
Vol:.(1234567890)

Data Science and Engineering (2023) 8:368–384
https://doi.org/10.1007/s41019-023-00218-7

1 3

RESEARCH PAPER

An Efficient Keywords Search in Temporal Social Networks

Youming Ge1   · Zitong Chen1 · Yubao Liu1

Received: 18 March 2023 / Revised: 21 July 2023 / Accepted: 22 July 2023 / Published online: 9 September 2023 
© The Author(s) 2023

Abstract
With the increasing of requirements from many aspects, various queries and analyses arise focusing on social network. Time 
is a common and necessary dimension in various types of social networks. Social networks with time information are called 
temporal social networks, in which time information can be the time when a user sends message to another user. Keywords 
search in temporal social networks consists of finding relationships between a group users that has a set of query labels and 
is valid within the query time interval. It provides assistance in social network analysis, classification of social network users, 
community detection, etc. However, the existing methods have limitations in solving temporal social network keyword search 
problems. We propose a basic algorithm, the discrete timestamp algorithm, with the intention of turning the problem into a 
traditional keyword search on social networks. We also propose an approximative algorithm based on the discrete timestamp 
algorithm, but it still suffers from the traditional algorithms’ low efficiency. To further improve the performance, we propose 
a new algorithm based on dynamic programming to solve the keyword search in temporal social network. The main idea is 
to extend a vertex into a solution by edge-growth operation and tree-merger operation. We also propose two powerful prun-
ing techniques to reduce the intermediate results during the extension. Additionally, all of the algorithms we proposed are 
capable of handling a variety of ranking functions, and all of them can be made to conform to top-N keyword querying. The 
efficiency and effectiveness of the proposed algorithms are verified through extensive empirical studies.

Keywords  Temporal social networks · Keyword search · Dynamic programming

1  Introduction

Social networking, such as Facebook, Twitter and Tiktok, 
have grown by leaps and bounds in recent years. Social 
network datas fully display information about individuals’ 
social relationships, interests, and other information in full. 
This social network datas contain various data such as posts 
written by users, and comments that have been retweeted or 
responded to. In essence, these datas are ones that contain 
time information. The social network with time informations 
is called temporal social network (TSN). Temporal social 
networks have attracted the attention of researchers. Refer-
ence [1] studies the problem of connectivity in temporal 

social networks. Reference [2] discovers the evolution char-
acteristic in a temporal social network. Reference [3] studies 
the temporal keyword search problem with temporal label in 
temporal social networks. Reference [4] solves the keywords 
search problem in temporal social networks according to 3 
different timing rules.

Keywords search has been the most fundamental method 
of analysis in social networks. In social networks, keyword 
searches enable analysis of user behavior, user interactions, 
link evolution, opinion spreading, community search, etc [5, 
6]. However, the expansion of temporal information presents 
new challenges for keyword search in temporal social net-
works. Since there may be different relationships between 
any two keywords in a temporal social network within the 
query time interval. For example, Fig. 1 is a social net-
work. From 2000 to 2022, Tom and Mike have two differ-
ent relationships. Tom, Mike and Jim are friends from 2000 
to 2010. Between 2020 and 2022, Tom and Mike form a 
co-operative relationship through their respective compa-
nies and co-operative projects between the two companies. 
These query results provide a powerful aid to user analytics 

 *	 Youming Ge 
	 geym@mail2.sysu.edu.cn

	 Zitong Chen 
	 chenzt53@mail.sysu.edu.cn

	 Yubao Liu 
	 liuyubao@mail.sysu.edu.cn

1	 Sun Yat Sen University, Guangzhou, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-023-00218-7&domain=pdf
http://orcid.org/0000-0001-5995-3242


369An Efficient Keywords Search in Temporal Social Networks﻿	

1 3

in social networks. Social network users can be categorized 
into distinct groups based on different temporal information. 
For instance, Tom, Jim, and Mike could all be placed in the 
same group from 2000 to 2010, but from 2020 to 2022, they 
could be split into two groups, one for Jim and the other for 
Tom and Mike.

For keywords searching in temporal social networks, Ref. 
[4] proposes an optimal path iterator-based algorithm. They 
suggest the best path iterator, which finds the “best” paths 
between any two vertices in each snapshot of time, in order 
to generate results efficiently.

To determine the “best” solution, there are several popu-
lar ranking factors: Factor 1 Ranking by descending order of 
end time; Factor 2 Ranking by ascending order of start time; 
Factor 3 Ranking by the descending or ascending order of 
duration/weight. For example, if we want to know the recent 
work on keyword search on temporal social networks, we 
may use Factor 1 as the ranking; if we want to know the 
source of the keyword search on temporal social networks, 
we may use Factor 2 as the ranking; if we want to know 
which groups are working on the keyword search problem 
for a long time, we may use Factor 3 as the ranking.

However, the algorithm proposed by [4] has limitations 
in solving the problem of keyword search on temporal social 
networks. In Sect. 2, the disadvantages of the algorithm are 
covered in more detail.

To solve the keyword search problem on temporal social 
networks, we first propose a discrete timestamp algorithm. 
It turns the problem into an equivalent problem that can be 
solved by existing algorithms. In order to solve the defects 
in the existing method, we proposed an effective algorithm 
based on parameterized dynamic programming called KS. 
Similar to [7], we defined a state as a connected tree on 
a given temporal social networks. Different from existing 
dynamic programming algorithms, the state in this paper 

contains time information. We proposed two state opera-
tions named “edge-growth” and “tree-merger”. To reduce 
the number of generated states significantly, we proposed 
two effective pruning techniques. By pruning techniques, 
for the same time interval and query keyword set, we only 
save the state with the smallest weight. Therefore, the solu-
tion has the smallest weight, that is, the keywords have the 
closest relationship. At the same time, our algorithms are 
applied to top-N problems, and the results show that our 
approach can effectively provide solutions to top-N prob-
lems. The efficiency of our algorithms is far better than those 
proposed by [4].

Our main contributions are as follows: (1) We discover a 
method discretizing the time interval for the keyword search 
on temporal social networks. (2) We propose the dynamic 
programming algorithm called KS for the problem of key-
word search on temporal social networks. (3) The KS algo-
rithm uses two pruning technologies to reduce the number 
of generated states. (4) We conducted a set of experiments 
based on two real temporal social networks to verify the 
efficiency of our algorithm. Compared with state-of-the-art 
algorithms, our algorithm is nearly 616 times faster.

This paper is organized as follows. In Sect. 2, the differ-
ence between the algorithm in [4] with our algorithm is dis-
cussed. Section 3 contains our problem definition. Section 4 
is the discrete timestamp algorithm. Section 5 is the dynamic 
programming algorithm. Section 6 is the proposed pruning 
techniques. Our empirical study is reported in Sect. 7. The 
related work is discussed in Sect. 8. We conclude in Sect. 9.

2 � Discussions and Analysis

The state-of-the-art algorithm for solving keyword queries in 
temporal social networks is proposed in [4]. The algorithm 
has the three following limitations. Compared to the state-
of-the-art algorithm, the limitations are three-fold as shown 
in Table 1.

First, it has a high time complexity O(M × X + R × P) , 
where M is the number of vertices that contain at least 
one of the query keywords, R is the number of candidate 
results generated, P is the number of snapshots in the 
dataset, and X = 2P × |V| × (P + P × log |V|) + P2 × |E| 
which is the time complexity of the best path iterator. It is 

Fig. 1   Temporal social network

Table 1   Dataset descriptions 
K = 10

3
Algorithm in [4] Our KS algorithm

Time complexity O(M × (2P × |V| × (P + P × log |V|) 
+P2 × |E|) + R × P

O(|V| × (|Γv| + log |V|)+ 
(|E| + |Q|) × log |Q| ×max |gv|)

Solution Not necessarily the closest The optimal solution
Continuous time intervals Not applicable Applicable



370	 Y. Ge et al.

1 3

clear that as the valid time is divided more meticulously, 
that is, P becomes larger, the calculation time of the best 
path iterator will be longer. Our algorithm is based on 
dynamic programming, and the time complexity of it is 
O(|V| × (|Γv| + log |V|) + (|E| + |Q|) × log |Q| ×max |gv|) , 
where |Γv| is the number of query keywords contained in v, 
|Q| is the number of states in queue Q during the algorithm 
process, |gv| is the number of states with v as the root. The 
time complexity of our algorithm is obviously smaller than 
the time complexity of the approach used by [4].

