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Abstract
An accurate short-term load forecasting plays an important role in modern power system’s operation and economic develop-
ment. However, short-term load forecasting is affected by multiple factors, and due to the complexity of the relationships 
between factors, the graph structure in this task is unknown. On the other hand, existing methods do not fully aggregating 
data information through the inherent relationships between various factors. In this paper, we propose a short-term load 
forecasting framework based on graph neural networks and dilated 1D-CNN, called GLFN-TC. GLFN-TC uses the graph 
learning module to automatically learn the relationships between variables to solve problem with unknown graph structure. 
GLFN-TC effectively handles temporal and spatial dependencies through two modules. In temporal convolution module, 
GLFN-TC uses dilated 1D-CNN to extract temporal dependencies from historical data of each node. In densely connected 
residual convolution module, in order to ensure that data information is not lost, GLFN-TC uses the graph convolution of 
densely connected residual to make full use of the data information of each graph convolution layer. Finally, the predicted 
values are obtained through the load forecasting module. We conducted five studies to verify the outperformance of GLFN-
TC. In short-term load forecasting, using MSE as an example, the experimental results of GLFN-TC decreased by 0.0396, 
0.0137, 0.0358, 0.0213 and 0.0337 compared to the optimal baseline method on ISO-NE, AT, AP, SH and NCENT datasets, 
respectively. Results show that GLFN-TC can achieve higher prediction accuracy than the existing common methods.

Keyword  Short-term load forecasting · Graph structure learning · Graph neural networks · Dilated 1D-CNN · Temporal 
dependencies · Spatial dependencies

1  Introduction

With the development of society, the power demand is 
constantly expanding [1]. As load forecasting is the basis 
of power dispatching [2], it has attracted extensive atten-
tion in power system [3]. Load forecasting is classified into 

short-term, medium-term and long-term forecasting. Short-
term load forecasting (STLF) deals with forecasts targeting 
few hours to few days ahead. Medium-term load forecast-
ing (MTLF) deals with load prediction from few weeks to 
few months. Long-term load forecasting (LTLF) is used to 
load forecast from one year to several years. LTLF assists 
in future planning of power system. MTLF aids in power 
system to inspect and maintain equipment. STLF plays an 
important role in load dispatching [4]. Since STLF plays an 
important role in power distribution and reduction in genera-
tion cost [5], STLF plays a crucial role in the operation of 
power system. Accurate load forecasting helps to maximize 
resource utilization and save a lot of money. Therefore, it 
is necessary to develop accurate load forecasting methods 
[6, 7].

Now, there are many methods applied to load forecast-
ing. Mbamalu et al. and Chen et al. tackled the problem of 
load forecasting by using the statistical-based methods [8, 
9]. However, there are various factors that can affect load 
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demand. Therefore, the load curves are highly nonlinear 
and difficult to approximate. In recent years, deep learn-
ing methods are widely used in load forecasting due to 
its property of nonlinearity modeling [10]. For instance, 
Muzaffar et al. used LSTM network for STLF and its fore-
casting performance was compared to that of traditional 
methods [11]. Smyl et al. proposed a new gated recurrent 
cell that implements an attention mechanism for weighting 
the input information, and this mechanism can improve 
the predictive performance of the model [12]. Due to the 
nonlinearity characteristics of the load curve, the deep 
learning-based methods are more accurate than the statis-
tical-based methods. Figure 1 shows the scatter plot with 
Lag 1 ~ 3 of “load” in AP dataset, and it can be seen from 
the figure that there is autocorrelation in “load,” especially 
with a strong correlation when the Lag 1. Therefore, the 
load values are affected by its own historical data, and 
we need to explore the temporal dependencies behind 
historical data. Most of the current works use RNN or 
LSTM to obtain the temporal dependencies of historical 
data. However, the historical data of each factor is highly 
related to itself. Therefore, it is necessary to explore the 
relationships between time steps from the historical data 

of each factor in order to better represent the temporal 
dependencies of this factor.

Figure 2 shows the change trend of “dry_bulb_tempera-
ture,” “wet_bulb_temperature” and “load” in AP dataset 
over a period of time. From this figure, it can be seen that not 
only does the change of “load” increase with the increase in 
“dry_bulb_temperature,” and decreases with the decrease in 
“dry_bulb_temperature,” but also the change trend of “wet_
bulb_temperature” is similar to that of “dry_bulb_tempera-
ture.” Therefore, the load values are affected not only by its 
own historical data, but also by other factors, and different 
factors also interact with each other. In order to improve the 
prediction accuracy, it is necessary to aggregate data infor-
mation through the internal relationships between various 
factors. With the development of deep learning technology, 
graph neural network (GNN) has been proved to be effective 
in mining spatial dependencies between variables through 
graph structure. For example, Yu et al. and Wu et al. have 
achieved remarkable success in the field of traffic prediction 
using GNNs [13, 14]. However, deep graph convolutional 
networks may have the drawback of reducing performance 
[15], and after stacking multiple layers of graph convolution 
layers, the features between nodes become too smooth and 

 
Fig. 1   Lag plot of “load” in AP dataset

Fig. 2   Sample time series of “load” and other factors in AP dataset
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indistinguishable, which can also lead to the degradation of 
network results. The central node may pass the features to 
most nodes in the entire network through one or two layers 
of graph convolution, while for edge nodes in the network, 
multiple propagation is required to affect some nodes in 
the network [16]. Simple application of residual connec-
tion cannot solve this problem, as different nodes propagate 
features at different speeds. Therefore, in load forecasting 
tasks, the traditional methods based on graph convolution 
may cause over-smoothing problem when stacking multiple 
graph convolution layers. Different nodes require different 
degrees of neighborhood aggregation information, and the 
subsequent convolution layers may not be able to effectively 
utilize the output data of previous convolution layers after 
passing through multiple convolution layers, resulting in the 
problem of information loss. Moreover, GNN-based have 
been rarely studied for STLF problems.

To sum up, the current short-term load forecasting faces 
the following challenges:

•	 Challenge 1 Unknown Graph Structure. The load val-
ues are affected by various factors, and the relationships 
between these factors are very complex. Therefore, there 
is no explicit graph structure in most cases. The relation-
ships between variables have to be discovered from data 
rather than being provided as ground truth knowledge.

•	 Challenge 2 Mining temporal dependencies. Temporal 
dependencies are one of the important data characteris-
tics of load forecasting task. Therefore, in order to fully 
explore the relationships between time steps of each fac-
tor, it is necessary to obtain temporal dependencies from 
the historical data of each factor.

•	 Challenge 3 GNN Learning. The current common short-
term load forecasting methods (such as LSTM-based 
methods and CNN-based methods) did not effectively use 
the relationships between central node and its neighbors 
for message passing. In addition, the traditional GCN-
based models may reduce the utilization of the data infor-
mation of previous graph convolution layers due to the 
stacking of graph convolution layers.

Therefore, in this work, we propose a graph neural 
network-based short-term load forecasting with temporal 
convolution (GLFN-TC), which learns a graph of relation-
ships between load and weather, temperature and other 
factors, and use this graph structure to STLF. For chal-
lenge 1, the graph learning module uses feature vector 
to automatically learn the relationships between various 
factors. This module solves the problem that there is no 
graph structure in load forecasting. For challenge 2, the 
temporal dependencies behind the historical data of each 
factor are obtained through the temporal convolution mod-
ule. Specifically, we use dilated 1D-CNN to fully explore 

the relationship between time steps of each factor. For 
challenge 3, the densely connected residual convolution 
module adds a densely connected residual structure to the 
graph convolution. This module obtains spatial dependen-
cies by stacking multiple graph convolution layers, while 
ensuring that data information will not be lost.

