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Abstract
Temporal heterogeneous graphs can model lots of complex systems in the real world, such as social networks and e-commerce 
applications, which are naturally time-varying and heterogeneous. As most existing graph representation learning methods 
cannot efficiently handle both of these characteristics, we propose a Transformer-like representation learning model, named 
THAN, to learn low-dimensional node embeddings preserving the topological structure features, heterogeneous semantics, 
and dynamic patterns of temporal heterogeneous graphs, simultaneously. Specifically, THAN first samples heterogeneous 
neighbors with temporal constraints and projects node features into the same vector space, then encodes time information and 
aggregates the neighborhood influence in different weights via type-aware self-attention. To capture long-term dependencies 
and evolutionary patterns, we design an optional memory module for storing and evolving dynamic node representations. 
Experiments on three real-world datasets demonstrate that THAN outperforms the state-of-the-arts in terms of effectiveness 
with respect to the temporal link prediction task.

Keywords Temporal heterogeneous graphs · Graph neural networks · Graph representation learning · Transformer

1 Introduction

Graph representation learning, as an important task in 
machine learning, has significant practical value in areas 
such as social networks and recommendation systems. Exist-
ing graph representation learning methods usually take 
static graphs as the input to obtain low-dimensional embed-
dings by encoding local non-Euclidean structures and have 
achieved extensive excellent performance in downstream 
tasks such as link prediction [1–3], node classification [4, 
5], and graph classification [6, 7].

However, most graphs in the real world are naturally 
heterogeneous and dynamic, which cannot be accurately 
represented by static homogeneous graphs. Several studies 
incorporate heterogeneous data models into a unified graph 
model [8], promoting the research of graph data. Taking the 
example of a user-item interaction network in e-commerce 
scenarios, illustrated in Fig. 1a, there are two types of nodes 
(i.e., user and item) and three types of interactions (i.e., 
favorite, browse and buy). Additionally, each interaction is 
associated with a continuous timestamp to indicate when it 
occurred. In this paper, we define such interaction sequences 
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connecting different types of nodes as temporal heterogene-
ous graph (THG). It is of great significance to learn THG 
representations with dynamic and heterogeneous character-
istics for modeling real-world complex systems.

Example 1 The user-item interaction network in an e-com-
merce scenario is illustrated in Fig. 1a. Two snapshots of the 
network are given for the dates of June 18, 2021 and Novem-
ber 11, 2021. There are two types of nodes (i.e., user and 
item) and three types of interactions (i.e., favorite, browse 
and buy), where favorite corresponds to the blue line, browse 
to the green line, and buy to the orange line. Additionally, 
each interaction is associated with a continuous timestamp to 
indicate the time it occurred. We can see that users’ purchase 
intentions change dynamically over time.

In the case of the user-item interaction network shown 
in Fig. 1a, THG representation learning has the following 
challenges compared to static homogeneous graph repre-
sentation learning:

• (C1) How to model the heterogeneity? The nodes and 
edges in THG are of various types and have rich seman-
tics, making it difficult to obtain sufficient heterogeneous 
information just by encoding local graph structure.

• (C2) How to model the continuous dynamics? The edges 
in the THG are time-informed and time-dependent, i.e., 
each event occurs with a timestamp and current event 
may affect the occurrence of future events. For instance, 
there might be causal relationships between the inter-
action of searching for headphones on June 18 and the 
interaction of purchasing headphones on November 11 
by user A. Therefore, both efficient methods of convert-
ing temporal information into dynamic features and 
temporal constraints are needed to avoid violating the 
temporal causality between interactions.

• (C3) How to deal with new nodes? The dynamics of the 
THG imply that new nodes will emerge in the future 
(e.g., users D and E are two new nodes that appeared 
on November 11 compared to June 18). In other words, 
these nodes are not present during training and many 
practical applications will require their embeddings to 
be generated in a timely manner. Therefore, it is neces-
sary to construct an inductive modeling approach that 
generalizes the optimized representation to the new 
temporal subgraphs.

As for the heterogeneity, earlier methods [9, 10] preserve 
heterogeneous information by designing semantic meta-
paths to generate heterogeneous sequences, and recent 
studies [2, 11–13] aggregate information from heteroge-
neous neighborhood by extending the message-passing 
process of graph neural networks (GNNs). Concerning 
dynamics, it is general to split temporal graphs into several 
static snapshots (i.e., discrete-time dynamic graph, DTDG 
[14]) and use RNNs or attention to capture the evolution-
ary patterns between snapshots [15–18]. Although these 
methods can learn graph dynamics of the THG to some 
extent, the temporal information within the same snapshot 
is usually ignored, and the scale of snapshots needs to 
be predetermined in advance. Recently, researchers have 
proposed continuous-time dynamic graph (CTDG [14]) 
approaches [19–24] to capture dynamics via passing infor-
mation between different interactions, or using continuous-
time functions to generate temporal embedding. In regard 
to the new nodes, inductive graph representation learn-
ing methods [5, 22, 23, 25] recognize structural features 
of node neighborhood by learning trainable aggregation 
functions, so that rapidly generate node embeddings in 
new subgraphs. Plenty of studies have attempted to solve 
the above challenges, nevertheless, few approaches can 
address them at the same time.

