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Abstract
Multi-behavior recommendation systems exploit multi-type user–item interactions (e.g., clicking, adding to cart and col-
lecting) as auxiliary behaviors for user modeling, which can alleviate the problem of data sparsity faced by traditional 
recommendation systems. The key point of multi-behavior recommendation systems is to make full use of the auxiliary 
behavior information for the learning of user preferences. However, there are two challenges in existing methods that need 
to be explored: (1) capturing personalized user preferences based on multiple auxiliary behaviors, especially for negative 
feedback signals; and (2) explicitly modeling the semantics between auxiliary and target behaviors, and learning the explicit 
interactions between multiple behaviors. To tackle the two problems described above, we propose a novel model, called 
explicit behavior interaction with heterogeneous graph for multi-behavior recommendation (MB-EBIH). In particular, we 
first construct a heterogeneous behavior graph, including both positive and negative behaviors. A pre-trained model based 
on graph neural network (GNN) is then used to generate explicit behavior interaction values as the edge weights for the 
heterogeneous behavior graph. These weights reflect the importance of each of the auxiliary behaviors in an explicit manner. 
Finally, the extracted explicit behavior interaction information is incorporated into the multi-behavior user–item bipartite 
graphs to learn better representations. Experimental results on four real-world datasets demonstrate the effectiveness of our 
model in terms of exploring multi-behavioral data; and ablation and analysis experiments further demonstrate the effective-
ness of explicit behavior interaction information.
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1 Introduction

Recommender systems (RSs) are designed to capture per-
sonalized user preferences and to suggest high-quality 
items, and this has become an emerging research topic with 
many online applications [1–13]. The main idea of an RS 
is to learn the user’s personalized interests from histori-
cal user–item interactions, such as feedback from the user 
on a movie and a purchase of shoes. However, traditional 
RS methods only consider a single type of user behavior 
in regard to an item, meaning that they fail to model the 
comprehensive preferences of the user and suffer from the 
problem of data sparsity. In the real world, given an item, 
users often show multiple types of behaviors, and the rela-
tionships between these different behaviors can reflect the 
user’s preferences from multiple perspectives. For example, 
in regard to short video platforms, the user may show vari-
ous behaviors based on the watch time, likes, follows, com-
ments and forwards. When considered together, these show 
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complex relationships, and comprehensive user modeling is 
difficult if any parts of these behaviors are missing.

Some works have therefore attempted to make full use 
of the auxiliary behaviors and to capture the dependence 
relationships between them. For example, models such as 
MBGCN [14], CRGCN [15] and MB-CGCN [16] explore 
the dependencies between behaviors by constructing 
user–item bipartite graphs with positive feedback on aux-
iliary behaviors. NMTR [17] is a cascading deep model 
based on NCF [4], which was developed to investigate the 
dependencies between behaviors. MATN [18] utilizes an 
attention mechanism and a transformer network to encode 
the relationships between multiple behaviors. CIGF [19] 
leverages matrix multiplication to model the relationships 
between multiple behaviors, and a multitask learning net-
work is used to optimize the model. GNMR [20] exploits 
the dependencies among multiple behaviors via recursive 
embedding propagation.

Despite their effectiveness, we believe that existing works 
suffer from two limitations:

• They fail to capture the personalized preferences of the 
user in terms of behaviors, especially negative feedback 
signals.  In a real-world e-commerce platform, before a 
user buys an item (target behavior), they may show mul-
tiple auxiliary behaviors, such as clicking, adding to cart 
and collecting. These auxiliary behaviors have complex 
relationships with the target behaviors. In addition, the 
interaction relationships between behaviors are highly 
customized for different users and reflect the personal-
ized tastes of the user. For example, when shopping on 
an e-commerce platform, some people may add preferred 
items to the cart before buying them, while others may 
buy them directly. We therefore need to carefully model 
these personalized preferences based on the interaction 
between behaviors. The negative signals associated with 

auxiliary behaviors (i.e., the user does not perform the 
auxiliary behavior) are also useful and have often been 
ignored in previous methods. An example of personal-
ized behavior preferences and negative feedback is shown 
in Fig. 1.

• Explicit interactions between auxiliary and target behav-
iors are not fully explored. Since different users have 
various behavior preferences, we need to fully explore 
the explicit relationships between multiple behaviors. To 
learn the user’s preferences, the explicit contributions of 
different auxiliary behaviors to the target behavior should 
be explored. However, existing methods [14, 18, 21] typi-
cally consider user–item bipartite graphs for each behav-
ior separately, an approach that fails to jointly model the 
explicit contributions of these auxiliary behaviors. In 
[16] and [15], behavior chains are adopted to explore the 
dependencies of behaviors, but this approach cannot han-
dle complex sequences of user behavior. Nevertheless, 
the explicit behavior interactions (i.e., statistical explicit 
semantic information) directly reflect the probability 
that a user would show the target behavior after showing 
the auxiliary behavior. Thus, explicit statistical behavior 
information is of vital importance for user modeling and 
has potential research value for multi-behavior RSs.

In order to address the two issues described above, we 
study explicit behavior interactions in multi-behavior data. 
Inspired by the cross-feature approach used in traditional 
recommendation tasks [19, 22, 23], we propose a model 
called explicit behavior interaction with heterogeneous 
graph for multi-behavior recommendation (MB-EBIH). This 
model mainly consists of two modules: an explicit behavior 
interaction information extraction module and a fusion mod-
ule. In first of these modules, we construct a heterogeneous 
behavior informative graph that includes both positive and 
negative behaviors based on multi-behavior historical data. 

Fig. 1  Illustration of negative 
feedback signals for auxiliary 
behaviors: u

1
 and u

2
 can pur-

chase directly without auxiliary 
behaviors (i.e., auxiliary behav-
iors convey negative feedback 
signals)
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Here, the nodes represent the user, the item, and the nega-
tive and positive signals of auxiliary behaviors, and each 
edge represents an interaction between a pair of nodes. We 
investigate information on the behavior interactions based 
on this graph structure. We then design a self-supervised 
task to obtain a GNN-based pre-trained knowledge model, 
which is used to generate explicit behavior interaction values 
as the edge weights for the heterogeneous behavior graph, 
where the weights explicitly represent the importance of 
the auxiliary behaviors. In the second module, the extracted 
explicit behavior interaction information is incorporated 
into multi-behavior user–item bipartite graphs to learn bet-
ter representations.

In summary, the main contributions of this work are as 
follows:

• We propose a new model called MB-EBIH for multi-
behavior recommendation, which can capture personal-
ized user preferences with both positive and negative 
feedback from auxiliary behaviors. Moreover, it explic-
itly models the relations between the auxiliary and target 
behaviors and learns the explicit interactions between 
multiple behaviors.

• To the best of our knowledge, we are the first to model 
the explicit behavior interactions in multi-behavior RSs 
and to explore the relationships between different behav-
iors to perform better personalized user modeling.

• We conduct comprehensive experiments on four real-
world datasets to evaluate the effectiveness of MB-EBIH 
and the generalization of the explicit behavior interac-
tions. The results show that our model has significantly 
improved recommendation performance compared to 
other baseline models, and demonstrate the effectiveness 
of capturing the explicit behavior interactions in multi-
behavior RSs.

2  Related Work

Existing multi-behavior recommendation models can be 
classified into three categories: the first category that based 
on matrix factorization (MF) [24–26] directly extended the 
MF technique from a single-behavior to multi-behavior RSs. 
For example, [25] extended the MF model to simultaneously 
factorize multiple matrices, while sharing embeddings on 
the item side. References [24, 26] extended this model to 
perform matrix factorization of multiple behaviors by shar-
ing user or item embeddings.

The second that based on deep neural network (DNN) 
involves initially learning user and item embeddings sep-
arately from each behavior using the designed network. 
Subsequently, these embeddings, acquired from various 
behaviors, are aggregated to predict the target behavior. 