Second, with this approach, in the query results, the 
relationship between keywords is not necessarily the clos-
est. For example, Fig. 2 shows a temporal social network, 
including 6 vertices and 7 edges. Each vertex is associ-
ated with a set of labels that may contain the user’s name, 
skills, features, and so on, and a weight representing the 
cost of the user. Each edge is associated with a time inter-
val, which gives the start time and the end time of the 
communication among the two users, and the edge weight 
as the communication cost, respectively. User 3 is called 
b and he has a skill c, correspondingly, and vertex v3 is 
marked with the keyword set {b, c} . We refer to [4] set-
ting the vertex/edge weight to 0/1 simply. Suppose that 
we are to find the closest relationship among a group of 
users whose names are Γq within the given time interval 
[t� , t�] . We hope to find users with Γq = {a, b, c, d} within 
time [t� , t�] = [0, 9] , and the overall weight is as low as 
possible. By [4], we can only find an approximate result 
of the above example, which is shown in Fig. 2b. The total 
weight observed is 4 and the valid time interval is [2, 5]. 
But our method can find the optimal solution which is 
shown in Fig 2c, the total weight of which is 3, and the 
valid time interval is [3, 8]. It is obvious that the keywords 
in the optimal solution are more closely related to each 
other, and has a longer valid time interval.

Third, another weakness of the best path iterator algo-
rithm in [4] is that it can only handle the case that the 
time information is a set of time snapshots, and it is not 
applicable for continuous time intervals. However, in the 
definition of keyword search on temporal social networks 

problem, the time information could be time intervals, 
which involves endless time snapshots. Reference [4] 
assumes that there is a time unit so that time intervals 
can be divided into a set of time snapshots, but the time 
unit may not always exist. If we use a small time unit to 
approximate the time information and apply the approach 
in [4], not only the efficiency is not pleased as the time 
complexity is Ω(2P) , but also the effectiveness is not 
guaranteed.

3 � Problem Definition

In this section, we introduce some definitions and nota-
tions, and our problem of keyword search on temporal social 
networks.

We define the temporal social networks model in a 
similar way as the temporal XML model used in [9]. Let 
G = (V ,E) be a temporal social networks, where V(E) is the 
set of vertex(edge) of the temporal social networks. Each 
vertex v ∈ V  is associated with a set of keywords Γv . Let 
Γ = ∪v∈VΓv be the set of all keywords. The weight of v is 
denoted by w(v).

Each edge e ∈ E is defined to be a quintuple which 
includes a start vertex u, an end vertex v, a time interval 
[ts, te] in which it is valid, and a weight value w, denoted 
as e = (u, v, ts, te,w) , where ts , te and w are non-negative 
real numbers, and ts ≤ te . The start vertex, end vertex, start 
time, arrival time and weight value of e are also denoted by 
s(e), a(e), ts(e) , te(e) and w(e) respectively, namely s(e) = u , 
a(e) = v , ts(e) = tu , te(e) = tv and w(e) = w . The valid time 
of e is denoted by val(e) = [ts(e), te(e)].

For any vertex v ∈ V  , let Ei(v) and Eo(v) denote the set 
of in-edges and the set of out-edges of v, respectively. Then, 
Ei(v) = {e ∈ E|a(e) = v} , and Eo(v) = {e ∈ E|s(e) = v} . The 
in-degree of v is equal to |Ei(v)| and the out-degree of v is 
equal to |Eo(v)| . The vertex may be associated with a time 
interval indicating when it is valid. Without loss of general-
ity, we assume that the valid time interval for each vertex 

Fig. 2   Running example

(a) Temporal Graph G (b) Solution (c) Optimal
Solution



371An Efficient Keywords Search in Temporal Social Networks﻿	

1 3

is the whole time. Our algorithm can be easily extended to 
the general case.

Example 1  Figure  2a is an example of temporal social 
network containing 9 vertices 0, 1, 2, ⋯ , 6, and 7 edges 
e1 , e2 , e3 , ⋯ , e7 . Each edge is associated with a valid time 
[ts, te] . The vertex/edge weight is set to 0/1. The directed 
edge e1 = (0, 1, 1, 9, 1) from vertex 0 to vertex 1 indicates 
the start time ts = 1 , the end time te = 9 , and the cost w = 1 . 
Besides, the set of in-edges and out-edges of vertex 3 are 
Ei(3) = {e3, e4} and Eo(3) = {e6} , respectively.

Definition 1  (Path and Continuous Path) A path 
P = ⟨e1, e2,⋯ , ek⟩ in G, is a sequence of edges such that 
a(ei) = s(ei+1) , where 1 ≤ i < k . We say that P is a continu-
ous path from the vertex s(e1) to the vertex a(ek) if the time 
interval of P is valid, that is val(P) = ∩i=k

i=1
val(ei) ≠ �.

T h e  we i g h t  o f  P  i s  d e f i n e d  t o  b e 
W(P) = �

∑
e∈E(P) w(e) + (1 − �)

∑
v∈V(P) w(v)  ,  w h e r e , 

� ∈ [0, 1] is a regulating weight, and V(P)/E(P) is the set of 
vertices/edges on P.

Example 2  Consider the temporal graph in Fig.  2a, 
let � be 1, the weight of each edge set to be 1. The 
sequence of ⟨e1, e3⟩ is a continuous path P1 with weight 
W(P1) = w(e1) + w(e3) = 2 . The val(P1) = [2, 8]

Definition 2  (Connected Tree) A connected tree T is a tree 
where each path from the root to the leaf forms a continuous 
path, and the valid time of T, val(T) = ∩e∈E(T)val(e) should 
not be empty, where E(T) is the set of edges on T.

Similarly, the weight or cost of T is defined to 
be the weighted sum of the total vertex weight 
in T  and the total edge weight in T ,  namely 
W(T) = (1 − �)

∑
v∈V(T) w(v) + �

∑
e∈E(T) w(e).

Example 3  Consider the temporal graph in Fig. 2b, let � be 
1, the weight of each vertex and edge be 1. Figure 2b is a 
connected tree T1 . The weight of T1 is W(T1) = 4 , and the 
valid time is val(T1) = [3, 5].

Definition 3  (Best Connected Tree Problem) Given a tem-
poral social network G = (V ,E) with a set of all keywords 
Γ , a set of query labels Γq ⊆ Γ , temporal predicates [t� , t�] , 
and ranking factors, the best connected tree problem is to 
find a best connected tree T from G which meets the three 
constraints. 

1	 Coverage Constraint: ∪v∈V(T)Γv ⊃ Γq , i.e. T covers all 
keywords in Γq;

2	 Minimum Constraint: ∄u ∈ V(T) , ∪v∈V(T),v≠uΓv ⊃ Γq , 
i.e. removing any vertex of T would make T no longer 
contain all keywords in Γq;

3	 Time Constraint: val(T) ∩ [t� , t�] , i.e. T satisfies the tem-
poral predicates.

Let us take Fig. 2 as an example to illustrate our problem. 
For each vertex, we have Γ0 = {a} , Γ3 = {b, c} , Γ4 = {a, d} , 
and Γ5 = {d} . Suppose that the temporal predicate is [0, 9], 
and the set of query keywords is Γq = {a, b, c, d} . The rank-
ing function is ranking by ascending order of relevance. 
We follow most of the existing works [4, 7, 10–14] to 
define relevance as the weighted result of tree size. Then, 
we obtain a best connected tree T in Fig. 2c whose weight 
W(T) = w(e1) + w(e3) + w(e6) = 3 , and the valid time is 
[2, 8].

Theorem 1  Our problem is NP-hard.

Proof  The existing GST problem in a weighted and labeled 
graph, where the vertices with the same labels are in the 
same group, is a generation of the Steiner tree problem [15]. 
It is well-known that the existing GST problem is NP-hard 
[16]. Since additional time information and ranking factors 
are included in our problem, the existing GST problem can 
be viewed as a special case of our problem. Thus, our prob-
lem is NP-hard. 	�  ◻

4 � Discrete Timestamp Algorithm

In this section, we propose an algorithm which turns the 
problem into the keyword search problem on graph. The 
differences between our problem and the traditional keyword 
search on graph includes: (1) the edges have time intervals; 
(2) the query involves a time interval. If the query time inter-
val degenerate to a single timestamp, then we can see our 
problem becomes solving keyword search on a graph with 
edges whose valid time contain the query timestamp. There-
fore, we can enumerate all timestamps in the query time 
interval to get a solution. Though there are endless times-
tamps in [t� , t�] , we don’t need to enumerate all according 
to Lemma 1.

Lemma 1   Let  TS = {t ∶ ∃e ∈ E, ts(e) = t or te(e) = t} , 
and let S be the tree of the optimal solution at timestamp 
t ∈ TS ∩ [t� , t�] . If TS ∩ val(S) ≠ � , then there exists t ∈ TS , 
S is valid at t.