Fig. 1  A toy example of the temporal heterogeneous graph from a 
user-item interaction network. a User-item interaction network; b 
Temporal heterogeneous graph. Different colored lines represent dif-

ferent interactions, where the blue line denotes favorite (i.e., the heart 
icon), the green line denotes browse (i.e., the magnifier icon), and the 
orange line denotes buy (i.e., the wallet icon)
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In this paper, we propose a novel Temporal Heterogeneous 
Graph Attention Network (THAN), which is a continuous-time 
THG representation learning method with Transformer-like 
attention architecture. To handle C1, we design a time-aware 
heterogeneous graph encoder to aggregate information from 
different types of neighbors. To handle C2, THAN samples 
temporally constrained neighbors and learns time-aware rep-
resentation from historical heterogeneous events for a given 
node at any time point. It also encodes time information with 
a time encoder and incorporates them into the message propa-
gation process. To handle C3, THAN can be thought of as a 
local aggregation operator based on neighbor sampling that 
recognizes the structural properties of a node’s neighborhood 
and does not introduce global priori information.

THAN generates dynamic embeddings of nodes from 
their most recent neighbors. However, long-term dependen-
cies and evolutionary patterns are not considered. Moreover, 
high-order information can be captured by stacking multiple 
THAN layers, but the cost is huge. To address these prob-
lems, we design an optional memory module to store and 
evolve the node representations. This module dynamically 
updates the node states as events occur and provides indirect 
access to distant neighbors by adding node memories to the 
raw inputs of THAN. The main contributions of our work 
are summarized as follows:

• We propose an inductive continuous-time THG represen-
tation learning method, which can capture both hetero-
geneous information and dynamic features.

• We introduce the dynamic transfer matrix and self-atten-
tion mechanism to implement the information aggrega-
tion of heterogeneous neighbors.

• We devise an optional memory module to enhance the 
representational ability of THAN by storing and updating 
the dynamic node states.

• We conduct experiments on three public datasets and the 
results demonstrate the superior performance of THAN 
over state-of-the-art baselines on the task of temporal 
link prediction.

The rest of the paper is organized as follows. We review 
related work in Sect. 2, and formulate the problem of tem-
poral heterogeneous graph representation learning in Sect. 3. 
In Sect. 4, we discuss the critical techniques of THAN. We 
report a systematic empirical evaluation in Sect. 5, and con-
clude the paper in Sect. 6.

2  Related Work

Our work is related to representation learning on static 
graphs, temporal graphs (i.e., dynamic graphs), and self-
attention mechanism on graphs.

Representation learning on static graphs Graph repre-
sentation learning produces low-dimensional embeddings 
by modeling the topology and node attribute information. 
Early methods [9, 10, 26, 27] generate sequences of nodes 
by random walks among neighbors and then learn node co-
occurrences to obtain representations. Luo et al. [28] define 
ripple distance over ripple vectors to optimize the walking 
procedure. In order to integrate rich node attribute features 
while learning network structure information, the GNN-
based approaches [2, 4, 5, 11–13, 25] update node embed-
dings by aggregating neighborhood influence and propagat-
ing information across a multilayer network to capture the 
high-order patterns of the graph.

Focus on dealing with the heterogeneity, metapath2vec 
[9] and HIN2Vec [10] preserve heterogeneous information 
by designing semantic meta-paths, while heterogeneous 
GNNs [2, 11, 12] attempt to extend the message-passing pro-
cedure to handle different categories of information. Specifi-
cally, RGCN [2] introduces relation-specific transformations 
to encode features, HAN [12] designs hierarchical attention 
to describe node-level and semantic-level structures, HGT 
[11] uses meta-relation-based mutual attention to operate on 
heterogeneous graphs and learns implicit meta-paths. How-
ever, these methods cannot deal with temporal dynamics.

Representation learning on temporal graphs Accord-
ing to how temporal graphs are constructed, temporal graph 
representation learning methods can be divided into two cat-
egories: discrete-time methods, which describe the temporal 
graph as an ordered list of graph snapshots; continuous-time 
methods, which treat the temporal graph as an event stream 
with timestamps.

For the former, EvolveGCN [16] uses GCN to encode 
static graph structure and evolves the parameters of GCN 
by RNN. DySAT [17] uses structural attention to aggregate 
information from different neighbors in each snapshot and 
uses temporal attention to capture evolution over multiple 
snapshots. DyHATR [18] adopts hierarchical attention to 
learn heterogeneous information and applies RNNs with 
temporal attention to capture dependencies among snap-
shots. HTGNN [15] jointly models heterogeneous spatial 
and temporal dependencies through intra-relational, inter-
relational, and cross-temporal aggregation. ROLAND [29] 
proposes a framework to extend static GNN to dynamic 
graphs. Although discrete-time methods succeed in learning 
the dynamic patterns of temporal graphs, they ignore time 
information within the same snapshot and lead to weakened 
connections between graph snapshots.

Recent studies [19–23, 30] have shown the superior 
performance of continuous-time methods in dealing with 
temporal graphs. JODIE [21] uses RNNs to propagate 
information in interactions and update node representations 
smoothly at different timesteps. TGAT [23] is designed 
as a GAT-like neural network, which propagates node 
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information by sampling and aggregating historical neigh-
bors, and learns high-order patterns by stacking multiple 
layers. TGN [24] proposes a general framework for encod-
ing temporal graphs and captures long-term dependencies 
by preserving node states. CAW-N [22] proposes Causal 
Anonymous Walks (CAWs) to inductively represent a tem-
poral graph and uses RNN to encode the walk sequences. 
These methods make full use of temporal information and 
model the dynamics of the graph without taking into account 
the heterogeneity. THINE [19] and HPGE [20] combine het-
erogeneous attention and Hawkes process to model graph 
heterogeneity and dynamics but do not consider the edge 
attributes.