For example, NMTR [17] uses a cascading deep model 
based on NCF [4] to investigate the dependencies between 
behaviors and uses a multitask framework for optimiza-
tion. MATN [18] and DIPN [27] both utilize an attention 
mechanism to capture the relationships between multiple 
behaviors, while MATN also adopts a transformer network 
to encode the relationships between multiple behaviors.

The third that based on GNN construct user–item bipar-
tite graphs with positive feedback on auxiliary behaviors 
and then use graph convolution network (GCN) for embed-
ding learning. For example, MBGCN [14] uses positive 
feedback on auxiliary behaviors to construct user–item 
bipartite graphs and item–item graphs to explore the 
behavioral dependencies and behavioral semantics, respec-
tively. CRGCN [15] and MB-CGCN [16] adopt a cascad-
ing GCN structure to investigate the dependencies between 
multiple behaviors. CRGCN delivers the embeddings of 
users and items learned from the positive signals of previ-
ous behavior to the next behavior in a chain, based on the 
residual structure, and applies multitask learning to opti-
mize the model. MB-CGCN inherits the cascading struc-
ture of CRGCN, but replaces the residual structure with 
feature transformation operations. GNMR [20] exploits 
the dependencies among multiple behaviors via recursive 
embedding propagation. MGNN [28] adopts a multiple-
layer network to simultaneously learn shared user and 
item embeddings, as well as distinct embeddings for each 
behavior. MB-GMN [29] employs a meta-graph neural 
network to effectively model diverse multi-behavior pat-
terns, capturing the heterogeneity and diversity of behav-
iors within a unified graph. MMCLR [30] employs three 
contrastive learning tasks for training the model param-
eters, considering similar preferences among behaviors 
for specific users or items. Both KMCLR [31] and KHGT 
[21] leverage knowledge graphs to augment information, 
mitigating the issue of sparse target behavioral data. Fur-
thermore, KMCLR integrates contrastive learning tech-
niques. HMGGR [32] employs graph contrastive learning 
among the constructed hyper-meta-graphs to adaptively 
learn complex dependencies among different behaviors for 
embedding learning. MBA [33] utilizes multiple types of 
implicit user behavior data and data denoising techniques 
to enhance the prediction of target behaviors. EHCF [34], 
GHCF [35] and FPD [36] all adopt the non-sampling train-
ing strategy, with FPD additionally utilizing a multilayer 
perception to extract distinctions among various behaviors.

However, all of the aforementioned approaches fail to 
model the explicit interactions between behaviors, leading 
to an inability to accurately model explicit semantic rela-
tionships between target and auxiliary behaviors. Moreo-
ver, these approaches neglect the negative feedback signals 
from auxiliary behaviors, thereby inadequately capturing the 
user’s personalized preferences comprehensively.
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Unlike the works mentioned above, our model can more 
accurately model relationships between behaviors by con-
structing a heterogeneous behavioral graph to effectively 
explore the explicit interaction semantics between behav-
iors in a more flexible manner. The heterogeneous graph 
we construct also includes negative feedback signals for the 
auxiliary behaviors, enabling a more comprehensive mod-
eling of the user’s personalized preferences across different 
behaviors.

3  Preliminaries

3.1  Problem Formulation

Traditional RSs typically model users’ preferences based 
on single behavior (called the target behavior); however, the 
users in the real world usually show various behaviors. For 
example, in the e-commerce platforms, users often interact 
with the provided items via multiple behaviors before show-
ing the target behavior (such as clicking, adding to cart or 
collecting), and these behaviors can reflect their preferences 
in different respects. In this work, we address the issues 
mentioned in the Introduction with the goal of designing 
a recommendation model that can better utilize auxiliary 
behaviors, in order to improve the performance of the model 
for target behavior prediction.

3.2  Task Formulation

In this section, we give a formal definition of our model for 
the multi-behavior recommendation task.

We assume a set of multi-behavior data {U, I,B} , where 
U =

{
u1, u2,… , uM

}
 and I =

{
i1, i2,… , iN

}
 denote the sets 

of users and items, respectively, and B =
{
b1, b2,… , bK

}
 

denote the possible types of behavior (where M, N, K are the 
number of users, items and behavior types, respectively). We 

denote bK as the target behavior and the rest as the auxiliary 
behaviors.

Multi-Behavior User–Item Bipartite Graph. We use the 
user–item interaction matrices for each behavior to rep-
resent user–item bipartite graphs. Given behavior types 
B =

{
b1, b2,… , bK

}
 , we specify that 

{
Yb1 , Yb2 ,… , Ybk

}
 rep-

resent the matrices of behaviors, where Ybk is the matrix for 
the target behavior. Each entry in the matrices is an integer, 
which is defined by:

Negative Feedback Signals. In real-world scenarios, when a 
user performs a certain behavior, we define it as a positive 
feedback signal behavior1 for the corresponding behavior 
and conversely as a negative feedback signal behavior0 . 
Combining the negative feedback signals of user behaviors 
can reflect the user’s preferences more comprehensively and 
thus model the users more accurately [37, 38].

Formally, we can express the task of multi-behavior rec-
ommendation as follows:

Input: The user–item interaction data of B types of behav-
iors, {U, I,B}.

Output: A recommendation model that estimates the 
probability that a user u will interact with an item i via the 
kth behavior (i.e., the target behavior)

4  Method

4.1  Overview

In this section, we provide a detailed description of the MB-
EBIH model. However, before delving into the specifics, we 
offer an overview of the model from a global perspective. 
Figure 2 shows the overall structure of the model, which has 

(1)

yb
u,i

=

{
1, If u has interacted with i via behavior b

0, otherwise

Fig. 2  Overview of MB-EBIH 
model. (user, behavior) and 
(item, behavior) denote the 
explicit behavior interactions. |||

||| 
is the concatenate operation. ⊗ 
is the inner product operation
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several important components: (1) the shared embedding mod-
ule, which initializes the embeddings of user, item and behav-
ior nodes in both the heterogeneous information graph and the 
multi-behavior bipartite graphs; (2) the explicit behavior inter-
action extraction module, in which a heterogeneous behav-
ior informative graph is first constructed, then a GAT-based 
self-supervised task is designed to extract explicit behavior 
interaction information from the graph and train a pre-trained 
knowledge model capable of inferring explicit behavior inter-
action information; and (3) the explicit behavior interaction 
fusion module, which incorporates explicit behavior interac-
tion information into the embedding learning of users and 
items. Toward the conclusion of this section, we analyze the 
complexity of the MB-EBIH model and discuss the advantages 
of explicitly modeling behavioral interactions.

4.2  Shared Embedding Module

Given user u and i, we transform them into learnable embed-
dings eu(0) ∈ ℝ

d0 and ei
(0) ∈ ℝ

d0 , where d0 denotes the embed-
ding size, to initialize a user and an item.

For each of auxiliary behavior nodes in the heterogeneous 
behavior graph, we initialize the negative and positive feed-
back behavior0 and behavior1 , respectively. In a similar way 
to the definition of user (item) embedding, we define the initial 
embedding of each auxiliary behavior b as 

{
e
(0)

b0
, e

(0)

b1

}
∈ ℝ

d1 , 
where d1, b0 and b1 denote the embedding size of the auxiliary 
behaviors, and the negative and positive signals of auxiliary 
behavior b, respectively.

4.3  Explicit Behavior Interaction Extraction Module

In this section, we introduce the core component of our model, 
the explicit behavior interaction extraction module, which car-
ries out the following main steps:

4.3.1  Heterogeneous Behavior Informative Graph

In this stage, we aim to transform the multi-behavior histori-
cal data into a heterogeneous behavior informative graph, 

which contains abundant explicit behavior interaction infor-
mation. More specifically, we construct an undirected het-
erogeneous graph G = (V, E) , where V consists of the user 
nodes u ∈ U , item nodes i ∈ I  and auxiliary behavior nodes 
b ∈ B , denoting the set of all types of nodes and E denotes 
the set of edges referring to the behavior interactions.