Proof  According to the definition of best connected tree 
problem, val(S) is the valid time of the optimal solution. 
For TS ∩ val(S) ≠ � , there exists t ∈ TS , S is valid at t. 	
� ◻



372	 Y. Ge et al.

1 3

Lemma 2   Let  TS = {t ∶ ∃e ∈ E, ts(e) = t or te(e) = t} , 
and let S be the tree of the optimal solution at timestamp 
t ∈ TS ∩ [t� , t�] . If TS ∩ val(S) = � , the optimal solution is 
valid at any time in [t� , t�] , e.g. (t� + t�)∕2.

Proof  Let ES be the set of edges in the tree S, let 
Y = {ts(e) ∶ e ∈ ES},Z = {te(e) ∶ Se ∈ ES} .  T h e n  we 
have Y ⊂ TS , Z ⊂ TS , besides, Y and Z are finite sets, 
thus, max Y ∈ TS , minZ ∈ TS . Let t = min Y ∈ TS or 
t = max Z ∈ TS , For S is a connected tree, the valid time of S 
is ∩e∈ES

val(e) = [Y , Z] . S is also the best connected tree, and 
it meet the time constraint, then the val(S) = [Y , Z] ∩ [t� , t�] . 
If TS ∩ val(S) = � , val(S) = [t� , t�] . We can have the optimal 
solution is valid at any time in [t� , t�] . 	�  ◻

Based on Lemmas 1 and 2, we can have the discrete 
timestamp algorithm in Algorithm 1. We collect all the 
timestamps and store it in the set TS from line 1 to 11. Then 
for each timestamp in TS, we call existing keyword search 
on graph algorithms, such as the algorithm in [7] to solve the 
problem at line 15. Finally, we return the optimal solution 
among all timestamps at line 18.

Algorithm 1 Discrete Timestamp
Input: G = (V,E), the query label set Γq, temporal predicates [tα, tβ ],
and ranking function
Output: The optimal solution.

1: TS ← ∅;
2: for e ∈ E do
3: if ts(e) ∈ [tα, tβ ] then
4: TS.insert(ts(e));
5: end if
6: if te(e) ∈ [tα, tβ ] then
7: TS.insert(te(e));
8: end if
9: end for

10: if TS is ∅ then
11: TS.insert((tα + tβ)/2);
12: end if
13: use S to collect the optimal solution;
14: for t ∈ TS do
15: call any keyword search algorithm on G but ignoring edges whose valid

time doesn’t contain t;
16: update the optimal solution S;
17: end for
18: return S with time interval val(S) ∩ [tα, tβ ];

Example 4  Consider Fig. 2a as an example, let � be 1, the 
weight of each vertex and edge be 1, where Γq = {a, b, c, d} , 
[t� , t�] = [0, 9] , and ranking function is ascending order of 
weight.

We collect all the timestamps and store it in 
TS = 1, 2, 3, 5, 6, 8, 9 . At first, we use the first timestamp 
in TS, t1 = 1 . We can get a graph G1 which has 2 edges, 
e�
1
= (0, 1), e�

2
= (0, 2) . Then, we call existing keyword search 

on graph G1 at line 15. There is no solution, and we use the 
second timestamp in TS, t2 = 2 . A graph G2 which has 7 edges, 
e�
1
= (0, 1), e�

2
= (0, 2), e�

3
= (1, 3), e�

4
= (1, 3), e�

5
= (2, 4), e�

6
= (3, 5), e�

7
= (4, 5) . 

For e′
3
 and e′

4
 have same vertices, e′

4
 can be removed from 

G2 . The solution e′
1
, e′

3
, e′

6
 is get by calling existing keyword 

search on graph G2 . Then we change e′
1
, e′

3
, e′

6
 to e1, e3, e6 . 

The solution of temporal graph is get. After we use all the 
timestamp in TS, the optimal solution is get, and shown in 
Fig. 2c.

Algorithm 1 may need to call keyword search algorithm 
at most 2 × |E| times at line 15. If the number of calling is 
large, it would not be good to use Algorithm 1 in terms of 
efficiency, we should design more powerful algorithms.



373An Efficient Keywords Search in Temporal Social Networks﻿	

1 3

We could have a trade off by sampling some timestamps 
in [t� , t�] to replace TS generated from line 1 to 11 in Algo-
rithm 1, then we get an approximate algorithm. A simple sam-
pling method can be the uniform sampling. Let k be a positive 
integer, let Δt = t�−t�

k
 , then the uniform sampling timestamp 

set is {t� , t� + Δt, t� + 2Δt,⋯ , t�} . The accuracy depends on 
whether there exist a sample timestamp locating on the time 
interval of the optimal solution. Specially, if Δ is not larger 
than the duration of the optimal solution, then there must be 
such a sample timestamp. Thus, the optimal solution can be 
found.

5 � KS Algorithm

In a nutshell, our solution adopts a dynamic programming par-
adigm in which we utilizes the similar state representation and 
state-transition equation in [7, 17]. First, we obtain a state heap 
in which a set of initial states for each vertex. The states in the 
heap are sorted according to ranking factors. Second, for the 
first state in the heap, we check if the state is an optimal solu-
tion. If it is, then we return it as an answer. Third, we expand 
the first state by the edge-growth and tree-merger operations 
to generate a new state. After that, we check the next state 
in the heap and continue the state-expansion in the second 
step. In order to reduce the states that have been generated in 
the search space, we present two state prunings to remove the 
weak states and fake states from the search space.

5.1 � State Operations

We first describe the some concepts as follows.

Definition 4  (State) A connected tree in G is called a state 
(v,X, [ts, te]) if it is rooted at v, covers all keywords in X, and 
has a valid time [ts, te].

For example, the tree in Fig.  2c is a state 
(0, {a, b, c, d}, [2, 8]) . Since the tree has the minimum weight, 
it corresponds to T(0, {a, b, c, d}, [2, 8]).

In our solution, we start a state from each vertex, and apply 
two operations to grow a state into another state. One is the 
edge-growth operation. It tries to add an edge to the state, 
where the adding edge should be the in-edge of the root of the 
state. And the starting vertex of the in-edge becomes the root 
of the new state. The other is the tree-merger operation. It tries 
to merge two states rooted at the same vertex into a larger state 
so that it can cover more labels.

Given a state z = (v,X, [ts, te]) , we denote the set of states 
by edge-growth operation on z by Sg(z) , and the set of states 

by tree-merger operation on z by Sm(z) . Sg(z) and Sm(z) are 
constructed by Eqs. 1 and 2, respectively.

where gv is the group of states rooted at v.
The edge-growth operation needs to exam-

ine each in-edge e of v one by one, each state 
e⊕ z = (s(e),X ∪ Γs(e) ∩ Γq, val(e) ∩ [ts, te])  wo u l d  b e 
generated.

In the tree-merger operation, we consider another 
state z� = (v,X�, [t�

s
, t�
e
]) which is also rooted at v. 

We want to merge the two states into a larger one 
z� ⊕ z = (v,X� ∪ X, [t�

s
, t�
e
] ∩ [ts, te]) . In order to make the 

merged state valid, [t�
s
, t�
e
] ∩ [ts, te] ≠ � is required. It is easy 

to see that there is no need to merge z with z′ if X′ ⊂ X , i.e. 
the covered label set by z′ is the subset of the one of z.

5.2 � KS Algorithm

We are ready to introduce the KS Algorithm to solve the 
problem.

Connected trees may share some components, to save 
some computations, we start from a leaf and grow it into a 
connected tree as describing in Eqs. 1–2.

In the initialization, we turn each vertex v into a state with 
v as the root, if Xv = Γv ∩ Γq is non-empty. The time is set to 
be the query time [t� , t�] , and the initial state (v,Xv, t� , t�) has 
weight equal to the weight of v. Then we push each state into 
a heap Q. Q sorts the states in Q based on ranking factors.

While Q is not empty, we do the extension from a state 
with the current best ranking to a possible solution. The state 
z popped from Q is the one with the best ranking currently. 
If the current best state has already covered the query label 
set L, then we can return z as the best solution. otherwise, 
we should extend z by applying the two state operations.

The description of KS algorithm without pruning is given 
in Algorithm 2. Line 1 to 5 is the initialization. We start 
checking the states while there exists valid states in Q at line 
11. The state z popped from Q at line 12 is the one with the 
best ranking. If z has covered all query labels, we return z as 
the optimal solution at line 13. Otherwise, we call the two 
state operations at line 26 and 27.

