 
were evaluated with CV and CNPMI , described in Sect. 4.4, 
with top-N values of 5, 10, and 20, leading to a total of 
18,144 evaluations. Based on our results, we found that 
Community Topic works best with the Leiden algorithm. 
Since Leiden performed well on all datasets with the same 
set of hyperparameters, we recommend using a sentence co-
occurrence window, NPMI edge weights, no thresholding, 
and noun-only POS filtering as the standard settings and 
report results corresponding to this setting. These hyperpa-
rameters are chosen such that the algorithm is hyperparam-
eter-free, but our published library allows for flexibility in 
experimenting with different combinations.

4.4 � Evaluation Metrics

Different evaluation metrics can serve as objective targets to 
better analyze a topic model’s behavior [75]. The following 
metrics have been used in our experiments.

4.4.1 � Topic Coherence Metrics

Even if perplexity is frequently considered for topic models 
evaluation, various studies [13, 60], have established that it 
is not an effective means for evaluating the interpretability 
of extracted topics. Instead, Lau et et al. [42] demonstrated 
that the normalized pointwise mutual information (NPMI) 
coherence between word pairs in each topic closely aligns 
with human annotators’ evaluation of topic interpretabil-
ity. Therefore, following the approach taken by [72], we 
use NPMI rather than perplexity as the primary evaluation 
metric.

To assess the quality of the topics extracted by each 
model, we adopt two coherence measures: CNPMI [1, 34] 
and CV [68]. This last measure combines the indirect cosine 
measure with the CNPMI and the boolean sliding window. 
Both measures have been shown to correlate with human 
judgments of topic quality with CV having the strongest cor-
relation [68]. Even though CV has stronger correlation that 
CNPMI with human evaluations, CNPMI is more commonly 
used in the literature [34], possibly due to the extra compu-
tation required by CV . We prefer the CV measure as, in addi-
tion to being more highly correlated with human judgment, 
it considers the similarity of the contexts of the terms, not 
just their own co-occurrence. We use Gensim12 to compute 
both measures and consider the top 5 terms of each topic 
for evaluation. Each dataset has a train/test split. We train 
all models on the train documents and evaluate using the 

11  https://​radim​rehur​ek.​com/​gensim/. 12  https://​radim​rehur​ek.​com/​gensim/​models/​coher​encem​odel.​html.

https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/models/coherencemodel.html
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test documents. We use the standard 110-term window for 
CV and 10-term window for CNPMI . We use the top 5 terms 
of each topic for evaluation

4.4.2 � Topic Diversity Measures

In addition to coherence measures, we also consider diver-
sity metrics to assess the quality of topics produced by each 
model. These metrics are computed based on the distribution 
of topic words and provide a numerical score that indicates 
how diverse the words are in the topics. Ideally, for topics 
that are semantically different from each other, we expect 
the diversity scores to be close to 1. This is because diverse 
topics are more informative and useful for downstream 
applications such as document classification or information 
retrieval. In our experiments, we consider PUW, PJD, IRBO 
and, use implementation of topic diversity13 given by [75].

–	 Proportion of Unique Words (PUW) [19] is used to 
determine the percentage of unique words in a topic. A 
PUW score that is close to 0 indicates that the topic con-
tains a lot of redundant words, while a score close to 1 
suggests that the topic is more diverse and contains a 
wider variety of words.

–	 The Average Pairwise Jaccard Diversity (PJD) [78] 
measures the average pairwise Jaccard distance between 
the topics. The resulting diversity score increases as the 
topics become more dissimilar, providing better coverage 
of various aspects.

–	 Inverted Rank-Biased Overlap (IRBO) metric [4] is 
a measure of the rank-biased overlap between topics, 
indicating the diversity of topics generated by a single 
model. To calculate IRBO, we use the inverse of the 
standard RBO [76], which compares the top 10 words 
of two topics. The RBO14 metric allows for the possibil-
ity of disjointedness between the lists of topics, mean-
ing that two topics can have different words, and uses 
weighted ranking. For instance, if two lists share some 
of the same words, albeit at different rankings, they are 
penalized less than two lists that share the same words at 
the highest ranks. An IRBO score of 0 indicates identical 
topics, while a score of 1 indicates completely different 
topics [85].