Unlike previous works [14], the edges of the unified het-
erogeneous behavior graph constructed here are assigned 
attributes, the values of which the attributes represent the 
semantics of the explicit behavior interaction.

Heterogeneous Graph Construction. As shown in Fig. 3, 
we first choose one behavior from the set of user behaviors 
B as the target behavior (i.e., the Label in Fig. 3); here, we 
assume that the target behavior is buying. Inspired by prior 
works on explicit cross-features [6, 22, 23], we calculate the 
weights of the edges as follows:

where f0 and f1 denote two nodes in the constructed hetero-
geneous graph, and the value of sum

(
f0, f1

)
 represents the 

total number of co-occurrences of f0 and f1 in the multi-
behavior history data under certain conditions.

For brevity, Fig. 3 shows only one behavior click (i.e., 
auxiliary behavior) in our example here, and two or more 
auxiliary behaviors can be calculated in the same way.

4.3.2  Details of the Explicit Behavior Interaction Extraction 
Module

In Sect. 4.3.1, we described the transformation of multi-
behavior data into a unified weighted heterogeneous 
informative graph. However, we argue that the explicit 
behavior interaction calculated by Eq. 2 can represent only 
the explicit dependencies between the user, the positive or 
negative feedback from a single auxiliary behavior and the 
target behavior. It may not capture the full extent of com-
plex relationships that can exist between multiple auxiliary 
behaviors and the user’s preferences. To capture information 
about higher-order neighbor nodes and effectively model 

(2)w(f0,f1) =
sum

(
f0, f1

)
∣ (buy = 1)

sum
(
f0, f1

)
∣ (buy = 1 and buy = 0)

Fig. 3  Process of constructing 
heterogeneous graph, click

0
 and 

click
1
 denotes the negative and 

the positive feedback signals 
of click 
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explicit interactions between multiple behaviors, we choose 
GAT [39] to capture the feature information of neighboring 
nodes, based on the attention mechanism, to better distin-
guish between the contributions of different behaviors. For 
the weighted heterogeneous informative graph, we capture 
information about the of neighboring nodes in two steps, as 
described below:

Calculation of the attention Coefficient. Since it is nec-
essary to determine the importance of the feature informa-
tion for each neighbor node in the heterogeneous graph, we 
define a scalar to measure it, which is known as the attention 
coefficient. In order to obtain the attention coefficient for a 
certain node i and its neighbor node j, it is first necessary 
to calculate the similarity coefficient sim between the two 
nodes i and j:

where e(l)
i
and e

(l)

j
 denote the embeddings for node i and its 

neighbor node j in layer L, respectively; e(0)
i

 and e(0)
j

 are 
embeddings initialized in the share embedding module; Ni 
and W are the set of neighbors of node i and the feature 
transformation matrix shared by nodes i and j, respectively; 
and (∥) represents the vector concatenation operation. MLP 
is a single-layer feed-forward neural network, which serves 
to map the embedding of the concatenated high-dimensional 
nodes to a scalar (i.e., the similarity coefficient sim between 
the nodes).

After obtaining simi,j between the target node i and the 
neighbor node j, we use the softmax function to normalize 
simi,j and then calculate the attention coefficient ai,j . For-
mally, this process can be generally expressed as:

where LeakyReLU(*) is nonlinear activation function for-
mulated as follows (where the default value of � is 0.2):

Heterogeneous Graph Convolution. After calculating the 
similarity coefficients between the target node and each 
neighbor node, we use these coefficients to carry out a 
weighted summation operation on the feature information 
of the neighbors. This is adopted as the embedding of the 
target node in layer L, as follows:

where �(⋅) denotes the nonlinear activation function. In 
practice, GAT is usually used with a multi-head attention 

(3)simi,j = MLP([We
(l)

i
∥ We

(l)

j
]), j ∈ Ni

(4)�i,j =
exp

�
LeakyReLU

�
simi,j

��
∑

k∈Ni
exp

�
LeakyReLU

�
simi,k

��

(5)LeakReLU(z) =

{
z z > 0

𝛼z z <= 0, 𝛼 = 0.2

(6)e
(l)

i
= �

�∑
j∈Ni

�i,jWe
(l−1)

j

�

mechanism to enhance the effectiveness of the attention 
mechanism, as follows:

where || is the vector concatenation operation, K is the num-
ber of heads and e(L)

i
(K) denotes the embedding of node i 

under head K in the last layer. Since this is not the focus of 
our work, we set K = 1 in this study.

4.3.3  Extracting Explicit Behavior Interaction Information

After extracting the information on the neighbors of each 
node using GAT, we need to reconstitute the explicit inter-
actions between nodes. Here, we use the embedding of the 
nodes in the last layer of the explicit behavior interaction 
extraction module to get the updated explicit behavior inter-
action information between nodes (i.e., the value of the edge 
between nodes f0 and f1 ), using an explicit behavior interac-
tion inferring function. Formally, the function is expressed 
as:

where pu,bk and pi,bk are the inferred value of the edge 
between the user node u and the node of kth behavior bk , and 
the item node i and the node of kth behavior bk , respectively. 
We set f (⋅) to a MLP layer in our model. Here, �(⋅) is the 
sigmoid function which maps the value to the range of (0, 1).

In order to enable the model to infer the explicit relation-
ship between any two nodes, we design a self-supervised 
learning task to train our pre-trained knowledge model using 
w(f0,f1) (obtained in Sect. 4.3.1) as the label and p(f0,f1) (i.e., 
pu,bk and pi,bk ) as the predicted value. Since w(f0,f1) contains 
explicit behavior interaction information between two nodes, 
when it is used as the label of training task, the final pre-
dicted value p(f0,f1) can better represent the explicit interac-
tion semantics between the nodes through the guidance of 
w(f0,f1).

In a similar way to traditional self-supervised learning, 
we can train the model directly using a square loss 
‖‖‖p(f0,f1) − w(f0,f1)

‖‖‖
2

 . However, in the real world, the amount 
of positive and negative feedback for different behaviors var-
ies; for example, clicking may have more positive feedback 
than adding to carting, and the positive feedback from add-
ing to cart will usually be less than its own negative feed-
back. In order to enable the model to better distinguish the 
importance of each behavior, we allocate a weight to the 

(7)e
(L)

i
(K) =

K���
���

k=1

�

�∑
j∈Ni

�k
i,j
Wke

(L−1)

j

�

(8)pu,bk = �

(
f
(
eL
u
, eL

bk

))

(9)pi,bk = �

(
f
(
eL
i
, eL

bk

))
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square loss of each explicit behavior interaction, which is 
defined as the total number of occurrences of each pair of 
explicit behavior interactions 

(
f0, f1

)
 , i.e., sum(f0, f1) . We then 

obtain the following loss function:

where Nedge is the total number of the edges in the con-
structed heterogeneous graph, sum(f0, f1) denotes the total 
number of times the explicit interaction 

(
f0, f1

)
 appears 

in the multi-behavior historical data. The frequencies of 
occurrence of different behaviors in the historical data will 
be different; for example, compared to adding to cart, the 
frequency of clicking will be higher. We therefore use a 
logarithmic function to apply a smoothing operation to the 
sum(f0, f1) of each explicit behavior interaction in the histori-
cal data, which gives a relatively balanced weight to each 
explicit behavior interaction in the loss function. The value 
of � is a very small positive number that is used to prevent 
the logarithmic function from smoothing the loss of some 
explicit behavior interactions to zero. We set � to one in this 
work.