In summary, the proposed model solves the existing 
problems of short-term load forecasting, and can also be 
applied to other non-load fields due to the characteristics 
of modeling. The main contributions of our work are:

•	 We propose a new deep learning model for load fore-
casting. This model works from the data information of 
each node in historical data. We propose the temporal 
convolution module that can fully explore the deep data 
information behind historical data and work in con-
junction with the densely connected residual convolu-
tion module to effectively handle temporal and spatial 
dependencies. The module effectiveness assessment 
further proves the effectiveness of both modules.

•	 We propose the graph learning module to learn com-
plex relationships between variables. Our method effec-
tively solves the problem of not being able to provide 
an explicit graph structure in the field of load forecast-
ing. The experiment shows that the graph structure of 
automatic learning has good interpretability.

•	 We propose a graph convolution operation with densely 
connected residual structure, which can fully utilize 
the data information of each graph convolution layer to 
handle spatial dependencies and effectively solve the 
problem of information loss during message passing. 
The ablation study further proves the effectiveness of 
this design.

•	 GLFN-TC supports automatic construction of graph 
structure between variables with complex relationships. 
Therefore, the model is general for other fields with-
out predefined graph structure. The model generality 
assessment further proves the generality of GLFN-TC.

•	 We conduct experiments on five load datasets and three 
non-load datasets. Experimental results show that our 
method outperforms the baseline methods on all data-
sets.

Organization of the rest. Section 2 defines the short-
term load forecasting problem and presents the theory 
basis and implementation details of GLFN-TC. Section 3 
describes the datasets, baseline methods, evaluation met-
rics and experimental setup. In this section, five studies 
are conducted to validate the proposed method. Finally, 
the advantages and disadvantages of the proposed model 
are discussed based on the experimental results, and future 
research directions for the model are provided. Section 4 
introduces the basic knowledge of load forecasting and 
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graph neural networks, and reviews their related work. 
Finally, conclusions are drawn in Sect. 5.

2 � Short‑Term Load Forecasting Based 
on Graph Neural Network with Temporal 
Convolution

2.1 � Overview

The aim of STLF is to learn a model Q that maps X to Ŷ , 
that is

where X = {xt1 , xt2 ,… , xte} denotes a historical data with 

time step of e . Let xti ∈ ℝ
N denotes the value at time step 

ti , and N represents the number of variables. The variables 
can be temperature, humidity, load, etc. Ŷ ∈ ℝ

p denotes 
the predict future load values with time step of p , that is 
Ŷ = {ŷ1, ŷ2,… , ŷp} . The known values of input characteris-
tics and corresponding load values are called training data, 
and model constantly updates parameters through training 
data. The model can be used subsequently to predict future 
load values. The new input feature values are also called test 
data. The prediction process is as follows:

 where X
′

= {xte+1 , xte+2 ,… , xt2�} denotes test data. Our aim is 

to make the predicted load values ̂Y
′

= {ŷp+1, ŷp+2,… , ŷ2p} of 

the test data closer to the real values Y
′

= {yp+1, yp+2,… , y2p} 
through the trained model, that is, Δd is minimized by 
Eq. (3). When Δd = 0, it means perfect prediction.

As mentioned in introduction, load forecasting is not 
only influenced by data between different time steps, but 
also by other factors. In order to improve prediction accu-
racy, our method explores the relationships between his-
torical data at different time steps of each node through 
temporal convolution module and aggregates data infor-
mation between different nodes through densely connected 
residual convolution module. Therefore, our method 
effectively handles temporal and spatial dependencies to 
accurately predict future load values. Figure 3 provides 
an overview of GLFN-TC, and it consists of four main 
components:

•	 Graph Learning Module This module creates a feature 
vector for each node, and uses the feature vector to learn 

(1)X
Q
→ Ŷ

(2)Ŷ
′

= Q(X
′

)

(3)Δd = argmin
||
|
Ŷ � − Y �||

|

a graph structure to express the relationships between 
nodes.

•	 Temporal Convolution Module This module uses dilated 
1D-CNN to obtain the temporal dependencies of each 
node’s historical data.

•	 Densely Connected Residual Convolution Module This 
module uses graph convolution operation with densely 
connected residual structure to aggregate the data infor-
mation of the central node and its neighbors.

•	 Load Forecasting Module This module fuses data infor-
mation with feature vector to predict future load values.

When the input data is X ∈ ℝ
N×Tin , GLFN-TC first creates 

N feature vectors through the graph learning module, and 
automatically learns the graph structure A ∈ ℝ

N×N between 
variables through feature vectors. Then, a dilated 1D-CNN 
is created for each node through the temporal convolution 
module to obtain temporal dependencies behind the histori-
cal data of each node. The output of the temporal convolu-
tion module and graph structure are used as the input of the 
densely connected residual convolution module, and the data 
information of nodes are aggregated through the graph con-
volution operation of densely connected residual structure in 
this module. Finally, the load forecasting module integrates 
the data information and predict future load values ̂Y ∈ ℝ

Tout . 
Our method not only focuses on message passing, but also 
solves the problem of no predefined graph structure through 
graph learning module, and optimizes the graph structure in 
training stage. All core modules will be described in more 
detail in the following sections.

2.2 � Graph Learning Module

In STLF, different factors can have very different charac-
teristics. Figure 4 shows the change trend of “temperature” 
and “hour” over a period of time in ISO-NE dataset, which 
visually shows that the change trend of different factors is 
significantly different. But each factor has complex correla-
tion with other factors. For example, to some extent, week-
ends can reflect the user’s behavior (less power is used by 
families on weekdays and more on weekends). Therefore, we 
need to capture the complex relationships behind different 
factors to construct a graph structure.

We create a feature vector for each factor:

where N  represents the number of factors. d is a hyper-
parameter and represents the dimension of feature vector. 
These feature vectors are randomly initialized and trained 
together with the model. We assign a feature vector to each 
factor, and use this feature vector to represent the character-
istics of the factor. We use a directed graph to represent the 

(4)vi ∈ ℝ
d, for i = 1, 2,… ,N
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Fig. 3   Framework of graph neural network-based short-term load forecasting with temporal convolution

Fig. 4   Sample time series of “temperature” and “hour” in ISO-NE dataset
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relationships between various factors. The nodes of directed 
graph represent factors, and the edges of directed graph rep-
resent the relationships between various nodes. We use a 
directed graph because the relationships between factors 
may be asymmetric. For example, when the temperature is 
high, it may be sunny weather, but in winter, the temperature 
may not be high on sunny days.

We use an adjacency matrix A to represent this directed 
graph, each node in A corresponds to each factor. A is cal-
culated as follows:

where �(⋅) is the activation function and W ∈ ℝ
d×d is a train-

able weight matrix. We use Eq. (5) to calculate the correla-
tion, and use activation function to control the correlation in 
the range [0,1]. The correlation between nodes is calculated 
by corresponding feature vector and trainable weight matrix. 
Therefore, in training phase, our adjacency matrix is adapt-
able to change as training data updates the model param-
eters, so that the graph structure can reach the optimal state.

2.3 � Temporal Convolution Module

LSTM can handle the temporal dependencies of histori-
cal data through gating mechanism, but it cannot handle 
very long sequences well. However, STLF task requires 
the model to be able to explore the relationships between 
the time steps of each node, in order to obtain data that 
better represents temporal dependencies. Reference [17] 
used convolutional networks in sequence modeling and 
achieved good results, and believed that convolutional 
networks should be emphasized in sequence modeling. 

(5)Ai,j =

{
1, if i = j

�
(
v�
i
Wvj

)
, if i ≠ j

Therefore, in order to effectively handle the temporal 
dependencies behind the historical data of each node, and 
cooperate with the densely connected residual convolu-
tion module to improve prediction accuracy, we propose a 
temporal convolution module.