(1)
Sg(z) =

⋃

e ∈ Ei(v),

val(e) ∩ [ts, te] ≠ �

{e⊕ z}

(2)
Sm(z) =

⋃

z� = (v,X�, [t�
s
, t�
e
]) ∈ gv,

X� ⊄ X, [t�
s
, t�
e
] ∩ [ts, te] ≠ �

{z� ⊕ z}



374	 Y. Ge et al.

1 3

Algorithm 2 KS
Input: G = (V,E), the query label set Γq, temporal predicates [tα, tβ ],
and ranking function
Output: The optimal solution.

1: Q ← ∅;
2: for each v ∈ V do
3: Xv = Γv ∩ Γq

4: if Xv �= ∅ then
5: Q.push(((v,Xv, [tα, tβ ]), w(v)));
6: end if
7: end for
8: if Use Pruning then
9: gv ← ∅ ∀v ∈ V ;

10: end if
11: while Q �= ∅ do
12: (z = (v,X, [ts, te]),W (z)) ← Q.pop();
13: if X = L then return z;
14: end if
15: if Use Pruning then
16: isWeak ← false;
17: for z′ ∈ gv do
18: if z′ state dominates z then
19: isWeak ← true;
20: break;
21: end if
22: end for
23: if isWeak then continue;
24: end if
25: end if
26: Edge-growth;
27: Tree-growth;
28: end while
29: return null;

The edge-growth operation and tree-merger operation in 
Algorithm 3 follow Eqs. 1 and 2, respectively. Note that in 
the tree-merger operation, the merge is symmetric for z and 
z′ , i.e. z⊕ z′ is equal to z′ ⊕ z , therefore, we can restrict the 

cost of z′ should not larger than z when doing merge to avoid 
duplicated computation. Thus, we only use states that have 
been popped before for merging at line 9. During and after 
the two operations, we should push the new states into Q at 
line 5 and 12.



375An Efficient Keywords Search in Temporal Social Networks﻿	

1 3

Algorithm 3 Two state operations (No pruning)
1: Operation Edge-growth:
2: for each e ∈ Ei(v) do
3: if val(e) ∩ [ts, te] �= ∅ then
4: sg ← e⊕ z
5: Q.push((sg,W (sg)))
6: end if
7: end for
8: Operation Tree-merger:
9: for each (z′ = (v,X ′, [t′s, t

′
e]),W (z′)) has been popped do

10: if X ′ �⊂ X and [ts, te] ∩ [t′s, t
′
e] �= ∅ then

11: sm ← z ⊕ z′

12: Q.push((sm,W (sm)))
13: end if
14: end for

5.3 � Top‑N Query

To support top-N keyword search on temporal graph, we can 
change the stop condition at line 13 of Algorithm 2 to “if 
X = L , then add the solution into top-N result; if N results 
found, then return otherwise continue". Here, we “continue" 
because we need to find more solutions, and there is no need 
to do state operations for a solution.

6 � State Pruning

In the two operations, there will generate a lot of states, 
which make the number of states becomes larger and larger. 
It affects both the efficiency and the memory. It would be 
helpful if we have techniques to identify the weak and fake 
states. In this section, we propose two state pruning tech-
niques for weak states and fake states.

6.1 � Weak State

Definition 5  (State Dominated and Weak State) Given 
two states z1 = (v,X1, [ts1 , te1 ]) and z2 = (v,X2, [ts2 , te2 ]) , if 
X1 ⊂ X2 , [ts1 , te1 ] ⊂ [ts2 , te2 ] and W(z1) ≥ W(z2) , then we say 
that z1 is a weak state dominated by z2 . A state is called a 
weak state iff it is state dominated by another state.

The KS algorithm extends each leaf vertex into a possi-
ble solution by a bottom to top manner. That is, a state is 
extended either by merging two states at the same root, or by 
adding the in-neighbour of the root as the new root. By the 
bottom to top extension, we discover the following lemma 
to filter out the weak state from the search space.

Lemma 3  A weak state can be pruned if we apply the bottom 
to top extension.

Proof  We use the notation in the weak state definition, and 
prove that the weak state z1 can be pruned by z2.

We use mathematical reduction to prove this claim: 
for any optimal solution which is expanded from a weak 
state z1 after n operations, we can get an optimal solution 
be expanded from z2 within n operations, where z1 is state 
dominated by z2.

If an optimal solution can be extended from z1 after 0 
operation, that is, z1 itself is optimal. Note that z2 is no worse 
than z1 on all sides, thus z2 is also optimal. So the claim 
holds.

Assume the claim holds for n = k , we prove that it can 
hold for n = k + 1 . The first operation on z1 can be either 
edge-growth operation or tree-merger operation.

Case 1: the first operation is the edge-growth operation. 
Let e be the in edge that extends z1 . As z2 is also rooted at v 
as z1 , z2 can also be extended by adding e. It is easy to verify 
that e⊕ z1 is stated dominated by e⊕ z2 . An optimal solu-
tion can be extend from e⊕ z1 by k operations, according 
to the assumption, we can get an optimal solution extended 
from e⊕ z2 within k operations, thus, this optimal solution 
can be extended from z2 within k + 1 operations.

Case 2: the first operation is the tree-merger operation. 
Let z′ be the state that merges with z1 , and z3 = z� ⊕ z1 . 
If z′ is z2 , then it is clear that the optimal solution can be 
extended from z2 with k + 1 operations too. Otherwise, let 
z4 = z� ⊕ z2 , it is easy to verify that z3 is stated dominated 
by z4 . An optimal solution can be extended from z3 with 
k operations, according to our assumption, we can get an 
optimal solution extended from z4 within k operations, 



376	 Y. Ge et al.

1 3

thus, the optimal solution can be extended from z2 within 
k + 1 operations.

In above, we can conclude that a weak state can be pruned 
if we apply the bottom to top extension. 	�  ◻

Specially, when we do the edge-growth operation e⊕ z , 
if X ⊂ Γs(e) , then we can immediately see that e⊕ z will be 
a weak state dominated by the state at vertex s(e). See line 
3 in Algorithm 4.

6.2 � Fake State

Definition 6  (Fake State) A state is fake if it can not be part 
of any optimal solutions.

By the definition, we can see that it is safe to prune these 
fake states, because they cannot be extended into an optimal 
solution. To identify the fake state, we propose the follow-
ing lemma.

Lemma 4  Let v be the root of an optimal solution z, let 
c = |Γv ∩ Γq| be the number of query labels contained in 
v, and c < |Γq| , let l be the number of leaves of z. Then we 
have: l + c ≤ |Γq|.

Proof  Let the leaves be {u1, u2,⋯ , ul} . Let xi be the number 
of query labels which are covered by ui and not covered by 
v or other leaves, then we have 

∑i=l

i=1
xi + c ≤ �Γq� . If xi = 0 , 

then removing ui and the associated edge from z can give a 
better solution, contradictory to z is optimal. Thus, xi ≥ 1 . 
So we have: �Γq� ≥

∑i=l

i=1
xi + c ≥

∑i=l

i=1
1 + c = l + c . 	� ◻

Lemma 4 can give us the following corollary to identify 
a fake state directly by simply considering the number of 
labels covered by the root and the number of leaves. See line 
5 and 14 in Algorithm 4.

Corollary 1  Let v be the root of a state z, let X be the set 
of query labels covered by z, let c = |Γv ∩ Γq| be the num-
ber of query labels contained in v, let l be the number of 
leaves(except v) of z. If l + c > |X| , then z is a fake state and 
can be pruned.

Proof  Similarly, let the leaves be {u1, u2,⋯ , ul} , and xi be 
the number of query labels which are covered by ui and not 
covered by v or other leaves, and we have 

∑i=l

i=1
xi + c ≤ �X� . 

If l + c > |X| , then 
∑i=l

i=1
xi + c ≤ �X� < l + c . So, 

∑i=l

i=1
xi < l . 

Thus, there must be a xi = 0 where i ≥ 1 . Then, in order to 
get a better solution, at least one leaf ui and the associated 
edge need to remove from z. Thus, z is a fake state and can 
be pruned. 	�  ◻

The correctness of Corollary 1 is clear since z is not the 
optimal state in terms of query label set X, which implies z 
could not be part of the optimal solution.

6.3 � KS with Pruning

Now we are ready to introduce the KS algorithm with the 
pruning techniques applied in Algorithm 2.

