
Vol:.(1234567890)

Data Science and Engineering (2023) 8:98–111
https://doi.org/10.1007/s41019-023-00207-w

1 3

RESEARCH PAPER

Memory‑Enhanced Transformer for Representation Learning
on Temporal Heterogeneous Graphs

Longhai Li1 · Lei Duan1,3 · Junchen Wang1 · Chengxin He1 · Zihao Chen1 · Guicai Xie1 · Song Deng2 · Zhaohang Luo4

Received: 4 December 2022 / Revised: 7 February 2023 / Accepted: 1 March 2023 / Published online: 22 March 2023
© The Author(s) 2023

Abstract
Temporal heterogeneous graphs can model lots of complex systems in the real world, such as social networks and e-commerce
applications, which are naturally time-varying and heterogeneous. As most existing graph representation learning methods
cannot efficiently handle both of these characteristics, we propose a Transformer-like representation learning model, named
THAN, to learn low-dimensional node embeddings preserving the topological structure features, heterogeneous semantics,
and dynamic patterns of temporal heterogeneous graphs, simultaneously. Specifically, THAN first samples heterogeneous
neighbors with temporal constraints and projects node features into the same vector space, then encodes time information and
aggregates the neighborhood influence in different weights via type-aware self-attention. To capture long-term dependencies
and evolutionary patterns, we design an optional memory module for storing and evolving dynamic node representations.
Experiments on three real-world datasets demonstrate that THAN outperforms the state-of-the-arts in terms of effectiveness
with respect to the temporal link prediction task.

Keywords Temporal heterogeneous graphs · Graph neural networks · Graph representation learning · Transformer

1 Introduction

Graph representation learning, as an important task in
machine learning, has significant practical value in areas
such as social networks and recommendation systems. Exist-
ing graph representation learning methods usually take
static graphs as the input to obtain low-dimensional embed-
dings by encoding local non-Euclidean structures and have
achieved extensive excellent performance in downstream
tasks such as link prediction [1–3], node classification [4,
5], and graph classification [6, 7].

However, most graphs in the real world are naturally
heterogeneous and dynamic, which cannot be accurately
represented by static homogeneous graphs. Several studies
incorporate heterogeneous data models into a unified graph
model [8], promoting the research of graph data. Taking the
example of a user-item interaction network in e-commerce
scenarios, illustrated in Fig. 1a, there are two types of nodes
(i.e., user and item) and three types of interactions (i.e.,
favorite, browse and buy). Additionally, each interaction is
associated with a continuous timestamp to indicate when it
occurred. In this paper, we define such interaction sequences

 * Lei Duan
 leiduan@scu.edu.cn

 Longhai Li
 lilonghai@stu.scu.edu.cn

 Junchen Wang
 wangjunchen@stu.scu.edu.cn

 Chengxin He
 hechengxin@stu.scu.edu.cn

 Zihao Chen
 chenzihao@stu.scu.edu.cn

 Guicai Xie
 guicaixie@stu.scu.edu.cn

 Song Deng
 dengsong@njupt.edu.cn

 Zhaohang Luo
 luozhaohang@qq.com

1 School of Computer Science, Sichuan University, Chengdu,
China

2 Institute of Advanced Technology, Nanjing University
of Posts & Telecommunications, Nanjing, China

3 Med-X Center for Informatics, Sichuan University, Chengdu,
China

4 Nuclear Power Institute of China, Chengdu, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-023-00207-w&domain=pdf

99Memory-Enhanced Transformer for Representation Learning on Temporal Heterogeneous Graphs

1 3

connecting different types of nodes as temporal heterogene-
ous graph (THG). It is of great significance to learn THG
representations with dynamic and heterogeneous character-
istics for modeling real-world complex systems.

Example 1 The user-item interaction network in an e-com-
merce scenario is illustrated in Fig. 1a. Two snapshots of the
network are given for the dates of June 18, 2021 and Novem-
ber 11, 2021. There are two types of nodes (i.e., user and
item) and three types of interactions (i.e., favorite, browse
and buy), where favorite corresponds to the blue line, browse
to the green line, and buy to the orange line. Additionally,
each interaction is associated with a continuous timestamp to
indicate the time it occurred. We can see that users’ purchase
intentions change dynamically over time.

In the case of the user-item interaction network shown
in Fig. 1a, THG representation learning has the following
challenges compared to static homogeneous graph repre-
sentation learning:

• (C1) How to model the heterogeneity? The nodes and
edges in THG are of various types and have rich seman-
tics, making it difficult to obtain sufficient heterogeneous
information just by encoding local graph structure.

• (C2) How to model the continuous dynamics? The edges
in the THG are time-informed and time-dependent, i.e.,
each event occurs with a timestamp and current event
may affect the occurrence of future events. For instance,
there might be causal relationships between the inter-
action of searching for headphones on June 18 and the
interaction of purchasing headphones on November 11
by user A. Therefore, both efficient methods of convert-
ing temporal information into dynamic features and
temporal constraints are needed to avoid violating the
temporal causality between interactions.

• (C3) How to deal with new nodes? The dynamics of the
THG imply that new nodes will emerge in the future
(e.g., users D and E are two new nodes that appeared
on November 11 compared to June 18). In other words,
these nodes are not present during training and many
practical applications will require their embeddings to
be generated in a timely manner. Therefore, it is neces-
sary to construct an inductive modeling approach that
generalizes the optimized representation to the new
temporal subgraphs.

As for the heterogeneity, earlier methods [9, 10] preserve
heterogeneous information by designing semantic meta-
paths to generate heterogeneous sequences, and recent
studies [2, 11–13] aggregate information from heteroge-
neous neighborhood by extending the message-passing
process of graph neural networks (GNNs). Concerning
dynamics, it is general to split temporal graphs into several
static snapshots (i.e., discrete-time dynamic graph, DTDG
[14]) and use RNNs or attention to capture the evolution-
ary patterns between snapshots [15–18]. Although these
methods can learn graph dynamics of the THG to some
extent, the temporal information within the same snapshot
is usually ignored, and the scale of snapshots needs to
be predetermined in advance. Recently, researchers have
proposed continuous-time dynamic graph (CTDG [14])
approaches [19–24] to capture dynamics via passing infor-
mation between different interactions, or using continuous-
time functions to generate temporal embedding. In regard
to the new nodes, inductive graph representation learn-
ing methods [5, 22, 23, 25] recognize structural features
of node neighborhood by learning trainable aggregation
functions, so that rapidly generate node embeddings in
new subgraphs. Plenty of studies have attempted to solve
the above challenges, nevertheless, few approaches can
address them at the same time.