4.3.4  Inferring Explicit Behavior Interaction

In the previous sections, we described the steps used to 
extract explicit behavior interaction information from the 
constructed heterogeneous informative graph. In this way, 
we can obtain a pre-trained knowledge model of explicit 
behavior interactions that is capable of inferring explicit 
behavior interaction information from multi-behavior data. 
More specifically, given a set of multi-behavior data D,1 
for each user and auxiliary behavior in the data, we use the 
pre-trained knowledge model to obtain the values for the 
explicit behavior interactions between each user and each 
auxiliary behavior in D . The values of the explicit behavior 
interactions obtained in this step lie in the range (0, 1) , and 
in order to more intuitively reflect the distinctions between 
different explicit behavior interactions, we map the values 
obtained from the inferring function to integers. Specifically, 
we map values in the range (0, 0.2) to zero and then divide 
the interval [0.2, 1) into eight subintervals with a step size of 
0.1. Each subinterval corresponds to an integer from one to 
eight in sequence, which reflects the strength of the explicit 
behavior interaction.

(10)Loss1 =

Nedge∑
n=1

ln
(
sum

(
f0, f1

)
+ �

)‖‖‖p(f0,f1) − w(f0,f1)
‖‖‖
2

4.4  Explicit Behavior Interaction Fusion Module

In Sect. 4.3, we described the extraction of explicit behavior 
interactions using the constructed heterogeneous informative 
graph. In this section, we incorporate the learned explicit 
behavior interaction information into the embedding learn-
ing of users and items.

Constructing the Weighted Bipartite Graph. We first con-
struct k user–item bipartite graphs based on the historical 
interactions of users and items under k behaviors, respec-
tively, according to Eq. 1. Then, for each user–item edge in 
each bipartite graph constructed based on auxiliary behav-
iors, we assign the value of the user’s explicit behavior inter-
action with that behavior. This process yields k-1 weighted 
bipartite graphs of auxiliary behaviors 

{
Gb0

,Gb1
,… ,Gbk−1

}
.

Note that the multi-behavior bipartite graphs constructed 
here are different from those described in previous works 
[14, 16, 19, 20, 36, 40], as our weighted graphs actually 
contain explicit information on behavior interactions that 
was learned via the explicit behavior interaction extraction 
module and can more accurately reflect the user’s prefer-
ences in regard to different behaviors.

Fusion of multi-behavior explicit behavior interactions. 
Similarly to previous works on multi-behavior recommenda-
tions [14, 16], we apply a refined LightGCN [8] to the con-
structed bipartite graph for message propagation of neighbor 
nodes as follows:

where e(b,l)u and e
(b,l−1)

i
 represent the embeddings of user u 

and item i, respectively, for auxiliary behavior b after propa-
gation over layers l and l-1. Nu denotes the set of items that 
are interacted with user u, and Ni denotes the set of users 
that interact with item i. pu,b is the explicit behavior interac-
tion (user, behavior) between user u and behavior b. The 
definition of e(b,l)

i
 is similar to that of e(b,l)u .

To avoid over-smoothing, we concatenate the embeddings 
of each layer using a structure consistent with that described 
in previous work [7, 8], thus obtaining the user and item 
embeddings as follows:

We then concatenate the embedding obtained from each 
behavior bipartite graph to get the final user and item embed-
ding as follows:

(11)

e
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, otherwise
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(b,l)

i

1 We divided datasets in a 1:1 ratio, with one part used to pre-train 
the knowledge model in the previous section and the other part is D 
that will be used in the explicit behavior interaction fusion module.
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where b denotes the specific auxiliary behavior.
Finally, the predicted value of the target behavior is 

obtained as the inner product of the embedding of the user 
and the item:

We choose pairwise learning strategies for the explicit 
behavior interaction fusion module. Specifically, we select 
the Bayesian personalized ranking (BPR) loss, in which the 
core idea is that items that users have interacted with (i.e., 
positive samples) should have higher prediction scores than 
items without interaction (i.e., negative samples). Formally, 
the optimization function is expressed as:

where O =
{
(u, i, j) ∣ (u, i) ∈ R+, (u, j) ∈ R−

}
 , (u, i, j) is the 

set of pairwise target behavior training data, and R+ and R− 
denote the sets of positive and negative samples of items, 
i.e., items that have been interacted with and those that have 
not been interacted with via the target behavior, respectively. 
�(⋅) denotes the sigmoid function, while Θ denotes all of the 
trainable parameters in explicit behavior fusion module. We 
apply L2 regularization to prevent over-fitting, where � is the 
coefficient used to control the regularization.

4.5  Complexity Analysis

4.5.1  Time Complexity

We analyze the time complexity of different mod-
ules of MB-EBIH from the following aspects: (1) In the 
explicit behavior interaction extraction module, con-
structing the heterogeneous information graph takes 
O
(
(|U| + |I|) × |B| × Nb

)
 , where |U| and |I| the total num-

ber of users and items, respectively, |B| is the number of 
types of behaviors and Nb is the number of user interaction 
entries under each auxiliary behavior; the time consumed 
by the process of L-layer heterogeneous graph convolution 
is O

(
L ×

(
(|U| + |I|) × d0 + |B| × d1 + |E| × (

d0 + d1
)))

 , 
where d0 and d1 represent the dimensions of users (items) 
and behaviors, respectively. |E| represents the number of 
edges in the heterogeneous graph, and L represents the 
number of layers in the GAT; Inference of explicit behav-
ior interactions takes O

(|B| × (|U| + |I|) × (
d0 + d1

))
 . (2) 

The explicit behavior interaction fusion module consumes 
O
(|B| × (|U| + |I| + ||Eb||

))
 , where ||Eb|| represents the num-

ber of edges in each behavioral bipartite graph.

(13)eu =

B|||
|||

b=0

eb
u
; ei =

B|||
|||

b=0

eb
i

(14)y(u, i) = eT
u
ei

(15)Loss2 =
�

(u,i,j∈O)

− ln �(y(u, i) − y(u, j)) + � ⋅ ‖Θ‖2

4.5.2  Space Complexity

The primary memory consumption of MB-EBIH mainly 
arises from the following components: the constructed 
heterogeneous information graph, the embeddings of 
users, items and behavioral nodes, the weighted multi-
behavior bipartite graphs and the GAT. To be more spe-
cific, the memory usage for the constructed heterogene-
ous graphs is O

(
(|U| + |I|) × d0 + |B| × d1 + |E|) . For 

the weighted multi-behavior bipartite graphs, the mem-
ory allocation is O

(|B| × (
(|U| + |I|) × d0 +

||Eb||
))

 . The 
memory consumed by the trainable parameters of the GAT 
for the explicit behavior interaction extraction layer is 
O
(
L ×

(
(|U| + |I|) × d2

0
+ |B| × d2

1

))
.

4.6  Discussion

As previously mentioned, our proposed MB-EBIH distin-
guishes itself significantly from existing multi-behavior 
recommendation models by explicitly modeling interac-
tions between multiple behaviors. Existing models, relying 
on implicit modeling, typically create separate user–item 
bipartite graphs for each behavior, utilizing the user’s inter-
action data across various behaviors. They subsequently 
apply deep learning techniques to learn and capture the 
interactions between these behaviors, thereby assisting in 
the prediction of the user’s target behavior.

However, in real-world scenarios where user behavior 
is inherently intricate, this black-box implicit modeling 
approach makes it difficult to accurately distinguish which 
behaviors are more beneficial for user modeling. In contrast, 
MB-EBIH is grounded in the user’s historical interaction 
data, using the target behavior as a label to statistically quan-
tify the explicit quantitative relationship between auxiliary 
behaviors and the target behavior. This approach allows 
for a more precise modeling of the interaction relationship 
between multiple behaviors, leveraging this quantitative 
relationship as a posteriori information. The effectiveness 
of this explicit modeling of behavioral interactions is further 
demonstrated through experiments in Sect. 5.5.2. Addition-
ally, such a posteriori statistical features obtained through 
explicit modeling are frequently integrated into industrial 
scenarios to enhance the model’s recommendation perfor-
mance [22, 23].