Self-attention mechanism Transformer [31] proposed 
by Vaswani et al. for machine translation has achieved great 
success in NLP and CV tasks, which has recently been 
attempted for graph representation learning. For example, 
GTN [32] automatically generates useful meta-paths and 
learns new graph structures. Graphormer [33] generalizes 
positional encoding to the graph domain and uses scaled dot-
product attention for message passing. Transformer relies on 
the self-attention mechanism to learn contextual information 
for sequences. A scaled dot-product attention layer can be 
defined as:

where Q denotes the ‘queries’, K the ‘keys’ and V the ‘val-
ues’. They are the projections of the input Z on the matrices 
WQ , WK and WV , where Z contains the node embeddings and 
their positional embeddings.

3  Preliminaries

In this section, we introduce the definition of temporal het-
erogeneous graph and the problem of temporal heterogene-
ous graph representation learning.

Definition 1 Temporal Heterogeneous Graph. A temporal 
heterogeneous graph is G = (V ,E, T ,�,�) , where V denotes 
the set of nodes corresponding to a node type mapping 
function � ∶ V → A , E denotes the temporal events (i.e., 
edges) corresponding to an event type mapping function 
� ∶ E → R , and T denotes the set of timestamps. A and 
R are node type set and event type set, respectively, and 
|A| + |R| > 2.

Note that event e = (u, v, t,�) means that there is an edge 
from u to v at time t, where � denotes the edge feature and 
r = �(e) denotes the event type.

(1)Attn(Q,K,V) = softmax

�
QK⊤

√
d

�
V

Example 2 In Fig. 1b, the temporal heterogeneous graph 
about user-item interactions consists of 13 nodes, 17 events 
(smaller subscript of ti indicates that the event occurred ear-
lier), two types of nodes, and three types of events. Specifi-
cally, V = {u1, ..., u5, i1, ..., i8} , E = {(u1, i1, t1), ..., (u5, i5, t8)} , 
A = {user, item} , R = {r1, r2, r3} , �(u) = user , �(i) = item , 
r1 denotes favorite, r2 denotes browse, and r3 denotes buy. 
According to the line color, we know that �(u1, i1, t1) = r2 
and �(u5, i5, t8) = r3.

For any node pair (u, v), a temporal causal path is a set of 
events consisting of u as the source node of the start event 
and v as the target node of the terminal event. Therefore, 
the temporal shortest path distance dt(u, v) is defined as the 
minimum length of the temporal causal path from u to v with 
all events on the path occurring no later than t. Denote Vt as 
the set of nodes that appear up to time t, and for each node 
v ∈ Vt , define its k-hop temporal neighbors as:

For node v, we define its k-hop temporal neighborhood as 
Gk

t
(v) , which is a subset of the temporal heterogeneous graph 

G and can be induced by Nk
t
(v) . Gk

t
(v) contains the source 

node v and its neighbors Nk
t
(v) , events between the nodes, 

and timestamps of these temporal events. The final repre-
sentation of node v will generate relying on Gk

t
(v) . Notice 

that we use Nt(v) and Gt(v) to simplify the representation of 
N1

t
(v) and G1

t
(v) in this paper, respectively.

Definition 2 Temporal Heterogeneous Graph Representa-
tion Learning. Given a temporal heterogeneous graph G and 
the node features X, it aims to learn a mapping function 
F ∶ F(G,X) → ℝ

|V|×d , where |V| is the node size and d is 
the dimension of embeddings, d ≪ |V|.

This mapping function maps nodes to low-dimensional 
vector space while preserving temporal, structural, and 
semantic information. For the sake of clarity, Table 1 sum-
marizes the main notations used in this paper.

4  The Proposed Model

In this section, we present a Transformer-like graph atten-
tion architecture named THAN. It uses mapping matrices to 
project node embeddings into the same vector space, then 
passes neighborhood information by dot-product attention 
corresponding to different event types. Similar to GAT [5], 
THAN is designed as a local aggregation operator that cap-
tures high-order information by stacking multiple THAN 
layers. Figure 2 shows the architecture of the l-th THAN 

(2)Nk
t
(v) = {u ∶ dt(u, v) ≤ k, u ∈ Vt}
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layer, which has three components: temporal heterogeneous 
neighbor sampling, dynamic embedding mapping and tem-
poral heterogeneous graph attention layer. To capture long-
term dependencies and evolutionary patterns, we design an 
optional memory module providing indirect access to dis-
tant neighbors, which dynamically updates the states of the 
nodes. After graph encoding, we use a heterogeneous graph 
decoder for the temporal link prediction task, which receives 
the node representations from THAN as inputs.

4.1  Temporal Heterogeneous Neighbor Sampling

For the purpose of improving the induction and generali-
zation performance of the model, THAN does not select 
all but a certain number of neighbors from the temporal 
neighbors as the input. Given a node v0 and time t, sample 
N neighbors from its 1-hop temporal neighbors Nt(v0) , 
denoted as {v1, ..., vN}.

We discuss two neighbor sampling strategies: uniform 
random sampling, where all temporal neighbors are ran-
domly selected with equal probability; top-N recent sam-
pling, where the time difference with the source node is 
calculated and sorted in ascending order, then select the 
top N neighbors. Intuitively, recent interactions reflect the 
node’s current state better than distant interactions and 
have a greater influence on future events. On the contrary, 
the distant interactions may introduce noise. Therefore, 
we use the top-N recent sampling strategy to sample 
neighbors.

In the temporal heterogeneous graph, the number of 
different-typed events varies greatly, which can easily 
lead to an unbalanced distribution of the types of sam-
pled neighbors. To avoid sampling bias as far as possible, 
THAN limits the number of samples of each event type to 
no more than M. If the total number of event types related 
to the source node is � (� ≤ |R|) , the total number of sam-
pled neighbors N satisfies N ≤ � ∗ M.