Fig. 1 A toy example of the temporal heterogeneous graph from a
user-item interaction network. a User-item interaction network; b
Temporal heterogeneous graph. Different colored lines represent dif-

ferent interactions, where the blue line denotes favorite (i.e., the heart
icon), the green line denotes browse (i.e., the magnifier icon), and the
orange line denotes buy (i.e., the wallet icon)

100 L. Li et al.

1 3

In this paper, we propose a novel Temporal Heterogeneous
Graph Attention Network (THAN), which is a continuous-time
THG representation learning method with Transformer-like
attention architecture. To handle C1, we design a time-aware
heterogeneous graph encoder to aggregate information from
different types of neighbors. To handle C2, THAN samples
temporally constrained neighbors and learns time-aware rep-
resentation from historical heterogeneous events for a given
node at any time point. It also encodes time information with
a time encoder and incorporates them into the message propa-
gation process. To handle C3, THAN can be thought of as a
local aggregation operator based on neighbor sampling that
recognizes the structural properties of a node’s neighborhood
and does not introduce global priori information.

THAN generates dynamic embeddings of nodes from
their most recent neighbors. However, long-term dependen-
cies and evolutionary patterns are not considered. Moreover,
high-order information can be captured by stacking multiple
THAN layers, but the cost is huge. To address these prob-
lems, we design an optional memory module to store and
evolve the node representations. This module dynamically
updates the node states as events occur and provides indirect
access to distant neighbors by adding node memories to the
raw inputs of THAN. The main contributions of our work
are summarized as follows:

• We propose an inductive continuous-time THG represen-
tation learning method, which can capture both hetero-
geneous information and dynamic features.

• We introduce the dynamic transfer matrix and self-atten-
tion mechanism to implement the information aggrega-
tion of heterogeneous neighbors.

• We devise an optional memory module to enhance the
representational ability of THAN by storing and updating
the dynamic node states.

• We conduct experiments on three public datasets and the
results demonstrate the superior performance of THAN
over state-of-the-art baselines on the task of temporal
link prediction.

The rest of the paper is organized as follows. We review
related work in Sect. 2, and formulate the problem of tem-
poral heterogeneous graph representation learning in Sect. 3.
In Sect. 4, we discuss the critical techniques of THAN. We
report a systematic empirical evaluation in Sect. 5, and con-
clude the paper in Sect. 6.

2 Related Work

Our work is related to representation learning on static
graphs, temporal graphs (i.e., dynamic graphs), and self-
attention mechanism on graphs.

Representation learning on static graphs Graph repre-
sentation learning produces low-dimensional embeddings
by modeling the topology and node attribute information.
Early methods [9, 10, 26, 27] generate sequences of nodes
by random walks among neighbors and then learn node co-
occurrences to obtain representations. Luo et al. [28] define
ripple distance over ripple vectors to optimize the walking
procedure. In order to integrate rich node attribute features
while learning network structure information, the GNN-
based approaches [2, 4, 5, 11–13, 25] update node embed-
dings by aggregating neighborhood influence and propagat-
ing information across a multilayer network to capture the
high-order patterns of the graph.

Focus on dealing with the heterogeneity, metapath2vec
[9] and HIN2Vec [10] preserve heterogeneous information
by designing semantic meta-paths, while heterogeneous
GNNs [2, 11, 12] attempt to extend the message-passing pro-
cedure to handle different categories of information. Specifi-
cally, RGCN [2] introduces relation-specific transformations
to encode features, HAN [12] designs hierarchical attention
to describe node-level and semantic-level structures, HGT
[11] uses meta-relation-based mutual attention to operate on
heterogeneous graphs and learns implicit meta-paths. How-
ever, these methods cannot deal with temporal dynamics.

Representation learning on temporal graphs Accord-
ing to how temporal graphs are constructed, temporal graph
representation learning methods can be divided into two cat-
egories: discrete-time methods, which describe the temporal
graph as an ordered list of graph snapshots; continuous-time
methods, which treat the temporal graph as an event stream
with timestamps.

For the former, EvolveGCN [16] uses GCN to encode
static graph structure and evolves the parameters of GCN
by RNN. DySAT [17] uses structural attention to aggregate
information from different neighbors in each snapshot and
uses temporal attention to capture evolution over multiple
snapshots. DyHATR [18] adopts hierarchical attention to
learn heterogeneous information and applies RNNs with
temporal attention to capture dependencies among snap-
shots. HTGNN [15] jointly models heterogeneous spatial
and temporal dependencies through intra-relational, inter-
relational, and cross-temporal aggregation. ROLAND [29]
proposes a framework to extend static GNN to dynamic
graphs. Although discrete-time methods succeed in learning
the dynamic patterns of temporal graphs, they ignore time
information within the same snapshot and lead to weakened
connections between graph snapshots.

Recent studies [19–23, 30] have shown the superior
performance of continuous-time methods in dealing with
temporal graphs. JODIE [21] uses RNNs to propagate
information in interactions and update node representations
smoothly at different timesteps. TGAT [23] is designed
as a GAT-like neural network, which propagates node

101Memory-Enhanced Transformer for Representation Learning on Temporal Heterogeneous Graphs

1 3

information by sampling and aggregating historical neigh-
bors, and learns high-order patterns by stacking multiple
layers. TGN [24] proposes a general framework for encod-
ing temporal graphs and captures long-term dependencies
by preserving node states. CAW-N [22] proposes Causal
Anonymous Walks (CAWs) to inductively represent a tem-
poral graph and uses RNN to encode the walk sequences.
These methods make full use of temporal information and
model the dynamics of the graph without taking into account
the heterogeneity. THINE [19] and HPGE [20] combine het-
erogeneous attention and Hawkes process to model graph
heterogeneity and dynamics but do not consider the edge
attributes.

Self-attention mechanism Transformer [31] proposed
by Vaswani et al. for machine translation has achieved great
success in NLP and CV tasks, which has recently been
attempted for graph representation learning. For example,
GTN [32] automatically generates useful meta-paths and
learns new graph structures. Graphormer [33] generalizes
positional encoding to the graph domain and uses scaled dot-
product attention for message passing. Transformer relies on
the self-attention mechanism to learn contextual information
for sequences. A scaled dot-product attention layer can be
defined as:

where Q denotes the ‘queries’, K the ‘keys’ and V the ‘val-
ues’. They are the projections of the input Z on the matrices
WQ , WK and WV , where Z contains the node embeddings and
their positional embeddings.

3 Preliminaries

In this section, we introduce the definition of temporal het-
erogeneous graph and the problem of temporal heterogene-
ous graph representation learning.

Definition 1 Temporal Heterogeneous Graph. A temporal
heterogeneous graph is G = (V ,E, T ,�,�) , where V denotes
the set of nodes corresponding to a node type mapping
function � ∶ V → A , E denotes the temporal events (i.e.,
edges) corresponding to an event type mapping function
� ∶ E → R , and T denotes the set of timestamps. A and
R are node type set and event type set, respectively, and
|A| + |R| > 2.

Note that event e = (u, v, t,�) means that there is an edge
from u to v at time t, where � denotes the edge feature and
r = �(e) denotes the event type.

(1)Attn(Q,K,V) = softmax

�
QK⊤

√
d

�
V

Example 2 In Fig. 1b, the temporal heterogeneous graph
about user-item interactions consists of 13 nodes, 17 events
(smaller subscript of ti indicates that the event occurred ear-
lier), two types of nodes, and three types of events. Specifi-
cally, V = {u1, ..., u5, i1, ..., i8} , E = {(u1, i1, t1), ..., (u5, i5, t8)} ,
A = {user, item} , R = {r1, r2, r3} , �(u) = user , �(i) = item ,
r1 denotes favorite, r2 denotes browse, and r3 denotes buy.
According to the line color, we know that �(u1, i1, t1) = r2
and �(u5, i5, t8) = r3.