We believe that the combination of coherence and diversity 
metrics provides a more comprehensive evaluation of topic 
models and can help researchers to make informed decisions 
about which models to use for their specific applications.

Table 1   Best evaluation scores 
obtained on the datasets for flat 
topic detection

The best results are in bold

Models Datasets C
V

C
NPMI

PUW PJD IRBO Time (seconds)

CT BBC 0.700 0.170 1 1 1 2.786
NG20 0.769 0.166 1 1 1 5.060
Reuters 0.690 0.107 1 1 1 4.051
EuroParl 0.535 0.044 1 1 1 1.384

LDA BBC 0.461 −0.028 0.460 0.605 0.353 6.49
NG20 0.552 0.038 0.800 0.9133 0.8663 4.53
Reuters 0.453 0.002 0.620 0.796 0.580 5.32
EuroParl 0.463 −0.009 0.860 0.957 0.927 3.990

Top2Vec BBC 0.630 0.043 1 1 1 16.98
NG20 0.655 0.082 0.637 0.966 0.998 62.47
Reuters 0.686 0.158 0.473 0.923 0.996 55.53
EuroParl 0.285 −0.482 1 1 1 92.71

BerTopic BBC 0.550 0.041 0.504 0.767 0.843 309.592
NG20 0.784 0.165 0.795 0.997 0.998 1436.311
Reuters 0.823 0.250 0.682 0.997 0.998 1620.018
EuroParl 0.75 0.128 0.746 0.998 0.998 473.070

CorEx BBC 0.603 −0.023 1 1 1 62.634
NG20 0.518 0.032 1 1 1 65.580
Reuters 0.605 0.051 1 1 1 64.695
EuroParl 0.314 −0.172 1 1 1 39.441

13  https://​github.​com/​MIND-​Lab/​OCTIS. 14  https://​github.​com/​dlukes/​rbo.

https://github.com/MIND-Lab/OCTIS
https://github.com/dlukes/rbo
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4.4.3 � Hierarchical Analysis

To measure the quality of the topic hierarchy, we use two 
measures proposed in [37]: topic specialization and hierar-
chical affinity.

Fig. 3   Top 10 words per topic produced by CT on BBC corpus

Table 2   Top 10 words per topic produced by LDA on BBC corpus

The best results are in bold

Topics

year, people, time, world, years, game, government, technology, music, way
People, year, time, film, government, world, number, way, game, year
year, company, firm, years, government, week, economy, people, growth, world
Year, people, time, game, film, world, years, number, club, wales
year, people, government, time, election, labor, years, party, plans, music

Table 3   Best evaluation scores obtained on the datasets for hierarchi-
cal topics

The best results are in bold

Model Coherence BBC NG20 Reuters EuroParl

CT C
V

0.661 0.753 0.709 0.420
CNMPI 0.075 0.132 0.166 −0.139

HLDA C
V

0.432 0.428 0.447 0.327
CNMPI 0.187 −0.146 −0.102 −0.269

PAM C
V

0.595 0.652 0.640 0.480
CNMPI 0.059 0.114 0.091 −0.021

HPA C
V

0.614 0.632 0.627 0.439
CNMPI 0.069 0.088 0.096 −0.080

Table 4   Scores obtained by CT and nTSNTM

The best results are in bold

Model Dataset C
NMPI

PUW Time (seconds)

CT NG20 0.132 0.871 4.95
Reuters 0.166 0.862 13.67

nTSNTM NG20 0.242 0.757 11700
Reuters 0.240 0.661 7380
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•	 Topic Specialization measures the distance of a topic’s 
probability distribution over terms from the general prob-
ability distribution of all terms in the corpus given by 
their occurrence frequency. We expect topics at higher 
levels in the hierarchy closer to the root to be more gen-
eral and less specialized and topics further down the hier-
archy to be more specialized.

•	 Hierarchical Affinity measures the similarity between 
a super-topic and a set of sub-topics. We expect higher 
affinity between a parent topic and its children and lower 
affinity between a parent topic and sub-topics which are 
not its children.