Temporal convolution module aims to obtain the tem-
poral dependencies of each node’s input data. Specifically, 
we use a dilated 1D-CNN for each node to extract the 
temporal dependencies behind the historical data of corre-
sponding node. Capture the relationships between different 
time steps through 1D-CNN and use dilation strategy to 
increase the receptive field to obtain long-term dependen-
cies. The architecture of temporal convolution module is 
shown in Fig. 5.

Assuming that the input data have N  nodes and time 
step is Tin , we use dilated 1D-CNN with the number of N 
to perform the convolution operation on each node. Firstly, 
the temporal convolution module divides the input data 
X ∈ ℝ

N×Tin into N  one-dimensional data vectors:

where zi represents the input data of node i . The convolu-
tion layer of dilated 1D-CNN is used to extract the temporal 
dependencies of each node’s data information. The dila-
tion factor can enable the convolution operation to obtain a 
larger receptive field and let each convolution output contain 
a wide range of information. The dilated 1D-CNN operation 
of node i denoted by zi★ f(i) is defined as: 

where f (i) ∈ ℝ
k represents the one-dimensional kernel of 

node i . df  is the dilation factor. It is very important to choose 
the proper kernel size for convolutional networks. The ker-
nel size is too large to effectively obtain short-term data 

(6)zi ∈ ℝ
Tin , for i = 1, 2,… ,N

� ( )( ) = ∑ ( )( ) ( − × )−1
=0 (7)

dilated 1D-CNN

Tin

N

dilated 1D-CNN

dilated 1D-CNN

Tin

N

h

Fig. 5   Architecture of temporal convolution module
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information. The kernel size is too small to effectively obtain 
long-term data information. Therefore, we choose a kernel 
size is 7 [18], i.e., k = 7 . By fine-tuning the dilation factor, 
we choose the dilation factor is 3, i.e., df = 3 . The specific 
analysis is introduced in Sect. 3.7.

Extract the data features of the one-dimensional historical 
data vector corresponding to each node by dilated 1D-CNN 
to effectively handle the temporal dependencies behind the 
input data of the node. Then, we concatenate the data infor-
mation of all nodes to obtain the output data of the temporal 
convolution module. The specific operations are as follows:

where concat(⋅) denote splicing the data information of all 
nodes, and oi ∈ ℝ

h represents the data features extracted 
from the historical data of node i . o ∈ ℝ

N×h represents the 
final output data of the module and h represents the hidden 
layer dimension. Through the temporal convolution module, 
we effectively deal with the temporal dependencies behind 
the historical data of each node.

2.4 � Densely Connected Residual Convolution 
Module

As mentioned in introduction, graph neural networks can 
handle spatial dependencies. However, when stacking multi-
ple graph convolution layers, the utilization of data informa-
tion in previous graph convolution layers will be reduced, 
leading to the problem of information loss in message pass-
ing. Therefore, in order to solve the above problems, we 
propose a densely connected residual convolution module.

The purpose of densely connected residual convolution 
module is to make full use of the output information of each 
graph convolution layer. We add the densely connected 
structure to the graph convolution operation, and add the 
residual structure to the output of each graph convolution 
layer. By graph convolution operation with densely con-
nected residual structure, we fully utilize the data informa-
tion of each graph convolution layer. Figure 6 shows the 
architecture of densely connected residual convolution 
module.

(8)o = concat(o1, o2,… , oN)

In densely connected residual convolution module, we 
use the adjacency matrix A learned in graph learning mod-
ule to fuse a central node’s information with its neighbors’ 
information to handle spatial dependencies. We use densely 
connected structure in graph convolution operation and add 
residual structure to the output of graph convolution layer. 
We first provide the input data of the module and the math-
ematical forms of two structures, and then illustrate the mod-
ule’s operation process. The specific definition is as follows:

where ⊕ denotes connection operation, Ã = D̃
−1
A , 

D̃ii =
∑

jAij , l is the layer of graph convolution and �(⋅) rep-
resents the activation function. In Eq. (9), oi ∈ ℝ

h denotes 
the data representation of node i , and it is obtained from 
o . N represents the number of nodes. We combine the data 
output by temporal convolution module with vi according 
to the corresponding nodes, and use it as the input data of 
densely connected residual convolution module. The pur-
pose of combine operation to make the input data contain 
the data information of feature vector. Get the input data 
gi ∈ ℝ

(h+d) of node i of densely connected residual convolu-
tion module from Eq. (9), then the input data of this module 
can be represented as g ∈ ℝ

N×(h+d) . Equation (10) represents 
the densely connected structure. The graph convolution uses 
densely connected structure, and the input of the l-th layer 
is the addition of outputs from the 1-th layer to the l − 1-th 
layer of graph convolution step. This operation enables the 
input of the l-th layer to include the output information of 
all previous layers. Because we use the densely connected 
structure in graph convolution operation, the original input 
data does not participate in subsequent operations, that is, l 
starts from 2. When l = 1 , H(1) = ÃH(0) , and H(0) = g . This 
structure can effectively use the output information of previ-
ous graph convolution layers during message passing. There-
fore, it can strengthen the propagation of node information. 

(9)gi = oi ⊕ vi, for i = 1, 2, … , N

(10)H(l) = Ã�

(
l−1∑

i=1

H(i)

)

, for l = 2, 3,…

(11)Out_H(l) = �(Out_H(l−1) +H(l)), for l = 1, 2,…

Fig. 6   Architecture of densely 
connected residual convolution 
module

H(1) H(2) H(3) H(l)

Out_H(1) Out_H(2) Out_H(3) Out_H(l)

H(0)

+ + + ++

AAAA
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Equation (11) represents the residual structure, where H(l) 
is the output of graph convolution operation at l-th layer and 
Out_H(0) = H(0) . The purpose of this structure is to retain 
the data information of the previous layer when outputting 
data. Therefore, when l = 1 , we also add the residual struc-
ture to retain the information of original input data, that is, l 
starts from 1. This structure retains the data information of 
previous layer, which can enhance the nonlinear approxima-
tion ability of model, and avoid the information loss problem 
caused by the densely connected residual convolution mod-
ule stacking graph convolution layers.

2.5 � Load Forecasting Module

From the above temporal convolution module and densely 
connected residual convolution module, we obtain the data 
representation of N  nodes. Now, the data representation 
of each node has fully explored the temporal and spatial 
dependencies of historical data. At this time, we need to 
predict future load values through the data information of 
nodes together with the corresponding feature vector. Fig-
ure 7 shows the architecture of load forecasting module.