For any node pair (u, v), a temporal causal path is a set of
events consisting of u as the source node of the start event
and v as the target node of the terminal event. Therefore,
the temporal shortest path distance dt(u, v) is defined as the
minimum length of the temporal causal path from u to v with
all events on the path occurring no later than t. Denote Vt as
the set of nodes that appear up to time t, and for each node
v ∈ Vt , define its k-hop temporal neighbors as:

For node v, we define its k-hop temporal neighborhood as
Gk

t
(v) , which is a subset of the temporal heterogeneous graph

G and can be induced by Nk
t
(v) . Gk

t
(v) contains the source

node v and its neighbors Nk
t
(v) , events between the nodes,

and timestamps of these temporal events. The final repre-
sentation of node v will generate relying on Gk

t
(v) . Notice

that we use Nt(v) and Gt(v) to simplify the representation of
N1

t
(v) and G1

t
(v) in this paper, respectively.

Definition 2 Temporal Heterogeneous Graph Representa-
tion Learning. Given a temporal heterogeneous graph G and
the node features X, it aims to learn a mapping function
F ∶ F(G,X) → ℝ

|V|×d , where |V| is the node size and d is
the dimension of embeddings, d ≪ |V|.

This mapping function maps nodes to low-dimensional
vector space while preserving temporal, structural, and
semantic information. For the sake of clarity, Table 1 sum-
marizes the main notations used in this paper.

4 The Proposed Model

In this section, we present a Transformer-like graph atten-
tion architecture named THAN. It uses mapping matrices to
project node embeddings into the same vector space, then
passes neighborhood information by dot-product attention
corresponding to different event types. Similar to GAT [5],
THAN is designed as a local aggregation operator that cap-
tures high-order information by stacking multiple THAN
layers. Figure 2 shows the architecture of the l-th THAN

(2)Nk
t
(v) = {u ∶ dt(u, v) ≤ k, u ∈ Vt}

102 L. Li et al.

1 3

layer, which has three components: temporal heterogeneous
neighbor sampling, dynamic embedding mapping and tem-
poral heterogeneous graph attention layer. To capture long-
term dependencies and evolutionary patterns, we design an
optional memory module providing indirect access to dis-
tant neighbors, which dynamically updates the states of the
nodes. After graph encoding, we use a heterogeneous graph
decoder for the temporal link prediction task, which receives
the node representations from THAN as inputs.

4.1 Temporal Heterogeneous Neighbor Sampling

For the purpose of improving the induction and generali-
zation performance of the model, THAN does not select
all but a certain number of neighbors from the temporal
neighbors as the input. Given a node v0 and time t, sample
N neighbors from its 1-hop temporal neighbors Nt(v0) ,
denoted as {v1, ..., vN}.

We discuss two neighbor sampling strategies: uniform
random sampling, where all temporal neighbors are ran-
domly selected with equal probability; top-N recent sam-
pling, where the time difference with the source node is
calculated and sorted in ascending order, then select the
top N neighbors. Intuitively, recent interactions reflect the
node’s current state better than distant interactions and
have a greater influence on future events. On the contrary,
the distant interactions may introduce noise. Therefore,
we use the top-N recent sampling strategy to sample
neighbors.

In the temporal heterogeneous graph, the number of
different-typed events varies greatly, which can easily
lead to an unbalanced distribution of the types of sam-
pled neighbors. To avoid sampling bias as far as possible,
THAN limits the number of samples of each event type to
no more than M. If the total number of event types related
to the source node is � (� ≤ |R|) , the total number of sam-
pled neighbors N satisfies N ≤ � ∗ M.

4.2 Dynamic Embedding Mapping

For different nodes, TGAT [23] assumes that they are in
the same feature distribution and share parameters of the

Table 1 Summary of main notations

Notation Description

G Temporal heterogeneous graph
V Set of nodes
E Set of edges
T Set of timestamps
A Set of node types
R Set of edge types
� Node type mapping function
� Event type mapping function
dt(u, v) Temporal shortest path distance from u to v at time t
Nk

t
(v) k-hop temporal neighbors of node v up to time t

xv(t) Input embedding of node v
e Projection vector of event types
n Projection vector of node types
M Mapping matrix of meta relation ⟨�(u),�(e),�(v)⟩
�0,i(ti) Event feature between node v0 and vi at time ti
WQ , WK , WV Projection matrices of ‘query’, ‘key’ and ‘value’

h̃
l

0
(t) Final output embedding of node v0 at time t

oi(t) Memory vector of node vi at time t
mi(t) Message of node vi at time t

(a) Temporal Heterogeneous Neighbor Sampling (c) Temporal Heterogeneous Graph Attention Layer

(b) Dynamic Embedding Mapping

Fig. 2 The architecture of the l-th THAN layer for node u0 at time t

103Memory-Enhanced Transformer for Representation Learning on Temporal Heterogeneous Graphs

1 3

model, which does not hold in heterogeneous graphs. Fur-
thermore, in the real world, there might be multiple types
of edges between two nodes, and different types may cor-
respond to different vector distributions. So we must con-
sider not only the diversity of nodes, but also edges when
propagating information.

A straightforward solution is mapping features in different
distributions to the same semantic space by transfer matrices.
However, as the number of types increases, more parameters
will be introduced into the model. To reduce the number of
training parameters as well as to avoid large-scale matrix mul-
tiplication calculations, inspired by TransD [34], THAN pro-
jects node features from the node-type space to the event-type
space by dynamically computing the transfer matrix with two
type-related vectors.

Example 3 Suppose that there are two types of nodes, and
three types of events in a heterogeneous graph. If there are
four dimensions of each node type and each event type,
respectively, we have to define the transfer matrix for each
mapping from node type to event type. If we parameterize
the transfer matrices directly, then the number of parameters
is 96 (i.e., 2 × 3 × 4 × 4). However, the number of param-
eters is only 20 (i.e., 2 × 4 + 3 × 4) if we use the projection
vectors.

Given an event e = (u, v, t) with its meta relation
⟨�(u),�(e),�(v)⟩ [11], we define the dynamic mapping matri-
ces as:

where e and n denote the projection vectors of event types
and node types, respectively, both of which are trainable.
The projected node embeddings are:

where xu(t) and xv(t) are the input embeddings of node u and
v, respectively.