When checking whether a state z is weak or not, we need 
to check whether there exists a state that can state dominated 
z. Note that z has the best ranking in Q currently, none of 
states in Q can state dominate z, only the states that were 
popped from Q before may state dominate z. Thus, for effi-
ciency checking weak states, we can group the popped states 
by the root v, and use a list gv to store them at line 19 in 
Algorithm 4. The process of weak state checking is from 
line 16 to 23 in Algorithm 2. Another benefit for using gv 
is that gv contains all the states that need to perform tree-
merger operation for a popped state rooted at v, see line 11 
in Algorithm 4.

The complexity of checking a weak state is much higher 
than the complexity of checking a fake state. Therefore, we 
apply the weak state checking only when a state is popped 
out, and we apply the fake state checking immediately when 
the state is generated.

Algorithm 4 Two state operations
1: Operation Edge-growth:
2: for each e ∈ Ei(v) do
3: if val(e) ∩ [ts, te] �= ∅ and X �⊂ Γs(e); then
4: sg ← e⊕ z;
5: if sg is not a fake state then
6: Q.push((sg,W (sg)));
7: end if
8: end if
9: end for

10: Operation Tree-merger:
11: for each (z′ = (v,X ′, [t′s, t

′
e]),W (z′)) ∈ gv do

12: if X ′ �⊂ X and [ts, te] ∩ [t′s, t
′
e] �= ∅ then

13: sm ← z ⊕ z′;
14: if sm is not a fake state then
15: Q.push((sm,W (sm)));
16: end if
17: end if
18: end for
19: gv ← gv ∪ {z};

Algorithm Example Consider Fig. 2a as an example, 
where Γq = {a, b, c, d} , [t� , t�] = [0, 9] , and ranking function 
is ascending order of weight.



377An Efficient Keywords Search in Temporal Social Networks﻿	

1 3

Q is initialized with four states: (z1 = (0, {a}, [0, 9]), 0) , 
(z2 = (3, {b, c}, [0, 9]), 0) ,  (z3 = (4, {a, d}, [0, 9]), 0) and 
(z4 = (5, {d}, [0, 9]), 0) as shown in Fig. 3. The list gv for 
each vertex is set to be empty set.

Q is non-empty, the top state z1 = (0, {a}, [0, 9]) is 
popped from Q. Since {a} ≠ Γq , z1 is not a solution, Then 
we check whether z1 is weak by comparing with states 
in g0 . Since g0 is empty currently, none state dominates 
z1 . Ei(0) = � and g0 = � , we no need to do edge-growth 
operation and tree-merger operation. Next, the top state 
z2 = (3, {b, c}, [0, 9]) is popped from Q. z2 is also not a 
solution, Next, the algorithm performs the edge-growth 
operation. Since e3 ∈ Ei(3) , z5 = e3 ⊕ z2 = (1, {b, c}, [2, 8]) 
is generated. Next, we check whether z5 fake or not. 
Since the root of z5 is vertex 1, covers 0 query label, 
and the number of leaves in z5 is 1, thus, z5 is not fake. 
Then, (z5,w(z5) = 1) is pushed into Q. Similarly, we get 
z6 = e4 ⊕ z2 = (1, {b, c}, [3, 6]) , and it is not a fake state, 
so we push z6 into Q. Next, we start the tree-merger opera-
tion, but g1 is empty, so no merge is needed, and we push 
z2 into g1 . Similar, we pop z3 , and z4 one by one from Q, 
and z7 = (2, {a, d}, [3, 5]) , z8 = (3, {b, c, d}, [2, 8]) , and 
z9 = (4, {a, d}, [3, 6]) are generated respectively.

Example of weak state: We pop z6 from Q, and find that 
z6 is dominated by z5 . z5 and z6 have the same root vertex 1, 
and cover the same labels({b, c} ), but [3, 6] ⊂ [2, 8] , thus, z6 
is weak state.

Example of fake state: We pop z4 from Q, and 
find that z4 is not weak, because it is not state domi-
nated by states in g4 . We do tree-growth and push 
z8 = z4 ⊕ e6 = (0, {b, c, d}, [2, 8]) into Q with W(z8) = 1 . 
z9 = z4 ⊕ e7 = (4, {a, d}, [3, 6]) , note that z9 is rooted at ver-
tex 4(cover 2 query labels) and has 1 leaves(vertex 5), but 
the number of query labels covered by z9 is 2 < 2 + 1 , thus, 
z9 is a fake state. Keep on going with the algorithm, we can 
finally get the optimal solution as shown in Fig. 3.

Algorithm Complexity We first analyze the time com-
plexity of the two state operations in Algorithm 4.

Operation Edge-growth: The main cost inside the for loop 
comes from line 6, with time complexity O(log |Q|) . So the 
overall time complexity is O(|Ei(v)| × log |Q|).

Operation Tree-merger: The main cost inside the for loop 
comes from line 15 with time complexity O(log |Q|) . So the 
overall time complexity is O(|gv| × log |Q|).

Then, we show the time complexity in Algorithm 2. We 
first analyze the time complexity of initialization. Line 3 
takes O(|Γv|) since we can use hashing collision detection 
for each label, and use a bit vector with length |Γq| to rep-
resent the result of intersection. Line 5 takes O(log |V|) 
for the pushing in Q. Thus, the initialization(line 1 to 5) 
takes O(|V| × (|Γv| + log |V|)) . Next, we analyze the main 
cost of lines in the while loop. Line 12 takes O(log |Q|) . 
The time complexity for checking whether a state is weak 
or not is O(|gv|) . The number of iterations in this while is ∑

v∈V �gv� . Then, the time complexity for the while loop is 
O(

∑
v∈V �gv� × (log �Q� + �gv� + �Ei(v)� × log �Q� + �gv� × log �

Q�)) = O(
∑

v∈V �gv� × (�Ei(v)� + �gv�) × log �Q�) = O((�E�+
|Q|) × log |Q| ×max |gv|) . Finally, the complexity of Algo-
rithm  2 is O(|V| × (|Γv| + log |V|) + (|E| + |Q|) × log |Q|
×max |gv|).

The complexity of gv is O(2|Γq| × |TS|) . The key point 
is that the states in gv have no dominated relationship. For 
a state with X and time interval [ts, te] , only the one with 
the smallest weight would be in gv , so |gv| is no more than 
the number of subset X ⊂ Γq times the number of intervals. 
There are |TS| timestamps, so the number of intervals is 
O(|TS|2) . However, we can pick at most |TS| time intervals, 
in which we cannot find two intervals that have a subset-
superset relationship.

Fig. 3   Example for KS Algorithm

Table 2   Dataset descriptions K = 10
3

Dataset |V| |E| Avg degree Tcime 
instants

IMDB 145 K 397 K 2.7 17.3 K
SNAP 256 K 420 K 1.6 20.0 K
Wiki-Fr 2,210 K 4,412 K 2.0 21.3 K
DBLP 3,812 K 4,021 K 1.1 4.5 K



378	 Y. Ge et al.

1 3

7 � Experiment

In this section, we evaluate the performance of our proposed 
algorithms on two real datasets.

Environment We run all experiments on a machine with 
a 3.6Ghz Intel Core i7-9700K CPU and 32 GB RAM run-
ning Ubuntu 18.04 LTS Linux OS. All algorithms were 
implemented in C++.

Algorithms In the experiments, we compare 2 baselines, 
namely BL and GURD, with our 3 algorithms, namely DT, 
AP, and KS.

BL [4]. BL is the state-of-the-art algorithm for solving 
keyword query in temporal graph.

GURD [3]. GURD is to find a group of keywords in tem-
poral graph which does not consider the ranking factors, 
time constraint, and minimum constraint in our problem. 
For BL is the unique algorithm for solving keyword query in 
temporal graph, GURD is added as baseline. When GURD 
process a query, the ranking factors, and minimum constraint 
is ignored.

DT is Algorithm 1, and it call a dynamic programming 
algorithm on keyword search problem in [7]. AP is approxi-
mation algorithm. KS is Algorithm 2 with pruning.

Datasets We use four real-world datasets, namely IMDB,1 
SNAP,2 Wiki-Fr,3 and DBLP4 datasets. These datasets are 
widely used in related studies of temporal graph [3, 4, 18]. 
The IMDB dataset is a temporal network containing IMDb’s 
premier title and name entertainment datasets. Each vertex 
corresponds to a person such as the principal cast or direc-
tor, a title, and the edges denote the different relationships 
among them. Their names are used as the labels. The start 
time of the edges are set as the release year of a title or TV 
Series end year. We randomly generate the end time for each 
edge in the following way: we set the default probability 

that any two edges have at least one common time instant as 
70% , and also vary this probability in evaluation. The SNAP 
dataset is a temporal network representing Wikipedia users 
editing each other’s Talk page in which each vertex repre-
sents a user, and each edge represents the interaction of two 
users. The Wiki-Fr is a temporal graph for French articles in 
Wikipedia. For SNAP and Wiki-Fr, users’ names are used as 
labels. The start time of each edge is the time when the two 
users interact. We set the end time with the same method 
of IMDB. For the DBLP temporal graph, each vertex cor-
responds to an author, and the edges denote the relationships 
among them such as the co-author relationship, etc. Their 
names and their papers’ names are used as the labels. The 
start time of an edge is set as the paper’s publication time. 
The publication time includes the year, and month of pub-
lication. If there is no month in the data, then we assume 
that it was published on January. The end time of an edge is 
set as now(202106) which is the same as [4]. Both datasets 
assume the unit weight on edges and no weight on nodes as 
[4]. The details for the temporal graphs are given in Table 2.