5  Experiments

In this section, we describe extensive experiments conducted 
on four real-world datasets from different scenarios to evalu-
ate the effectiveness of our proposed MB-EBIH approach 
and compare it with various existing recommendation 
methods.
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5.1  Experimental Settings

5.1.1  Dataset

To evaluate the performance of MB-EBIH and the generali-
zation of the explicit behavior interactions, we choose four 
datasets from real-world platforms in different domains, as 
described in detail below:

• Beibei: This dataset was collected from Beibei,2 which 
is the largest e-commerce platform for baby products 
in China. It contains 21,716 users and 7,977 items with 
three types of user–item behaviors, including clicking, 
adding to cart or carting for short and buying.

• Tmall: This dataset was collected from Tmall,3 one of 
the largest e-commerce platforms in China. There are 
41,738 users and 11,953 items with four types of behav-
ior, including clicking, carting, buying and collecting.

• IJCAI15: This dataset was released from the IJCAI Con-
test 2015,4 which is focused on the task of predicting 
repeat buyers. To ensure that the training data were not 
too sparse, we filtered out users who bought fewer than 
15 times and items that were bought fewer than 20 times. 
We were left with 55,038 users and 28,728 items, with 
the same four behaviors as in the Tmall dataset.

• QK-article [41]: This dataset was collected from Ten-
cent’s news article recommendation platform. Similar to 
IJCAI15, we filtered out users who bought fewer than 5 
times and items that were bought fewer than 5 times. We 
were left with 40,343 users and 19,218 items with four 
types of behaviors, including clicking, following, sharing, 
liking.

In this study, we divided each dataset into two parts, in a 
1:1 ratio. The first subdataset, was used in the explicit behav-
ior interaction extraction module to construct weighted het-
erogeneous informative graphs, to extract explicit behavior 
interaction information, while the second, was used in the 
explicit behavior interaction fusion module to construct 

multi-behavior bipartite graphs to incorporate the explicit 
behavior interaction information into the embedding learn-
ing. In the explicit behavior interaction fusion module, we 
further divided the subdataset into a training set, a valida-
tion set and a test set in an 8:1:1 ratio. For the e-commerce 
platform dataset, we considered buying(i.e., the final opti-
mization goal of our model) as the target behavior, while 
for the news article platform dataset, we chose liking as the 
target behavior, and the other types of behaviors were treated 
as auxiliary behaviors. Statistical information on the four 
datasets used in our experiments is summarized in Table 1.

To quantify the performance of each model, we selected 
two widely used metrics, called recall and normalized dis-
counted cumulative gain (NDCG), which were defined as 
explained below:

• Recall@K quantifies the proportion of relevant items 
from a test set that are correctly included in the top-K 
recommendation list. It measures the ability of the sys-
tem to recall and capture relevant items from the rec-
ommended options. The higher the value of Recall@K, 
the better the ability of the system in terms of recalling 
relevant items.

• NDCG@K evaluates the quality of the ranking of rec-
ommended items by assigning higher scores to rel-
evant items that are ranked higher in the top-K list. It 
emphasizes the importance of both the relevance and the 
position of each item, with the aim of prioritizing and 
promoting higher-ranked relevant items in the recom-
mendation list. A higher NDCG@K value indicates a 
better-ranked list of relevant items.

5.1.2  Baselines

To showcase the efficiency of our MB-EBIH model, we con-
ducted a comparative analysis with various other methods. 
We categorized the baselines into two groups: single-behav-
ior models, which rely solely on target behavior records, 
and multi-behavior models, which consider all types of 
behaviors.

Single-behavior Models:

• MF-BPR [3]: This method has demonstrated strong 
performance in the top-n recommendation task and 
is frequently employed as a benchmark for assessing 

Table 1  Statistics of the 
datasets used in our experiments

Dataset User# Item# Interaction# Behavior type#

Beibei 21,716 7,977 3.3 × 106 {Click,Cart,Buy}

Tmall 41,738 11,953 2.3 × 106 {Click,Cart,Collect,Buy}

IJCAI15 55,038 28,728 7.5 × 106 {Click,Cart,Collect,Buy}

QK-article 40,343 19,218 2.4 × 106 {Click,Share,Follow,Like}

2 http:// www. beibei. com/
3 http:// tianc hi. aliyun. com/ datas et/ dataD etail? dataId= 649.
4 http:// http:// tianc hi. aliyun. com/ datas et/ 42.

http://www.beibei.com/
http://tianchi.aliyun.com/dataset/dataDetail?dataId=649
http://tianchi.aliyun.com/dataset/42
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the effectiveness of new models. The BPR approach 
has been extensively utilized as an optimization strat-
egy and is based on the assumption that positive items 
should receive higher scores than negative items.

• NGCF [7]: This is a state-of-the-art graph neural net-
work model that was specially designed to combine 
graph neural network with an RS.

• LightGCN [8]:This state-of-the-art GCN-based rec-
ommendation model represents a breakthrough in 
leveraging high-order neighbors within the user–item 
bipartite graph to deliver accurate recommendations.

Multi-behavior Models:

• NMTR [17]: This is a state-of-the-art method that uses 
multitask learning to update NCF for multi-behavior 
tasks. For each type of behavior, it constructs a data-
dependent interaction function and links the model 
predictions for each type of behavior in a cascading 
fashion.

• MBGCN [14]: This is a state-of-the-art multi-behavior 
recommendation model based on GCN. It effectively 
considers the varying contributions of multiple behav-
iors to the target behavior based on a unified graph. 
It learns the behavior contributions and leverages an 
item–item graph to capture the behavior semantics.

• MATN [18]: This model incorporates attention net-
works and memory units to distinguish and capture 
the relationships between users and items.

• MB-GMN [29]: This model utilizes a graph meta net-
work to capture personalized signals from multiple 
behaviors and to effectively model the diverse depend-
encies between them.

• GNMR [40]: This GNN-based approach explores 
multi-behavior dependencies through recursive 
embedding propagation on a unified graph. It employs 
a relation aggregation network to effectively model the 
heterogeneity of interactions within the graph.

• CRGCN [15]: This model utilizes a cascading GCN 
structure to effectively model multi-behavior data. It 
employs a residual design to deliver the learned behav-
ioral features from one behavior to the next.

• MB-CGCN [16]: This is a recently proposed model 
that adopts cascading CGN blocks to explicitly lev-
erage multiple behaviors for embedding learning. In 
this model, a LightGCN learns the features of pre-
vious behavior and transfers them to the subsequent 
behavior through a feature transformation operation. 
The embeddings obtained from all behaviors are then 
aggregated to create the final prediction.

5.1.3  Hyper‑parameter Settings

We implemented our MB-EBIH model using PyTorch, and 
the model was optimized using the Adam optimizer with 
learning rate 3e−4.

For explicit behavior interaction extraction module, we 
set the dimensions of the user(item) and behavior nodes to 
eight and four, respectively, and conducted detailed experi-
ments to explore the effect of node dimension in Sect. 5.6.1. 
For GAT, we set the number of layers L=2 and K=1 in the 
multi-head mechanism, and set the size of the hidden layer 
to 64 and the size of the last layer to four. For f (⋅) in Eqs. 8 
and 9, in order to correspond to the dimensions of the user, 
item and behavior node, we set the input size to 12 and the 
output size to 1. We set � in the Loss1 to one.

In the explicit behavior interaction fusion module, since 
the purpose of the embedding of users and items obtained 
via the explicit behavior interaction extraction module is to 
infer user behavior explicit behavior interactions, it is not 
directly applicable to explicit behavior interaction fusion 
module, so we reset the embedding size to 64 for users and 
items, and set the batch size to 4096. After several validation 
experiments, we found that setting the number of layers L of 
LightGCN to one yielded the best results. To prevent over-
fitting, we also applied message dropout and node dropout, 
with values set to 0.2 [14]. We set � in the L2 regularization 
to 1e−4 . For the baseline models, we used the hyper-param-
eter settings givens in the original papers.