4.3 Temporal Heterogeneous Graph Attention Layer

Different events in a temporal heterogeneous graph may
have different features, for example, in a question answer-
ing network, an answer interaction can be regarded as an
event, and its features can be determined by the content. To
enable event features to be propagated when aggregating

(3)Meu = e𝜑(e)n
⊤
𝜙(u)

+ Id×d

(4)Mev = e𝜑(e)n
⊤
𝜙(v)

+ Id×d

(5)hu(t) = Meuxu(t) = n⊤
𝜙(u)

xu(t)e𝜑(e) + xu(t)

(6)hv(t) = Mevxv(t) = n⊤
𝜙(v)

xv(t)e𝜑(e) + xv(t)

information, THAN adds them to the node embeddings fol-
lowed by a normalization layer (e.g., LayerNorm [35]). The
event features will be resized to the same dimension as the
node embeddings, and the output is:

where i indicates the i-th neighbor, �0,i(ti) denotes the feature
of event between node v0 and vi at time ti . Here, we set �0,0(t)
as zero vector.

Transformer [31] uses positional encoding to model rela-
tive position relationships, thus solving the problem that the
attention mechanism cannot capture the sequential relation-
ships between entities. In temporal graphs, a functional time
encoder [36, 37] is usually used to map the time interval
between nodes into a dT-dimensional vector in place of posi-
tional encoding. THAN uses a Bochner-type functional time
encoding [23, 37] as:

where { �i }s are learnable parameters. We merge the time
embeddings with the node representations to obtain the
node-temporal feature matrices as:

where zei
0
 and zi denote the mapped embeddings of the source

node v0 and its neighbor vi corresponding to event ei , respec-
tively, and ‖ denotes the ‘concatenate’ operation. Zs and Zn
are forwarded to three different linear projections to obtain
the ‘query’, ‘key’, and ‘value’:

where ei denotes the event between v0 and vi , W
�(ei)

Q
 , W�(ei)

K
 ,

and W�(ei)

V
∈ ℝ

(d+dT)×d denote the projection matrices. Due
to the edge heterogeneity, the projection matrices cannot be
shared directly, thus we use matrices of different types to
distinguish different events while capturing the semantics of
events. The attention weight �i is given by:

(7)zi(ti) = LayerNorm(hl
i
(ti) + �0,i(ti))

(8)

TE(t) =

√
1

dT
[cos(�1t), sin(�1t), ..., cos(�dT

t), sin(�dT
t)]

(9)Zs(t) = [z
e1
0
(t)‖TE(0), ..., zeN

0
(t)‖TE(0)]⊤

(10)Zn(t) = [z1(t1)‖TE(t − t1), ..., zN(tN)‖TE(t − tN)]
⊤

(11)Q = Zs(t)W
�(ei)

Q

(12)K = Zn(t)W
�(ei)

K

(13)V = Zn(t)W
�(ei)

V

(14)𝛼i =
exp(𝛽i)

∑N

j=1
exp(𝛽j)

= QiK
⊤

i
⋅

𝜇𝜙(v0),𝜑(ei)√
d

104 L. Li et al.

1 3

and it reveals how vi attends to the feature of v0 through
event ei . In addition, not all types of events have the same
contribution to the source node, so we set a learnable ten-
sor � ∈ ℝ

|A|×|R| to adaptively adjust the scale of attention to
different-typed events.

The self-attention aggregates the features of temporal
neighbors and obtains the hidden representation for node vi
as �iVi , which can capture both node features and topologi-
cal information. The next step is to map the representations
back to the type-specific distribution of node v0 so that they
can be fused with the its features. We use a linear projection
named Q-Linear to do this and the neighborhood represen-
tation is:

To combine neighborhood representation with the source
node feature, we concatenate and pass them to a feed-for-
ward neural network as in TGAT [23]:

Multi-head attention can effectively improve the model
performance and stability. THAN can be easily extended to
support a multi-head setup. Assuming the self-attention out-
puts come from P different heads, i.e., si ≡ Attni(Q,K,V) ,
i = 1, ...,P . We first concatenate these neighborhood repre-
sentations with the source node’s feature and then carry out
the same procedure in Eq. 16 as:

where h̃l
0
(t) ∈ ℝ

d is the final output representation for node
v0 at time t, and it can be used for link prediction task with
an encoder-decoder framework.

(15)s(t) =

N∑

i=1

Q-Linear�(v0)(�iVi)

(16)
h̃
l

0
(t) = FFN(s(t)‖xl

0
(t)) ≡ ReLU([s(t)‖xl

0
(t)]Wl

0
+ bl

0
)Wl

1
+ bl

1

(17)h̃
l

0
(t) = FFN(s1(t)‖...‖sP(t)‖xl

0
(t))

4.4 Memory Module

THAN stacks multiple networks to capture high-order pat-
terns. However, as the number of layers increases, the cost
of memory resources and training time grows exponentially.
Moreover, constrained by the message-passing architecture,
THAN cannot capture long-term features. To break this limi-
tation, we devise a memory module (similar to TGN [24]) to
save the historical states (i.e., memories) of the nodes. The
states will be dynamically updated as events occur, thereby
introducing long-term dependencies and indirectly accessing
information from distant hops. Our experimental study, to be
given in Sect. 5, demonstrates that the memory module costs
less time than adding a THAN layer, but achieves similar or
even superior performance.

Figure 3 shows the standard computation process of
THAN with memory module on a batch of training data.
It encodes the input data and the latest memory by THAN
and output the node representations. The memory module
uses the representations to compute messages and update
node memory. However, the memory module does not
directly affect the loss. To address this problem, we save
messages of nodes involved in current batch at the end of
training and update the memory with messages from previ-
ous batch before graph embedding. The memory module
consists of the following components:

Memory Bank keeps the latest vector oi(t) for node vi at
time t, which is initialized as a zero vector. Its memory is
updated on the occurrence of each event involving the node.

Message Function is a learnable function to compute a
message mi(t) for node vi as follows:

where h̃i(t) is the representation from graph attention mod-
ule, t−

i
 is the time of the previous event involving node vi ,

msg(⋅) is the message function and we use FFN in this paper.

(18)mi(t) = msg(h̃i(t)‖TE(t − t−
i
))

Fig. 3 Computation process of
THAN with the memory mod-
ule on a batch of events

105Memory-Enhanced Transformer for Representation Learning on Temporal Heterogeneous Graphs

1 3

In the case of an event eij(t) between source node vi and tar-
get node vj , two messages (i.e., mi(t) and mj(t)) can be com-
puted. Different from TGN [24], we concatenate the node
representation with the time embedding of the time span,
while TGN considers both source node memory, target node
memory, time embedding and edge features.

Message Aggregator is an aggregation function to
aggregate messages generated from message function com-
ponent. In batch processing node vi may involve multiple
events and each event corresponding to a message. These
messages mi(t1), ...,mi(tb) are aggregated with the following
formulation:

where t1, ..., tb ≤ t , agg(⋅) can be optionally chosen as RNNs
or attention networks. In this paper, we simply keep the lat-
est message for a given node, which is considered from an
efficiency perspective as it does not need to learn.

Memory Updater is used to update the memory of the
nodes with the aggregated messages. Its formulation is:

where update(⋅) is a learnable memory update function like
LSTM [38] or GRU [39]. When an interaction event hap-
pens, the memories of both nodes it involves will be updated.