4.5 � Comparative Baselines

4.5.1 � Flat Topic Detection

Regarding the detection of flat topics, we evaluate our Com-
munity Topic algorithm against LDA [7], Top2Vec [2], an 
algorithm based on word embeddings learned by a neural 
network and BERTopic [30], which is similar to Top2Vec in 
terms of algorithmic structure but dedicated to topic detec-
tion. Another baseline we consider is Correlation Explana-
tion (CorEx) [27], which employs an information-theoretic 
approach to learn latent topics over documents. Unlike 
LDA, CorEx does not make any assumptions about the data 

Fig. 4   Specialization Scores obtained on NG20 and Reuters

Fig. 5   Affinity scores obtained on NG20 and Reuters



53Uncovering Flat and Hierarchical Topics by Community Discovery on Word Co‑occurrence Network﻿	

generating model and searches for topics that provide maxi-
mum information about a set of documents. We assess the 
performance of these algorithms in terms of topic coher-
ence, diversity, runtime, and stability of topic quality across 
multiple runs.

We used the best hyper-parameters for CT to achieve the 
best evaluation metrics. For CT, we applied noun-only fil-
tering and constructed co-occurrence networks using a sen-
tence co-occurrence window and NMPI edge weights. We 
kept the edge weights as is, without applying any threshold 
for the noun-only corpus. For LDA and Top2Vec, we used 
noun-only POS filtering for 5 topics since 5 topics is the 
average number of flat topics obtained from community 
mining. We did not need to tune any hyperparameters for 

the Top2Vec algorithm. To run BERTopic, we provided the 
raw text corpus to the model and set the verbose flag to True, 
which helped to track the stages of the model. We then fit the 
BERTopic model on a collection of documents, generated 
topics, and returned the docs with topics. For CorEx, the 
topic model assumes that the input is in the form of a doc-
word matrix, where rows represent documents and columns 
represent binary counts. Hence, we converted the raw data 
into the necessary format. We also set 6 different parameters 
for CorEx. To compare the run times and stability of these 
algorithms over repeated runs, we ran each algorithm 10 
times. As the scores were almost similar, deviation was less 
and the results reported correspond to the best ones.

Fig. 6   Hierarchy of BBC corpus topics found by iteratively applying CT algorithm
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Fig. 7   Super-topics found by applying community detection on network of small topics
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4.5.2 � Hierarchical Topic Detection

Three probabilistic graphical topic models, namely HLDA 
[29], PAM [45], and HPA15 [55] serve as our hierarchical 
baselines.

HLDA can produce topics at three levels, which are 
probability distributions over vocabulary terms, and thus, 
they are compatible with our evaluation metrics without 
any modifications. On the other hand, CT generates a list of 
terms sorted by internal weighted degree, which we convert 
into probability distributions to calculate specialization and 
affinity by dividing each value by the sum of all values. The 
super-topics discovered by PAM and HPA are distributions 
over sub-topics. We convert into distributions over terms by 
computing the expectation for each term in the sub-topics 
given the super-topic distribution over sub-topics. However, 
since the super-topic distribution assigns a non-zero prob-
ability to all sub-topics, we need to distinguish between chil-
dren and non-children. To address this, we consider the top 
six most likely sub-topics as the children of a super-topic, as 
we hypothesize an average of six sub-topics per super-topic 
in a topic hierarchy.

CT applies a Leiden resolution parameter of 1.0 to iden-
tify 5 or 6 super-topics across all datasets, each consisting 
of 5, 6, or 7 sub-topics on average, which serves as a guide 
for the PAM and HPA models. On the other hand, HLDA 
discovers hundreds of super-topics and roughly three times 
more sub-topics than CT. However, this approach of gener-
ating numerous small topics at all levels often leads to sub-
optimal results according to our evaluation metrics and an 
imperfect hierarchy, where a child topic is frequently present 
in more documents than its parent.