The characteristics of these four datasets are different. 
First, graph structures are different. In the IMDB dataset, 
there are more edges between two vertices because there 
are frequent connections between the workers involved. In 
the DBLP dataset, a directed path from a vertex to every 
other vertices exists, and there are citation paths. For SNAP 
and Wiki-Fr datasets, the graph structures are more general. 
Thus given a set of query keyword, in IMDB dataset will 
spend more time on edge processing, and the solution can 
be found for sure in DBLP dataset. Second, temporal char-
acteristics are different. In the DBLP dataset, each edge has 
a longer valid time. Because citation relationship does not 
disappear once it occurs, the edge of the citation lasts the 
longest. Thus, The valid time of any two edges is more likely 
to intersect in DBLP.

Settings We vary two parameters in our experiments, 
namely |Γq| and f, where |Γq| is the number of labels in 
the given query label set Γq and f is the average number 
of vertices covering each label in the query (i.e., the label 
frequency). |Γq| is in {2, 3, 4, 5, 6, 7} with default 4, f is in 
{100, 200, 300, 400, 500} with default 300 [7]. The time 

(a) IMDB (b) SNAP (c) Wiki-Fr (d) DBLP

Fig. 4   Effect of |Γq| on running time

1  http://​www.​imdb.​com/​inter​faces/.
2  http://​snap.​stanf​ord.​edu.
3  http://​www.​konect.​cc/.
4  http://​dblp.​dagst​uhl.​de/​xml/.

http://www.imdb.com/interfaces/
http://snap.stanford.edu
http://www.konect.cc/
http://dblp.dagstuhl.de/xml/


379An Efficient Keywords Search in Temporal Social Networks﻿	

1 3

interval setting of all experiments corresponds to [0,∞] , in 
which case the queries are most computationally challeng-
ing, since we need to consider every time in the temporal 
graph. The default ranking factor is ascending weight on 
both datasets. In each test, we generate 100 queries with |Γq| 
labels randomly, and report the average performance. Algo-
rithm 1 calls Algorithm 2 to search the query keywords on 
the temporal graph. For the approximate algorithm, k is set 
to 100. All algorithms perform similarly on the four datasets, 
we usually take SNAP as examples for the sake of space.

Effect of |Γq| on running time As shown in Fig. 4, the 
running time increases with the increase of |Γq| . This is 
because the increase of |Γq| will result in the increase of 
algorithm search space. The running time of our algorithm 
KS and AP is obviously smaller than that of BL. In par-
ticular, as shown in Fig. 4b, for |Γq| = 4 , the baseline algo-
rithm BL requires 1,217 s, and GURD requires 1,538 s, 
but our proposed algorithms KS and AP only take 3.7 and 
0.8 s, respectively. Our algorithm KS is 329 times faster 
than BL. With the increase of |Γq| , KS need to generate 
more state for finding the optimal solution, and KS cost 
more time to find the optimal solution.

For BL, the best paths between two vertices with query 
labels in each snapshot must be found. As the number of 
given query labels increases, so does the number of opti-
mal paths. As a result, the time of BL increases. Figure 4 
illustrates how the time of BL increases as |Γq| increases. 
As we discuss in Sect. 2, the length of time instants has an 
effect on BL. The length of time instants becomes larger, 

the time of BL will be larger. For example, DBLP has a 
time instants of 4.5K, which is very large for BL. How-
ever, length of time instants has little effect on on KS. So, 
KS is faster than BL. For DT, with the increase of |Γq| , 
the dynamic programming algorithm on keyword search 
problem need more time. And the length of time instants 
have an impact on the efficiency of discrete timestamp 
algorithm. However, the length of time instants does not 
have much effect on KS. Therefore, KS is much faster than 
DT. For the approximate algorithm does not consider the 
time information on the edge, AP only needs to calculate 
100 queries without time information, so it is faster than 
KS. Although GURD ignores ranking factors and mini-
mum constraint in our problem, GURD has no pruning 
technique and is therefore slower than BL and KS.

Effect of |Γq| on memory consumption We conduct the 
experiments on the four datasets and the results are shown 
in Fig. 5. In general, the memory consumption increases 
with the increase of |Γq| . This is because that there are 
more states need to be stored as the |Γq| becomes larger. 
As shown in Fig. 5, the memory consumption of KS (AP) 
is less than 150MB in most case. The maximal consump-
tion is about 133MB for KS as |Γq| = 7 in Fig. 5c, while 
the memory consumption of BL is 274MB.

For BL, with the number of given query labels increases, 
so does the number of optimal paths. As a result, the mem-
ory of BL increases. Figure 5 illustrates how the memory of 
BL increases as |Γq| increases. However, KS does not need to 
find all the best paths. So, KS needs less memory than BL. 

(a) IMDB (b) SNAP (c) Wiki-Fr (d) DBLP

Fig. 5   Effect of |Γq| on memory consumption

(a) IMDB (b) SNAP (c) Wiki-Fr (d) DBLP

Fig. 6   Effect of f on running time



380	 Y. Ge et al.

1 3

For DT, the number of vertices and edges and the length of 
time instants have an impact on the efficiency of discrete 
timestamp algorithm. So, with the increase of |Γq| , the mem-
ory of DT is increasing. Therefore, KS is much faster than 
DT. For AP, it only needs to calculate 100 queries with-
out time information, so it needs less memory than KS. For 
GURD, it has no pruning technique, it need more memory 
than BL and KS.

Effect of f on running time As shown in Fig. 6, the run-
ning time of KS decreases with the increase of f. With the 
increase of f, there are more vertices containing the query 
labels. Then, it is faster for the algorithm to achieve the opti-
mal solution. However, for BL, with the increase of f, BL 
needs to find more "best" paths, and costs more time. In 
general, the running time of KS is obviously smaller than 
BL and GURD. As shown in other figures, KS can obtain 
the optimal solution in 10 s in most cases. In particular, 

for f = 300 , in Fig. 6a, KS takes 6.3 s, BL needs more than 
373 s, GURD takes 1288s. KS is 59 times faster than BL, and 
is 204 times faster than GURD.

For KS, in order to get the optimal solution, each state 
need to do the edge-growth operation and tree-merger opera-
tion. As f grows, so does the number of initialized states. 
Then, two states merge into a new state will be earlier. And 
pruning techniques can also find the weak state and fake 
state earlier. Then, it is faster for KS to achieve the optimal 
solution. For BL, with the increase of f, more best paths 
between two vertices with query labels in each snapshot 
need be found. As a result, the time of BL increases. Fig-
ure 6 illustrates how the time of BL increases as f increases. 
For DT, it call a dynamic programming algorithm on key-
word search which edge does not contain time. With the 
increase of f, the dynamic programming algorithm needs 
less time. And the length of time instants have an impact on 

(a) IMDB (b) SNAP (c) Wiki-Fr (d) DBLP

Fig. 7   Effect of f on memory consumption

(a) IMDB (b) SNAP (c) Wiki-Fr (d) DBLP

Fig. 8   Effect of state pruning varying |Γq|

(a) IMDB (b) SNAP (c) Wiki-Fr (d) DBLP

Fig. 9   Effect of state pruning varying f 



381An Efficient Keywords Search in Temporal Social Networks﻿	

1 3

the efficiency of discrete timestamp algorithm. Therefore, 
KS is faster than DT. For AP, it only needs to calculate 100 
queries without time information, so it is still faster than 
KS. For GURD, it has no pruning technique and it is slower 
than BL and KS.

Effect of f on memory consumption In this experiment, 
the value of |Γq| is the default value 4, and the results are 
shown in Fig. 7. The memory consumption of KS decreases 
as the increase on f as shown in Fig. 7. This is because, with 
the increase of f, there are few states need to be stored in 
the algorithms. For BL, the memory consumption increases 
with the increase of f. This is because, with the increase of 
f, there are more best path iterators need to be stored in the 
algorithms. In particular, as shown in Fig. 7c, for f = 500 , 
the baseline algorithm BL algorithm requires 316.7MB, but 
our proposed algorithms KS only take 54.8MB.