4.2  Dynamic Embedding Mapping

For different nodes, TGAT [23] assumes that they are in 
the same feature distribution and share parameters of the 

Table 1  Summary of main notations

Notation Description

G Temporal heterogeneous graph
V Set of nodes
E Set of edges
T Set of timestamps
A Set of node types
R Set of edge types
� Node type mapping function
� Event type mapping function
dt(u, v) Temporal shortest path distance from u to v at time t
Nk

t
(v) k-hop temporal neighbors of node v up to time t

xv(t) Input embedding of node v
e Projection vector of event types
n Projection vector of node types
M Mapping matrix of meta relation ⟨�(u),�(e),�(v)⟩
�0,i(ti) Event feature between node v0 and vi at time ti
WQ , WK , WV Projection matrices of ‘query’, ‘key’ and ‘value’

h̃
l

0
(t) Final output embedding of node v0 at time t

oi(t) Memory vector of node vi at time t
mi(t) Message of node vi at time t

(a) Temporal Heterogeneous Neighbor Sampling (c) Temporal Heterogeneous Graph Attention Layer

(b) Dynamic Embedding Mapping

Fig. 2  The architecture of the l-th THAN layer for node u0 at time t 
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model, which does not hold in heterogeneous graphs. Fur-
thermore, in the real world, there might be multiple types 
of edges between two nodes, and different types may cor-
respond to different vector distributions. So we must con-
sider not only the diversity of nodes, but also edges when 
propagating information.

A straightforward solution is mapping features in different 
distributions to the same semantic space by transfer matrices. 
However, as the number of types increases, more parameters 
will be introduced into the model. To reduce the number of 
training parameters as well as to avoid large-scale matrix mul-
tiplication calculations, inspired by TransD [34], THAN pro-
jects node features from the node-type space to the event-type 
space by dynamically computing the transfer matrix with two 
type-related vectors.

Example 3 Suppose that there are two types of nodes, and 
three types of events in a heterogeneous graph. If there are 
four dimensions of each node type and each event type, 
respectively, we have to define the transfer matrix for each 
mapping from node type to event type. If we parameterize 
the transfer matrices directly, then the number of parameters 
is 96 (i.e., 2 × 3 × 4 × 4 ). However, the number of param-
eters is only 20 (i.e., 2 × 4 + 3 × 4 ) if we use the projection 
vectors.

Given an event e = (u, v, t) with its meta relation 
⟨�(u),�(e),�(v)⟩ [11], we define the dynamic mapping matri-
ces as:

where e and n denote the projection vectors of event types 
and node types, respectively, both of which are trainable. 
The projected node embeddings are:

where xu(t) and xv(t) are the input embeddings of node u and 
v, respectively.

4.3  Temporal Heterogeneous Graph Attention Layer

Different events in a temporal heterogeneous graph may 
have different features, for example, in a question answer-
ing network, an answer interaction can be regarded as an 
event, and its features can be determined by the content. To 
enable event features to be propagated when aggregating 

(3)Meu = e𝜑(e)n
⊤
𝜙(u)

+ Id×d

(4)Mev = e𝜑(e)n
⊤
𝜙(v)

+ Id×d

(5)hu(t) = Meuxu(t) = n⊤
𝜙(u)

xu(t)e𝜑(e) + xu(t)

(6)hv(t) = Mevxv(t) = n⊤
𝜙(v)

xv(t)e𝜑(e) + xv(t)

information, THAN adds them to the node embeddings fol-
lowed by a normalization layer (e.g., LayerNorm [35]). The 
event features will be resized to the same dimension as the 
node embeddings, and the output is:

where i indicates the i-th neighbor, �0,i(ti) denotes the feature 
of event between node v0 and vi at time ti . Here, we set �0,0(t) 
as zero vector.

Transformer [31] uses positional encoding to model rela-
tive position relationships, thus solving the problem that the 
attention mechanism cannot capture the sequential relation-
ships between entities. In temporal graphs, a functional time 
encoder [36, 37] is usually used to map the time interval 
between nodes into a dT-dimensional vector in place of posi-
tional encoding. THAN uses a Bochner-type functional time 
encoding [23, 37] as:

where { �i }s are learnable parameters. We merge the time 
embeddings with the node representations to obtain the 
node-temporal feature matrices as:

where zei
0
 and zi denote the mapped embeddings of the source 

node v0 and its neighbor vi corresponding to event ei , respec-
tively, and ‖ denotes the ‘concatenate’ operation. Zs and Zn 
are forwarded to three different linear projections to obtain 
the ‘query’, ‘key’, and ‘value’:

where ei denotes the event between v0 and vi , W
�(ei)

Q
 , W�(ei)

K
 , 

and W�(ei)

V
∈ ℝ

(d+dT )×d denote the projection matrices. Due 
to the edge heterogeneity, the projection matrices cannot be 
shared directly, thus we use matrices of different types to 
distinguish different events while capturing the semantics of 
events. The attention weight �i is given by:

(7)zi(ti) = LayerNorm(hl
i
(ti) + �0,i(ti))

(8)

TE(t) =

√
1

dT
[cos(�1t), sin(�1t), ..., cos(�dT

t), sin(�dT
t)]

(9)Zs(t) = [z
e1
0
(t)‖TE(0), ..., zeN

0
(t)‖TE(0)]⊤

(10)Zn(t) = [z1(t1)‖TE(t − t1), ..., zN(tN)‖TE(t − tN)]
⊤

(11)Q = Zs(t)W
�(ei)

Q

(12)K = Zn(t)W
�(ei)

K

(13)V = Zn(t)W
�(ei)

V

(14)𝛼i =
exp(𝛽i)

∑N

j=1
exp(𝛽j)

= QiK
⊤

i
⋅

𝜇𝜙(v0),𝜑(ei)√
d
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and it reveals how vi attends to the feature of v0 through 
event ei . In addition, not all types of events have the same 
contribution to the source node, so we set a learnable ten-
sor � ∈ ℝ

|A|×|R| to adaptively adjust the scale of attention to 
different-typed events.