In addition, we compare CT to nTSNTM model [15], 
which leverages the neural variational inference (NVI) 
framework and a nonparametric prior to group topics into 
a sensible tree structure. We utilized the publicly available 
code of nTSNTM16 with the recommended parameters indi-
cated in [15]. The model was trained for 100 epochs, with 
a hidden size of 256, and we ensured that it was compat-
ible with the latest version of Tensorflow in order to obtain 
accurate results. To maintain consistency in hardware, we 
executed the nTSNTM model on the same commodity hard-
ware used by the baseline models mentioned earlier. How-
ever, it should be mention that nTSNTM requires specific 

Table 5   Evaluation scores 
obtained on EuroParl dataset 
across different languages

The best results are in bold

Model Language C
V

C
NPMI

PUW PJD IRBO

CT English 0.535 0.043 1 1 1
Italian 0.555 0.036 1 1 1
French 0.554 0.033 1 1 1
German 0.534 0.009 1 1 1
Spanish 0.579 0.051 1 1 1

LDA English 0.411 −0.065 0.88 0.951 0.929
Italian 0.543 −0.021 0.480 0.641 0.227
French 0.567 −0.013 0.400 0.470 0.768
German 0.571 −0.018 0.440 0.603 0.527
Spanish 0.557 −0.004 0.440 0.615 0.437

Top2Vec English 0.268 −0.215 1 1 1
Italian 0.320 −0.491 0.453 0.943 0.977
French 0.555 0.036 0.614 0.922 0.942
German 0.316 −0.496 0.500 0.882 0.911
Spanish 0.264 0.491 1 1 1

BerTopic English 0.750 0.142 0.735 0.998 0.998
Italian 0.736 0.104 0.819 0.999 0.999
German 0.407 −0.104 0.853 0.998 0.999
Spanish 0.330 −0.147 0.884 0.999 0.999

CorEx English 0.314 −0.172 1 1 1
Italian 0.385 −0.157 1 1 1
French 0.419 −0.175 1 1 1
German 0.452 −0.059 1 1 1
Spanish 0.354 −0.161 1 1 1

15  https://​bab2m​in.​github.​io/​tomot​opy/​v0.​12.2/​en/. 16  https://​github.​com/​hostn​lp/​nTSNTM.

https://bab2min.github.io/tomotopy/v0.12.2/en/
https://github.com/hostnlp/nTSNTM
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pre-processed data. But since the preprocessed data are only 
available for NG20 and Reuters, the experiments could only 
be carried out on these datasets. Moreover, as nTSNTM does 
not provide topic words, only evaluation measures comput-
able from the produced results are reported.

5 � Experimental Results

5.1 � Results for Flat Topic Detection

Topic coherence and diversity analysis This first set of 
experiments allows to compare Community Topic (CT) 
with other popular topic modeling algorithms, namely LDA, 
Top2Vec, BERTopic, and CorEx for flat topics discovery.

Table 1 presents a clear picture of the topic coherence and 
diversity scores obtained with these algorithms. Community 
Topic (CT) emerges as the most coherent algorithm in terms 
of CV and CNPMI among all, except BERTopic. Although 
Top2Vec produces more coherent topics than LDA and 
CorEx, it falls short of the coherence scores achieved by 
CT. Moreover, Top2Vec takes significantly longer and is 

less stable over repeated runs, making it less favorable for 
practical applications.

Both Top2Vec and BERTopic are word embedding-based 
models learned by a neural network, and our analysis shows 
that their coherence validation ( CV ) scores are in general 
higher than other baselines.

However, both models fail to provide diverse topics, as 
indicated by the low scores for the diversity measures Pro-
portion of Unique Words (PUW), Average Pairwise Jaccard 
Diversity (PJD), and Inverted Rank-Biased Overlap (IRBO). 
On the other hand, CT and CorEx stand out for their diverse 
topics, with CorEx producing the most diverse topics among 
all the baselines. However, CorEx lags behind CT in terms 
of CNPMI and CV scores.