For KS, two states merge into a new state will be earlier. 
And pruning techniques can also find the weak state and fake 
state earlier. The total number of states is smaller. Then, KS 
need less memory to get the optimal solution. For BL, with 
the increase of f, more best paths between two vertices with 
query labels in each snapshot need be found. So, BL need 
more memory for the ”best” paths. For DT, it call a dynamic 
programming algorithm on keyword search which edge does 
not contain time. With the increase of f, the dynamic pro-
gramming algorithm needs less memory. Although, the state 
in DT does not contain time, and it need less memory than 

the state in KS. The length of time instants has an effect on 
DT. The length of time instants becomes larger, the memory 
of DT will be larger. Therefore, KS need less memory than 
DT. For AP, it only needs to calculate 100 queries without 
time information, so the memory of it is still smaller than 
KS. For GURD, it has no pruning technique and it need more 
memory than BL and KS.

Effect of state pruning There are two state pruning tech-
niques in Algorithm 2, namely weak state and fake state. 
In Figs. 8 and 9, DP means the dynamic programming 
algorithm without any pruning, WS means the case that we 
only enable the weak state pruning in Algorithm 2, and FS 
means the case that we only enable the fake state pruning to 
Algorithm 2. The running time can be dramatically reduced 
since lots of states can be pruned by the prosed techniques. 
As shown in Fig. 9c, we can rank them as DP, FS, WS, KS 
by the ascending of efficiency. It shows that both pruning 
are efficient, and the weak state pruning is more efficient 
than the fake state efficient. Limited in 6K seconds, DP can-
not finish when |Γq| = 5, 6, 7 , and FS cannot finish when 
|Γq| = 6, 7 , while WS and KS only need 1,611 and 1,319 s 
even when |Γq| = 7 . It shows that the pruning techniques are 
important for our algorithms in terms of efficiency.

Effect of top-N In the set of experiments, we test queries 
on the datasets varying values of N with top-N solutions, 
ranging from 1 to 50. The ranking function is ascending 
by relevance. The results are shown in Fig. 10. In general, 
the running time increases with the increase of N. The run-
ning time of our algorithm KS is smaller than that of BL. In 
particular, as shown in Fig. 10a, for N = 50 , the baseline 
algorithm BL algorithm requires 1,349 s, but our proposed 
algorithm KS only takes 9.6 s.

Effect of approximation algorithm Approximation 
algorithm reduces the search space by simple time sampling, 
thus speeding up the query. Through the above experiments, 
we can find that AP is the fastest, but it is not the best solu-
tion. For the default ranking factor of ascending weight, 
we set the approximation ratio(AR) as the weight of the 

(a) SNAP (b) DBLP

Fig. 10   Effect of N on running time

(a) Effect of |Γq| (b) Effect of f

Fig. 11   Effect of approximation algorithm

Fig. 12   A case study



382	 Y. Ge et al.

1 3

approximate solution divided by the weight of the optimal 
solution. To further illustrate the effect of approximation 
algorithm, we test the approximation ratio on SNAP dataset 
by changing |Γq| and f. The experimental results are shown 
in Fig. 11.

Case Study The case study is on the DBLP datasets. In 
detail, the search labels correspond to the author names, 
namely Jennifer Widom, Jiawei Han, Jian Pei, and Philip 
S. Yu. The time interval setting is [1990, 2021]. The con-
nected tree is given in Fig. 12, which shows the relation-
ship between the specified authors and their papers during 
the specified time, and will be useful for network analysis. 
By the found connected tree, we can know the most influ-
enced paper “Clustering Association Rules” written by 
Jennifer Widom in 1997 is related to the other authors. 
This paper is cited by the paper “Mining Frequent Pat-
terns without Candidate Generation” by Jiawei Han and 
Jian Pei in 2000 and the paper “Mining Large Itemsets for 
Association Rules” by Philip S. Yu in 1998. Both of them 
are also the most influenced papers of the related authors 
written in the given time.

8 � Related Work

Keywords Search on Graph/Social Network Keyword 
query on the graph/social network has always attracted the 
attention of scholars [19]. The majority of researches adopt 
the minimal tree semantics.

By regarding entities as nodes and relationships as edges, 
relational, XML and HTML data can be represented as 
graphs, then keyword search on graph starts to be popu-
lar. Bhalotia et al. [12] proposed a system named BANKS 
to support keyword-based search on relational database by 
modeling tuples as nodes in a graph. Hristidis et al. [20] 
adapted IR-style document-relevance ranking strategies to 
the problem of processing free-form keyword queries over 
RDBMSs. Kacholia et al. [13] combine top-down search 
from roots and bottom-up search from leaves, and proposed 
a novel frontier prioritization technique based on spreading 
activation to guide the search. Kimelfeld et al. [11] modi-
fied the general procedure of Lawler to reduce the problem 
of enumerating in ranked order to the problem of finding an 
optimal answer under constraints, but they suffer from the 
“Steiner-tree bottleneck". Luo et al. [21] proposed efficient 
query processing methods that have minimal accesses to the 
database, but it was based on their new ranking method. 
Sayyadian et al. [22] studied the keyword-search problem 
over heterogeneous relational databases and proposed a solu-
tion named Kite to solve it. Reference [23] proposed a sim-
ple yet flexible query language, and develop its semantics to 
enable intuitively appealing extraction of relevant fragments 

of information. A search engine based on an incremental 
algorithm for enumerating subtrees in a 2-approximate order 
for keyword proximity search in complex data graphs [14]. 
A principled probabilistic approach to query rewriting was 
proposed in [24].

Some works use other result definitions for keyword 
query on the graph, e.g. subgraphs [25], database tuples 
[26].

The best-known exact algorithm for keyword query in 
a relational database is introduced in [7], it formulated the 
query as a group steiner tree(GST) problem in a directed 
graph. An improved algorithm for a relatively large graph 
or label set is proposed in [17]. Reference [27] further con-
siders the GST problem with node and edge weights, and 
proposes an approximate algorithm by using a dynamic 
programming approach. Reference [28] proposes a query 
relaxation algorithm which solves the small even emptyre-
sult sets when performing query operations in temporal 
graph databases. How to handle the time information is not 
included in these works.

Temporal Databases/XML/Social Network Temporal 
databases extend the relational model by allowing a tuple 
to have a valid time and/or a transaction time. Some query 
languages have been proposed for temporal relational data, 
such as TQUEL [29], TSQL [30], SQL3 [9], and Chrono-
Graph [31]. However, due to the complexity of query syntax 
and the low efficiency of graph processing, these methods 
are not suitable for ordinary users to search temporal graphs.

Many temporal graph storage techniques consider a 
temporal graph as a sequence of graph snapshots, where 
each snapshot depicts the state of the historical graph at 
a past time point [3, 4, 18, 32–34]. These works focus on 
the storage and query engine to deal with the outgrowing 
size of data while being able to query efficiently. How-
ever, [18, 33] do not consider the relationship between the 
keywords of the query. [3] studies the temporal keyword 
search problem with temporal label in temporal social net-
works. [32] focus on searching path on temporal graph. 
However, [3, 32] does not consider the weight of vertex 
and edge, ranking factors, which are different from our 
works. Reference [4] focus on the solution of keyword 
searching on graph database, where time information is 
associated with both the vertices and edges of the temporal 
graphs. They divide the time information on the temporal 
graph into time snapshots, and then finds the temporal 
solution. The number of time snapshots seriously affects 
the efficiency of the algorithm. Reference [34] discusses 
the definition and topological structure of time-dependent 
graphs, as well as models for their relationship to dynamic 
systems. Our work can address keyword query on temporal 
graph directly without dividing time information.



383An Efficient Keywords Search in Temporal Social Networks﻿	

1 3

For the temporal graph/social network, some scholars 
have studied specific queries on it, such as single-node 
queries that ask for historical information of a vertex in a 
graph [35], reachability and matching query [36]. Algo-
rithms for these queries are not applicable for processing 
keyword queries except that [37] studying the shortest path 
problem. There is another type of temporal graph, which 
is suitable for traffic network and communication network 
problems [38–41]. In this type of temporal graph, edges 
in the path must satisfy the time constraint. That is, the 
arrival time of the previous edge is no later than the start 
time of the next edge. Time constraint does not apply to 
our problem.

