
Vol.:(0123456789)1 3

Data Science and Engineering
https://doi.org/10.1007/s41019-023-00233-8

RESEARCH PAPER

Graph Neural Network‑Based Short‑Term Load Forecasting
with Temporal Convolution

Chenchen Sun1 · Yan Ning1 · Derong Shen2 · Tiezheng Nie2

Received: 17 March 2023 / Revised: 12 October 2023 / Accepted: 17 October 2023
© The Author(s) 2023

Abstract
An accurate short-term load forecasting plays an important role in modern power system’s operation and economic develop-
ment. However, short-term load forecasting is affected by multiple factors, and due to the complexity of the relationships
between factors, the graph structure in this task is unknown. On the other hand, existing methods do not fully aggregating
data information through the inherent relationships between various factors. In this paper, we propose a short-term load
forecasting framework based on graph neural networks and dilated 1D-CNN, called GLFN-TC. GLFN-TC uses the graph
learning module to automatically learn the relationships between variables to solve problem with unknown graph structure.
GLFN-TC effectively handles temporal and spatial dependencies through two modules. In temporal convolution module,
GLFN-TC uses dilated 1D-CNN to extract temporal dependencies from historical data of each node. In densely connected
residual convolution module, in order to ensure that data information is not lost, GLFN-TC uses the graph convolution of
densely connected residual to make full use of the data information of each graph convolution layer. Finally, the predicted
values are obtained through the load forecasting module. We conducted five studies to verify the outperformance of GLFN-
TC. In short-term load forecasting, using MSE as an example, the experimental results of GLFN-TC decreased by 0.0396,
0.0137, 0.0358, 0.0213 and 0.0337 compared to the optimal baseline method on ISO-NE, AT, AP, SH and NCENT datasets,
respectively. Results show that GLFN-TC can achieve higher prediction accuracy than the existing common methods.

Keyword  Short-term load forecasting · Graph structure learning · Graph neural networks · Dilated 1D-CNN · Temporal
dependencies · Spatial dependencies

1  Introduction

With the development of society, the power demand is
constantly expanding [1]. As load forecasting is the basis
of power dispatching [2], it has attracted extensive atten-
tion in power system [3]. Load forecasting is classified into

short-term, medium-term and long-term forecasting. Short-
term load forecasting (STLF) deals with forecasts targeting
few hours to few days ahead. Medium-term load forecast-
ing (MTLF) deals with load prediction from few weeks to
few months. Long-term load forecasting (LTLF) is used to
load forecast from one year to several years. LTLF assists
in future planning of power system. MTLF aids in power
system to inspect and maintain equipment. STLF plays an
important role in load dispatching [4]. Since STLF plays an
important role in power distribution and reduction in genera-
tion cost [5], STLF plays a crucial role in the operation of
power system. Accurate load forecasting helps to maximize
resource utilization and save a lot of money. Therefore, it
is necessary to develop accurate load forecasting methods
[6, 7].

Now, there are many methods applied to load forecast-
ing. Mbamalu et al. and Chen et al. tackled the problem of
load forecasting by using the statistical-based methods [8,
9]. However, there are various factors that can affect load

 *	 Chenchen Sun
	 suncc_db@163.com

	 Yan Ning
	 ny_student@163.com

	 Derong Shen
	 shendr@mail.neu.edu.cn

	 Tiezheng Nie
	 nietiezheng@mail.neu.edu.cn

1	 School of Computer Science and Engineering, Tianjin
University of Technology, Tianjin, China

2	 School of Computer Science and Engineering, Northeastern
University, Shenyang, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-023-00233-8&domain=pdf

	 C. Sun et al.

1 3

demand. Therefore, the load curves are highly nonlinear
and difficult to approximate. In recent years, deep learn-
ing methods are widely used in load forecasting due to
its property of nonlinearity modeling [10]. For instance,
Muzaffar et al. used LSTM network for STLF and its fore-
casting performance was compared to that of traditional
methods [11]. Smyl et al. proposed a new gated recurrent
cell that implements an attention mechanism for weighting
the input information, and this mechanism can improve
the predictive performance of the model [12]. Due to the
nonlinearity characteristics of the load curve, the deep
learning-based methods are more accurate than the statis-
tical-based methods. Figure 1 shows the scatter plot with
Lag 1 ~ 3 of “load” in AP dataset, and it can be seen from
the figure that there is autocorrelation in “load,” especially
with a strong correlation when the Lag 1. Therefore, the
load values are affected by its own historical data, and
we need to explore the temporal dependencies behind
historical data. Most of the current works use RNN or
LSTM to obtain the temporal dependencies of historical
data. However, the historical data of each factor is highly
related to itself. Therefore, it is necessary to explore the
relationships between time steps from the historical data

of each factor in order to better represent the temporal
dependencies of this factor.

Figure 2 shows the change trend of “dry_bulb_tempera-
ture,” “wet_bulb_temperature” and “load” in AP dataset
over a period of time. From this figure, it can be seen that not
only does the change of “load” increase with the increase in
“dry_bulb_temperature,” and decreases with the decrease in
“dry_bulb_temperature,” but also the change trend of “wet_
bulb_temperature” is similar to that of “dry_bulb_tempera-
ture.” Therefore, the load values are affected not only by its
own historical data, but also by other factors, and different
factors also interact with each other. In order to improve the
prediction accuracy, it is necessary to aggregate data infor-
mation through the internal relationships between various
factors. With the development of deep learning technology,
graph neural network (GNN) has been proved to be effective
in mining spatial dependencies between variables through
graph structure. For example, Yu et al. and Wu et al. have
achieved remarkable success in the field of traffic prediction
using GNNs [13, 14]. However, deep graph convolutional
networks may have the drawback of reducing performance
[15], and after stacking multiple layers of graph convolution
layers, the features between nodes become too smooth and

Fig. 1   Lag plot of “load” in AP dataset

Fig. 2   Sample time series of “load” and other factors in AP dataset

Graph Neural Network‑Based Short‑Term Load Forecasting with Temporal Convolution﻿	

1 3

indistinguishable, which can also lead to the degradation of
network results. The central node may pass the features to
most nodes in the entire network through one or two layers
of graph convolution, while for edge nodes in the network,
multiple propagation is required to affect some nodes in
the network [16]. Simple application of residual connec-
tion cannot solve this problem, as different nodes propagate
features at different speeds. Therefore, in load forecasting
tasks, the traditional methods based on graph convolution
may cause over-smoothing problem when stacking multiple
graph convolution layers. Different nodes require different
degrees of neighborhood aggregation information, and the
subsequent convolution layers may not be able to effectively
utilize the output data of previous convolution layers after
passing through multiple convolution layers, resulting in the
problem of information loss. Moreover, GNN-based have
been rarely studied for STLF problems.

To sum up, the current short-term load forecasting faces
the following challenges:

•	 Challenge 1 Unknown Graph Structure. The load val-
ues are affected by various factors, and the relationships
between these factors are very complex. Therefore, there
is no explicit graph structure in most cases. The relation-
ships between variables have to be discovered from data
rather than being provided as ground truth knowledge.

•	 Challenge 2 Mining temporal dependencies. Temporal
dependencies are one of the important data characteris-
tics of load forecasting task. Therefore, in order to fully
explore the relationships between time steps of each fac-
tor, it is necessary to obtain temporal dependencies from
the historical data of each factor.

•	 Challenge 3 GNN Learning. The current common short-
term load forecasting methods (such as LSTM-based
methods and CNN-based methods) did not effectively use
the relationships between central node and its neighbors
for message passing. In addition, the traditional GCN-
based models may reduce the utilization of the data infor-
mation of previous graph convolution layers due to the
stacking of graph convolution layers.

Therefore, in this work, we propose a graph neural
network-based short-term load forecasting with temporal
convolution (GLFN-TC), which learns a graph of relation-
ships between load and weather, temperature and other
factors, and use this graph structure to STLF. For chal-
lenge 1, the graph learning module uses feature vector
to automatically learn the relationships between various
factors. This module solves the problem that there is no
graph structure in load forecasting. For challenge 2, the
temporal dependencies behind the historical data of each
factor are obtained through the temporal convolution mod-
ule. Specifically, we use dilated 1D-CNN to fully explore

the relationship between time steps of each factor. For
challenge 3, the densely connected residual convolution
module adds a densely connected residual structure to the
graph convolution. This module obtains spatial dependen-
cies by stacking multiple graph convolution layers, while
ensuring that data information will not be lost.

In summary, the proposed model solves the existing
problems of short-term load forecasting, and can also be
applied to other non-load fields due to the characteristics
of modeling. The main contributions of our work are:

•	 We propose a new deep learning model for load fore-
casting. This model works from the data information of
each node in historical data. We propose the temporal
convolution module that can fully explore the deep data
information behind historical data and work in con-
junction with the densely connected residual convolu-
tion module to effectively handle temporal and spatial
dependencies. The module effectiveness assessment
further proves the effectiveness of both modules.