The self-attention aggregates the features of temporal 
neighbors and obtains the hidden representation for node vi 
as �iVi , which can capture both node features and topologi-
cal information. The next step is to map the representations 
back to the type-specific distribution of node v0 so that they 
can be fused with the its features. We use a linear projection 
named Q-Linear to do this and the neighborhood represen-
tation is:

To combine neighborhood representation with the source 
node feature, we concatenate and pass them to a feed-for-
ward neural network as in TGAT [23]:

Multi-head attention can effectively improve the model 
performance and stability. THAN can be easily extended to 
support a multi-head setup. Assuming the self-attention out-
puts come from P different heads, i.e., si ≡ Attni(Q,K,V) , 
i = 1, ...,P . We first concatenate these neighborhood repre-
sentations with the source node’s feature and then carry out 
the same procedure in Eq. 16 as:

where h̃l
0
(t) ∈ ℝ

d is the final output representation for node 
v0 at time t, and it can be used for link prediction task with 
an encoder-decoder framework.

(15)s(t) =

N∑

i=1

Q-Linear�(v0)(�iVi)

(16)
h̃
l

0
(t) = FFN(s(t)‖xl

0
(t)) ≡ ReLU([s(t)‖xl

0
(t)]Wl

0
+ bl

0
)Wl

1
+ bl

1

(17)h̃
l

0
(t) = FFN(s1(t)‖...‖sP(t)‖xl

0
(t))

4.4  Memory Module

THAN stacks multiple networks to capture high-order pat-
terns. However, as the number of layers increases, the cost 
of memory resources and training time grows exponentially. 
Moreover, constrained by the message-passing architecture, 
THAN cannot capture long-term features. To break this limi-
tation, we devise a memory module (similar to TGN [24]) to 
save the historical states (i.e., memories) of the nodes. The 
states will be dynamically updated as events occur, thereby 
introducing long-term dependencies and indirectly accessing 
information from distant hops. Our experimental study, to be 
given in Sect. 5, demonstrates that the memory module costs 
less time than adding a THAN layer, but achieves similar or 
even superior performance.

Figure 3 shows the standard computation process of 
THAN with memory module on a batch of training data. 
It encodes the input data and the latest memory by THAN 
and output the node representations. The memory module 
uses the representations to compute messages and update 
node memory. However, the memory module does not 
directly affect the loss. To address this problem, we save 
messages of nodes involved in current batch at the end of 
training and update the memory with messages from previ-
ous batch before graph embedding. The memory module 
consists of the following components:

Memory Bank keeps the latest vector oi(t) for node vi at 
time t, which is initialized as a zero vector. Its memory is 
updated on the occurrence of each event involving the node.

Message Function is a learnable function to compute a 
message mi(t) for node vi as follows:

where h̃i(t) is the representation from graph attention mod-
ule, t−

i
 is the time of the previous event involving node vi , 

msg(⋅) is the message function and we use FFN in this paper. 

(18)mi(t) = msg(h̃i(t)‖TE(t − t−
i
))

Fig. 3  Computation process of 
THAN with the memory mod-
ule on a batch of events



105Memory-Enhanced Transformer for Representation Learning on Temporal Heterogeneous Graphs  

1 3

In the case of an event eij(t) between source node vi and tar-
get node vj , two messages (i.e., mi(t) and mj(t) ) can be com-
puted. Different from TGN [24], we concatenate the node 
representation with the time embedding of the time span, 
while TGN considers both source node memory, target node 
memory, time embedding and edge features.

Message Aggregator is an aggregation function to 
aggregate messages generated from message function com-
ponent. In batch processing node vi may involve multiple 
events and each event corresponding to a message. These 
messages mi(t1), ...,mi(tb) are aggregated with the following 
formulation:

where t1, ..., tb ≤ t , agg(⋅) can be optionally chosen as RNNs 
or attention networks. In this paper, we simply keep the lat-
est message for a given node, which is considered from an 
efficiency perspective as it does not need to learn.

Memory Updater is used to update the memory of the 
nodes with the aggregated messages. Its formulation is:

where update(⋅) is a learnable memory update function like 
LSTM [38] or GRU [39]. When an interaction event hap-
pens, the memories of both nodes it involves will be updated.

4.5  Heterogeneous Graph Decoder

Heterogeneous graph decoder aims to reconstruct hetero-
geneous edges of the graph relying on the node representa-
tions, in other words, it scores edge triples through a function 
H ∶ ℝ

d ×ℝ
dr ×ℝ

d
→ ℝ , where dr denotes the dimension of 

edge type embeddings. We compute node representations 
through a l-layer THAN encoder and use a feed-forward neu-
ral network as the scoring function, thus an event (u, v, t) of 
type r can be scored as:

where u and v denote the source and target node, respec-
tively, r ∈ ℝ

dr denotes the edge type embedding.
As in previous work [2, 23], we train the model with 

negative sampling. For each observed example, we change 
the target node to construct a nonexistent event as a negative 
sample, so the number of positive samples is the same as that 
of negative samples. We optimize the cross-entropy loss as:

where � denotes the total set of positive and negative triples, 
� denotes the logistic sigmoid function, y denotes the sample 

(19)m̃i(t) = agg(mi(t1), ...,mi(tb))

(20)oi(t) = update(m̃i(t), oi(t
−))

(21)H(u, v, t, r) = FFN(h̃
l

u
(t)‖rr‖h̃

l

v
(t))

(22)
L =

1

���
�

(u,v,t,r,y)∈�

−y log �(H(u, v, t, r))

− (1 − y) log(1 − �(H(u, v, t, r))) + �‖�‖2
2

label and takes the value of 1 for positive samples and 0 
for negative samples, � denotes the model parameters and � 
controls the L2 regularization.