The specific operation process of this module is as 
follows:

In Eq. (12), Linear(⋅) represents a linear layer, Out_H(l) 
represents the output data of densely connected residual con-
volution module, and �(⋅) is the activation function. Firstly, 
according to Eq. (12), we use a linear layer and activation func-
tion to change the dimension of the output data of the densely 
connected residual convolution module to d . The purpose of 

(12)r = �(Linear(Out_H(l)
))

(13)
E1 = concat(𝜑

(
r1 ⊗ v1

)
, 𝜑

(
r2 ⊗ v2

)
, … , 𝜑(rN ⊗ vN))

(14)E2 = �
(
E1

)

(15)�(⋅) = flatten(Maxpooling(�(Conv(⋅))))

(16)Ŷ = Linear(E2)

this operation is to maintain consistency with the dimension 
of the feature vector to aggregate the data information and fea-
ture vector of each node. At this time, r ∈ ℝ

N×d represents the 
changed data information. In Eq. (13), ⊗ refers to the opera-
tion of splicing two one-dimensional data vectors into a two-
dimensional data vector. According to Eq. (13), we splice the 
data representation ri ∈ ℝ

d of node i with its corresponding 
feature vector vi . Then, the two-dimensional data vector is used 
as the input data for convolution operation and max-pooling 
operation. concat(⋅) denote splicing the data information of 
all nodes to obtain an N-dimensional data vector. In Eq. (15), 
Conv(⋅) represents convolution operation, and the purpose of 
this operation is to fuse data information. Maxpooling(⋅) rep-
resents max-pooling operation, and the purpose of this opera-
tion is to reduce the number of parameters to retain important 
features. �(⋅) is the activation function, and its function is to 
introduce nonlinear characteristics into the operation. flatten(⋅) 
represents flatten operation. Through Eqs. (13) and (15), we 
aggregate the data representation and feature vector of each 
node, which is represented as E1 ∈ ℝ

N×h1 . N represents the 
number of nodes, and h1 represents the hidden layer dimension. 
Through Eqs. (14) and (15), we fuse the data information of 
all nodes. We obtain E2 ∈ ℝ

h2 and use it as input data for sub-
sequent operations. h2 represents the hidden layer dimension. 
According to Eq. (16), we use a linear layer to predict Tout steps 
load values, i.e., the predict load values is Ŷ�ℝTout.

The loss function defines the optimization objective of 
training. Specific definitions are as follows:

where Ttrain represents the number of training data. We use 
the Mean Square Error between the predicted output Ŷ and 
the real data Y as the loss function for minimization.

3 � Experiments

In this section, we evaluate the performance of the proposed 
GLFN-TC for STLF on five load datasets and the generality 
of GLFN-TC on three other field datasets. In particular, we 
aim to answer the following research questions:

(17)LMSE =
1

Ttrain

Ttrain∑

i=1

(
Yi − Ŷi

)2

N

d

Linear N

h+d

σ Max-pooling

flatten
Linear

Max-pooling

flatten
Outputs:Y �RTout^

Fig. 7   Architecture of load forecasting module
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•	 RQ 1 (Comparison With Baseline Methods) How does 
the proposed method perform compared with baseline 
methods for short-term load forecasting?

•	 RQ 2 (Model Generality Assessment) Is the proposed 
method also effective when applied for other fields?

•	 RQ 3 (Ablation Study) How do the various components 
of the proposed model affect the overall performance of 
the model?

•	 RQ 4 (Module Effectiveness Assessment) Do modules 
achieve the expected effect in our method?

•	 RQ 5 (Repeatability Assessment And Parameter Sensitiv-
ity) Is the result of multiple runs of our method stable? Is 
the dilation factor affect the results?

We first introduce the datasets, evaluation metrics, experi-
mental setup and baseline methods. Then answer the above 
research questions through experiments. To answer RQ 1, 
we compare GLFN-TC with baseline methods in five load 
datasets. Specifically, in order to verify the nonlinear charac-
teristics of GLFN-TC, we compare it with the conventional 
methods. In order to verify the prediction performance of 
GLFN-TC in deep learning methods, we compare it with 
other deep learning methods. To answer RQ 2, we validate 
the generality of GLFN-TC using three datasets from other 
fields. To answer RQ 3, in five load datasets, we eliminate 
some structures in GLFN-TC to verify the contribution of 
key components to GLFN-TC. To answer RQ 4, in five load 
datasets, we use the traditional method to replace the cor-
responding module to verify whether the temporal convolu-
tion module and the densely connected residual convolution 
module designed in GLFN-TC achieves our expected effect. 
At the same time, the effectiveness of the graph learning 
module is further verified through specific example. To 
answer RQ 5, we verify whether the experimental results 
of GLFN-TC running for many times are similar, that is, 
verify the stability of GLFN-TC. At the same time, we verify 
the influence of value of dilation factor on the experimen-
tal results. Finally, through the discussion section, we will 
discuss the advantages and disadvantages of the proposed 
model, and provide future research directions for the model 
to further improve prediction accuracy.

3.1 � Datasets and Evaluation Metrics

We use ISO-NE dataset,1 AT dataset,2 AP dataset,3 SH data-
set4 and NCENT dataset5 for short-term load forecasting. 
The details of five datasets are as follows:

•	 ISO-NE ISO-NE dataset covers the data from March 
2003 to December 2014, and the sample rate is 1 h. The 
number of nodes in this dataset is 7, including load, tem-
perature, etc.

•	 AT AT dataset covers the data from January 2011 to 
December 2016, and the sample rate is 1 h. The number 
of nodes in this dataset is 6, including load, temperature, 
wind speed, wind direction, etc.

•	 AP AP dataset covers the data from January 2006 to 
December 2010, and the sample rate is 0.5 h. The number 
of nodes in this dataset is 7, including load, electricity 
price, humidity, etc.

•	 SH SH dataset covers the data from January 2017 to 
August 2020, and the sample rate is 1 h. The number of 
nodes in this dataset is 16, including load, week of year, 
day of week, etc.

•	 NCENT NCENT dataset covers the data from January 
2002 to December 2018, and the sample rate is 1 h. The 
number of nodes in this dataset is 6, including load, year, 
etc.

Our subsequent experiments will be conducted on the 
above five datasets. The sample load data are shown in 
Fig. 8.

We use mean square error (MSE) and mean absolute error 
(MAE) to evaluate the error between real load values and 
predicted load values:

where yi and ŷi denotes real values and predicted values. We 
calculate MSE according to Eq. (18) and calculate MAE 
according to Eq. (19). For MSE and MAE, lower values 
are better.

The upper limit of MSE and MAE is +∞ , unless the 
maximum MSE and MAE values are provided, or unless 
the distribution of all the ground truth values are known, 
we cannot effectively evaluate the overall quality of model. 
We focus on one rate that actually generate a high score 
only if the majority of the elements of a ground truth 
group has been correctly predicted: R2 . R2 can have nega-
tive values, which mean that the model performed poorly. 
When R2 = 1 , it means perfect prediction. Therefore, high 
R2 value can clearly indicate a good model performance, 
regardless of the ranges of the ground truth values and their 
distributions. Specifically, we use R2 in Sect. 3.3 to further 
evaluate the prediction accuracy of model. R2 is calculated 
as follows:

(18)MSE =
1

n

n∑

i=1

(
yi − ŷi

)2

(19)MAE =
1

n

n∑

i=1

|
|yi − ŷi

|
|

1  Available at https://​github.​com/​ningn​ingLi​ningn​ing/​iso-​ne.
2  Available at https://​github.​com/​Lizhu​oling/​DCN.
3  Available at https://​zhuan​lan.​zhihu.​com/p/​15095​4853.
4  Available at https://​github.​com/​Mark-​THU/​load-​point-​forec​ast.
5  Available at https://​github.​com/​kmcel​wee/​load-​forec​asting.

https://github.com/ningningLiningning/iso-ne
https://github.com/Lizhuoling/DCN
https://zhuanlan.zhihu.com/p/150954853
https://github.com/Mark-THU/load-point-forecast
https://github.com/kmcelwee/load-forecasting
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where yi denotes real values, ŷi denotes predicted values, and 
y is the average value of real values.

3.2 � Experimental Setup

In ISO-NE dataset, we take the data from January 1, 2013 
to December 31, 2014. In AT dataset, we take the data 
from January 1, 2015 to December 31, 2016. In AP data-
set, we take the data from January 1, 2009 to December 
31, 2010. In SH dataset, we take the data from January 1, 
2017 to December 30, 2018. In NCENT dataset, we take 
the data from January 1, 2002 to December 31, 2003. We 
divided the extracted data into training set, validation set 
and test set according to 6:2:2. For five datasets, we set 
Tin = 72 and Tout = 240, that is, input 72 historical data 
to predict 240 future load values. The data normalization 
method is as follows:

(20)R2 = 1 −

∑n

i=1
(yi − ŷi)

2

∑n

i=1
(yi − y)

2

where Xx is the original data, �x is the average of the original 
data, �x is the standard deviation of the original data, and Xy 
is the normalized data.