In addition, in order to enhance the stability of the model 
training process, for both the explicit behavior interaction 
extraction module and the explicit behavior interaction 
fusion module, we selected ReLU as the activation func-
tion. And in order to initialize the training parameters of the 
model better, we use the Kaiming initializer [42] to initialize 
the parameters of the two modules mentioned above.

5.2  Overall Performance

In this section, we compare our MB-EBIH model with 
the other baselines. The results from the four datasets are 
reported in Table 2.

The best values are highlighted in bold and the second 
best are underlined. From the results, we can draw the fol-
lowing conclusions:

• Comparison of model performance. Table 2 shows that 
our MB-EBIH outperforms all the baseline models in 
terms of both the Recall@K and NDCG@K metrics 
( K = {10, 20, 40} ). Compared to the single-behavior 
model, we introduce multiple behaviors to reflect 
user preferences more comprehensively. Compared 
with the NN-based model, we employ GCN to obtain 
higher-order neighbor information. Different from the 
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structure of GCN-based models, our model explicitly 
exploited interactions between behaviors through a 
heterogeneous behavior informative graph. By intro-
ducing explicit behavior interaction information, our 
model can more accurately capture users’ personalized 
preferences under different behaviors.

• Importance of GNN in the RS. From an investigation 
of the performance of the single-behavior models in 
Table 2, we can see that the two GCN-based models, 
NGCF and LightGCN, perform better than traditional 
MF, thus proving that the ability of GCN to explore 
higher-order neighbor information can enable the 
model to learn more efficient embeddings of users and 
items.

• Importance of multiple behaviors in the RS. From the 
results in Table 2, we can see that the single-behavior-
based models MF-BPR, LightGCN and NGCF gave infe-
rior performance to the multi-behavior-based models, 
which demonstrates the necessity of considering multi-
behavior data in the RS. By exploring the dependencies 
between multiple behaviors, multi-behavior recommen-
dation models can model user preferences from multiple 
perspectives

5.3  Modeling User Personalized Behavioral 
Preferences

In the real world, the probability that a user will perform 
a target behavior after performing an auxiliary behavior is 
individualized; for example, some users will definitely buy 
an item after adding it to the cart, while others will not (i.e., 
the proportion of purchases in the cart records for these 
users are different).

As shown in Fig. 4, for the Beibei dataset, we counted the 
records of cart behavior for different users and calculated the 
proportions of purchase behavior, and then grouped the users 
based on this proportion. From the statistics in Fig. 4, it can 
be intuitively seen that in real-world scenarios, there are 
significant personalized differences between different users 
in terms of whether or not to buy after the cart behavior. This 
indicates that in the process of user modeling, the user’s per-
sonalized behavioral preference is a very important feature 
information, and a more comprehensive portrait of the user 
can be portrayed by modeling it.

To demonstrate that our proposed MB-EBIH model 
could accomplish the above mentioned personalized prefer-
ence modeling of auxiliary behaviors, we compared it with 

Table 2  Overall performance comparison between MB-EBIH and baseline models on four datasets

Dataset Metric Single-behavior methods Multi-behavior methods MB-EBIH

MF-BPR NGCF LightGCN NMTR MBGCN MATN MB-GMN GNMR CRGCN MB-CGCN

Beibei Recall@10 0.0868 0.0901 0.0925 0.0937 0.1249 0.0942 0.1040 0.1105 0.1215 0.1539 0.1911
NDCG@10 0.0414 0.0521 0.0538 0.0571 0.0745 0.0579 0.0586 0.0635 0.0986 0.1095 0.1235
Recall@20 0.1244 0.1463 0.1517 0.1559 0.1925 0.1604 0.1608 0.1635 0.2173 0.2362 0.2807
NDCG@20 0.0641 0.0652 0.0698 0.0796 0.0937 0.0790 0.0740 0.0794 0.1330 0.1547 0.1674
Recall@40 0.1965 0.2311 0.2328 0.2644 0.2938 0.2610 0.2863 0.2872 0.2778 0.3388 0.3694
NDCG@40 0.0817 0.0853 0.0887 0.0995 0.1157 0.1071 0.1078 0.1096 0.1585 0.1910 0.1991

Tmall Recall@10 0.0263 0.0391 0.0417 0.0470 0.0692 0.0562 0.0893 0.0601 0.0901 0.0925 0.0985
NDCG@10 0.0151 0.0225 0.0291 0.0293 0.0424 0.0367 0.0462 0.0388 0.0568 0.0594 0.0644
Recall@20 0.0355 0.0491 0.0553 0.0672 0.0947 0.0790 0.1072 0.0838 0.1136 0.1231 0.1280
NDCG@20 0.0176 0.0356 0.0333 0.0360 0.0493 0.0408 0.0592 0.0452 0.0631 0.0696 0.0732
Recall@40 0.0481 0.0716 0.0719 0.0982 0.1275 0.1042 0.1345 0.1190 0.1543 0.1594 0.1664
NDCG@40 0.0200 0.0350 0.0361 0.0412 0.0558 0.0517 0.0674 0.0529 0.0749 0.0778 0.0803

IJCAI15 Recall@10 0.0217 0.0281 0.0286 0.0314 0.0468 0.0350 0.0558 0.0417 0.0562 0.0701 0.0718
NDCG@10 0.0116 0.0153 0.0180 0.0211 0.0304 0.0217 0.0376 0.0272 0.0351 0.0428 0.0500
Recall@20 0.0311 0.0351 0.0387 0.0461 0.0661 0.0412 0.0750 0.0600 0.0884 0.0891 0.0939
NDCG@20 0.0191 0.0198 0.0211 0.0263 0.0358 0.0242 0.0432 0.0393 0.0412 0.0504 0.0563
Recall@40 0.0489 0.0501 0.0519 0.0707 0.0906 0.0714 0.0960 0.0779 0.0924 0.1135 0.1221
NDCG@40 0.0225 0.0231 0.0240 0.0309 0.0415 0.0316 0.0518 0.0327 0.0510 0.0598 0.0629

QK-article Recall@10 0.0615 0.0641 0.0692 0.0704 0.0711 0.0708 0.0946 0.0860 0.1173 0.1359 0.1509
NDCG@10 0.0333 0.0349 0.0357 0.0366 0.0384 0.0380 0.0495 0.0488 0.0691 0.0796 0.0892
Recall@20 0.1021 0.1063 0.1064 0.1107 0.1178 0.1122 0.1402 0.1366 0.1767 0.2005 0.2205
NDCG@20 0.0445 0.0465 0.0493 0.0502 0.0510 0.0506 0.0622 0.0581 0.0748 0.0934 0.1084
Recall@40 0.1673 0.1745 0.1780 0.1821 0.1844 0.1838 0.2202 0.2084 0.2534 0.2846 0.3096
NDCG@40 0.0589 0.0613 0.0625 0.0650 0.0662 0.0658 0.0834 0.0790 0.0907 0.1121 0.1282
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MBGCN and MB-CGCN on the Beibei dataset. Specifically, 
we applied the criteria for grouping users in Fig. 4 and con-
sidered each group of users as a test set for two different 
auxiliary behaviors, adding to cart and clicking, to inves-
tigate the performance of the three models on the different 
groups.5 The model’s proficiency in capturing personalized 
behavioral preferences can be confirmed by assessing its 
performance on subgroups of users with diverse individu-
alized behavioral preferences. The results for K = 10 are 
summarized in Fig. 5.