4.5 Heterogeneous Graph Decoder

Heterogeneous graph decoder aims to reconstruct hetero-
geneous edges of the graph relying on the node representa-
tions, in other words, it scores edge triples through a function
H ∶ ℝ

d ×ℝ
dr ×ℝ

d
→ ℝ , where dr denotes the dimension of

edge type embeddings. We compute node representations
through a l-layer THAN encoder and use a feed-forward neu-
ral network as the scoring function, thus an event (u, v, t) of
type r can be scored as:

where u and v denote the source and target node, respec-
tively, r ∈ ℝ

dr denotes the edge type embedding.
As in previous work [2, 23], we train the model with

negative sampling. For each observed example, we change
the target node to construct a nonexistent event as a negative
sample, so the number of positive samples is the same as that
of negative samples. We optimize the cross-entropy loss as:

where � denotes the total set of positive and negative triples,
� denotes the logistic sigmoid function, y denotes the sample

(19)m̃i(t) = agg(mi(t1), ...,mi(tb))

(20)oi(t) = update(m̃i(t), oi(t
−))

(21)H(u, v, t, r) = FFN(h̃
l

u
(t)‖rr‖h̃

l

v
(t))

(22)
L =

1

���
�

(u,v,t,r,y)∈�

−y log �(H(u, v, t, r))

− (1 − y) log(1 − �(H(u, v, t, r))) + �‖�‖2
2

label and takes the value of 1 for positive samples and 0
for negative samples, � denotes the model parameters and �
controls the L2 regularization.

5 Experiments

In this section, we present the details of experiments includ-
ing experimental settings and results. Firstly, we introduce
the dataset, baselines, and parameter settings. Secondly,
the performance comparisons are demonstrated in detail.
Thirdly, we compare the effectiveness of different variants.
Finally, we test the inductive capability of our proposed
model.

5.1 Experimental Settings

5.1.1 Datasets

We evaluate our model on three public datasets: Movielens,
Twitter, and MathOverflow. The statistics of these datasets
are listed in Table 2.

• Movielens1 is a dataset of user ratings of movies at dif-
ferent times collected from the MovieLens website. We
select two types of nodes: user and movie. Regarding
different ratings of movies as different types of events, a
total of five types of events are obtained.

• Twitter2 collects public data on three types of relation-
ships (retweet, reply, and mention) between users from
the US social network Twitter.

• MathOverflow3 is from MathOverflow, a question and
answer site for professional mathematicians. There are
three relationships between users in this dataset: a user
answered or commented on another user’s question, and
a user commented on an answer.

Table 2 Statistics of the three public datasets

Dataset Node
types

#Nodes #Event
types

#Events Time span

Movielens User 943 5 100,000 7 months
Movie 1682

Twitter User 304,691 3 563,069 188 days
MathOver-

flow
User 24,818 3 506,550 2,350 days

1 https:// group lens. org/ datas ets/ movie lens/ 100k.
2 http:// snap. stanf ord. edu/ data/ higgs- twitt er. html.
3 http:// snap. stanf ord. edu/ data/ sx- matho verfl ow. html.

https://grouplens.org/datasets/movielens/100k
http://snap.stanford.edu/data/higgs-twitter.html
http://snap.stanford.edu/data/sx-mathoverflow.html

106 L. Li et al.

1 3

5.1.2 Baselines

To demonstrate the effectiveness, we compare THAN with
ten popular graph representation learning methods, which
can be divided into three groups: static graph embedding
(DeepWalk [27], metapath2vec [9], GraphSAGE [25], GAT
[5], RGCN [2], and HGT [11]), discrete-time dynamic graph
embedding (DySAT [17] and DyHATR [18]), and contin-
uous-time dynamic graph embedding (TGAT [23] and
HPGE [20]). We use the implementations of static graph
embedding methods provided in the PyTorch Geometric
(PyG) package [40], and for other baselines, use the code
submitted by the authors on GitHub. Besides, we ignore the
heterogeneity for homogeneous methods and ignore the tem-
poral information for static methods. For fairness, the same
decoder declared in Sect. 4.5 is used for the downstream
temporal link prediction task.

• DeepWalk and metapath2vec: They are random walk-
based network embedding methods designed for static
graphs.

• GraphSAGE and GAT : They are two inductive GNN
methods for static homogeneous graphs, aggregating and
updating node representations in the message passing
framework.

• RGCN and HGT: They are two GNN methods for static
heterogeneous graphs, where the former maintains a
unique linear projection weight for each edge type while
the latter uses mutual attention based on meta-relations
to perform message passing on heterogeneous graphs.

• DySAT: A discrete-time temporal graph embedding
method and we split graph snapshots with the guidance
in the paper.

• DyHATR : A discrete-time THG embedding method that
uses hierarchical attention to learn heterogeneous infor-
mation and incorporates RNNs with temporal attention
to capture evolutionary patterns.

• TGAT : A continuous-time temporal graph embedding
method that aggregates historical neighbors by self-atten-
tion to obtain node representations.

• HPGE: A continuous-time THG embedding method that
integrates the Hawkes process into graph embedding to
capture the excitation of historical heterogeneous events
to current events.

5.1.3 Parameter Settings

THAN was implemented in PyTorch. We split the training
and test set as 8:2 according to time order. For a fair compar-
ison, we use the default parameter settings of the baselines
and set the embedding (i.e., node output embeddings, time
embeddings, and event type embeddings) dimension d as
32, regularization weight � as 0.01, and dropout rate as 0.1.

We employ Adam as the optimizer with a learning rate of
0.001. We randomly initialize the node vector if the dataset
does not provide node features, and similarly, initialize the
event features as zero vectors. For DeepWalk, metapath2vec,
GraphSAGE, GAT, RGCN, and HGT, we set the max train-
ing epochs as 500 and use an early stopping strategy with the
patience of 50. For DySAT and DyHATR, we split datasets
into 10 snapshots. For our THAN, we set the event embed-
ding dimension as 16, the number of layers as 2, attention
heads as 4, epochs as 20 (30 for Movielens), learning rate
as 0.001 (0.0001 for Twitter), batch size as 800 (500 for
Movielens), and the number of samples for each type of
neighbors as 10 (8 for Movielens). The implementation of
THAN is publicly available.4

5.2 Effectiveness Analysis

We conduct the temporal link prediction task to verify the
effectiveness and efficiency, which asks if a type-r edge
exists between two nodes at time t. We run all methods five
times on three datasets and evaluate the average AUC (Area
under the receiver operating characteristic curve) and AP
(Average precision) scores. The overall results are shown
in Table 3.

Obviously, THAN achieves the state-of-the-art perfor-
mance in AUC metric on all three datasets. Although THAN
does not outperform all other methods in AP metric, it also
has a considerable performance (i.e., AP score achieves the
SOTA result on Movielens and Twitter datasets and over
0.9 on MathOverflow dataset). For the Movielens dataset,
dynamic graph embedding methods outperform the static
graph embedding methods that ignore temporal informa-
tion in both AUC and AP metrics, because the former learn
temporal information in fine-grained contexts. Specifically,
DySAT and DyHATR obtain performance improvements
due to considering the changes of graph structure over time.
TGAT, HPGE, and our THAN perform better than DySAT
and DyHATR, this phenomenon shows that it is important to
make full use of temporal information compared with simply
preserving evolving structures between snapshots. For the
other two datasets, the results of all methods show a similar
trend, which means they probably have the same network
patterns and temporal motifs. It may be related to the fact
that they are both user activities datasets.