•	 We propose the graph learning module to learn com-
plex relationships between variables. Our method effec-
tively solves the problem of not being able to provide
an explicit graph structure in the field of load forecast-
ing. The experiment shows that the graph structure of
automatic learning has good interpretability.

•	 We propose a graph convolution operation with densely
connected residual structure, which can fully utilize
the data information of each graph convolution layer to
handle spatial dependencies and effectively solve the
problem of information loss during message passing.
The ablation study further proves the effectiveness of
this design.

•	 GLFN-TC supports automatic construction of graph
structure between variables with complex relationships.
Therefore, the model is general for other fields with-
out predefined graph structure. The model generality
assessment further proves the generality of GLFN-TC.

•	 We conduct experiments on five load datasets and three
non-load datasets. Experimental results show that our
method outperforms the baseline methods on all data-
sets.

Organization of the rest. Section 2 defines the short-
term load forecasting problem and presents the theory
basis and implementation details of GLFN-TC. Section 3
describes the datasets, baseline methods, evaluation met-
rics and experimental setup. In this section, five studies
are conducted to validate the proposed method. Finally,
the advantages and disadvantages of the proposed model
are discussed based on the experimental results, and future
research directions for the model are provided. Section 4
introduces the basic knowledge of load forecasting and

	 C. Sun et al.

1 3

graph neural networks, and reviews their related work.
Finally, conclusions are drawn in Sect. 5.

2 � Short‑Term Load Forecasting Based
on Graph Neural Network with Temporal
Convolution

2.1 � Overview

The aim of STLF is to learn a model Q that maps X to Ŷ ,
that is

where X = {xt1 , xt2 ,… , xte} denotes a historical data with

time step of e . Let xti ∈ ℝ
N denotes the value at time step

ti , and N represents the number of variables. The variables
can be temperature, humidity, load, etc. Ŷ ∈ ℝ

p denotes
the predict future load values with time step of p , that is
Ŷ = {ŷ1, ŷ2,… , ŷp} . The known values of input characteris-
tics and corresponding load values are called training data,
and model constantly updates parameters through training
data. The model can be used subsequently to predict future
load values. The new input feature values are also called test
data. The prediction process is as follows:

 where X
′

= {xte+1 , xte+2 ,… , xt2�} denotes test data. Our aim is

to make the predicted load values ̂Y
′

= {ŷp+1, ŷp+2,… , ŷ2p} of

the test data closer to the real values Y
′

= {yp+1, yp+2,… , y2p}
through the trained model, that is, Δd is minimized by
Eq. (3). When Δd = 0, it means perfect prediction.

As mentioned in introduction, load forecasting is not
only influenced by data between different time steps, but
also by other factors. In order to improve prediction accu-
racy, our method explores the relationships between his-
torical data at different time steps of each node through
temporal convolution module and aggregates data infor-
mation between different nodes through densely connected
residual convolution module. Therefore, our method
effectively handles temporal and spatial dependencies to
accurately predict future load values. Figure 3 provides
an overview of GLFN-TC, and it consists of four main
components:

•	 Graph Learning Module This module creates a feature
vector for each node, and uses the feature vector to learn

(1)X
Q
→ Ŷ

(2)Ŷ
′

= Q(X
′

)

(3)Δd = argmin
||
|
Ŷ � − Y �||

|

a graph structure to express the relationships between
nodes.

•	 Temporal Convolution Module This module uses dilated
1D-CNN to obtain the temporal dependencies of each
node’s historical data.

•	 Densely Connected Residual Convolution Module This
module uses graph convolution operation with densely
connected residual structure to aggregate the data infor-
mation of the central node and its neighbors.

•	 Load Forecasting Module This module fuses data infor-
mation with feature vector to predict future load values.

When the input data is X ∈ ℝ
N×Tin , GLFN-TC first creates

N feature vectors through the graph learning module, and
automatically learns the graph structure A ∈ ℝ

N×N between
variables through feature vectors. Then, a dilated 1D-CNN
is created for each node through the temporal convolution
module to obtain temporal dependencies behind the histori-
cal data of each node. The output of the temporal convolu-
tion module and graph structure are used as the input of the
densely connected residual convolution module, and the data
information of nodes are aggregated through the graph con-
volution operation of densely connected residual structure in
this module. Finally, the load forecasting module integrates
the data information and predict future load values ̂Y ∈ ℝ

Tout .
Our method not only focuses on message passing, but also
solves the problem of no predefined graph structure through
graph learning module, and optimizes the graph structure in
training stage. All core modules will be described in more
detail in the following sections.

2.2 � Graph Learning Module

In STLF, different factors can have very different charac-
teristics. Figure 4 shows the change trend of “temperature”
and “hour” over a period of time in ISO-NE dataset, which
visually shows that the change trend of different factors is
significantly different. But each factor has complex correla-
tion with other factors. For example, to some extent, week-
ends can reflect the user’s behavior (less power is used by
families on weekdays and more on weekends). Therefore, we
need to capture the complex relationships behind different
factors to construct a graph structure.

We create a feature vector for each factor:

where N represents the number of factors. d is a hyper-
parameter and represents the dimension of feature vector.
These feature vectors are randomly initialized and trained
together with the model. We assign a feature vector to each
factor, and use this feature vector to represent the character-
istics of the factor. We use a directed graph to represent the

(4)vi ∈ ℝ
d, for i = 1, 2,… ,N

Graph Neural Network‑Based Short‑Term Load Forecasting with Temporal Convolution﻿	

1 3

N

Temporal Convolution Module

N

T in

Graph Learning Module

N

Densely Connected Residual Convolution Module

T out

Load Forecasting Module

A�RN�N

A�RN�N

Fig. 3   Framework of graph neural network-based short-term load forecasting with temporal convolution

Fig. 4   Sample time series of “temperature” and “hour” in ISO-NE dataset

	 C. Sun et al.

1 3

relationships between various factors. The nodes of directed
graph represent factors, and the edges of directed graph rep-
resent the relationships between various nodes. We use a
directed graph because the relationships between factors
may be asymmetric. For example, when the temperature is
high, it may be sunny weather, but in winter, the temperature
may not be high on sunny days.

We use an adjacency matrix A to represent this directed
graph, each node in A corresponds to each factor. A is cal-
culated as follows:

where �(⋅) is the activation function and W ∈ ℝ
d×d is a train-

able weight matrix. We use Eq. (5) to calculate the correla-
tion, and use activation function to control the correlation in
the range [0,1]. The correlation between nodes is calculated
by corresponding feature vector and trainable weight matrix.
Therefore, in training phase, our adjacency matrix is adapt-
able to change as training data updates the model param-
eters, so that the graph structure can reach the optimal state.

2.3 � Temporal Convolution Module

LSTM can handle the temporal dependencies of histori-
cal data through gating mechanism, but it cannot handle
very long sequences well. However, STLF task requires
the model to be able to explore the relationships between
the time steps of each node, in order to obtain data that
better represents temporal dependencies. Reference [17]
used convolutional networks in sequence modeling and
achieved good results, and believed that convolutional
networks should be emphasized in sequence modeling.

(5)Ai,j =

{
1, if i = j

�
(
v�
i
Wvj

)
, if i ≠ j

Therefore, in order to effectively handle the temporal
dependencies behind the historical data of each node, and
cooperate with the densely connected residual convolu-
tion module to improve prediction accuracy, we propose a
temporal convolution module.

Temporal convolution module aims to obtain the tem-
poral dependencies of each node’s input data. Specifically,
we use a dilated 1D-CNN for each node to extract the
temporal dependencies behind the historical data of corre-
sponding node. Capture the relationships between different
time steps through 1D-CNN and use dilation strategy to
increase the receptive field to obtain long-term dependen-
cies. The architecture of temporal convolution module is
shown in Fig. 5.

Assuming that the input data have N nodes and time
step is Tin , we use dilated 1D-CNN with the number of N
to perform the convolution operation on each node. Firstly,
the temporal convolution module divides the input data
X ∈ ℝ

N×Tin into N one-dimensional data vectors:

where zi represents the input data of node i . The convolu-
tion layer of dilated 1D-CNN is used to extract the temporal
dependencies of each node’s data information. The dila-
tion factor can enable the convolution operation to obtain a
larger receptive field and let each convolution output contain
a wide range of information. The dilated 1D-CNN operation
of node i denoted by zi★ f(i) is defined as:

where f (i) ∈ ℝ
k represents the one-dimensional kernel of

node i . df is the dilation factor. It is very important to choose
the proper kernel size for convolutional networks. The ker-
nel size is too large to effectively obtain short-term data

(6)zi ∈ ℝ
Tin , for i = 1, 2,… ,N

� ()() = ∑ ()() (− ×)−1
=0 (7)

dilated 1D-CNN

Tin

N

dilated 1D-CNN

dilated 1D-CNN

Tin

N

h

Fig. 5   Architecture of temporal convolution module

Graph Neural Network‑Based Short‑Term Load Forecasting with Temporal Convolution﻿	

1 3

information. The kernel size is too small to effectively obtain
long-term data information. Therefore, we choose a kernel
size is 7 [18], i.e., k = 7 . By fine-tuning the dilation factor,
we choose the dilation factor is 3, i.e., df = 3 . The specific
analysis is introduced in Sect. 3.7.