5  Experiments

In this section, we present the details of experiments includ-
ing experimental settings and results. Firstly, we introduce 
the dataset, baselines, and parameter settings. Secondly, 
the performance comparisons are demonstrated in detail. 
Thirdly, we compare the effectiveness of different variants. 
Finally, we test the inductive capability of our proposed 
model.

5.1  Experimental Settings

5.1.1  Datasets

We evaluate our model on three public datasets: Movielens, 
Twitter, and MathOverflow. The statistics of these datasets 
are listed in Table 2.

• Movielens1 is a dataset of user ratings of movies at dif-
ferent times collected from the MovieLens website. We 
select two types of nodes: user and movie. Regarding 
different ratings of movies as different types of events, a 
total of five types of events are obtained.

• Twitter2 collects public data on three types of relation-
ships (retweet, reply, and mention) between users from 
the US social network Twitter.

• MathOverflow3 is from MathOverflow, a question and 
answer site for professional mathematicians. There are 
three relationships between users in this dataset: a user 
answered or commented on another user’s question, and 
a user commented on an answer.

Table 2  Statistics of the three public datasets

Dataset Node 
types

#Nodes #Event 
types

#Events Time span

Movielens User 943 5 100,000 7 months
Movie 1682

Twitter User 304,691 3 563,069 188 days
MathOver-

flow
User 24,818 3 506,550 2,350 days

1 https:// group lens. org/ datas ets/ movie lens/ 100k.
2 http:// snap. stanf ord. edu/ data/ higgs- twitt er. html.
3 http:// snap. stanf ord. edu/ data/ sx- matho verfl ow. html.

https://grouplens.org/datasets/movielens/100k
http://snap.stanford.edu/data/higgs-twitter.html
http://snap.stanford.edu/data/sx-mathoverflow.html
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5.1.2  Baselines

To demonstrate the effectiveness, we compare THAN with 
ten popular graph representation learning methods, which 
can be divided into three groups: static graph embedding 
(DeepWalk [27], metapath2vec [9], GraphSAGE [25], GAT 
[5], RGCN [2], and HGT [11]), discrete-time dynamic graph 
embedding (DySAT [17] and DyHATR [18]), and contin-
uous-time dynamic graph embedding (TGAT [23] and 
HPGE [20]). We use the implementations of static graph 
embedding methods provided in the PyTorch Geometric 
(PyG) package [40], and for other baselines, use the code 
submitted by the authors on GitHub. Besides, we ignore the 
heterogeneity for homogeneous methods and ignore the tem-
poral information for static methods. For fairness, the same 
decoder declared in Sect. 4.5 is used for the downstream 
temporal link prediction task.

• DeepWalk and metapath2vec: They are random walk-
based network embedding methods designed for static 
graphs.

• GraphSAGE and GAT : They are two inductive GNN 
methods for static homogeneous graphs, aggregating and 
updating node representations in the message passing 
framework.

• RGCN and HGT: They are two GNN methods for static 
heterogeneous graphs, where the former maintains a 
unique linear projection weight for each edge type while 
the latter uses mutual attention based on meta-relations 
to perform message passing on heterogeneous graphs.

• DySAT: A discrete-time temporal graph embedding 
method and we split graph snapshots with the guidance 
in the paper.

• DyHATR : A discrete-time THG embedding method that 
uses hierarchical attention to learn heterogeneous infor-
mation and incorporates RNNs with temporal attention 
to capture evolutionary patterns.

• TGAT : A continuous-time temporal graph embedding 
method that aggregates historical neighbors by self-atten-
tion to obtain node representations.

• HPGE: A continuous-time THG embedding method that 
integrates the Hawkes process into graph embedding to 
capture the excitation of historical heterogeneous events 
to current events.

5.1.3  Parameter Settings

THAN was implemented in PyTorch. We split the training 
and test set as 8:2 according to time order. For a fair compar-
ison, we use the default parameter settings of the baselines 
and set the embedding (i.e., node output embeddings, time 
embeddings, and event type embeddings) dimension d as 
32, regularization weight � as 0.01, and dropout rate as 0.1. 

We employ Adam as the optimizer with a learning rate of 
0.001. We randomly initialize the node vector if the dataset 
does not provide node features, and similarly, initialize the 
event features as zero vectors. For DeepWalk, metapath2vec, 
GraphSAGE, GAT, RGCN, and HGT, we set the max train-
ing epochs as 500 and use an early stopping strategy with the 
patience of 50. For DySAT and DyHATR, we split datasets 
into 10 snapshots. For our THAN, we set the event embed-
ding dimension as 16, the number of layers as 2, attention 
heads as 4, epochs as 20 (30 for Movielens), learning rate 
as 0.001 (0.0001 for Twitter), batch size as 800 (500 for 
Movielens), and the number of samples for each type of 
neighbors as 10 (8 for Movielens). The implementation of 
THAN is publicly available.4

5.2  Effectiveness Analysis

We conduct the temporal link prediction task to verify the 
effectiveness and efficiency, which asks if a type-r edge 
exists between two nodes at time t. We run all methods five 
times on three datasets and evaluate the average AUC (Area 
under the receiver operating characteristic curve) and AP 
(Average precision) scores. The overall results are shown 
in Table 3.