Figure 5 shows that MB-EBIH consistently outperforms 
both MB-CGCN and MBGCN, regardless of Recall@10 or 
NDCG@10, for all users grouped under different auxiliary 
behaviors. When compared to MB-CGCN, a model that 
explicitly explores dependencies between behaviors based 
on a chain of behaviors, MB-EBIH demonstrates its capa-
bility in modeling user personalized behavioral preferences 
by consistently delivering excellent performance across 
subgroups of users with different personalized behavioral 
preferences. This also confirms the effectiveness of explicit 
behavior interactions proposed as a posteriori informa-
tion in this paper in modeling user personalized behavio-
ral preferences. Moreover, MB-EBIH consistently outper-
forms MBGCN, a model that aggregates multi-behavior 

information in a weighted manner to distinguish the con-
tribution of behaviors, thereby validating the effectiveness 
of explicit behavior interaction. Furthermore, in addition to 
explicitly modeling behavioral interactions, another signifi-
cant reason for the consistent outperformance of MB-EBIH 
over MBGCN and MB-CGCN across user subgroups is the 
incorporation of negative feedback signals related to aux-
iliary behaviors. Both of the mentioned models overlook 
the modeling of these negative feedback signals in auxiliary 
behaviors, which is an essential aspect of personalization. 
Consequently, they fail to accurately capture the user’s per-
sonalized behavioral preferences, leading to their underper-
formance across different user subgroups.

5.4  Effect of the Graph Attention Mechanism

To verify the effectiveness of GAT in our model,6 we con-
sidered four variants:(1) GraphSage: We utilized Graph-
Sage [43] as a heterogeneous graph aggregator method for 
the explicit behavior interaction extraction module; (2) 
k-GNNs: The heterogeneous graph convolution aggregator 
was replaced with k-GNNs [44]. (3) LEGonv: The hetero-
geneous graph convolution aggregator was replaced with 
LEGonv [45]. (4) GAT: This was the model proposed in this 

Fig. 4  Proportion of buying 
behavior from the cart records 
for different users in the Beibei 
dataset. Users are classified into 
hierarchical levels based on this 
proportion

6 Since the convolution method in the explicit behavior interaction 
fusion module was not the focus of this work, the effect of the param-
eters in this module was not investigated in this study.

5 For reasons of space, we only report results for the Beibei dataset 
here, but we note that MB-EBIH also outperformed the two baseline 
models on the other three datasets.
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work. For each aggregator, we set the number of layers L = 
2 and tuned the parameters to achieve the best performance, 
to enable a fair comparison.

A comparison of the four heterogeneous graph convolu-
tion aggregators in Table 3 shows that MB-EBIH achieves 
the best performance with the GAT method; this indicates 
that the introduction of the attention mechanism is neces-
sary, and that the attention mechanism allows the model 
to better distinguish the contribution of different behaviors 
to the user. In this way, the model can capture more accu-
rate explicit behavior interactions between the user and the 
behavior.

5.5  Ablation Study

5.5.1  Effects of Negative Feedback Signals

To demonstrate the effectiveness of negative feedback sig-
nals (NFSs) in regard to auxiliary behaviors in multi-behav-
ior RS, we consider two variants: (1) w/o. NFS: in which 

we remove the auxiliary behavior negative feedback signal 
nodes (such as click0 and cart0 ) from the heterogeneous 
behavioral informative graph in the explicit behavior inter-
action extraction module; and (2) w. NFS, i.e., the original 
MB-EBIH model.

Figure 6 shows that on the four real-world datasets, w. 
NFS consistently outperforms w/o. NFS, which demon-
strates the effectiveness of considering negative feedback 
signals from auxiliary behaviors in multi-behavior RS.

5.5.2  Effects of Different Explicit Behavior Interactions

To demonstrate the effectiveness of the proposed explicit 
behavior interactions and to explore their impact on the per-
formance of the model, three sets of ablation experiments 
based on different research questions were conducted for 
datasets in different real-world scenarios as summarized 
below:

Single-Behavior Ablation:

(a) (b)

Fig. 5  Comparison of MBGCN, MB-CGCN and MB-EBIH for different subgroups of users with different proportions of buying behavior from 
the auxiliary behaviors (cart and click records) from the Beibei dataset

Table 3  Effect of GAT in 
MB-EBIH (results based on K 
= 10)

Best values are highlighted in bold

Dataset Beibei Tmall IJCAI15 QK-article

 Method Recall NDCG Recall NDCG Recall NDCG Recall NDCG

GraphSage 0.1458 0.0867 0.0722 0.0419 0.0619 0.0415 0.1329 0.0765
k-GNNs 0.1838 0.1218 0.0782 0.0469 0.0662 0.0440 0.1292 0.0743
LEConv 0.1866 0.1221 0.0796 0.0482 0.0643 0.0419 0.1387 0.0805
GAT 0.1911 0.1235 0.0985 0.0644 0.0718 0.0500 0.1509 0.0892
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The explicit behavior interactions for a single behavior 
were removed, and for the e-commerce datasets, we consider 
three variant: w/o click, w/o cart and w/o collect; for the 
news article dataset we similarly consider three variants: w/o 
click, w/o follow and w/o share.

Multiple Behaviors Ablation:
The explicit behavior interactions for any two behaviors 

were removed, for the e-commerce datasets we consider 
three variant: w/o cart, click, w/o cart, collect and w/o col-
lect, click; for the news article dataset we set the variants 
to w/o click, share, w/o click, follow and w/o follow, share.

All Behaviors Ablation:
The explicit behavior interactions for all auxiliary behav-

iors were removed, i.e.,  w/o cart, collect, click and w/o click, 
follow, share. It is worth noting that the set of experiments 
can also serve as an ablation study for the explicit behav-
ior interaction extraction module. This is because remov-
ing all explicit behavior interactions for auxiliary behaviors 

is equivalent to removing the explicit behavior interaction 
extraction module, and MB-EBIH degenerates into a tradi-
tional multi-behavior recommendation model.

We note that since the Beibei dataset does not include 
the collect, the results for w/o cart, click in the second set 
of ablation experiments were considered as the results for 
the third set on the Beibei dataset. The results of the abla-
tion experiments are presented in Table 4, where the best 
values are highlighted in bold and the second best results 
are underlined.

The results of these single-behavior ablation experiments 
reveal that regardless of which type of user explicit behavior 
interactions are removed, the performance of the model dete-
riorates on all four real-world datasets. This demonstrates 
the effectiveness of the explicit behavior interactions. Fur-
thermore, for the Beibei dataset, removing the (user, cart) 
explicit behavior interaction has a greater impact on the per-
formance of model compared to removing the (user, click) . 

(a) (b)

Fig. 6  Effects of negative feedback signals in four datasets (results based on K = 10)

Table 4  Effects of different 
explicit behavior interactions 
(results based on K = 10)

Dataset Beibei Tmall IJCAI15 QK-article

 Variants Recall NDCG Recall NDCG Recall NDCG Recall NDCG

Base model 0.1911 0.1235 0.0985 0.0644 0.0718 0.0500 0.1509 0.0892
w/o. click 0.1899 0.1218 0.0703 0.0432 0.0479 0.0310 0.0757 0.0412
w/o. cart(follow) 0.1229 0.0706 0.0951 0.0593 0.0706 0.0485 0.1447 0.0843
w/o. collect(share) / / 0.0899 0.0550 0.0712 0.0492 0.1488 0.0862
w/o. cart,click 0.1170 0.0672 0.0674 0.0419 0.0503 0.0329 /
w/o. cart,collect / 0.0880 0.0537 0.0596 0.0386
w/o. collect,click 0.0677 0.0411 0.0467 0.0295
w/o. follow,click / 0.0747 0.0406
w/o. follow,share 0.1436 0.0826
w/o. share,click 0.0707 0.0378
w/o. collect,click,cart / 0.0631 0.0396 0.0413 0.0257 /
w/o. share,click,follow / 0.0699 0.0376
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The opposite was observed for the Tmall and IJCAI15 data-
sets. The underlying reason for this lies in the inconsistency 
in the distribution of multi-behavior data between the Beibei 
dataset and the other two datasets.

As shown in Table 5, for the Beibei dataset, there are 
three sequences of behaviors that were performed by users 
when buying items: (1) click → cart → buy, i.e., a user buys 
an item after clicking and adding to the cart; (2) buy, i.e., 
a user buys an item directly, without performing any other 
auxiliary behaviors; (3) click → buy, i.e., a user buys an item 
directly after clicking, without adding it to the cart.