Extract the data features of the one-dimensional historical
data vector corresponding to each node by dilated 1D-CNN
to effectively handle the temporal dependencies behind the
input data of the node. Then, we concatenate the data infor-
mation of all nodes to obtain the output data of the temporal
convolution module. The specific operations are as follows:

where concat(⋅) denote splicing the data information of all
nodes, and oi ∈ ℝ

h represents the data features extracted
from the historical data of node i . o ∈ ℝ

N×h represents the
final output data of the module and h represents the hidden
layer dimension. Through the temporal convolution module,
we effectively deal with the temporal dependencies behind
the historical data of each node.

2.4 � Densely Connected Residual Convolution
Module

As mentioned in introduction, graph neural networks can
handle spatial dependencies. However, when stacking multi-
ple graph convolution layers, the utilization of data informa-
tion in previous graph convolution layers will be reduced,
leading to the problem of information loss in message pass-
ing. Therefore, in order to solve the above problems, we
propose a densely connected residual convolution module.

The purpose of densely connected residual convolution
module is to make full use of the output information of each
graph convolution layer. We add the densely connected
structure to the graph convolution operation, and add the
residual structure to the output of each graph convolution
layer. By graph convolution operation with densely con-
nected residual structure, we fully utilize the data informa-
tion of each graph convolution layer. Figure 6 shows the
architecture of densely connected residual convolution
module.

(8)o = concat(o1, o2,… , oN)

In densely connected residual convolution module, we
use the adjacency matrix A learned in graph learning mod-
ule to fuse a central node’s information with its neighbors’
information to handle spatial dependencies. We use densely
connected structure in graph convolution operation and add
residual structure to the output of graph convolution layer.
We first provide the input data of the module and the math-
ematical forms of two structures, and then illustrate the mod-
ule’s operation process. The specific definition is as follows:

where ⊕ denotes connection operation, Ã = D̃
−1
A ,

D̃ii =
∑

jAij , l is the layer of graph convolution and �(⋅) rep-
resents the activation function. In Eq. (9), oi ∈ ℝ

h denotes
the data representation of node i , and it is obtained from
o . N represents the number of nodes. We combine the data
output by temporal convolution module with vi according
to the corresponding nodes, and use it as the input data of
densely connected residual convolution module. The pur-
pose of combine operation to make the input data contain
the data information of feature vector. Get the input data
gi ∈ ℝ

(h+d) of node i of densely connected residual convolu-
tion module from Eq. (9), then the input data of this module
can be represented as g ∈ ℝ

N×(h+d) . Equation (10) represents
the densely connected structure. The graph convolution uses
densely connected structure, and the input of the l-th layer
is the addition of outputs from the 1-th layer to the l − 1-th
layer of graph convolution step. This operation enables the
input of the l-th layer to include the output information of
all previous layers. Because we use the densely connected
structure in graph convolution operation, the original input
data does not participate in subsequent operations, that is, l
starts from 2. When l = 1 , H(1) = ÃH(0) , and H(0) = g . This
structure can effectively use the output information of previ-
ous graph convolution layers during message passing. There-
fore, it can strengthen the propagation of node information.

(9)gi = oi ⊕ vi, for i = 1, 2, … , N

(10)H(l) = Ã�

(
l−1∑

i=1

H(i)

)

, for l = 2, 3,…

(11)Out_H(l) = �(Out_H(l−1) +H(l)), for l = 1, 2,…

Fig. 6   Architecture of densely
connected residual convolution
module

H(1) H(2) H(3) H(l)

Out_H(1) Out_H(2) Out_H(3) Out_H(l)

H(0)

+ + + ++

AAAA

	 C. Sun et al.

1 3

Equation (11) represents the residual structure, where H(l)
is the output of graph convolution operation at l-th layer and
Out_H(0) = H(0) . The purpose of this structure is to retain
the data information of the previous layer when outputting
data. Therefore, when l = 1 , we also add the residual struc-
ture to retain the information of original input data, that is, l
starts from 1. This structure retains the data information of
previous layer, which can enhance the nonlinear approxima-
tion ability of model, and avoid the information loss problem
caused by the densely connected residual convolution mod-
ule stacking graph convolution layers.

2.5 � Load Forecasting Module

From the above temporal convolution module and densely
connected residual convolution module, we obtain the data
representation of N nodes. Now, the data representation
of each node has fully explored the temporal and spatial
dependencies of historical data. At this time, we need to
predict future load values through the data information of
nodes together with the corresponding feature vector. Fig-
ure 7 shows the architecture of load forecasting module.

The specific operation process of this module is as
follows:

In Eq. (12), Linear(⋅) represents a linear layer, Out_H(l)
represents the output data of densely connected residual con-
volution module, and �(⋅) is the activation function. Firstly,
according to Eq. (12), we use a linear layer and activation func-
tion to change the dimension of the output data of the densely
connected residual convolution module to d . The purpose of

(12)r = �(Linear(Out_H(l)
))

(13)
E1 = concat(𝜑

(
r1 ⊗ v1

)
, 𝜑

(
r2 ⊗ v2

)
, … , 𝜑(rN ⊗ vN))

(14)E2 = �
(
E1

)

(15)�(⋅) = flatten(Maxpooling(�(Conv(⋅))))

(16)Ŷ = Linear(E2)

this operation is to maintain consistency with the dimension
of the feature vector to aggregate the data information and fea-
ture vector of each node. At this time, r ∈ ℝ

N×d represents the
changed data information. In Eq. (13), ⊗ refers to the opera-
tion of splicing two one-dimensional data vectors into a two-
dimensional data vector. According to Eq. (13), we splice the
data representation ri ∈ ℝ

d of node i with its corresponding
feature vector vi . Then, the two-dimensional data vector is used
as the input data for convolution operation and max-pooling
operation. concat(⋅) denote splicing the data information of
all nodes to obtain an N-dimensional data vector. In Eq. (15),
Conv(⋅) represents convolution operation, and the purpose of
this operation is to fuse data information. Maxpooling(⋅) rep-
resents max-pooling operation, and the purpose of this opera-
tion is to reduce the number of parameters to retain important
features. �(⋅) is the activation function, and its function is to
introduce nonlinear characteristics into the operation. flatten(⋅)
represents flatten operation. Through Eqs. (13) and (15), we
aggregate the data representation and feature vector of each
node, which is represented as E1 ∈ ℝ

N×h1 . N represents the
number of nodes, and h1 represents the hidden layer dimension.
Through Eqs. (14) and (15), we fuse the data information of
all nodes. We obtain E2 ∈ ℝ

h2 and use it as input data for sub-
sequent operations. h2 represents the hidden layer dimension.
According to Eq. (16), we use a linear layer to predict Tout steps
load values, i.e., the predict load values is Ŷ�ℝTout.

The loss function defines the optimization objective of
training. Specific definitions are as follows:

where Ttrain represents the number of training data. We use
the Mean Square Error between the predicted output Ŷ and
the real data Y as the loss function for minimization.

3 � Experiments

In this section, we evaluate the performance of the proposed
GLFN-TC for STLF on five load datasets and the generality
of GLFN-TC on three other field datasets. In particular, we
aim to answer the following research questions:

(17)LMSE =
1

Ttrain

Ttrain∑

i=1

(
Yi − Ŷi

)2

N

d

Linear N

h+d

σ Max-pooling

flatten
Linear

Max-pooling

flatten
Outputs:Y �RTout^

Fig. 7   Architecture of load forecasting module

Graph Neural Network‑Based Short‑Term Load Forecasting with Temporal Convolution﻿	

1 3

•	 RQ 1 (Comparison With Baseline Methods) How does
the proposed method perform compared with baseline
methods for short-term load forecasting?

•	 RQ 2 (Model Generality Assessment) Is the proposed
method also effective when applied for other fields?

•	 RQ 3 (Ablation Study) How do the various components
of the proposed model affect the overall performance of
the model?

•	 RQ 4 (Module Effectiveness Assessment) Do modules
achieve the expected effect in our method?

•	 RQ 5 (Repeatability Assessment And Parameter Sensitiv-
ity) Is the result of multiple runs of our method stable? Is
the dilation factor affect the results?