The GNN-based approaches achieve better performance
than the random walk-based approaches since they cap-
ture much more useful information about the graph struc-
ture and the node features are utilized. The heterogeneous
graph methods perform better than the homogeneous graph

4 https:// github. com/ scu- kdde/ HGA- THAN- 2022.

https://github.com/scu-kdde/HGA-THAN-2022

107Memory-Enhanced Transformer for Representation Learning on Temporal Heterogeneous Graphs

1 3

methods which indicates that integrating semantic informa-
tion can benefit graph representation. In terms of AUC score,
THAN improves performance by 3.38%, 2.29% and 8.1%
compared to TGAT on three datasets, respectively. It demon-
strates the effectiveness of our proposed model. In summary,
our proposed approach works for two main reasons: (1) it
effectively extracts structural features and fine-grained tem-
poral information; (2) it reasonably handles heterogeneity in
the process of message passing and aggregation.

5.3 Ablation Study

To demonstrate the effectiveness of each component in
THAN, we conduct ablation experiments by removing/
replacing one specific component at a time. We rename
them as: (1) THAN w/o time: removing time embeddings;
(2) THAN w/o � : removing event type attention weight;
(3) THAN w/o Qlin: removing linear projection Q-Linear;
(4) THAN r-uniform: using the uniform random sampling
strategy instead of top-N recent sampling.

We report the results of the ablation study in Fig. 4, from
which we have the following observations: (1) THAN out-
performs the others with components removed in all metrics;
(2) Time embedding plays an important role in temporal
graph representation learning; (3) Setting different attention
weights for different event types helps to learn heterogene-
ous semantic information; (4) More recent neighbors are
more useful for extracting temporal dynamics and better
reflect the current state of the source node; (5) It makes
sense to keep the same feature space to fuse features from
different nodes. Besides, it is noteworthy that removing
the Q-Linear component did not have a significant impact
on model performance on the Twitter and MathOverflow

datasets, that is because both these datasets have only one
type of node, and there is no need to consider the consist-
ency of feature distribution across different types of nodes.

5.4 Parameter Sensitivity

To investigate the robustness of THAN and find the most
suitable hyperparameters, we analyzed the effect of the num-
ber of neighbor samples and attention heads on three data-
sets shown in Fig. 5. For fairness, we select the number of
neighbor samples from {4, 6, 8, 10} , the number of attention
heads from {1, 2, 4, 6} , and the rest of the parameters remain
the same as the experimental settings in Sect. 5.1.

On the one hand, Fig. 5a, b can lead to the following
conclusion: the scores of AUC and AP improve as the
number of neighbor samples increases, but on the Mov-
ielens dataset there is a decreasing trend instead, which
may be caused by the dense connections between nodes.
Sampling more neighbors may introduce more noise,
resulting in smooth node representations. On the other
hand, Fig. 5c, d shows that the number of attention heads
affects the performance of the model. Multi-head attention
helps to obtain different aspect representations from differ-
ent subspaces, thus enhancing the expressiveness.

5.5 Effectiveness of Memory Module

In this section, we perform detailed studies on different
instances of THAN focusing on the trade-off between accu-
racy and efficiency. The design of each variant is as follows:
(1) THANl1 : only using one graph attention layer as the
graph encoder; (2) THAN†

l1
 : one-layer encoder with memory

module; (3) THANl2 : stacking two graph attention layers.

Table 3 Overall performance
comparison on temporal link
prediction task

All results are converted to a percentage by multiplying by 100, and the standard deviations computed over
ten runs. The best and second-best results in each column are highlighted in bold font and underlined

Dataset Movielens Twitter MathOverflow

Model AUC AP AUC AP AUC AP

DeepWalk 67.35±0.3 71.26±0.3 57.73±0.7 63.63±0.9 63.73±0.2 73.47±0.4
metapath2vec 68.43±0.2 71.82±0.2 66.29±0.3 74.67±0.2 72.59±0.9 81.13±1.1
GraphSAGE 72.34±0.4 75.94±0.4 76.88±3.2 85.10±2.1 83.48±2.4 89.20±3.4
GAT 71.81±1.3 73.23±2.1 83.69±3.3 89.23±2.6 83.79±3.5 90.01±3.7
RGCN 69.49±0.4 76.51±0.5 84.18±0.6 91.41±0.8 84.02±0.2 92.91±0.2
HGT 73.44±1.1 80.01±0.7 88.54±0.5 93.06±0.3 86.53±1.5 93.88±1.4
DySAT 73.13±0.4 72.1±0.3 83.03±0.3 86.89±0.2 83.12±0.3 85.84±0.1
DyHATR 80.21±0.7 77.54±1.3 79.73±0.1 81.78±0.4 75.22±0.1 78.21±0.2
TGAT 82.00±0.4 79.46±0.4 89.55±0.3 90.43±0.2 82.23±0.6 83.25±0.6
HPGE 85.25±0.1 82.16±0.2 73.55±0.1 73.91±0.1 81.12±0.2 82.61±0.2
THAN 88.63±0.1 86.77±0.2 91.84±0.2 93.43±0.2 90.33±0.1 90.62±0.2

108 L. Li et al.

1 3

From Table 4, we can see that stacking two layers helps
obtaining good performance (THANl2 vs THANl1), while

the time costs increase by a factor of 8 to 21. Compared to
adding a THAN layer, using memory module achieves sim-
ilar or even superior model performance, but spends much
less time (THANl2 takes about 13 times, 4 times and 19
times longer than THAN†

l1
 on three datasets, respectively).

On the one hand, the number of neighbors that need to be
aggregated increases exponentially by adding a layer. On
the other hand, when accessing the memory of the source
node and its 1-hop neighbors, THAN is introducing long-
term dependencies and indirectly accessing information
from distant hops.

5.6 Inductive Capability Analysis

We further discuss the inductive performance of THAN with
the same settings as TGAT, i.e., mask 10% of the nodes from
the training set and predict the existence of future events
containing these masked nodes. In this paper, we choose
GraphSAGE, GAT and TGAT as the comparison mod-
els. They are proposed as inductive representation learn-
ing methods on graphs, and their inductive capabilities are
demonstrated experimentally. Experiments were conducted
on three datasets and the results are shown in Table 5. Intui-
tively, THAN outperformed the baselines in two metrics on
all datasets, which demonstrates the inductive capability of
THAN.