Run Time Analysis Concerning the run time, our experi-
ments showed that LDA, Top2Vec, BERTopic and Corex 
have more run times compare to CT. For CT the reported 
time combines the time for building network, applying com-
munity detection algorithm and the filtering/ordering task. It 
is important to note that the community detection algorithms 
used by CT can be significantly impacted by the size of the 
network. For larger networks, the run times of the algorithms 

Fig. 8   Top 10 words per topic for different languages on EuroParl dataset
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can increase by about one order of magnitude, which is 
equivalent to half a second. Despite this, the network crea-
tion and topic filtering/ordering steps of CT remain the same 
for both smaller and larger networks. In terms of run times 
for the individual algorithms, CT has an average of 3 s, LDA 
takes 5 s, Top2Vec takes 56 s, BERTopic takes 960 s, and 
CorEx takes 58 s. While LDA and CT are faster compared 
to the other baselines, CT still emerges as the fastest of all, 
demonstrating its efficiency in processing large datasets and 
its potential usefulness in real-world applications.

Overall, the evaluation metrics reveal that each algorithm 
has its own strengths and weaknesses, and the choice of 
an appropriate algorithm depends on the specific require-
ments of the project. CT and BERTopic offer high coher-
ence. Community Topic (CT) appears a suitable option since 
it considers all these factors and strives to produce high-
quality topics.

Qualitative evaluation of the extracted topics In addi-
tion, we also compared the top 10 terms produced by 
CT and LDA on the BBC. To achieve this, CT utilized 
Leiden with a resolution parameter of 1.0, sentence co-
occurrence, NPMI edge weights, and no thresholding to 
discover five topics. As shown in Fig. 1, the top 10 terms 
in each of the discovered topics were found to be coherent, 
diverse, and unique, representing the categories of “Poli-
tics," “Technology," “Business," “Sports," and “Enter-
tainment." The ranking of the top 10 words was based 
on internal degree weight in the community, which was 
described in the methodology section (Fig. 3).

In contrast, the topics generated by LDA, are less natural 
and tend to have overlapping content as as shown in Table 2 
which presents the top 10 words produced by LDA on BBC 
corpus. Notably, we can observe that several words, includ-
ing year, people, government, time, film, and game, are pre-
sent in multiple topics. Consequently, the topic diversity is 
undermined, resulting in less distinctive and unique topics.

Thus, based on our analysis, CT is able to produce non-
overlapping topics, resulting in clear and distinct topic 
boundaries in documents. Moreover, it achieves this with 
the fastest processing times compared to other algorithms. 
The added advantage of being able to run CT on commodity 
hardware further adds to its appeal. Additionally, CT pro-
duces highly coherent topics, which makes it more user-
friendly and easier to interpret.

5.2 � Results for Topic Hierarchy Detection

Topic coherence comparison with parametric models Con-
cerning topic hierarchy detection, Table 3 presents the coher-
ence scores CV and CNMPI for CT, HLDA, PAM and HPA. 
They show that CT outperforms other algorithms in terms 

of coherence score CV on all datasets, except for EuroaParl, 
where PAM achieves the highest score followed by HPA. 
In contrast, HLDA obtains the lowest score, indicating that 
the topics generated by CT are more interpretable to human 
users.

The consistency in topics found by CT across multiple 
datasets is promising, and the high coherence scores sug-
gest that the topics identified by CT are highly interpretable. 
These findings could be useful for researchers and practi-
tioners who use topic modeling to analyze large datasets and 
extract meaningful insights from them.

Run time comparison with parametric models Moreover, 
out of all the algorithms, CT is the most efficient, taking less 
than 5 s to discover the topic hierarchy on all datasets. On 
the other hand, HLDA requires between 30 s to 5 min, while 
PAM and HPA range from 10 s to 2 min. It’s worth noting 
that all experiments were conducted on a laptop with a 2.7 
GHz dual-core processor and 8 GB RAM, ensuring a fair 
comparison between the algorithms.

Comparison with non parametric model nTSNTM
As part of our experiments, we incorporated the Tree-

Structured Neural Topic Model (nTSNTM) that employs 
non-parametric neural variational inference.

Table 4 presents the scores obtained by CT and nTSNTM 
on NG20 and Reuters datasets. The results indicate that 
while nTSNTM outperforms CT in terms of CNPMI score, 
CT performs better in terms of topic diversity. Moreover, 
nTSNTM takes on average, a total time of three hours to run 
on commodity hardware, while CT completes the same task 
in just a few seconds.