We first introduce the datasets, evaluation metrics, experi-
mental setup and baseline methods. Then answer the above
research questions through experiments. To answer RQ 1,
we compare GLFN-TC with baseline methods in five load
datasets. Specifically, in order to verify the nonlinear charac-
teristics of GLFN-TC, we compare it with the conventional
methods. In order to verify the prediction performance of
GLFN-TC in deep learning methods, we compare it with
other deep learning methods. To answer RQ 2, we validate
the generality of GLFN-TC using three datasets from other
fields. To answer RQ 3, in five load datasets, we eliminate
some structures in GLFN-TC to verify the contribution of
key components to GLFN-TC. To answer RQ 4, in five load
datasets, we use the traditional method to replace the cor-
responding module to verify whether the temporal convolu-
tion module and the densely connected residual convolution
module designed in GLFN-TC achieves our expected effect.
At the same time, the effectiveness of the graph learning
module is further verified through specific example. To
answer RQ 5, we verify whether the experimental results
of GLFN-TC running for many times are similar, that is,
verify the stability of GLFN-TC. At the same time, we verify
the influence of value of dilation factor on the experimen-
tal results. Finally, through the discussion section, we will
discuss the advantages and disadvantages of the proposed
model, and provide future research directions for the model
to further improve prediction accuracy.

3.1 � Datasets and Evaluation Metrics

We use ISO-NE dataset,1 AT dataset,2 AP dataset,3 SH data-
set4 and NCENT dataset5 for short-term load forecasting.
The details of five datasets are as follows:

•	 ISO-NE ISO-NE dataset covers the data from March
2003 to December 2014, and the sample rate is 1 h. The
number of nodes in this dataset is 7, including load, tem-
perature, etc.

•	 AT AT dataset covers the data from January 2011 to
December 2016, and the sample rate is 1 h. The number
of nodes in this dataset is 6, including load, temperature,
wind speed, wind direction, etc.

•	 AP AP dataset covers the data from January 2006 to
December 2010, and the sample rate is 0.5 h. The number
of nodes in this dataset is 7, including load, electricity
price, humidity, etc.

•	 SH SH dataset covers the data from January 2017 to
August 2020, and the sample rate is 1 h. The number of
nodes in this dataset is 16, including load, week of year,
day of week, etc.

•	 NCENT NCENT dataset covers the data from January
2002 to December 2018, and the sample rate is 1 h. The
number of nodes in this dataset is 6, including load, year,
etc.

Our subsequent experiments will be conducted on the
above five datasets. The sample load data are shown in
Fig. 8.

We use mean square error (MSE) and mean absolute error
(MAE) to evaluate the error between real load values and
predicted load values:

where yi and ŷi denotes real values and predicted values. We
calculate MSE according to Eq. (18) and calculate MAE
according to Eq. (19). For MSE and MAE, lower values
are better.

The upper limit of MSE and MAE is +∞ , unless the
maximum MSE and MAE values are provided, or unless
the distribution of all the ground truth values are known,
we cannot effectively evaluate the overall quality of model.
We focus on one rate that actually generate a high score
only if the majority of the elements of a ground truth
group has been correctly predicted: R2 . R2 can have nega-
tive values, which mean that the model performed poorly.
When R2 = 1 , it means perfect prediction. Therefore, high
R2 value can clearly indicate a good model performance,
regardless of the ranges of the ground truth values and their
distributions. Specifically, we use R2 in Sect. 3.3 to further
evaluate the prediction accuracy of model. R2 is calculated
as follows:

(18)MSE =
1

n

n∑

i=1

(
yi − ŷi

)2

(19)MAE =
1

n

n∑

i=1

|
|yi − ŷi

|
|

1  Available at https://​github.​com/​ningn​ingLi​ningn​ing/​iso-​ne.
2  Available at https://​github.​com/​Lizhu​oling/​DCN.
3  Available at https://​zhuan​lan.​zhihu.​com/p/​15095​4853.
4  Available at https://​github.​com/​Mark-​THU/​load-​point-​forec​ast.
5  Available at https://​github.​com/​kmcel​wee/​load-​forec​asting.

https://github.com/ningningLiningning/iso-ne
https://github.com/Lizhuoling/DCN
https://zhuanlan.zhihu.com/p/150954853
https://github.com/Mark-THU/load-point-forecast
https://github.com/kmcelwee/load-forecasting

	 C. Sun et al.

1 3

where yi denotes real values, ŷi denotes predicted values, and
y is the average value of real values.

3.2 � Experimental Setup

In ISO-NE dataset, we take the data from January 1, 2013
to December 31, 2014. In AT dataset, we take the data
from January 1, 2015 to December 31, 2016. In AP data-
set, we take the data from January 1, 2009 to December
31, 2010. In SH dataset, we take the data from January 1,
2017 to December 30, 2018. In NCENT dataset, we take
the data from January 1, 2002 to December 31, 2003. We
divided the extracted data into training set, validation set
and test set according to 6:2:2. For five datasets, we set
Tin = 72 and Tout = 240, that is, input 72 historical data
to predict 240 future load values. The data normalization
method is as follows:

(20)R2 = 1 −

∑n

i=1
(yi − ŷi)

2

∑n

i=1
(yi − y)

2

where Xx is the original data, �x is the average of the original
data, �x is the standard deviation of the original data, and Xy
is the normalized data.

We compare three conventional methods and six deep
learning methods. The details are as follows:

•	 NF Naive Forecast, this method uses the load value of
the last time step of the training data as the load values
for future prediction.

•	 SA Simple Average, this method takes the average value
of all load values in training data as the load values for
future prediction.

•	 MA Moving Average, in this method, the load value of
the current time step is the average of the load values
of the previous n time steps. In the experiment, n = 4.

•	 RNN Recurrent neural network is a kind of neural net-
work with short-term memory ability. In other words,
the output of the network is not only related to the cur-
rent input data, but also related to the previous input
data.

(21)Xy =
Xx − �x

�x

Fig. 8   Sample load data for ISO-NE dataset (green), AT dataset (blue), AP dataset (purple), SH dataset (yellow) and NCENT dataset (red)

Graph Neural Network‑Based Short‑Term Load Forecasting with Temporal Convolution﻿	

1 3

•	 CNN Convolutional neural network can extract the
characteristics of input data in load forecasting tasks.
In experiments, we use 1D-CNN for STLF.

•	 LSTM Long short-term memory network is a variant of
RNN. Compared with RNN, it can effectively capture
association between long sequences and alleviate the
phenomenon of gradient vanishing or gradient explod-
ing.

•	 CNN_LSTM It is the combination of 1D-CNN and
LSTM, so that the model can have the characteristics
of CNN and LSTM at the same time.

•	 Informer Informer is an improvement based on trans-
former. Informer uses ProbSparse self-attention, self-
attention distilling and generative decoder to solve
some problems when transformer is applied to LSTF,
such as high memory usage [19].

•	 T-GCN Temporal graph convolutional network model
combines graph convolution network and gated recur-
rent unit to capture spatial and temporal dependencies
simultaneously. Specifically, the former captures spa-
tial dependencies, while the latter captures temporal
dependencies [20].

To eliminate the randomness of model, we repeat all
experiments 3 times and report the average as the final
result. Due to the experimental setup of Informer and
T-GCN, they perform multiple predictions on one data
during the testing phase, but other models only perform
one prediction operation. Therefore, in order to maintain
consistency, we use the first prediction result of the data
in Informer and T-GCN as the final prediction result of
the model to evaluate its prediction performance. Duo to
the assumption in this paper that there is a correlation
between each node, in T-GCN, we set the correlation
between nodes to 1. The proposed model is trained by the
Adam optimizer. We use the mean squared error as the loss
function. The learning rate is 0.0001, and the Dropout is
0.2. The number of layers of graph convolution is 5. We
train models for up to 50 epochs, and stop training if the
loss of validation set does not decline for 10 consecutive
times during the training period.

3.3 � RQ 1: Comparison with Baseline Methods

GLFN-TC is essentially a deep learning model. In order to
verify its nonlinear characteristics, in this subsection, we
first compare our model with three conventional methods.

Table 1 shows the experimental results of the proposed
method and conventional method. Taking MSE as an exam-
ple, the MSE of NF on five datasets is 1.0025, 2.2295,
1.0993, 5.9534 and 2.1699, respectively. The MSE of SA on
five datasets is 0.8642, 1.0576, 0.8035, 0.9736 and 0.8812,
respectively. The MSE of MA on five datasets is 0.8139,
2.3775, 1.3199, 7.2194 and 3.6731, respectively. NF, SA
and MA cannot effectively mine the nonlinear characteristics
behind historical data. Therefore, the three methods cannot
accurately predict the future load values. The MSE of GLFN-
TC on five datasets is 0.2167, 0.1187, 0.1631, 0.1852 and
0.2432, respectively. The results show that GLFN-TC outper-
forms the NF, SA and MA. Therefore, GLFN-TC has a better
nonlinear approximation capability than NF, SA and MA.

In Fig. 9, we show the R2 of our proposed method and
conventional methods on ISO-NE, AT, AP, SH and NCENT
datasets. Because the conventional methods have no good
nonlinear approximation ability, the result of R2 is negative.