Table 5 shows that the sequence click → cart → buy rep-
resents the highest proportion of behaviors for the Beibei 
dataset, with 98.71%. This results in a strong association 
between adding an item to the cart and a purchase by the 
user. Consequently, removing (user, cart) greatly diminishes 
the model’s capability to predict the probability of the target 
behavior.

Similarly, for the Tmall and IJCAI15 datasets, Table 5 
shows that the click → buy sequence makes up the high-
est proportion of behaviors, which explains why removing 
(user, click) results in a significant degradation in the per-
formance of the model compared to the explicit behavior 
interactions for the other auxiliary behaviors. A similar 
approach can be used to analyze the results of the three 
ablation experiments performed on the QK-article dataset 

using MB-EBIH. As shown in Table 5, the highest per-
centage of click → like sequence is found in the QK-article 
dataset at 90.65%. This indicates a stronger correlation 
between clicking and liking, which leads to the worst per-
formance of the w/o. click variant in Table 4.

From these multiple behaviors ablation experiments, 
it can be observed that compared to the single-behavior 
ablation experiments, removing explicit behavior interac-
tions for two auxiliary behaviors simultaneously further 
reduces the performance of model. This not only dem-
onstrates that incorporating multiple behaviors into the 
RS can effectively improve performance but also further 
validates the effectiveness of the proposed explicit behav-
ior interactions.

In the ablation experiments with all auxiliary behaviors, 
when the explicit behavior interactions for all auxiliary 
behaviors are removed (which is equivalent to removing 
the explicit behavior interaction extraction module of MB-
EBIH), the model becomes a traditional multi-behavior 
recommendation model. Compared to the other two exper-
iments described above, the performance metrics for the 
model are at the lowest level. This not only further illus-
trates the importance of the explicit behavior interactions 
proposed in this paper for multi-behavior recommendation 
models, but also demonstrates the necessity of the explicit 
behavior interaction extraction module in MB-EBIH.

Table 5  Statistics on the number of different sequences of user behavior in the four datasets when buying an item (a value of zero means that the 
user did not perform the corresponding auxiliary behavior when buying the item)

The sequences of behaviors with the highest percentage are bolded

Dataset Beibei QK-article

 Behavior orders Count Percentage (%) Count Percentage (%)

click, cart, buy 289,080 98.71 /
0, 0, buy 3,411 1.16
click, 0, buy 369 0.13
click, 0, 0, like / 533,667 90.65
click, 0, share, like 46678 7.93
click, follow, 0, like 6219 1.06
click, follow, share, like 2117 0.36

 Dataset Tmall IJCAI15

 Behavior orders Count Percentage (%) Count Percentage (%)

click, 0, 0, buy 211,445 73.63 481,876 73.96
0, 0, 0, buy 46,438 16.17 102,334 15.71
click, 0, collect, buy 24,092 8.39 55,799 8.56
0, 0, collect, buy 4,838 1.68 10,631 1.63
click, cart, 0, buy 291 0.101 787 0.121
click, cart, collect, buy 29 0.01 75 0.012
0, cart, 0, buy 23 0.008 53 0.0081
0, cart, collect, buy 2 0.0007 6 0.0009



 Z. Zhang et al.

5.6  Parameter Sensitivity Analysis

5.6.1  Impact of Node Dimensions

An appropriate setting for the node dimensions not only 
enables the learning of better node features, but also 
reduces the complexity of the model and prevents over-
fitting. To investigate the impact on the performance of the 
model of different user(item) and behavior node dimen-
sions in the constructed heterogeneous graph, we explored 
different combinations of the user(item) dimension d0 and 
the behavior node dimension d1 , where d0 and d1 were set 
to {4, 8, 16} . Specifically, we considered five combinations: 
(4, 4), (8, 4), (8, 8), (16, 8), (16, 16), where (8, 4) means 
that the dimension d0 of the user(item) node is eight, and 
the dimension d1 of the behavior node is four. The defini-
tions of the other combinations are similar. The results for 
K = 10 are summarized in Fig. 7.

Figure 7 presents a comparison of the results for the 
Recall@10 and NDCG@10 metrics of the model, for five 
combinations of node dimensions. We can intuitively see 
that for the Beibei, QK-article and IJCAI15 datasets, the 
model obtains the best performance with the combina-
tion (8,4), while for the Tmall dataset, the performance of 
the model for the four different combinations of dimen-
sions does not show significantly fluctuations except for 
(4, 4). To reduce the complexity of the model, we adopted 
the (8,4) combination for all four datasets in the explicit 
behavior interaction extraction module.

5.6.2  Impact of GAT Layer Numbers

In order to explore how the depth of the GAT module 
affected the performance of our model, we conducted experi-
ments with varying number of layers (L = 1, 2, 3). To ensure 
a fair comparison, the node dimensions of the heterogeneous 
graphs constructed based on the four datasets were consist-
ent. The results are presented in Fig. 8.

Figure 8 shows that for all four datasets, the model per-
formance for L = 2 was significantly higher than that for L 
= 1, which demonstrates the effectiveness of the multilayer 
GAT in terms of capturing more accurate explicit behavior 
interaction messages through learning higher-order neigh-
borhood messages from the constructed heterogeneous 
graph. When L = 3, the performance of the model decreased 
in different scales on all four datasets; this was because as 
the number of layers of GAT increases, the node features 
in the heterogeneous graph are affected by over-smoothing, 
which leads to distortion of the learned explicit interaction 
information and consequently affects the performance of the 
model. We therefore set the number of GAT layers to two 
during training of the model.

6  Conclusion

In this work, for the inadequacy of existing multi-behavior 
recommendation methods in modeling explicit interactions 
of behaviors and capturing user preferences for multiple 

(a) (b)

Fig. 7  Impact of node dimension (results based on K = 10)
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behaviors, we have proposed a novel model called explicit 
behavior interaction with heterogeneous graph for multi-
behavior recommendation (MB-EBIH). Our model consists 
of two modules. In the explicit behavior interaction extrac-
tion module, we construct a weighted heterogeneous behav-
ior graph with nodes representing users, items and auxiliary 
behaviors. GAT is employed as the aggregator for learning 
node embeddings in a self-supervised learning task. The 
explicit behavior interaction values are obtained through a 
MLP. In the explicit behavior interaction fusion module, we 
construct multiple weighted bipartite graphs, using explicit 
behavior interaction values as the weights. These graphs are 
designed to integrate explicit behavior interactions between 
the user and multiple auxiliary behaviors into the embedded 
learning process.

Experiments on four real-world datasets from different 
domains showed that MB-EBIH outperformed all baselines. 
Additionally, we conducted analysis experiments to dem-
onstrate that MB-EBIH can effectively capture personal-
ized user preferences under different behaviors. Ablation 
experiments confirmed the effectiveness of the negative 
feedback signals from auxiliary behaviors and the neces-
sity of explicit behavior interactions. Parameter sensitivity 
experiments were also conducted to investigate the impact 
of node dimension and the number of GAT layers on the 
performance of the model.

In this study, our focus was primarily on modeling the 
explicit behavior interactions and personalized user pref-
erences. The model presented in this paper still has cer-
tain limitations. For instance, when applied in large-scale 
scenarios, the time required to construct a heterogeneous 
informative graph increases. One potential solution could 
involve dividing the interaction data into smaller segments, 

constructing several subgraphs, extracting the user’s explicit 
behavior interaction information from each subgraph and 
subsequently combining these subgraphs to derive the ulti-
mate explicit behavior interaction. As another example, our 
model may be influenced by noise in the user behavior data, 
potentially leading to bias. This issue will be addressed in 
our future research. Additionally, we plan to investigate the 
application of explicit behavior interactions in a broader 
range of recommendation scenarios in the future.
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