Topic specialization analysis As indicated in [81], an 
effective topic hierarchy is characterized by topics at the top 
being more general and those at the bottom being more spe-
cific. Figure 4 illustrates the specialization scores for each 
algorithm on the NG20 and Reuters Datasets. We observed 
that CT, HLDA, and nTSNTM found both super-topics (level 
1), sub-topics (level 2), and sub-topics of subtopics (level 
3), while PAM and HPA only supported super-topics and 
sub-topic hierarchies. HLDA has a very high specialization 
score, consistent with the large number of topics found at 
all three levels, but it does not align with our intuition that 
higher-level topics should be more general. PAM produces 
general topics at level 1 and more specialized topics at level 
2, but the super-topics are too general and similar to the 
overall frequency distribution to provide useful information 
for the user. HPA produces a similar level of specialization 
as PAM, except that it generates slightly more specialized 
topics for NG20 at level 1, but not more than CT. nTSNTM 
shows an increasing specialization from level 1 to level 3, 
with more specialized topics at level 1 than PAM and HPA. 
However, CT outperforms all of the models by producing 
reasonably high specialization for level 1 that increases up 
to level 3.
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The hierarchical affinity scores of each algorithm on the 
NG20 and Reuters datasets are presented in Fig. 5. It can be 
observed that HLDA displays a higher affinity between par-
ent topics and their children, but the overall affinity is very 
low, leading to a weak relationship between super-topics and 
sub-topics. On the other hand, HPA and PAM exhibit high 
affinities between parent topics and both child and non-child 
topics, as their super-topics are distributions over all sub-
topics and are thus non-specialized. In contrast, CT parent 
topics demonstrate high affinity with their children and no 
affinity with non-children since the sub-topics are a partition 
of the super-topic and do not overlap with any other super-
topic. For nTSNTM, the affinity between parent topics and 
their children is almost the same as non-children for NG20, 
and slightly better for Reuters. This indicates that nTSNTM 
does not produce a strong linkage between parents and their 
children, which contradicts its higher CNPMI score compared 
to other models.

For illustration, an example of 3 levels of topics dis-
covered by CT on the BBC corpus is show in Fig. 6. The 
level 1 topics correspond to the 5 article categories of 
the corpus. Level 2 and then 3 show increasingly specific 
sub-topics. Applying CT with Leiden again to the “Tech” 
topic finds 7 sub-topics such as “video games”, “the web”, 
and “cellphones”. “The web” sub-topic produces another 
set of 5 sub-sub-topics such as “email”, “web search”, and 
“internet security”. With a resolution parameter of 2, CT 
with Leiden initially finds a set of 48 small topics. Per-
forming community detection on the network of topics 
results in 9 super-topics, 5 of which are large and cor-
respond to the article categories. These super-topics are 
shown in Fig. 7.

After evaluating the performances of CT, we have come to 
the conclusion that CT with Leiden is the most effective one. 
It offers the most comprehensive topic hierarchy, which can 
cater to communities of varying sizes, and performs consist-
ently well across all datasets using the same CT hyperparam-
eters. Moreover, CT with Leiden is incredibly fast and can 
generate a coherent topic structure in a shorter duration than 
other algorithms, even when using commodity hardware.

Our experiment findings reveal that CT generates clear 
and interpretable topics with the best hierarchy. The topic 
hierarchy produced by CT demonstrates greater specializa-
tion for sub-topics as compared to super-topics, while still 
maintaining enough specificity at both levels to make the 
topics useful. Furthermore, the super-topics of CT show a 
strong affinity with their corresponding sub-topics, indicat-
ing a robust linkage.

5.3 � Evaluation of CT on Different Languages

CT is a graph-based method which exploits the co-occur-
rences of the words. As co-occurrence is valid independently 

of the language, CT is not specific to English but it is lan-
guage agnostic. Therefore it can work with any language. 
In order to further explore this capability of CT, we con-
ducted experiments on documents written in five different 
languages: English, Italian, French, German, and Spanish. 
The baselines for these experiments were the same as that 
used for the flat topic experiments. Though, the BERTopic 
baseline failed to run on French language for which Cam-
emBERT is most suited [50]. We chose the EuroParl dataset 
as it provides the same content in different languages, mak-
ing it ideal for measuring the consistency of the algorithm 
across languages.