Table 1   Comparison of MSE
and MAE under short-term load
forecasting for proposed method
and conventional methods

Bold represents the best result

Models ISO-NE AT AP SH NCENT

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

NF 1.0025 0.8271 2.2295 1.2169 1.0993 0.8204 5.9534 2.2432 2.1699 1.3288
SA 0.8642 0.7304 1.0576 0.8735 0.8035 0.7119 0.9736 0.7803 0.8812 0.7300
MA 0.8139 0.7225 2.3775 1.2613 1.3199 0.9163 7.2194 2.5027 3.6731 1.7699
GLFN-TC 0.2167 0.3494 0.1187 0.2406 0.1631 0.3036 0.1852 0.2990 0.2432 0.3902

Fig. 9   Comparison of R2 for proposed method and conventional
methods

	 C. Sun et al.

1 3

Due to the high R2 of GLFN-TC in five datasets, it further
shows that the prediction accuracy of GLFN-TC is better
than that of the conventional methods.

In order to further verify the effectiveness of GLFN-TC,
we compare it with other deep learning methods.

Table 2 shows the experimental results of our proposed
method and other deep learning methods in short-term load
forecasting task. In general, our GLFN-TC achieves state-of-
the-art results in five datasets. In ISO-NE dataset, the MSE
and MAE of GLFN-TC decreased by 0.0396 and 0.0331,
respectively, compared with the best method in baseline
methods. In AT dataset, the MSE and MAE of GLFN-TC
decreased by 0.0137 and 0.0101, respectively, compared
with the best method in baseline methods. In AP dataset,
the MSE and MAE of GLFN-TC decreased by 0.0358 and
0.0082, respectively, compared with the best method in base-
line methods. In SH dataset, the MSE and MAE of GLFN-
TC decreased by 0.0213 and 0.0306, respectively, compared
with the best method in baseline methods. In NCENT data-
set, the MSE and MAE of GLFN-TC decreased by 0.0337
and 0.0219, respectively, compared with the best method
in baseline methods. GLFN-TC performs better than RNN,
CNN, LSTM, CNN_LSTM and Informer on five datasets,
mainly because it not only obtains temporal dependencies
of historical data, but also uses densely connected residual
convolution modules to aggregate the data information of
the central node and its neighbors. GLFN-TC can handle
temporal and spatial dependencies more effectively, which
is more conducive to short-term load forecasting task. The
reason why GLFN-TC performs better than T-GCN is that
the graph learning module can automatically learn the rela-
tionships between variables and reuse node information
through the densely connected residual convolution module
to enhance the propagation of node information. Therefore,
GLFN-TC can better handle spatial dependencies for short-
term load forecasting task.

In Fig. 10, we show the R2 of our proposed method and
other deep learning methods on ISO-NE, AT, AP, SH and
NCENT datasets. The results show that the R2 of GLFN-TC

in five datasets is higher than that of baseline methods. Com-
bined with the experimental results in Table 2, it is further
shown that the prediction accuracy of GLFN-TC in deep
learning methods are higher than that of the baseline methods.

3.4 � RQ 2: Model Generality Assessment

Because GLFN-TC can effectively handle temporal and
spatial dependencies and can automatically learn graph
structure to solve problems where there is no graph struc-
ture in the applied field, GLFN-TC is also suitable for other
non-load fields. To verify the generality of GLFN-TC, we
use TN,6 PL7 and TC8 datasets from different fields for the

Table 2   Comparison of MSE
and MAE under short-term
load forecasting for proposed
method and other deep learning
methods

Bold represents the best result

Models ISO-NE AT AP SH NCENT

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

RNN 0.3643 0.4623 0.1541 0.2685 0.2280 0.3532 0.2065 0.3296 0.3926 0.5141
CNN 0.3195 0.4340 0.1377 0.2625 0.2562 0.3879 0.2539 0.3606 0.2907 0.4390
LSTM 0.3761 0.4990 0.1549 0.2793 0.2412 0.3682 0.2583 0.3732 0.7627 0.7169
CNN_LSTM 0.3793 0.5158 0.1324 0.2507 0.2262 0.3554 0.2161 0.3435 0.3285 0.4653
Informer 0.2563 0.3825 0.1715 0.2866 0.1989 0.3118 0.2213 0.3577 0.2769 0.4121
T-GCN 0.4053 0.5195 0.3902 0.4689 0.5270 0.6207 0.7063 0.6928 1.2220 0.9521
GLFN-TC 0.2167 0.3494 0.1187 0.2406 0.1631 0.3036 0.1852 0.2990 0.2432 0.3902

Fig. 10   Comparison of R2 for proposed method and other deep learn-
ing methods

6  Available at https://​github.​com/​juiom​shanti/​wind_​speed_​forec​ast-
ing.
7  Available at https://​github.​com/​pieka​rsky/​Short-​Term-​Elect​ricity-​
Price-​Forec​asting-​at-​the-​Polish-​Day-​Ahead-​Market.
8  Available at https://​github.​com/​Eudyp​tla/​Time-​Series-​PV-​Forec​ast.

https://github.com/juiomshanti/wind_speed_forecasting
https://github.com/juiomshanti/wind_speed_forecasting
https://github.com/piekarsky/Short-Term-Electricity-Price-Forecasting-at-the-Polish-Day-Ahead-Market
https://github.com/piekarsky/Short-Term-Electricity-Price-Forecasting-at-the-Polish-Day-Ahead-Market
https://github.com/Eudyptla/Time-Series-PV-Forecast

Graph Neural Network‑Based Short‑Term Load Forecasting with Temporal Convolution﻿	

1 3

prediction task. The specific information of datasets are as
follows:

•	 TN The field of TN dataset is wind speed prediction; it
covers the data from January 2000 to December 2014,
and the sample rate is 1 h. The number of nodes in this
dataset is 6, including wind speed, year, etc.

•	 PL The field of PL dataset is price prediction, it covers
the data from November 2017 to December 2020, and the
sample rate is 1 h. The number of nodes in this dataset is
4, including electricity price, energy from wind sources,
etc.

•	 TC The field of TC dataset is photovoltaic power predic-
tion, it covers the data from January 2016 to December
2017, and the sample rate is 1 h. The number of nodes in
this dataset is 9, including power, temperature, sunshine,
etc.

Our subsequent experiments will be conducted on the
above three datasets. The sample wind speed data, electricity
price data and power data are shown in Fig. 11.

In TN dataset, we take the data from January 1, 2000 to
September 30, 2001. In PL dataset, we take the data from

January 1, 2018 to December 31, 2019. In TC dataset,
we take the data from January 1, 2016 to December 31,
2016. Other experimental settings follow the instructions
in Sect. 3.2. We use MSE and MAE as evaluation metrics
for models.

Table 3 shows the experimental results of GLFN-TC
and baseline methods on TN, PL and TC datasets. The
reason for the poor performance of T-GCN on TN and PL
datasets is that the change trend of the two datasets is not
obviously periodic and the data is not smooth. Therefore,
T-GCN cannot effectively handle temporal and spatial
dependencies. However, due to the characteristics of the
field of TC dataset itself, its data have a certain perio-
dicity, and the prediction difficulty is reduced compared
with TN and PL datasets, so it performs better on this
dataset. GLFN-TC outperform baseline methods on all
metrics across three datasets. In prediction tasks in dif-
ferent fields, GLFN-TC can automatically learn the graph
structure through graph learning module to solve the prob-
lem that there is no predefined graph structure in the cor-
responding fields. At the same time, GLFN-TC effectively
handles temporal and spatial dependencies through tem-
poral convolution module and densely connected residual

Fig. 11   Sample wind speed data for TN dataset (orange) and sample electricity price data for PL dataset (pink) and sample power data for TC
dataset (brown)

	 C. Sun et al.

1 3

convolution module, respectively. Therefore, the experi-
mental results validate the generality of GLFN-TC.

3.5 � RQ 3: Ablation Study

We conduct an ablation study on five load datasets to vali-
date the contribution of key components in GLFN-TC.
We eliminate the different components and name them as
follows:

•	 GLFN-TC-tc GLFN-TC without the temporal convolution
module. We replace the temporal convolution module
with a linear layer.

•	 GLFN-TC-sc GLFN-TC without the densely connected
residual convolution module. We replace the densely
connected residual convolution module with a linear
layer.

•	 GLFN-TC-dcrc GLFN-TC eliminates the densely con-
nected residual convolution structure so that the output
of the previous layer in the graph convolution step is the
input of the next layer and takes the output of the last
layer as the output of densely connected residual convo-
lution module.

Table 4 provide the experimental results of ablation study.
The introduction of temporal convolution module signifi-
cantly improves the results on five datasets, because this
module uses dilated 1D-CNN to enable the model to mine
the relationships between time steps from the historical
data of each node, enabling the output data to better rep-
resent temporal dependencies. The introduction of densely
connected residual convolution module also significantly
improves the prediction results, because it makes full use of
the output information of previous graph convolution layers,
and makes the information flow between the interdepend-
ent nodes. Therefore, the data information between nodes

is effectively aggregated. The densely connected residual
convolution structure improves the prediction results of ISO-
NE dataset, AP dataset, SH dataset and NCENT dataset,
especially in ISO-NE dataset and SH dataset. Because this
structure makes full use of the output information of each
graph convolution layer, avoid the problem that the infor-
mation utilization rate of previous graph convolution layers
will decrease with the increase in graph convolution layers.
However, it increases the prediction error of AT dataset.
From Fig. 8, we can see that the load data change trend of
AT dataset has obvious periodicity, and the load data change
range is smaller. Therefore, the prediction of this dataset is
less challenging. Adding densely connected residual con-
volution structure increases the complexity and parameters
of the model, which leads to over-fitting and increases pre-
diction error. However, the prediction results are obviously
improved on the ISO-NE dataset and SH dataset with greater
difficulty.