We compare three conventional methods and six deep 
learning methods. The details are as follows:

•	 NF Naive Forecast, this method uses the load value of 
the last time step of the training data as the load values 
for future prediction.

•	 SA Simple Average, this method takes the average value 
of all load values in training data as the load values for 
future prediction.

•	 MA Moving Average, in this method, the load value of 
the current time step is the average of the load values 
of the previous n time steps. In the experiment, n = 4.

•	 RNN Recurrent neural network is a kind of neural net-
work with short-term memory ability. In other words, 
the output of the network is not only related to the cur-
rent input data, but also related to the previous input 
data.

(21)Xy =
Xx − �x

�x

Fig. 8   Sample load data for ISO-NE dataset (green), AT dataset (blue), AP dataset (purple), SH dataset (yellow) and NCENT dataset (red)
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•	 CNN Convolutional neural network can extract the 
characteristics of input data in load forecasting tasks. 
In experiments, we use 1D-CNN for STLF.

•	 LSTM Long short-term memory network is a variant of 
RNN. Compared with RNN, it can effectively capture 
association between long sequences and alleviate the 
phenomenon of gradient vanishing or gradient explod-
ing.

•	 CNN_LSTM It is the combination of 1D-CNN and 
LSTM, so that the model can have the characteristics 
of CNN and LSTM at the same time.

•	 Informer Informer is an improvement based on trans-
former. Informer uses ProbSparse self-attention, self-
attention distilling and generative decoder to solve 
some problems when transformer is applied to LSTF, 
such as high memory usage [19].

•	 T-GCN Temporal graph convolutional network model 
combines graph convolution network and gated recur-
rent unit to capture spatial and temporal dependencies 
simultaneously. Specifically, the former captures spa-
tial dependencies, while the latter captures temporal 
dependencies [20].

To eliminate the randomness of model, we repeat all 
experiments 3 times and report the average as the final 
result. Due to the experimental setup of Informer and 
T-GCN, they perform multiple predictions on one data 
during the testing phase, but other models only perform 
one prediction operation. Therefore, in order to maintain 
consistency, we use the first prediction result of the data 
in Informer and T-GCN as the final prediction result of 
the model to evaluate its prediction performance. Duo to 
the assumption in this paper that there is a correlation 
between each node, in T-GCN, we set the correlation 
between nodes to 1. The proposed model is trained by the 
Adam optimizer. We use the mean squared error as the loss 
function. The learning rate is 0.0001, and the Dropout is 
0.2. The number of layers of graph convolution is 5. We 
train models for up to 50 epochs, and stop training if the 
loss of validation set does not decline for 10 consecutive 
times during the training period.

3.3 � RQ 1: Comparison with Baseline Methods

GLFN-TC is essentially a deep learning model. In order to 
verify its nonlinear characteristics, in this subsection, we 
first compare our model with three conventional methods.

Table 1 shows the experimental results of the proposed 
method and conventional method. Taking MSE as an exam-
ple, the MSE of NF on five datasets is 1.0025, 2.2295, 
1.0993, 5.9534 and 2.1699, respectively. The MSE of SA on 
five datasets is 0.8642, 1.0576, 0.8035, 0.9736 and 0.8812, 
respectively. The MSE of MA on five datasets is 0.8139, 
2.3775, 1.3199, 7.2194 and 3.6731, respectively. NF, SA 
and MA cannot effectively mine the nonlinear characteristics 
behind historical data. Therefore, the three methods cannot 
accurately predict the future load values. The MSE of GLFN-
TC on five datasets is 0.2167, 0.1187, 0.1631, 0.1852 and 
0.2432, respectively. The results show that GLFN-TC outper-
forms the NF, SA and MA. Therefore, GLFN-TC has a better 
nonlinear approximation capability than NF, SA and MA.

In Fig. 9, we show the R2 of our proposed method and 
conventional methods on ISO-NE, AT, AP, SH and NCENT 
datasets. Because the conventional methods have no good 
nonlinear approximation ability, the result of R2 is negative. 

Table 1   Comparison of MSE 
and MAE under short-term load 
forecasting for proposed method 
and conventional methods

Bold represents the best result

Models ISO-NE AT AP SH NCENT

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

NF 1.0025 0.8271 2.2295 1.2169 1.0993 0.8204 5.9534 2.2432 2.1699 1.3288
SA 0.8642 0.7304 1.0576 0.8735 0.8035 0.7119 0.9736 0.7803 0.8812 0.7300
MA 0.8139 0.7225 2.3775 1.2613 1.3199 0.9163 7.2194 2.5027 3.6731 1.7699
GLFN-TC 0.2167 0.3494 0.1187 0.2406 0.1631 0.3036 0.1852 0.2990 0.2432 0.3902

Fig. 9   Comparison of R2 for proposed method and conventional 
methods
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Due to the high R2 of GLFN-TC in five datasets, it further 
shows that the prediction accuracy of GLFN-TC is better 
than that of the conventional methods.

In order to further verify the effectiveness of GLFN-TC, 
we compare it with other deep learning methods.

Table 2 shows the experimental results of our proposed 
method and other deep learning methods in short-term load 
forecasting task. In general, our GLFN-TC achieves state-of-
the-art results in five datasets. In ISO-NE dataset, the MSE 
and MAE of GLFN-TC decreased by 0.0396 and 0.0331, 
respectively, compared with the best method in baseline 
methods. In AT dataset, the MSE and MAE of GLFN-TC 
decreased by 0.0137 and 0.0101, respectively, compared 
with the best method in baseline methods. In AP dataset, 
the MSE and MAE of GLFN-TC decreased by 0.0358 and 
0.0082, respectively, compared with the best method in base-
line methods. In SH dataset, the MSE and MAE of GLFN-
TC decreased by 0.0213 and 0.0306, respectively, compared 
with the best method in baseline methods. In NCENT data-
set, the MSE and MAE of GLFN-TC decreased by 0.0337 
and 0.0219, respectively, compared with the best method 
in baseline methods. GLFN-TC performs better than RNN, 
CNN, LSTM, CNN_LSTM and Informer on five datasets, 
mainly because it not only obtains temporal dependencies 
of historical data, but also uses densely connected residual 
convolution modules to aggregate the data information of 
the central node and its neighbors. GLFN-TC can handle 
temporal and spatial dependencies more effectively, which 
is more conducive to short-term load forecasting task. The 
reason why GLFN-TC performs better than T-GCN is that 
the graph learning module can automatically learn the rela-
tionships between variables and reuse node information 
through the densely connected residual convolution module 
to enhance the propagation of node information. Therefore, 
GLFN-TC can better handle spatial dependencies for short-
term load forecasting task.

In Fig. 10, we show the R2 of our proposed method and 
other deep learning methods on ISO-NE, AT, AP, SH and 
NCENT datasets. The results show that the R2 of GLFN-TC 

in five datasets is higher than that of baseline methods. Com-
bined with the experimental results in Table 2, it is further 
shown that the prediction accuracy of GLFN-TC in deep 
learning methods are higher than that of the baseline methods.