The results in terms of coherence and diversity are 
presented in Table 5. CT performs better or equivalent to 
Top2Vec and CorEx for all languages in terms of coher-
ence scores ( CV and CNPMI ), as seen previously for flat topic 
detection. BERTopic achieves the highest coherence scores, 
but it is worth noting that CT exhibits consistency across 
different languages for the same dataset, with scores ranging 
from 0.530 to 0.580. In contrast, BERTopic has high scores 
for English and Italian but experiences a decline of around 
30% for Spanish. Although LDA produces good scores for 
the French, Spanish and German languages compared to CT, 
it has negative CNPMI scores. Overall, CT yields consistent 
and positive CNPMI coherence scores for all languages.

The topic diversity for CT and CorEx equals 1 across all 
languages. However, BERTopic and LDA show poor diver-
sity across all languages. Top2Vec produces more diverse 
topics for English and Spanish, but fails to maintain this 
diversity for Italian and German. Furthermore, the time 
taken by all the algorithms remains the same as in the flat 
topic experiments, with CT remaining the fastest algorithm.

To showcase the human interpretability of the top-
ics generated by our approach, we have leveraged DeepL 
translation17 to translate the resulting topics into English. 
We observed that the translated topics have similar themes 
across languages. Furthermore, Fig. 8 displays the top 10 
words of each topic generated by our method, after transla-
tion. Notably, CT produces consistent topics, with diversity 
and coherence maintained for all languages, which demon-
strates its consistency and robustness.

6 � Conclusion

This paper presents a novel topic modeling algorithm, Com-
munity Topic (CT), that combines the fields of topic mode-
ling and social network analysis to overcome the deficiencies 
of existing popular approaches.

17  https://​www.​deepl.​com/​trans​lator.

https://www.deepl.com/translator
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We believe that graph-based topic modeling allows to 
approach topic discovery from a new angle that does not 
require specifying the underlying distributions unlike Bayes-
ian models. This makes it possible to find topics of different 
sizes. On the other hand, it supposes an adequate extraction 
of the words from the documents in order to control the size 
of the graph and consequently the processing times.

Our experiments show that CT outperforms other popular 
algorithms in terms of coherence, topic diversity, and inter-
pretability. The results also indicate that CT remains consist-
ent across different languages with similar dataset content 
and thus can potentially aid in various natural language pro-
cessing tasks. It also provides a topic structure that can be 
utilized in downstream tasks since sub- and super-topics can 
be found and there are relationships between topics which 
can all be used to guide a researcher exploring a corpus or 
an agent having a conversation.

Looking ahead, there are several avenues for further 
research to enhance the quality of topics generated on co-
occurrence networks.

A first perspective relies in the extension of CT to allow 
for overlapping topics. Currently, topics are partitions of 
the vocabulary, but introducing a method such as persona 
splitting [24] could create multiple instances of a vertex and 
enable terms to fall into multiple topics. Another option con-
sists to apply a method for overlapping community detection 
[82] instead of Leiden. Indeed, whereas classical commu-
nity detection methods assume the division of nodes as a 
partition problem and thus restrict a node to belonging to 
only one community, with overlapping community detection 
approaches, a node can be part of multiple groups simultane-
ously. This is particularly interesting in the context of topic 
detection by community discovery on word co-occurrence 
network since, by this way, a word could belong to two dif-
ferent topics. For example, the word "Jaguar" could appear in 
two communities depending on its meaning, the first one con-
taining terms linked to animals and in particular to panthers, 
the second to cars. Thus, overlapping community detection 
into CT, makes it possible to deal, very simply, with the case 
of polysemy. This would open up new possibilities for more 
nuanced and granular topic modeling, and could enhance the 
practical applications of CT in domains such as information 
retrieval and natural language processing.

Additionally, we plan to investigate the effectiveness of 
CT on short-text data, such as sentences, and optimize its 
performance in this context.

Finally, another possible direction for future explora-
tion relies in the exploitation of our topic model in concrete 
application. Indeed, if automated coherence metrics can pro-
vide some insight into the quality of topics, we aim to take 
this a step further by integrating CT into a conversational 
agent and testing the coherence and structure of topics in a 
real-world application.
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