3.6 � RQ 4: Module Effectiveness Assessment

In this subsection, we will evaluate the effectiveness of
GLFN-TC modules. First, we verify the effectiveness of the
temporal convolution module and the densely connected
residual convolution module through the method of module
replacement. Secondly, we extract the learned relationship
graph to verify whether the relationships learned by GLFN-
TC in the graph learning module is valid.

GLFN-TC obtains temporal and spatial dependencies of
historical data through temporal convolution module and
densely connected residual convolution module. However,
traditional methods can also achieve the above objectives.
Therefore, we use traditional methods to replace the above
two modules to verify the effectiveness of the designed mod-
ules. We name the variants of GLFN-TC as follows:

Table 3   Comparison of MSE
and MAE under prediction tasks
in other fields for proposed
method and baselines methods

Bold represents the best result

Models TN PL TC

MSE MAE MSE MAE MSE MAE

NF 0.6569 0.6701 1.5642 1.0392 1.3010 0.6057
SA 1.1904 1.2523 0.5952 0.6075 0.9411 0.8111
MA 0.7292 0.7169 1.6641 1.0793 0.9456 0.7552
RNN 0.2828 0.4306 0.3573 0.4516 0.2413 0.3275
CNN 0.3945 0.5150 0.3559 0.4539 0.2655 0.3525
LSTM 0.3182 0.4559 0.4190 0.5017 0.2406 0.3226
CNN_LSTM 0.5330 0.5969 0.3359 0.4460 0.2392 0.3179
Informer 0.3971 0.5021 0.5598 0.5771 0.8683 0.6099
T-GCN 53.7011 5.1406 71.8001 7.2619 0.2490 0.3206
GLFN-TC 0.2712 0.4136 0.3212 0.4365 0.2326 0.2961

Graph Neural Network‑Based Short‑Term Load Forecasting with Temporal Convolution﻿	

1 3

•	 GLFN-TC* This variant replaces the temporal convolu-
tion module in GLCN-TC with LSTM.

•	 GLFN-TC** This variant replaces the densely connected
residual convolution module in GLCN-TC with two-layer
GCN.

Table 5 shows the experimental results of module effec-
tiveness assessment. Figures 12 and 13 visually show the
data in Table 5. The experimental results can directly reflect
the effectiveness of the temporal convolution module and
the densely connected residual convolution module in

Table 4   Ablation study

Bold represents the best result

Models ISO-NE AT AP SH NCENT

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

GLFN-TC 0.2167 0.3494 0.1187 0.2406 0.1631 0.3036 0.1852 0.2990 0.2432 0.3902
GLFN-TC-tc 0.2764 0.3863 0.1379 0.2675 0.1838 0.3154 0.1999 0.3295 0.2521 0.3956
GLFN-TC-sc 0.2704 0.3976 0.1451 0.2786 0.2260 0.3546 0.2609 0.3951 0.3805 0.4901
GLFN-TC-dcrc 0.2894 0.3961 0.1107 0.2344 0.1720 0.3102 0.2690 0.3782 0.2605 0.3992

Fig. 12   Comparison of MSE (left) and MAE (right) in GLFN-TC* and GLFN-TC

Fig. 13   Comparison of MSE (left) and MAE (right) in GLFN-TC** and GLFN-TC

	 C. Sun et al.

1 3

GLCN-TC. GLCN-TC* uses LSTM to replace the temporal
convolution module in GLCN-TC. It uses LSTM to obtain
the temporal dependencies behind historical data. Compared
with LSTM, the temporal convolution module is more effec-
tive in mining temporal dependencies from behind the his-
torical data of each node by dilated 1D-CNN. The design of
temporal convolution module has effectively improved the
experimental results, especially on NCENT dataset. GLFN-
TC** uses two-layer GCN to replace the densely connected
residual convolution module in GLCN-TC. It uses two-layer
GCN to aggregate the data information of the central node
and its neighbors to handle spatial dependencies. Compared
with the traditional GCN, the densely connected residual
convolution module can not only effectively use the relation-
ship between the central node and its neighbors for message
transmission through the stacking of graph convolution lay-
ers, but also ensure the full use of data information. There-
fore, this module improves the experimental results of five
datasets.

In addition, we extract the learned graph structure to
verify the effectiveness of the graph learning module. Take
ISO-NE dataset as an example, Figure 14a shows the heat
map of the relationships between nodes learned by graph
learning module in ISO-NE dataset. Take “demand” as an
example in Fig. 14a, it has a large correlation with “month”
and a small correlation with “year.” Figure 14b shows the
box plot of “demand” in different months in ISO-NE data-
set. From Fig. 14b, we can see that the data distribution
between different years is similar, while there are signifi-
cant differences in different months of the same year. The
results shown in Fig. 14b is consistent with the conclusions
in Fig. 14a. Therefore, the relationship structure learned by
graph learning module can approximately represents the
strength of relationships between different nodes.

3.7 � RQ 5: Repeatability Assessment and Parameter
Sensitivity

In the implementation of our method, the parameters of
the deep learning model are initialized randomly. There-
fore, when the GLFN-TC models are trained independently,
there exist some differences between obtained results. Based
on the experimental setup in Sect. 3.2, in this subsection,
we show the results of three experiments in five datasets to

evaluate the stability of GLFN-TC. In detail, the GLFN-TC
model is trained independently for 3 times.

Table 6 shows the experimental results of repeatability
assessment. The three experimental results of GLFN-TC
model are represented by Trained 1 ~ 3, and Avg is the aver-
age value of three experimental results. Taking MSE as an
example, in ISO-NE dataset, the three results are 0.2141,
0.2210 and 0.2150, respectively. The average value of the
three values is 0.2167. The maximum difference between the
three values and the average value is 0.0043. In AT dataset,
the three results are 0.1102, 0.1198 and 0.1262, respectively.
The average value of the three values is 0.1187. The maxi-
mum difference between the three values and the average
value is 0.0085. In AP dataset, the three results are 0.1518,
0.1754 and 0.1620, respectively. The average value of the
three values is 0.1631. The maximum difference between
the three values and the average value is 0.0123. In SH
dataset, the three results are 0.1837, 0.1686 and 0.2032,
respectively. The average value of the three values is 0.1852.
The maximum difference between the three values and the
average value is 0.018. In NCENT dataset, the three results
are 0.2450, 0.2628 and 0.2219, respectively. The average
value of the three values is 0.2432. The maximum difference
between the three values and the average value is 0.0213.
Therefore, we can get that the results of GLFN-TC model
are similar, and their differences are small.

We conduct experiments on ISO-NE dataset to explore
the impact of the dilation factor in Sect. 2.3 on the model.
Specifically, we take the values of dilation factor as 1, 2, 3, 4
and 5. The experimental results are shown in Fig. 15. When
the value of dilation factor is 1, the results are poor. The
reason is that convolution operations have become ordinary
1D-CNN, and long-term dependencies cannot be obtained
through dilation strategy. As the value of dilation factor
increases, the results gradually improve. We can see that
GLFN-TC’s performance is generally stable for a value of
dilation factor in range of [2–4]. When the value of dilation
factor is 5, the results are the worst. The reason is that large
dilation factor value cannot effectively obtain short-term
data information. In the experiment, we used the general pre-
diction level of the model, i.e., value of dilation factor is 3.

Table 5   Module effectiveness
assessment

Bold represents the best result

Models ISO-NE AT AP SH NCENT

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

GLFN-TC* 0.6135 0.6676 0.1406 0.2772 0.2135 0.3499 0.2883 0.3890 0.8902 0.7823
GLFN-TC** 0.2822 0.4011 0.1252 0.2568 0.2002 0.3322 0.2905 0.3645 0.2608 0.3969
GLFN-TC 0.2167 0.3494 0.1187 0.2406 0.1631 0.3036 0.1852 0.2990 0.2432 0.3902

Graph Neural Network‑Based Short‑Term Load Forecasting with Temporal Convolution﻿	

1 3

3.8 � Discussion

On the one hand, we analyzed the ability of GLFN-TC to
handle temporal dependencies. In ablation study, eliminat-
ing temporal convolution module can lead to a decrease in
model prediction performance. The results indicate that our
proposed temporal convolution module can handle the tem-
poral dependencies behind historical data. In module effec-
tiveness assessment, using LSTM instead of the temporal
convolution module reduced the predictive performance of
the model, further verifying that the temporal convolution
module can better handle temporal dependencies and coop-
erate with densely connected residual convolution module
to improve predictive performance. GLFN-TC outperforms
other deep learning methods such as LSTM and CNN in
the field of short-term load forecasting. This indicates that
GLFN-TC can better handle temporal dependencies through
temporal convolution module and achieve more accurate
prediction results in conjunction with densely connected
residual convolution module.