3.4 � RQ 2: Model Generality Assessment

Because GLFN-TC can effectively handle temporal and 
spatial dependencies and can automatically learn graph 
structure to solve problems where there is no graph struc-
ture in the applied field, GLFN-TC is also suitable for other 
non-load fields. To verify the generality of GLFN-TC, we 
use TN,6 PL7 and TC8 datasets from different fields for the 

Table 2   Comparison of MSE 
and MAE under short-term 
load forecasting for proposed 
method and other deep learning 
methods

Bold represents the best result

Models ISO-NE AT AP SH NCENT

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

RNN 0.3643 0.4623 0.1541 0.2685 0.2280 0.3532 0.2065 0.3296 0.3926 0.5141
CNN 0.3195 0.4340 0.1377 0.2625 0.2562 0.3879 0.2539 0.3606 0.2907 0.4390
LSTM 0.3761 0.4990 0.1549 0.2793 0.2412 0.3682 0.2583 0.3732 0.7627 0.7169
CNN_LSTM 0.3793 0.5158 0.1324 0.2507 0.2262 0.3554 0.2161 0.3435 0.3285 0.4653
Informer 0.2563 0.3825 0.1715 0.2866 0.1989 0.3118 0.2213 0.3577 0.2769 0.4121
T-GCN 0.4053 0.5195 0.3902 0.4689 0.5270 0.6207 0.7063 0.6928 1.2220 0.9521
GLFN-TC 0.2167 0.3494 0.1187 0.2406 0.1631 0.3036 0.1852 0.2990 0.2432 0.3902

Fig. 10   Comparison of R2 for proposed method and other deep learn-
ing methods

6  Available at https://​github.​com/​juiom​shanti/​wind_​speed_​forec​ast-
ing.
7  Available at https://​github.​com/​pieka​rsky/​Short-​Term-​Elect​ricity-​
Price-​Forec​asting-​at-​the-​Polish-​Day-​Ahead-​Market.
8  Available at https://​github.​com/​Eudyp​tla/​Time-​Series-​PV-​Forec​ast.

https://github.com/juiomshanti/wind_speed_forecasting
https://github.com/juiomshanti/wind_speed_forecasting
https://github.com/piekarsky/Short-Term-Electricity-Price-Forecasting-at-the-Polish-Day-Ahead-Market
https://github.com/piekarsky/Short-Term-Electricity-Price-Forecasting-at-the-Polish-Day-Ahead-Market
https://github.com/Eudyptla/Time-Series-PV-Forecast


Graph Neural Network‑Based Short‑Term Load Forecasting with Temporal Convolution﻿	

1 3

prediction task. The specific information of datasets are as 
follows:

•	 TN The field of TN dataset is wind speed prediction; it 
covers the data from January 2000 to December 2014, 
and the sample rate is 1 h. The number of nodes in this 
dataset is 6, including wind speed, year, etc.

•	 PL The field of PL dataset is price prediction, it covers 
the data from November 2017 to December 2020, and the 
sample rate is 1 h. The number of nodes in this dataset is 
4, including electricity price, energy from wind sources, 
etc.

•	 TC The field of TC dataset is photovoltaic power predic-
tion, it covers the data from January 2016 to December 
2017, and the sample rate is 1 h. The number of nodes in 
this dataset is 9, including power, temperature, sunshine, 
etc.

Our subsequent experiments will be conducted on the 
above three datasets. The sample wind speed data, electricity 
price data and power data are shown in Fig. 11.

In TN dataset, we take the data from January 1, 2000 to 
September 30, 2001. In PL dataset, we take the data from 

January 1, 2018 to December 31, 2019. In TC dataset, 
we take the data from January 1, 2016 to December 31, 
2016. Other experimental settings follow the instructions 
in Sect. 3.2. We use MSE and MAE as evaluation metrics 
for models.

Table 3 shows the experimental results of GLFN-TC 
and baseline methods on TN, PL and TC datasets. The 
reason for the poor performance of T-GCN on TN and PL 
datasets is that the change trend of the two datasets is not 
obviously periodic and the data is not smooth. Therefore, 
T-GCN cannot effectively handle temporal and spatial 
dependencies. However, due to the characteristics of the 
field of TC dataset itself, its data have a certain perio-
dicity, and the prediction difficulty is reduced compared 
with TN and PL datasets, so it performs better on this 
dataset. GLFN-TC outperform baseline methods on all 
metrics across three datasets. In prediction tasks in dif-
ferent fields, GLFN-TC can automatically learn the graph 
structure through graph learning module to solve the prob-
lem that there is no predefined graph structure in the cor-
responding fields. At the same time, GLFN-TC effectively 
handles temporal and spatial dependencies through tem-
poral convolution module and densely connected residual 

Fig. 11   Sample wind speed data for TN dataset (orange) and sample electricity price data for PL dataset (pink) and sample power data for TC 
dataset (brown)
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convolution module, respectively. Therefore, the experi-
mental results validate the generality of GLFN-TC.

3.5 � RQ 3: Ablation Study

We conduct an ablation study on five load datasets to vali-
date the contribution of key components in GLFN-TC. 
We eliminate the different components and name them as 
follows:

•	 GLFN-TC-tc GLFN-TC without the temporal convolution 
module. We replace the temporal convolution module 
with a linear layer.

•	 GLFN-TC-sc GLFN-TC without the densely connected 
residual convolution module. We replace the densely 
connected residual convolution module with a linear 
layer.

•	 GLFN-TC-dcrc GLFN-TC eliminates the densely con-
nected residual convolution structure so that the output 
of the previous layer in the graph convolution step is the 
input of the next layer and takes the output of the last 
layer as the output of densely connected residual convo-
lution module.

Table 4 provide the experimental results of ablation study. 
The introduction of temporal convolution module signifi-
cantly improves the results on five datasets, because this 
module uses dilated 1D-CNN to enable the model to mine 
the relationships between time steps from the historical 
data of each node, enabling the output data to better rep-
resent temporal dependencies. The introduction of densely 
connected residual convolution module also significantly 
improves the prediction results, because it makes full use of 
the output information of previous graph convolution layers, 
and makes the information flow between the interdepend-
ent nodes. Therefore, the data information between nodes 

is effectively aggregated. The densely connected residual 
convolution structure improves the prediction results of ISO-
NE dataset, AP dataset, SH dataset and NCENT dataset, 
especially in ISO-NE dataset and SH dataset. Because this 
structure makes full use of the output information of each 
graph convolution layer, avoid the problem that the infor-
mation utilization rate of previous graph convolution layers 
will decrease with the increase in graph convolution layers. 
However, it increases the prediction error of AT dataset. 
From Fig. 8, we can see that the load data change trend of 
AT dataset has obvious periodicity, and the load data change 
range is smaller. Therefore, the prediction of this dataset is 
less challenging. Adding densely connected residual con-
volution structure increases the complexity and parameters 
of the model, which leads to over-fitting and increases pre-
diction error. However, the prediction results are obviously 
improved on the ISO-NE dataset and SH dataset with greater 
difficulty.

3.6 � RQ 4: Module Effectiveness Assessment

In this subsection, we will evaluate the effectiveness of 
GLFN-TC modules. First, we verify the effectiveness of the 
temporal convolution module and the densely connected 
residual convolution module through the method of module 
replacement. Secondly, we extract the learned relationship 
graph to verify whether the relationships learned by GLFN-
TC in the graph learning module is valid.