Obviously, THAN achieves the state-of-the-art perfor-
mance in AUC metric on all three datasets. Although THAN 
does not outperform all other methods in AP metric, it also 
has a considerable performance (i.e., AP score achieves the 
SOTA result on Movielens and Twitter datasets and over 
0.9 on MathOverflow dataset). For the Movielens dataset, 
dynamic graph embedding methods outperform the static 
graph embedding methods that ignore temporal informa-
tion in both AUC and AP metrics, because the former learn 
temporal information in fine-grained contexts. Specifically, 
DySAT and DyHATR obtain performance improvements 
due to considering the changes of graph structure over time. 
TGAT, HPGE, and our THAN perform better than DySAT 
and DyHATR, this phenomenon shows that it is important to 
make full use of temporal information compared with simply 
preserving evolving structures between snapshots. For the 
other two datasets, the results of all methods show a similar 
trend, which means they probably have the same network 
patterns and temporal motifs. It may be related to the fact 
that they are both user activities datasets.

The GNN-based approaches achieve better performance 
than the random walk-based approaches since they cap-
ture much more useful information about the graph struc-
ture and the node features are utilized. The heterogeneous 
graph methods perform better than the homogeneous graph 

4 https:// github. com/ scu- kdde/ HGA- THAN- 2022.

https://github.com/scu-kdde/HGA-THAN-2022
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methods which indicates that integrating semantic informa-
tion can benefit graph representation. In terms of AUC score, 
THAN improves performance by 3.38%, 2.29% and 8.1% 
compared to TGAT on three datasets, respectively. It demon-
strates the effectiveness of our proposed model. In summary, 
our proposed approach works for two main reasons: (1) it 
effectively extracts structural features and fine-grained tem-
poral information; (2) it reasonably handles heterogeneity in 
the process of message passing and aggregation.

5.3  Ablation Study

To demonstrate the effectiveness of each component in 
THAN, we conduct ablation experiments by removing/
replacing one specific component at a time. We rename 
them as: (1) THAN w/o time: removing time embeddings; 
(2) THAN w/o � : removing event type attention weight; 
(3) THAN w/o Qlin: removing linear projection Q-Linear; 
(4) THAN r-uniform: using the uniform random sampling 
strategy instead of top-N recent sampling.

We report the results of the ablation study in Fig. 4, from 
which we have the following observations: (1) THAN out-
performs the others with components removed in all metrics; 
(2) Time embedding plays an important role in temporal 
graph representation learning; (3) Setting different attention 
weights for different event types helps to learn heterogene-
ous semantic information; (4) More recent neighbors are 
more useful for extracting temporal dynamics and better 
reflect the current state of the source node; (5) It makes 
sense to keep the same feature space to fuse features from 
different nodes. Besides, it is noteworthy that removing 
the Q-Linear component did not have a significant impact 
on model performance on the Twitter and MathOverflow 

datasets, that is because both these datasets have only one 
type of node, and there is no need to consider the consist-
ency of feature distribution across different types of nodes.

5.4  Parameter Sensitivity

To investigate the robustness of THAN and find the most 
suitable hyperparameters, we analyzed the effect of the num-
ber of neighbor samples and attention heads on three data-
sets shown in Fig. 5. For fairness, we select the number of 
neighbor samples from {4, 6, 8, 10} , the number of attention 
heads from {1, 2, 4, 6} , and the rest of the parameters remain 
the same as the experimental settings in Sect. 5.1.

On the one hand, Fig. 5a, b can lead to the following 
conclusion: the scores of AUC and AP improve as the 
number of neighbor samples increases, but on the Mov-
ielens dataset there is a decreasing trend instead, which 
may be caused by the dense connections between nodes. 
Sampling more neighbors may introduce more noise, 
resulting in smooth node representations. On the other 
hand, Fig. 5c, d shows that the number of attention heads 
affects the performance of the model. Multi-head attention 
helps to obtain different aspect representations from differ-
ent subspaces, thus enhancing the expressiveness.

5.5  Effectiveness of Memory Module

In this section, we perform detailed studies on different 
instances of THAN focusing on the trade-off between accu-
racy and efficiency. The design of each variant is as follows: 
(1) THANl1 : only using one graph attention layer as the 
graph encoder; (2) THAN†

l1
 : one-layer encoder with memory 

module; (3) THANl2 : stacking two graph attention layers.

Table 3  Overall performance 
comparison on temporal link 
prediction task

All results are converted to a percentage by multiplying by 100, and the standard deviations computed over 
ten runs. The best and second-best results in each column are highlighted in bold font and underlined