On the other hand, we analyzed the ability of GLFN-TC
to handle spatial dependencies. In the ablation study, the
experimental results validated the effectiveness of adding
densely connected residual structure to graph convolution.
In module effectiveness assessment, replacing the densely
connected residual convolution module with GCN reduced
the predictive performance of the model, further verifying

that the densely connected residual convolution module
can better handle spatial dependencies. GLFN-TC builds
on graph neural networks. Compared with previous works,
such as T-GCN and GCN, GLFN-TC not only solves the
problem of no predefined graph structure in prediction tasks,
but also effectively processes the temporal dependencies of
input data for each node through dilated 1D-CNN and solves
the problem of information loss in message passing through
graph convolution operation with densely connected residual
structure.

According to its own characteristics, GLFN-TC can also
be applied to prediction problems in non-load fields, and it
is further verified by model generality assessment. However,
treating the output information of each graph convolution
layer equally in densely connected residual convolution
module can lead to the reuse of some useless information
and increase the complexity of the model. As shown in the
results of ablation study in AT dataset, eliminating densely
connected residual convolution structure reduces prediction
errors. Therefore, future research directions can extract use-
ful output information from each graph convolutional layer,
avoiding the reuse of useless information and reducing
model complexity. At the same time, in temporal convolu-
tion module, we can further consider attention mechanism
to focus on important time steps in historical data, so as to
further improve the prediction accuracy of the approach.

(a) heat map

(b) box plot

Fig. 14   Heat map and box plot in ISO-NE dataset

Table 6   Repeatability
assessment

Trained ISO-NE AT AP SH NCENT

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

1 0.2141 0.3516 0.1102 0.2345 0.1518 0.2927 0.1837 0.2915 0.2450 0.3878
2 0.2210 0.3467 0.1198 0.2367 0.1754 0.3132 0.1686 0.2826 0.2628 0.4056
3 0.2150 0.3498 0.1262 0.2505 0.1620 0.3050 0.2032 0.3229 0.2219 0.3771
Avg 0.2167 0.3494 0.1187 0.2406 0.1631 0.3036 0.1852 0.2990 0.2432 0.3902

	 C. Sun et al.

1 3

4 � Related Work

4.1 � Load Forecasting

Load forecasting is based on historical data such as load,
weather, temperature, etc., and explore the change rule of
historical data. By seeking the internal relationships between
load data and related factors, so as to forecast the future load
values.

Many classical methods have been applied to the field
of load forecasting. Wei et al. established ARIMA differ-
ential autoregressive moving average model and analyzed
the advantages and disadvantages of ARIMA model in load
forecasting [21]. Goude et al. proposed a semi-parametric
approach based on generalized additive models theory and
considers both the short- and middle-term forecasting con-
ditions. These generalized additive models estimate the
relationships between load and explanatory variables (such
as temperature and calendar variables). This methodology
has been well-applied in the French grid [22]. Chen et al.
proposed an artificial neural network (ANN) model. This
model can differentiate between the weekday loads and the
weekend loads and can predict the hourly loads for an entire
week. The results show that the model has greater predic-
tion accuracy than the traditional statistical model [23]. Fan
et al. proposed a short-term load forecasting method based
on an adaptive two-stage hybrid network with self-organized
map (SOM) and support vector machine (SVM). Firstly, the
SOM network is used to cluster the input dataset into sev-
eral subsets. Then, SVMs are used to fit the training data of
each subset. The proposed structure is robust with different
data types and can deal with the non-stationarity of load
series well [24]. Shi et al. proposed a novel pooling-based
deep recurrent neural network for household load forecast-
ing. In essence, the model could address the over-fitting
issue by increasing data diversity and volume [25]. Wilms

et al. proposed a general purpose forecasting method, that
is, a sequence-to-sequence machine learning architecture for
time series forecasting based on recurrent neural networks.
It is evaluated in short-term electric load forecasting, and
the results show that it outperforms other machine learning
forecasting techniques [26]. Incremona et al. used a Gauss-
ian process (GP) estimator to track the difference between
the target Easter Week and an average Easter Week load
profile. Differently from usual GP approaches that employ
“canonical” kernels, it is a customized kernel that is tailored
to the specific statistical properties of the signal to be pre-
dicted [27]. Kiruthiga et al. proposed a new optimized deep
learning (DL) network design for time series load forecast-
ing. Firstly, the hyper-parameters of DL are optimized by
LF-PSO technique. Then, the optimized DL model is used
for load prediction [28].

In practice, due to the abnormal operation of the measure-
ment system, the measured load data have abnormal values,
which affects the quality of the predicted values obtained
[29]. In order to solve the problem of impact on the accu-
racy of the load forecasting caused by abnormal load data.
Ma et al. used iForest to clear abnormal historical load data
and used iForest-LSTM for short-term load forecasting.
Compared with standard LSTM and iForest-BP methods,
iForest-LSTM improved the forecasting accuracy [30]. CNN
is also often used for load forecasting in recent years. Khan
et al. and Dong et al. used CNN network in load forecast-
ing to obtain more accurate results [31, 32]. Sajjad et al.
used a hybrid model of CNN and GRU to forecast electric-
ity consumption and evaluated its performance over several
benchmark datasets [33].

4.2 � Graph Neural Networks

In recent years, GNNs have achieved great success in graph-
structured data. In general, GNNs assume that the state of
a node will be affected by the states of its neighbors. For
example, Kipf et al. proposed a graph convolution networks
(GCNs) model, a node’s feature representation by aggregat-
ing the representations of its one-step neighbors. The exper-
imental results on citation networks and on a knowledge
graph dataset show that this method outperforms related
methods by a significant margin [34]. GNNs can obtain
the dependency characteristics between multivariate data,
and its related variants are often used in various fields. For
example, in the field of traffic prediction, Chen et al. pro-
posed the multi-range attentive bicomponent GCN (MRA-
BGCN). Firstly, node-wise graph and edge-wise graph are
constructed and then implement the interactions of both
nodes and edges using bicomponent graph convolution.
Multi-range attention mechanism is introduced to aggregate
information in different neighborhood ranges and automati-
cally learn the importance of different ranges [35].

Fig. 15   MSE and MSE for different dilation factor in ISO-NE dataset

Graph Neural Network‑Based Short‑Term Load Forecasting with Temporal Convolution﻿	

1 3

5 � Conclusion

In this paper, we propose a novel framework for short-
term load forecasting, namely graph neural network-based
short‑term load forecasting with temporal convolution
(GLFN-TC). GLFN-TC creates a feature vector for each
variable to represent the characteristics of the variable and
automatically learns a graph of relationships between vari-
ables through the graph learning module. Its advantage
is that it can automatically update in the training stage to
make the relationship graph optimal. The temporal convo-
lution module uses dilated 1D CNN to capture the tempo-
ral dependencies of the historical data of each node. The
densely connected residual convolution module can make
full use of the data information of each graph convolution
layer and avoid the problem of information loss caused by
stacking the graph convolution layers. Finally, the load
forecasting module integrates the data representation and
feature vector of each node to predict the future load val-
ues. The excellent performance of the proposed GLFN-TC
is verified on five load datasets. Since GLFN-TC can solve
the problem of no predefined graph structure in the appli-
cation field, and it can effectively deal with temporal and
spatial dependencies. Therefore, three non-load datasets
are used to further prove the generality of the model.

Acknowledgements  This work is supported by the National Natu-
ral Science Foundation of China (Grant Nos.62002262, 62172082,
62072086, 62072084).

Author Contributions  CS involved in conceptualization, methodol-
ogy, investigation, data curation, writing (original draft preparation
and reviewing) and funding. YN involved in investigation, validation,
data curation, software and visualization and writing (original draft
preparation and reviewing). DS involved in conceptualization, writing
(reviewing and editing) and funding. TN involved in conceptualization,
writing (reviewing and editing) and funding.

Data Availability  Datasets are available at: (1) https://​github.​com/​
ningn​ingLi​ningn​ing/​iso-​ne; (2) https://​github.​com/​Lizhu​oling/​DCN;
(3) https://​zhuan​lan.​zhihu.​com/p/​15095​4853. Graph Neural Network-
based Short‑Term Load Forecasting with Temporal Convolution.