GLFN-TC obtains temporal and spatial dependencies of 
historical data through temporal convolution module and 
densely connected residual convolution module. However, 
traditional methods can also achieve the above objectives. 
Therefore, we use traditional methods to replace the above 
two modules to verify the effectiveness of the designed mod-
ules. We name the variants of GLFN-TC as follows:

Table 3   Comparison of MSE 
and MAE under prediction tasks 
in other fields for proposed 
method and baselines methods

Bold represents the best result

Models TN PL TC

MSE MAE MSE MAE MSE MAE

NF 0.6569 0.6701 1.5642 1.0392 1.3010 0.6057
SA 1.1904 1.2523 0.5952 0.6075 0.9411 0.8111
MA 0.7292 0.7169 1.6641 1.0793 0.9456 0.7552
RNN 0.2828 0.4306 0.3573 0.4516 0.2413 0.3275
CNN 0.3945 0.5150 0.3559 0.4539 0.2655 0.3525
LSTM 0.3182 0.4559 0.4190 0.5017 0.2406 0.3226
CNN_LSTM 0.5330 0.5969 0.3359 0.4460 0.2392 0.3179
Informer 0.3971 0.5021 0.5598 0.5771 0.8683 0.6099
T-GCN 53.7011 5.1406 71.8001 7.2619 0.2490 0.3206
GLFN-TC 0.2712 0.4136 0.3212 0.4365 0.2326 0.2961
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•	 GLFN-TC* This variant replaces the temporal convolu-
tion module in GLCN-TC with LSTM.

•	 GLFN-TC** This variant replaces the densely connected 
residual convolution module in GLCN-TC with two-layer 
GCN.

Table 5 shows the experimental results of module effec-
tiveness assessment. Figures 12 and 13 visually show the 
data in Table 5. The experimental results can directly reflect 
the effectiveness of the temporal convolution module and 
the densely connected residual convolution module in 

Table 4   Ablation study

Bold represents the best result

Models ISO-NE AT AP SH NCENT

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

GLFN-TC 0.2167 0.3494 0.1187 0.2406 0.1631 0.3036 0.1852 0.2990 0.2432 0.3902
GLFN-TC-tc 0.2764 0.3863 0.1379 0.2675 0.1838 0.3154 0.1999 0.3295 0.2521 0.3956
GLFN-TC-sc 0.2704 0.3976 0.1451 0.2786 0.2260 0.3546 0.2609 0.3951 0.3805 0.4901
GLFN-TC-dcrc 0.2894 0.3961 0.1107 0.2344 0.1720 0.3102 0.2690 0.3782 0.2605 0.3992

 

Fig. 12   Comparison of MSE (left) and MAE (right) in GLFN-TC* and GLFN-TC

 

Fig. 13   Comparison of MSE (left) and MAE (right) in GLFN-TC** and GLFN-TC
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GLCN-TC. GLCN-TC* uses LSTM to replace the temporal 
convolution module in GLCN-TC. It uses LSTM to obtain 
the temporal dependencies behind historical data. Compared 
with LSTM, the temporal convolution module is more effec-
tive in mining temporal dependencies from behind the his-
torical data of each node by dilated 1D-CNN. The design of 
temporal convolution module has effectively improved the 
experimental results, especially on NCENT dataset. GLFN-
TC** uses two-layer GCN to replace the densely connected 
residual convolution module in GLCN-TC. It uses two-layer 
GCN to aggregate the data information of the central node 
and its neighbors to handle spatial dependencies. Compared 
with the traditional GCN, the densely connected residual 
convolution module can not only effectively use the relation-
ship between the central node and its neighbors for message 
transmission through the stacking of graph convolution lay-
ers, but also ensure the full use of data information. There-
fore, this module improves the experimental results of five 
datasets.

In addition, we extract the learned graph structure to 
verify the effectiveness of the graph learning module. Take 
ISO-NE dataset as an example, Figure 14a shows the heat 
map of the relationships between nodes learned by graph 
learning module in ISO-NE dataset. Take “demand” as an 
example in Fig. 14a, it has a large correlation with “month” 
and a small correlation with “year.” Figure 14b shows the 
box plot of “demand” in different months in ISO-NE data-
set. From Fig. 14b, we can see that the data distribution 
between different years is similar, while there are signifi-
cant differences in different months of the same year. The 
results shown in Fig. 14b is consistent with the conclusions 
in Fig. 14a. Therefore, the relationship structure learned by 
graph learning module can approximately represents the 
strength of relationships between different nodes.

3.7 � RQ 5: Repeatability Assessment and Parameter 
Sensitivity

In the implementation of our method, the parameters of 
the deep learning model are initialized randomly. There-
fore, when the GLFN-TC models are trained independently, 
there exist some differences between obtained results. Based 
on the experimental setup in Sect. 3.2, in this subsection, 
we show the results of three experiments in five datasets to 

evaluate the stability of GLFN-TC. In detail, the GLFN-TC 
model is trained independently for 3 times.

Table 6 shows the experimental results of repeatability 
assessment. The three experimental results of GLFN-TC 
model are represented by Trained 1 ~ 3, and Avg is the aver-
age value of three experimental results. Taking MSE as an 
example, in ISO-NE dataset, the three results are 0.2141, 
0.2210 and 0.2150, respectively. The average value of the 
three values is 0.2167. The maximum difference between the 
three values and the average value is 0.0043. In AT dataset, 
the three results are 0.1102, 0.1198 and 0.1262, respectively. 
The average value of the three values is 0.1187. The maxi-
mum difference between the three values and the average 
value is 0.0085. In AP dataset, the three results are 0.1518, 
0.1754 and 0.1620, respectively. The average value of the 
three values is 0.1631. The maximum difference between 
the three values and the average value is 0.0123. In SH 
dataset, the three results are 0.1837, 0.1686 and 0.2032, 
respectively. The average value of the three values is 0.1852. 
The maximum difference between the three values and the 
average value is 0.018. In NCENT dataset, the three results 
are 0.2450, 0.2628 and 0.2219, respectively. The average 
value of the three values is 0.2432. The maximum difference 
between the three values and the average value is 0.0213. 
Therefore, we can get that the results of GLFN-TC model 
are similar, and their differences are small.

We conduct experiments on ISO-NE dataset to explore 
the impact of the dilation factor in Sect. 2.3 on the model. 
Specifically, we take the values of dilation factor as 1, 2, 3, 4 
and 5. The experimental results are shown in Fig. 15. When 
the value of dilation factor is 1, the results are poor. The 
reason is that convolution operations have become ordinary 
1D-CNN, and long-term dependencies cannot be obtained 
through dilation strategy. As the value of dilation factor 
increases, the results gradually improve. We can see that 
GLFN-TC’s performance is generally stable for a value of 
dilation factor in range of [2–4]. When the value of dilation 
factor is 5, the results are the worst. The reason is that large 
dilation factor value cannot effectively obtain short-term 
data information. In the experiment, we used the general pre-
diction level of the model, i.e., value of dilation factor is 3.

Table 5   Module effectiveness 
assessment 

Bold represents the best result

Models ISO-NE AT AP SH NCENT

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

GLFN-TC* 0.6135 0.6676 0.1406 0.2772 0.2135 0.3499 0.2883 0.3890 0.8902 0.7823
GLFN-TC** 0.2822 0.4011 0.1252 0.2568 0.2002 0.3322 0.2905 0.3645 0.2608 0.3969
GLFN-TC 0.2167 0.3494 0.1187 0.2406 0.1631 0.3036 0.1852 0.2990 0.2432 0.3902
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3.8 � Discussion

On the one hand, we analyzed the ability of GLFN-TC to 
handle temporal dependencies. In ablation study, eliminat-
ing temporal convolution module can lead to a decrease in 
model prediction performance. The results indicate that our 
proposed temporal convolution module can handle the tem-
poral dependencies behind historical data. In module effec-
tiveness assessment, using LSTM instead of the temporal 
convolution module reduced the predictive performance of 
the model, further verifying that the temporal convolution 
module can better handle temporal dependencies and coop-
erate with densely connected residual convolution module 
to improve predictive performance. GLFN-TC outperforms 
other deep learning methods such as LSTM and CNN in 
the field of short-term load forecasting. This indicates that 
GLFN-TC can better handle temporal dependencies through 
temporal convolution module and achieve more accurate 
prediction results in conjunction with densely connected 
residual convolution module.