Dataset Movielens Twitter MathOverflow

Model AUC AP AUC AP AUC AP

DeepWalk 67.35±0.3 71.26±0.3 57.73±0.7 63.63±0.9 63.73±0.2 73.47±0.4
metapath2vec 68.43±0.2 71.82±0.2 66.29±0.3 74.67±0.2 72.59±0.9 81.13±1.1
GraphSAGE 72.34±0.4 75.94±0.4 76.88±3.2 85.10±2.1 83.48±2.4 89.20±3.4
GAT 71.81±1.3 73.23±2.1 83.69±3.3 89.23±2.6 83.79±3.5 90.01±3.7
RGCN 69.49±0.4 76.51±0.5 84.18±0.6 91.41±0.8 84.02±0.2 92.91±0.2
HGT 73.44±1.1 80.01±0.7 88.54±0.5 93.06±0.3 86.53±1.5 93.88±1.4
DySAT 73.13±0.4 72.1±0.3 83.03±0.3 86.89±0.2 83.12±0.3 85.84±0.1
DyHATR 80.21±0.7 77.54±1.3 79.73±0.1 81.78±0.4 75.22±0.1 78.21±0.2
TGAT 82.00±0.4 79.46±0.4 89.55±0.3 90.43±0.2 82.23±0.6 83.25±0.6
HPGE 85.25±0.1 82.16±0.2 73.55±0.1 73.91±0.1 81.12±0.2 82.61±0.2
THAN 88.63±0.1 86.77±0.2 91.84±0.2 93.43±0.2 90.33±0.1 90.62±0.2



108 L. Li et al.

1 3

From Table 4, we can see that stacking two layers helps 
obtaining good performance ( THANl2 vs THANl1 ), while 

the time costs increase by a factor of 8 to 21. Compared to 
adding a THAN layer, using memory module achieves sim-
ilar or even superior model performance, but spends much 
less time ( THANl2 takes about 13 times, 4 times and 19 
times longer than THAN†

l1
 on three datasets, respectively). 

On the one hand, the number of neighbors that need to be 
aggregated increases exponentially by adding a layer. On 
the other hand, when accessing the memory of the source 
node and its 1-hop neighbors, THAN is introducing long-
term dependencies and indirectly accessing information 
from distant hops.

5.6  Inductive Capability Analysis

We further discuss the inductive performance of THAN with 
the same settings as TGAT, i.e., mask 10% of the nodes from 
the training set and predict the existence of future events 
containing these masked nodes. In this paper, we choose 
GraphSAGE, GAT and TGAT as the comparison mod-
els. They are proposed as inductive representation learn-
ing methods on graphs, and their inductive capabilities are 
demonstrated experimentally. Experiments were conducted 
on three datasets and the results are shown in Table 5. Intui-
tively, THAN outperformed the baselines in two metrics on 
all datasets, which demonstrates the inductive capability of 
THAN.

(a) AUC of Movielens (b) AUC of Twitter (c) AUC of MathOverflow

(d) AP of Movielens (e) AP of Twitter (f) AP of MathOverflow

Fig. 4  Ablation study of THAN

(a) Neighbor: AUC (b) Neighbor: AP

(c) Head: AUC (d) Head: AP

Fig. 5  Sensitivity analysis on the number of neighbor samples and 
attention heads
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6  Conclusion

Existing graph representation learning methods cannot 
well capture the information of temporal heterogeneous 
graphs. This paper proposes the THAN, which is a con-
tinuous-time temporal heterogeneous graph representation 
learning method. THAN uses dynamic transfer matrices to 
map different-typed nodes to the same feature space and 
aggregates neighborhood information based on the type-
aware self-attention mechanism. To efficiently utilize tem-
poral information, THAN uses a functional time encoder to 
generate time embeddings that are naturally integrated into 
the neighbor aggregation process. THAN is an inductive 
message-passing model based on historical neighbor sam-
pling that not only captures temporal dynamics but also effi-
ciently extracts topological features. In addition, we devise 
an optional memory module to store node states and capture 
long-term dependencies. It improves the model performance 
and takes less time than stacking a new THAN layer. The 
experimental results on three public datasets demonstrate 
that THAN outperforms the baselines on the temporal link 
prediction task.

In future work, on one hand, we plan to explore the 
usage of THAN in various fields, such as recommender 
systems, social networks, and biological interaction net-
works. On the other hand, we try to understand the specific 
patterns/motifs of temporal heterogeneous networks from 
different domains. Furthermore, the large-scale temporal 
heterogeneous graph embedding is another direction wor-
thy of further investigation.
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Table 4  Trade-off between 
accuracy (test AUC score in 
%) and speed (time cost per 
epoch in second) for different 
instances of the THAN

All experiments are conducted in batch size of 200

Dataset Movielens Twitter MathOverflow

Model AUC Time AUC Time AUC Time

THANl1 83.90±0.2 35.8±2.0 87.80±0.5 192.6±4.0 87.40±0.1 185.4±3.1

THAN
†

l1
87.87±0.3 40.5±2.6 92.79±0.5 360.7±28.1 92.93±0.3 210.8±12.5

THANl2 88.63±0.1 524.2±5.4 91.84±0.2 1545.5±20.1 90.33±0.1 4046.8±19.7

Table 5  Results of inductive 
learning task

Dataset Movielens Twitter MathOverflow

Model AUC AP AUC AP AUC AP

GraphSAGE 70.58±0.8 71.37±1.6 73.15±3.9 78.44±3.5 70.56±5.5 74.23±5.2
GAT 69.48±1.2 72.02±1.9 75.77±4.4 80.61±5.1 71.73±4.8 76.42±5.6
TGAT 78.35±0.4 76.97±0.3 85.87±0.3 88.61±0.3 74.14±0.5 75.96±0.4
THAN 82.71±0.2 80.67±0.2 88.41±0.2 90.69±0.3 80.93±0.3 80.52±0.3

https://grouplens.org/datasets/movielens/100k
https://grouplens.org/datasets/movielens/100k
http://snap.stanford.edu/data/higgs-twitter.html
http://snap.stanford.edu/data/higgs-twitter.html
http://snap.stanford.edu/data/sx-mathoverflow.html
http://snap.stanford.edu/data/sx-mathoverflow.html
http://creativecommons.org/licenses/by/4.0/
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