Declarations 

Conflict of interest  The authors declare that there is no conflict of in-
terests regarding the publication of the paper.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will

need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Huang Y, Zhao R, Zhou Q, Xiang Y (2022) Short-term load
forecasting based on a hybrid neural network and phase space
reconstruction. IEEE Access 10:23272–23283

	 2.	 Liang Y, Niu D, Hong WC (2019) Short term load forecasting
based on feature extraction and improved general regression
neural network model. Energy 166:653–663

	 3.	 Jagait RK, Fekri MN, Grolinger K, Mir S (2021) Load forecast-
ing under concept drift: online ensemble learning with recurrent
neural network and ARIMA. IEEE Access 9:98992–99008

	 4.	 Din GMU, Marnerides AK (2017) Short term power load fore-
casting using deep neural networks. In: 2017 International con-
ference on computing, networking and communications (ICNC),
IEEE, pp 594–598

	 5.	 Liu F, Dong T, Hou T, Liu Y (2021) A hybrid short-term load
forecasting model based on improved fuzzy c-means cluster-
ing, random forest and deep neural networks. IEEE Access
9:59754–59765

	 6.	 Muzumdar AA, Modi CN, Vyjayanthi C (2021) Design-
ing a robust and accurate model for consumer-centric short-
term load forecasting in microgrid environment. IEEE Syst J
16(2):2448–2459

	 7.	 Farrag TA, Elattar EE (2021) Optimized deep stacked long
short-term memory network for long-term load forecasting.
IEEE Access 9:68511–68522

	 8.	 Mbamalu GAN, El-Hawary ME (1993) Load forecasting via
suboptimal seasonal autoregressive models and iteratively
reweighted least squares estimation. IEEE Trans Power Syst
8(1):343–348

	 9.	 Chen JF, Wang WM, Huang CM (1995) Analysis of an adap-
tive time-series autoregressive moving-average (ARMA)
model for short-term load forecasting. Electric Power Syst Res
34(3):187–196

	10.	 Ahmad N, Ghadi Y, Adnan M, Ali M (2022) Load forecasting
techniques for power system: research challenges and survey.
IEEE Access. https://​doi.​org/​10.​1109/​ACCESS.​2022.​31878​39

	11.	 Muzaffar S, Afshari A (2019) Short-term load forecasts using
LSTM networks. Energy Procedia 158:2922–2927

	12.	 Smyl S, Dudek G, Pelka P (2022) ES-dRNN with dynamic atten-
tion for short-term load forecasting. In: 2022 International Joint
Conference on Neural Networks (IJCNN), IEEE, pp 1–8

	13.	 Yu B, Yin H, Zhu Z (2018) Spatio-temporal graph convolutional
networks: a deep learning framework for traffic forecasting. In:
Lang J (Ed), Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, IJCAI 2018, Jul 13–19,
2018, Stockholm, Sweden, pp 3634–3640

	14.	 Wu Z, Pan S, Long G, Jiang J, Zhang C (2019) Graph WaveNet
for deep spatial-temporal graph modeling. In Kraus S (Ed), Pro-
ceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, IJCAI 2019, Macao, China, Aug 10–16,
2019 (pp 1907–1913)

	15.	 Rong Y, Huang W, Xu T, Huang J (2020) DropEdge: towards deep
graph convolutional networks on node classification. In: 8th Inter-
national Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, Apr 26–30

	16.	 Xu K, Li C, Tian Y, Sonobe T, Kawarabayashi K, Jegelka S
(2018) Representation learning on graphs with jumping knowl-
edge networks. In: Dy JG, Krause A (Eds) Proceedings of the
35th International Conference on Machine Learning, ICML 2018,

https://github.com/ningningLiningning/iso-ne
https://github.com/ningningLiningning/iso-ne
https://github.com/Lizhuoling/DCN
https://zhuanlan.zhihu.com/p/150954853
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/ACCESS.2022.3187839

	 C. Sun et al.

1 3

Stockholmsmässan, Stockholm, Sweden, Jul 10–15, Vol 80, pp
5449–5458

	17.	 Bai S, Kolter JZ, Koltun V (2018) An empirical evaluation of
generic convolutional and recurrent networks for sequence mod-
eling. ArXiv, abs/1803.01271

	18.	 Tudose A M, Sidea DO, Picioroaga II, Boicea VA, Bulac C (2020)
A CNN based model for short-term load forecasting: a real case
study on the Romanian power system. In: 2020 55th International
Universities Power Engineering Conference (UPEC), IEEE, pp
1–6

	19.	 Zhou H, Zhang S, Peng J, Zhang S, Li J, Xiong H, Zhang W
(2021) Informer: beyond efficient transformer for long sequence
time-series forecasting. In: Proceedings of the AAAI conference
on artificial intelligence, Vol 35, No 12, pp 11106–11115

	20.	 Zhao L, Song Y, Zhang C, Liu Y, Wang P, Lin T, Deng M, Li H
(2020) T-GCN: a temporal graph convolutional network for traffic
prediction. IEEE Trans Intell Transp Syst 21(9):3848–3858

	21.	 Wei L, Zhen-gang Z (2009) Based on time sequence of ARIMA
model in the application of short-term electricity load forecast-
ing. In: 2009 International Conference on Research Challenges in
Computer Science. IEEE, pp 11–14

	22.	 Goude Y, Nedellec R, Kong N (2013) Local short and middle term
electricity load forecasting with semi-parametric additive models.
IEEE Trans Smart Grid 5(1):440–446

	23.	 Chen ST, Yu DC, Moghaddamjo AR (1992) Weather sensitive
short-term load forecasting using nonfully connected artificial
neural network. IEEE Trans Power Syst 7(3):1098–1105

	24.	 Fan S, Chen L (2006) Short-term load forecasting based on an
adaptive hybrid method. IEEE Trans Power Syst 21(1):392–401

	25.	 Shi H, Xu M, Li R (2017) Deep learning for household load fore-
casting—A novel pooling deep RNN. IEEE Trans Smart Grid
9(5):5271–5280

	26.	 Wilms H, Cupelli M, Monti A (2018) Combining auto-regression
with exogenous variables in sequence-to-sequence recurrent neu-
ral networks for short-term load forecasting. In: 2018 IEEE 16th
international conference on industrial informatics (INDIN). IEEE,
pp 673–679

	27.	 Incremona A, De Nicolao G (2022) Short-term forecasting of the
Italian load demand during the Easter Week. Neural Comput Appl
34:1–15

	28.	 Kiruthiga D, Manikandan V (2023) Levy flight-particle
swarm optimization-assisted BiLSTM+ dropout deep learn-
ing model for short-term load forecasting. Neural Comput Appl
35(3):2679–2700

	29.	 Almeida VA, Pessanha JF, Caloba LP (2018) Load data cleaning
with data mining techniques. In: 2018 Brazilian Symposium on
Electrical Systems (SBSE). IEEE, pp 1–6

	30.	 Ma Y, Zhang Q, Ding J, Wang Q, Ma J (2019) Short term load
forecasting based on iForest-LSTM. In: 2019 14th IEEE Confer-
ence on Industrial Electronics and Applications (ICIEA), IEEE,
pp 2278–2282

	31.	 Khan S, Javaid N, Chand A, Khan ABM, Rashid F, Afridi IU
(2019) Electricity load forecasting for each day of week using
deep CNN. In: Web, artificial intelligence and network applica-
tions: proceedings of the workshops of the 33rd international
conference on advanced information networking and applica-
tions (WAINA-2019) 33, pp 1107–1119, Springer International
Publishing

	32.	 Dong X, Qian L, Huang L (2017) Short-term load forecasting in
smart grid: a combined CNN and K-means clustering approach.
In: 2017 IEEE international conference on big data and smart
computing (BigComp), IEEE, pp 119–125

	33.	 Sajjad M, Khan ZA, Ullah A, Hussain T, Ullah W, Lee MY, Baik
SW (2020) A novel CNN-GRU-based hybrid approach for short-
term residential load forecasting. IEEE Access 8:143759–143768

	34.	 Kipf TN, Welling M (2017) Semi-supervised classification with
graph convolutional networks. In: 5th international conference on
learning representations, ICLR 2017, Toulon, France, Apr 24–26,
Conference Track Proceedings

	35.	 Chen W, Chen L, Xie Y, Cao W, Gao Y, Feng X (2020). Multi-
range attentive bicomponent graph convolutional network for
traffic forecasting. In: Proceedings of the AAAI conference on
artificial intelligence, Vol 34, No 04, pp 3529–3536

	Graph Neural Network-Based Short-Term Load Forecasting with Temporal Convolution
	Abstract
	1 Introduction
	2 Short-Term Load Forecasting Based on Graph Neural Network with Temporal Convolution
	2.1 Overview
	2.2 Graph Learning Module
	2.3 Temporal Convolution Module
	2.4 Densely Connected Residual Convolution Module
	2.5 Load Forecasting Module

	3 Experiments
	3.1 Datasets and Evaluation Metrics
	3.2 Experimental Setup
	3.3 RQ 1: Comparison with Baseline Methods
	3.4 RQ 2: Model Generality Assessment
	3.5 RQ 3: Ablation Study
	3.6 RQ 4: Module Effectiveness Assessment
	3.7 RQ 5: Repeatability Assessment and Parameter Sensitivity
	3.8 Discussion

	4 Related Work
	4.1 Load Forecasting
	4.2 Graph Neural Networks

	5 Conclusion
	Acknowledgements
	References