(a) AUC of Movielens (b) AUC of Twitter (c) AUC of MathOverflow

(d) AP of Movielens (e) AP of Twitter (f) AP of MathOverflow

Fig. 4 Ablation study of THAN

(a) Neighbor: AUC (b) Neighbor: AP

(c) Head: AUC (d) Head: AP

Fig. 5 Sensitivity analysis on the number of neighbor samples and
attention heads

109Memory-Enhanced Transformer for Representation Learning on Temporal Heterogeneous Graphs

1 3

6 Conclusion

Existing graph representation learning methods cannot
well capture the information of temporal heterogeneous
graphs. This paper proposes the THAN, which is a con-
tinuous-time temporal heterogeneous graph representation
learning method. THAN uses dynamic transfer matrices to
map different-typed nodes to the same feature space and
aggregates neighborhood information based on the type-
aware self-attention mechanism. To efficiently utilize tem-
poral information, THAN uses a functional time encoder to
generate time embeddings that are naturally integrated into
the neighbor aggregation process. THAN is an inductive
message-passing model based on historical neighbor sam-
pling that not only captures temporal dynamics but also effi-
ciently extracts topological features. In addition, we devise
an optional memory module to store node states and capture
long-term dependencies. It improves the model performance
and takes less time than stacking a new THAN layer. The
experimental results on three public datasets demonstrate
that THAN outperforms the baselines on the temporal link
prediction task.

In future work, on one hand, we plan to explore the
usage of THAN in various fields, such as recommender
systems, social networks, and biological interaction net-
works. On the other hand, we try to understand the specific
patterns/motifs of temporal heterogeneous networks from
different domains. Furthermore, the large-scale temporal
heterogeneous graph embedding is another direction wor-
thy of further investigation.

Author Contributions Longhai Li proposes the methodology, com-
pletes the experiments and writes the manuscript. Lei Duan provides

instructions and revises the manuscript. Junchen Wang and Zihao
Chen assist in improving the experiment. Junchen Wang, Chengxin
He, Guicai Xie, Song Deng and Zhaohang Luo jointly help to write
the manuscript.

Funding This work was supported in part by the National Natural Sci-
ence Foundation of China (61972268) and the Joint Innovation Foun-
dation of Sichuan University and Nuclear Power Institute of China.

 Availability of data and materials The datasets used in experiments
can be downloaded from the following URLs: Movielens: https:// group
lens. org/ datas ets/ movie lens/ 100k Twitter: http:// snap. stanf ord. edu/
data/ higgs- twitt er. html MathOverflow: http:// snap. stanf ord. edu/ data/
sx- matho verfl ow. html.

Declarations

Conflicts of interest We would like to submit the enclosed manuscript
entitled “Memory-Enhanced Transformer for Representation Learning
on Temporal Heterogeneous Graphs”, which we wish to be considered
for publication in Data Science and Engineering. No conflict of interest
exits in the submission of this manuscript, and manuscript is approved
by all authors for publication. I would like to declare on behalf of my
co-authors that the work described was original research that has not
been published previously, and not under consideration for publication
elsewhere, in whole or in part. All the authors listed have approved the
manuscript that is enclosed.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Table 4 Trade-off between
accuracy (test AUC score in
%) and speed (time cost per
epoch in second) for different
instances of the THAN

All experiments are conducted in batch size of 200

Dataset Movielens Twitter MathOverflow

Model AUC Time AUC Time AUC Time

THANl1 83.90±0.2 35.8±2.0 87.80±0.5 192.6±4.0 87.40±0.1 185.4±3.1

THAN
†

l1
87.87±0.3 40.5±2.6 92.79±0.5 360.7±28.1 92.93±0.3 210.8±12.5

THANl2 88.63±0.1 524.2±5.4 91.84±0.2 1545.5±20.1 90.33±0.1 4046.8±19.7

Table 5 Results of inductive
learning task

Dataset Movielens Twitter MathOverflow

Model AUC AP AUC AP AUC AP

GraphSAGE 70.58±0.8 71.37±1.6 73.15±3.9 78.44±3.5 70.56±5.5 74.23±5.2
GAT 69.48±1.2 72.02±1.9 75.77±4.4 80.61±5.1 71.73±4.8 76.42±5.6
TGAT 78.35±0.4 76.97±0.3 85.87±0.3 88.61±0.3 74.14±0.5 75.96±0.4
THAN 82.71±0.2 80.67±0.2 88.41±0.2 90.69±0.3 80.93±0.3 80.52±0.3

https://grouplens.org/datasets/movielens/100k
https://grouplens.org/datasets/movielens/100k
http://snap.stanford.edu/data/higgs-twitter.html
http://snap.stanford.edu/data/higgs-twitter.html
http://snap.stanford.edu/data/sx-mathoverflow.html
http://snap.stanford.edu/data/sx-mathoverflow.html
http://creativecommons.org/licenses/by/4.0/

110 L. Li et al.

1 3

References

 1. Kipf TN, Welling M (2016) Variational graph auto-encoders.
CoRR arXiv: 1611. 07308

 2. Schlichtkrull MS, Kipf TN, Bloem P, van den Berg R, Titov I,
Welling M (2018) Modeling relational data with graph convolu-
tional networks. In: Proceedings of the 15th international confer-
ence on semantic web, vol 10843, pp 593–607

 3. He C, Duan L, Zheng H, Li-Ling J, Song L, Li L (2022) Graph
convolutional network approach to discovering disease-related
CIRCRNA–MIRNA–MRNA axes. Methods 198:45–55

 4. Kipf TN, Welling M (2017) Semi-supervised classification with
graph convolutional networks. In: Proceedings of the 5th interna-
tional conference on learning representations

 5. Velickovic P, Cucurull G, Casanova A, Romero A, Liò P, Bengio
Y (2018) Graph attention networks. In: Proceedings of the 6th
international conference on learning representations

 6. Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE (2017)
Neural message passing for quantum chemistry. In: Proceedings
of the 34th international conference on machine learning, vol 70,
pp 1263–1272

 7. Ying Z, You J, Morris C, Ren X, Hamilton WL, Leskovec J (2018)
Hierarchical graph representation learning with differentiable
pooling. In: Proceedings of the 32nd international conference on
neural information processing systems, pp 4805–4815

 8. Tuteja S, Kumar R (2022) A unification of heterogeneous data
sources into a graph model in e-commerce. Data Sci Eng 7:57–70

 9. Dong Y, Chawla NV, Swami A (2017) metapath2vec: scalable rep-
resentation learning for heterogeneous networks. In: Proceedings
of the 23rd ACM SIGKDD international conference on knowledge
discovery and data mining, pp 135–144

 10. Fu T, Lee W, Lei Z (2017) Hin2vec: explore meta-paths in het-
erogeneous information networks for representation learning. In:
Proceedings of the 2017 ACM on conference on information and
knowledge management, pp 1797–1806

 11. Hu Z, Dong Y, Wang K, Sun Y (2020) Heterogeneous graph trans-
former. In: Proceedings of the 29th international conference on
world wide web, pp 2704–2710

 12. Wang X, Ji H, Shi C, Wang B, Ye Y, Cui P, Yu PS (2019) Het-
erogeneous graph attention network. In: Proceedings of the 28th
international conference on world wide web, pp 2022–2032

 13. Zhao J, Wang X, Shi C, Hu B, Song G, Ye Y (2021) Heterogene-
ous graph structure learning for graph neural networks. In: Pro-
ceedings of the 35th AAAI conference on artificial intelligence,
pp 4697–4705