On the other hand, we analyzed the ability of GLFN-TC 
to handle spatial dependencies. In the ablation study, the 
experimental results validated the effectiveness of adding 
densely connected residual structure to graph convolution. 
In module effectiveness assessment, replacing the densely 
connected residual convolution module with GCN reduced 
the predictive performance of the model, further verifying 

that the densely connected residual convolution module 
can better handle spatial dependencies. GLFN-TC builds 
on graph neural networks. Compared with previous works, 
such as T-GCN and GCN, GLFN-TC not only solves the 
problem of no predefined graph structure in prediction tasks, 
but also effectively processes the temporal dependencies of 
input data for each node through dilated 1D-CNN and solves 
the problem of information loss in message passing through 
graph convolution operation with densely connected residual 
structure.

According to its own characteristics, GLFN-TC can also 
be applied to prediction problems in non-load fields, and it 
is further verified by model generality assessment. However, 
treating the output information of each graph convolution 
layer equally in densely connected residual convolution 
module can lead to the reuse of some useless information 
and increase the complexity of the model. As shown in the 
results of ablation study in AT dataset, eliminating densely 
connected residual convolution structure reduces prediction 
errors. Therefore, future research directions can extract use-
ful output information from each graph convolutional layer, 
avoiding the reuse of useless information and reducing 
model complexity. At the same time, in temporal convolu-
tion module, we can further consider attention mechanism 
to focus on important time steps in historical data, so as to 
further improve the prediction accuracy of the approach.

 

(a) heat map 

 

(b) box plot 

Fig. 14   Heat map and box plot in ISO-NE dataset

Table 6   Repeatability 
assessment

Trained ISO-NE AT AP SH NCENT

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

1 0.2141 0.3516 0.1102 0.2345 0.1518 0.2927 0.1837 0.2915 0.2450 0.3878
2 0.2210 0.3467 0.1198 0.2367 0.1754 0.3132 0.1686 0.2826 0.2628 0.4056
3 0.2150 0.3498 0.1262 0.2505 0.1620 0.3050 0.2032 0.3229 0.2219 0.3771
Avg 0.2167 0.3494 0.1187 0.2406 0.1631 0.3036 0.1852 0.2990 0.2432 0.3902
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4 � Related Work

4.1 � Load Forecasting

Load forecasting is based on historical data such as load, 
weather, temperature, etc., and explore the change rule of 
historical data. By seeking the internal relationships between 
load data and related factors, so as to forecast the future load 
values.

Many classical methods have been applied to the field 
of load forecasting. Wei et al. established ARIMA differ-
ential autoregressive moving average model and analyzed 
the advantages and disadvantages of ARIMA model in load 
forecasting [21]. Goude et al. proposed a semi-parametric 
approach based on generalized additive models theory and 
considers both the short- and middle-term forecasting con-
ditions. These generalized additive models estimate the 
relationships between load and explanatory variables (such 
as temperature and calendar variables). This methodology 
has been well-applied in the French grid [22]. Chen et al. 
proposed an artificial neural network (ANN) model. This 
model can differentiate between the weekday loads and the 
weekend loads and can predict the hourly loads for an entire 
week. The results show that the model has greater predic-
tion accuracy than the traditional statistical model [23]. Fan 
et al. proposed a short-term load forecasting method based 
on an adaptive two-stage hybrid network with self-organized 
map (SOM) and support vector machine (SVM). Firstly, the 
SOM network is used to cluster the input dataset into sev-
eral subsets. Then, SVMs are used to fit the training data of 
each subset. The proposed structure is robust with different 
data types and can deal with the non-stationarity of load 
series well [24]. Shi et al. proposed a novel pooling-based 
deep recurrent neural network for household load forecast-
ing. In essence, the model could address the over-fitting 
issue by increasing data diversity and volume [25]. Wilms 

et al. proposed a general purpose forecasting method, that 
is, a sequence-to-sequence machine learning architecture for 
time series forecasting based on recurrent neural networks. 
It is evaluated in short-term electric load forecasting, and 
the results show that it outperforms other machine learning 
forecasting techniques [26]. Incremona et al. used a Gauss-
ian process (GP) estimator to track the difference between 
the target Easter Week and an average Easter Week load 
profile. Differently from usual GP approaches that employ 
“canonical” kernels, it is a customized kernel that is tailored 
to the specific statistical properties of the signal to be pre-
dicted [27]. Kiruthiga et al. proposed a new optimized deep 
learning (DL) network design for time series load forecast-
ing. Firstly, the hyper-parameters of DL are optimized by 
LF-PSO technique. Then, the optimized DL model is used 
for load prediction [28].

In practice, due to the abnormal operation of the measure-
ment system, the measured load data have abnormal values, 
which affects the quality of the predicted values obtained 
[29]. In order to solve the problem of impact on the accu-
racy of the load forecasting caused by abnormal load data. 
Ma et al. used iForest to clear abnormal historical load data 
and used iForest-LSTM for short-term load forecasting. 
Compared with standard LSTM and iForest-BP methods, 
iForest-LSTM improved the forecasting accuracy [30]. CNN 
is also often used for load forecasting in recent years. Khan 
et al. and Dong et al. used CNN network in load forecast-
ing to obtain more accurate results [31, 32]. Sajjad et al. 
used a hybrid model of CNN and GRU to forecast electric-
ity consumption and evaluated its performance over several 
benchmark datasets [33].

4.2 � Graph Neural Networks

In recent years, GNNs have achieved great success in graph-
structured data. In general, GNNs assume that the state of 
a node will be affected by the states of its neighbors. For 
example, Kipf et al. proposed a graph convolution networks 
(GCNs) model, a node’s feature representation by aggregat-
ing the representations of its one-step neighbors. The exper-
imental results on citation networks and on a knowledge 
graph dataset show that this method outperforms related 
methods by a significant margin [34]. GNNs can obtain 
the dependency characteristics between multivariate data, 
and its related variants are often used in various fields. For 
example, in the field of traffic prediction, Chen et al. pro-
posed the multi-range attentive bicomponent GCN (MRA-
BGCN). Firstly, node-wise graph and edge-wise graph are 
constructed and then implement the interactions of both 
nodes and edges using bicomponent graph convolution. 
Multi-range attention mechanism is introduced to aggregate 
information in different neighborhood ranges and automati-
cally learn the importance of different ranges [35].

Fig. 15   MSE and MSE for different dilation factor in ISO-NE dataset
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5 � Conclusion

In this paper, we propose a novel framework for short-
term load forecasting, namely graph neural network-based 
short‑term load forecasting with temporal convolution 
(GLFN-TC). GLFN-TC creates a feature vector for each 
variable to represent the characteristics of the variable and 
automatically learns a graph of relationships between vari-
ables through the graph learning module. Its advantage 
is that it can automatically update in the training stage to 
make the relationship graph optimal. The temporal convo-
lution module uses dilated 1D CNN to capture the tempo-
ral dependencies of the historical data of each node. The 
densely connected residual convolution module can make 
full use of the data information of each graph convolution 
layer and avoid the problem of information loss caused by 
stacking the graph convolution layers. Finally, the load 
forecasting module integrates the data representation and 
feature vector of each node to predict the future load val-
ues. The excellent performance of the proposed GLFN-TC 
is verified on five load datasets. Since GLFN-TC can solve 
the problem of no predefined graph structure in the appli-
cation field, and it can effectively deal with temporal and 
spatial dependencies. Therefore, three non-load datasets 
are used to further prove the generality of the model.
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