9 � Conclusion

In this paper, we first propose the discrete timestamp algo-
rithm and the approximation algorithm, which turn the 
keyword search problem on temporal social networks to 
the traditional keyword search problem on graph. Then we 
propose a more effective dynamic programming algorithm 
aiming to resolve the issue of keyword search on temporal 
social networks. In order to speed up the searching pro-
cess, we adopt the two powerful pruning to greatly reduce 
the searching space. Lastly, we extend the scope of search 
questions, so as to get top-N efficient solutions. We con-
duct a series of experiments on the real temporal social 
networks. The results prove the efficiency and validity of 
our algorithm. In the future, we will further optimize the 
technologies on the dynamic changes in search conditions.

Author Contributions  YG and ZC wrote the main manuscript text and 
prepared all the figures. All authors reviewed the manuscript.

Funding  This paper is supported by the National Nature Science Foun-
dation of China (61572537, U1501252).

Data Availability  The data that support the findings of this study are 
openly available.

Declarations 

Conflict of interest  The authors declare that they have no conflict of 
interest.

Ethical Approval  This article does not contain any studies with human 
participants or animals performed by any of the authors. Results are 
gotten through simulation and tested number of times to take final 
value.

Open Access   This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 

included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 David K, Jon K, Amit K (2000) Connectivity and inference prob-
lems for temporal networks. In: STOC, pp 504–513

	 2.	 Guan-Yi J, Yi-Cheng C, Hung-Ming L (2021) Evolution pattern 
mining on dynamic social network. J Supercomput 77:6979–6991

	 3.	 Xiaoying C, Chong Z, Bin G, Weidong X (2017) Temporal query 
processing in social network. In: JIIS, pp 147–166

	 4.	 Liu Z, Wang C, Chen Y (2017) Keyword search on temporal 
graphs. TKDE 29(8):1667–1680

	 5.	 Jingwen S, Chaokun W, Changping W, Gaoyang G, Jun Q (2020) 
An attribute-based community search method with graph refining. 
J Supercomput 76:7777–7804

	 6.	 Youngho J, Hyunwoo L, Ayoung C, Mincheol W (2021) 
Web behavior analysis in social life logging. J Supercomput 
77:1301–1320

	 7.	 Ding B, Yu JX, Wang S, Qin L, Zhang X, Lin X (2007) Find-
ing top-k min-cost connected trees in databases. In: ICDE, pp 
836–845

	 8.	 Ma S, Hu R, Wang L, Lin X, Huai J (2017) Fast computation of 
dense temporal subgraphs. In: ICDE, pp 361–372

	 9.	 Rizzolo F, Vaisman AA (2008) Temporal xml: modeling, index-
ing, and query processing. PVLDB 17(5):1179–1212

	10.	 He H, Wang H, Yang J, Yu PS (2007) Blinks: ranked keyword 
searches on graphs. In: SIGMOD, pp 305–316

	11.	 Kimelfeld B, Sagiv Y (2006) Finding and approximating top-k 
answers in keyword proximity search. In: SIGMOD, pp 173–182

	12.	 Bhalotia G, Hulgeri A, Nakhe C, Chakrabarti S, Sudarshan S 
(2002) Keyword searching and browsing in databases using banks. 
In: ICDE, pp 431–440

	13.	 Kacholia V, Pandit S, Chakrabarti S, Sudarshan S, Desai R, Kar-
ambelkar H (2005) Bidirectional expansion for keyword search 
on graph databases. In: VLDB, pp 505–516

	14.	 Golenberg K, Kimelfeld B, Sagiv Y (2008) Keyword proximity 
search in complex data graphs. In: SIGMOD, pp 927–940

	15.	 Dreyfus SE, Wagner RA (1971) The Steiner problem in graphs. 
Networks 1(3):195–207

	16.	 Reich G, Widmayer P (1989) Beyond Steiner’s problem: a VLSI 
oriented generalization. In: WG, pp 196–210

	17.	 Li R-H, Qin L, Yu JX, Mao R (2016) Efficient and progressive 
group steiner tree search. In: SIGMOD, pp 91–106

	18.	 Wentao H, Kaiwei L, Shimin C, Wenguang C (2019) Auxo: a 
temporal graph management system. BDMA 2(1):58–71

	19.	 Jianye Y, Wu Y, Wenjie Z (2021) Keyword search on large graphs: 
a survey. DSE 6(2):142–162

	20.	 Hristidis V, Papakonstantinou Y, Gravano L (2003) Efficient ir-
style keyword search over relational databases. In: VLDB, pp 
850–861

	21.	 Luo Y, Lin X, Wang W, Zhou X (2007) Spark: top-k keyword 
query in relational databases. In: SIGMOD, pp 115–126

	22.	 Sayyadian M, LeKhac H, Doan A, Gravano L (2007) Efficient 
keyword search across heterogeneous relational databases. In: 
ICDE, pp 346–355

	23.	 Thirunarayan K, Immaneni T (2009) A coherent query language 
for XML. JIIS 32(2):139–162

http://creativecommons.org/licenses/by/4.0/


384	 Y. Ge et al.

1 3

	24.	 Zhang L, Tran T, Rettinger A (2013) Probabilistic query rewriting 
for efficient and effective keyword search on graph data. PVLDB 
6(14):1642–1653

	25.	 Qin L, Yu JX, Chang L, Tao Y (2009) Querying communities in 
relational databases. In: ICDE, pp 724–735

	26.	 Balmin A, Hristidis V, Papakonstantinou Y (2004) Objectrank: 
authority-based keyword search in databases. VLDB 4:564–575

	27.	 Sun Y, Xiao X, Cui B, Halgamuge K, Lappas T, Luo J (2021) 
Finding group Steiner trees in graphs with both vertex and edge 
weights. PVLDB 7(14):1137–1149

	28.	 Luyi B, Xinyi D, Bin Q (2022) Adaptive query relaxation and 
top-k result sorting of fuzzy spatiotemporal data based on XML. 
IJIS 3(37):2502–2520

	29.	 Snodgrass R (1987) The temporal query language tquel. TODS 
12(2):247–298

	30.	 Jensen CS, Snodgrass RT, Soo MD (1995) The tsql2 data model. 
In: The TSQL2 temporal query language. Springer, pp 157–240

	31.	 Jaewook B, Sungpil W, Daeyoung K (2020) hronoGraph: enabling 
temporal graph traversals for efficient information diffusion analy-
sis over time. TKDE 32(3):424–437

	32.	 Ariel D, Eliseo P, Matas P, Valeria S, Alejandro V (2021) A 
model and query language for temporal graph databases. JVLDB 
30(5):825–858

	33.	 Maria M, Zolt M, Philipe P Pierre M (2022) Clock-G: a temporal 
graph management system with space-efficient storage technique. 
ICDE, pp 2263–2276

	34.	 Yishu W, Ye Y, Yuliang M, Guoren W (2019) Time-depend-
ent graphs: definitions, applications, and algorithms. DSE 
4(4):352–366

	35.	 Koloniari G, Souravlias D, Pitoura E (2013) On graph deltas for 
historical queries. arXiv preprint arXiv:​1302.​5549

	36.	 Fard A, Abdolrashidi A, Ramaswamy L, Miller JA (2012) Towards 
efficient query processing on massive time-evolving graphs. In: 
CollaborateCom, pp 567–574

	37.	 Huo W, Tsotras VJ (2014) Efficient temporal shortest path queries 
on evolving social graphs. In: SSDBM, pp 1–4

	38.	 Wu H, Cheng J, Huang S, Ke Y, Lu Y, Xu Y (2014) Path problems 
in temporal graphs. PVLDB 7(9):721–732

	39.	 Rozenshtein P, Gionis A, Prakash BA, Vreeken J (2016) Recon-
structing an epidemic over time. In: KDD, pp 1835–1844

	40.	 Xiao H, Rozenshtein P, Tatti N, Gionis A (2018) Reconstructing 
a cascade from temporal observations. In: SDM, pp 666–674

	41.	 Lei L, Kai Z, Sibo W, Wen H, Xiaofang Z (2018) Go slow to go 
fast: minimal on-road time route scheduling with parking facilities 
using historical trajectory. JVLDB 27:321–345

http://arxiv.org/abs/1302.5549

	An Efficient Keywords Search in Temporal Social Networks
	Abstract
	1 Introduction
	2 Discussions and Analysis
	3 Problem Definition
	4 Discrete Timestamp Algorithm
	5 KS Algorithm
	5.1 State Operations
	5.2 KS Algorithm
	5.3 Top-N Query

	6 State Pruning
	6.1 Weak State
	6.2 Fake State
	6.3 KS with Pruning

	7 Experiment
	8 Related Work
	9 Conclusion
	References