 14. Kazemi SM, Goel R, Jain K, Kobyzev I, Sethi A, Forsyth P,
Poupart P (2020) Representation learning for dynamic graphs: a
survey. J Mach Learn Res 21:70–17073

 15. Fan Y, Ju M, Zhang C, Ye Y (2022) Heterogeneous temporal
graph neural network. In: Proceedings of the 2022 SIAM inter-
national conference on data mining, pp 657–665

 16. Pareja A, Domeniconi G, Chen J, Ma T, Suzumura T, Kanezashi
H, Kaler T, Schardl TB, Leiserson CE (2020) Evolvegcn: evolving
graph convolutional networks for dynamic graphs. In: Proceed-
ings of the 34th AAAI conference on artificial intelligence, pp
5363–5370

 17. Sankar A, Wu Y, Gou L, Zhang W, Yang H (2020) Dysat: deep
neural representation learning on dynamic graphs via self-atten-
tion networks. In: Proceedings of the 13th international confer-
ence on web search and data mining, pp 519–527

 18. Xue H, Yang L, Jiang W, Wei Y, Hu Y, Lin Y (2020) Modeling
dynamic heterogeneous network for link prediction using hierar-
chical attention with temporal RNN. In: Proceedings of the 2020
European conference on machine learning and knowledge discov-
ery in databases, vol 12457, pp 282–298

 19. Huang H, Shi R, Zhou W, Wang X, Jin H, Fu X (2021) Temporal
heterogeneous information network embedding. In: Proceedings
of the 30th international joint conference on artificial intelligence,
pp 1470–1476

 20. Ji Y, Jia T, Fang Y, Shi C (2021) Dynamic heterogeneous graph
embedding via heterogeneous hawkes process. In: Proceedings of
the 2021 European conference on machine learning and knowl-
edge discovery in databases, vol 12975, pp 388–403

 21. Kumar S, Zhang X, Leskovec J (2019) Predicting dynamic embed-
ding trajectory in temporal interaction networks. In: Proceedings
of the 25th ACM SIGKDD international conference on knowledge
discovery and data mining, pp 1269–1278

 22. Wang Y, Chang Y, Liu Y, Leskovec J, Li P (2021) Inductive rep-
resentation learning in temporal networks via causal anonymous
walks. In: Proceedings of the 9th international conference on
learning representations

 23. Xu D, Ruan C, Körpeoglu E, Kumar S, Achan K (2020) Inductive
representation learning on temporal graphs. In: Proceedings of the
8th international conference on learning representations

 24. Rossi E, Chamberlain B, Frasca F, Eynard D, Monti F, Bron-
stein MM (2020) Temporal graph networks for deep learning on
dynamic graphs. CoRR arXiv: 2006. 10637

 25. Hamilton WL, Ying Z, Leskovec J (2017) Inductive representa-
tion learning on large graphs. In: Proceedings of the 31st interna-
tional conference on neural information processing systems, pp
1024–1034

 26. Grover A, Leskovec J (2016) node2vec: Scalable feature learning
for networks. In: Proceedings of the 22nd ACM SIGKDD inter-
national conference on knowledge discovery and data mining, pp
855–864

 27. Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: online learn-
ing of social representations. In: Proceedings of the 20th ACM
SIGKDD international conference on knowledge discovery and
data mining, pp 701–710

 28. Luo J, Xiao S, Jiang S, Gao H, Xiao Y (2022) ripple2vec: node
embedding with ripple distance of structures. Data Sci Eng
7:156–174

 29. You J, Du T, Leskovec J (2022) ROLAND: graph learning frame-
work for dynamic graphs. In: Proceedings of the 28th ACM SIG-
KDD international conference on knowledge discovery and data
mining, pp 2358–2366

 30. Trivedi R, Farajtabar M, Biswal P, Zha H (2019) Dyrep: learning
representations over dynamic graphs. In: Proceedings of the 7th
international conference on learning representations

 31. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez
AN, Kaiser L, Polosukhin I (2017) Attention is all you need. In:
Proceedings of the 31st international conference on neural infor-
mation processing systems, pp 5998–6008

 32. Yun S, Jeong M, Kim R, Kang J, Kim HJ (2019) Graph trans-
former networks. In: Proceedings of the 33rd international confer-
ence on neural information processing systems, pp 11960–11970

 33. Ying C, Cai T, Luo S, Zheng S, Ke G, He D, Shen Y, Liu T (2021)
Do transformers really perform badly for graph representation?
In: Proceedings of the 35th international conference on neural
information processing systems, pp 28877–28888

 34. Ji G, He S, Xu L, Liu K, Zhao J (2015) Knowledge graph embed-
ding via dynamic mapping matrix. In: Proceedings of the 53rd
annual meeting of the association for computational linguistics,
pp 687–696

 35. Ba LJ, Kiros JR, Hinton GE (2016) Layer normalization. CoRR
arXiv: 1607. 06450

 36. Kazemi SM, Goel R, Eghbali S, Ramanan J, Sahota J, Thakur S,
Wu S, Smyth C, Poupart P, Brubaker M (2019) Time2vec: learn-
ing a vector representation of time. CoRR arXiv: 1907. 05321

 37. Xu D, Ruan C, Körpeoglu E, Kumar S, Achan K (2019) Self-atten-
tion with functional time representation learning. In: Proceedings

http://arxiv.org/abs/1611.07308
http://arxiv.org/abs/2006.10637
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1907.05321

111Memory-Enhanced Transformer for Representation Learning on Temporal Heterogeneous Graphs

1 3

of the 33rd international conference on neural information pro-
cessing systems, pp 15889–15899

 38. Hochreiter S, Schmidhuber J (1997) Long short-term memory.
Neural Comput 9(8):1735–1780

 39. Cho K, van Merrienboer B, Gülçehre Ç, Bahdanau D, Bougares
F, Schwenk H, Bengio Y (2014) Learning phrase representations

using RNN encoder-decoder for statistical machine translation.
In: Proceedings of the 2004 conference on empirical methods in
natural language processing, pp 1724–1734

 40. Fey M, Lenssen JE (2019) Fast graph representation learning with
pytorch geometric. CoRR arXiv: 1903. 02428

http://arxiv.org/abs/1903.02428

	Memory-Enhanced Transformer for Representation Learning on Temporal Heterogeneous Graphs
	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 The Proposed Model
	4.1 Temporal Heterogeneous Neighbor Sampling
	4.2 Dynamic Embedding Mapping
	4.3 Temporal Heterogeneous Graph Attention Layer
	4.4 Memory Module
	4.5 Heterogeneous Graph Decoder

	5 Experiments
	5.1 Experimental Settings
	5.1.1 Datasets
	5.1.2 Baselines
	5.1.3 Parameter Settings

	5.2 Effectiveness Analysis
	5.3 Ablation Study
	5.4 Parameter Sensitivity
	5.5 Effectiveness of Memory Module
	5.6 Inductive Capability Analysis

	6 Conclusion
	References

