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Abstract
The trip graph, which can model the residents’ taxi demands, consists of vertices used to indicate trips and edges used to 
indicate the follow-up relationships between trips. A trip vj is a tight follow-up trip of another trip vi , if a taxi can arrive at the 
departure location of vj within a time threshold � after it finishes vi . However, for big cities, there are a large amount of trips 
every day and it is time consuming to construct a trip graph. In this paper, we propose efficient algorithms to construct trip 
graphs for big cities. When constructing a trip graph, the most expensive step is to connect the vertices if the tight follow-up 
relationships exist. To find out the tight follow-up trips fast, we design an index considering both spatial and temporal con-
straints. To designate appropriate search areas, we propose efficient methods to determine the distance-based search areas 
and the traffic-based search areas. We conduct experiments on real datasets, i.e., the taxi trajectories of Shanghai in 2015. 
The experimental results show that our algorithm can construct the trip graph about 40 times faster than the straightforward 
method. We also demonstrate the usages of the trip graph in green transportation applications, i.e., the minimum fleet analysis 
and the minimum total “idle” mileage analysis.

Keywords Trip graph · Trip index · Spatial queries · Trajectory data

1 Introduction

Governments and taxi companies collect a huge number of 
trajectory data by using positioning devices (for example, 
GPS, etc.). Travel demands can be mined from the trajectory 

data. A trip graph [1] is used to express the travel demands 
in a concise way. In the graph, each vertex denotes a trip, 
and the directed edge from vertex vi to vertex vj denotes that 
vj could be a follow-up trip of vi . For example, in Fig. 1a, 
there are nine trips { v1 , v2 , ..., v9 }. Each trip has its depar-
ture location and time and its arrival location and time. Fig-
ure 1(b) shows the trip graph of the nine trips. In the graph, 
each vertex denotes a trip and the edge connect two vertices 
denotes the follow-up relationship between two trips. The 
outgoing edge from v1 indicates a driver has enough time 
to reach the departure location of v2 after he finishes v1 . In 
the case of a taxi-hailing app, the trip graph maintains the 
sequence of passengers’ orders. For example, after a taxi 
driver finishes order v2 , she can take one order among v3 , v4 
and v5 as the next order. If she chooses v4 and finishes it, she 
can continue to take v9.

A trip graph is the basis of taxi fleet managements [2] 
and car exhaust analyses [3]. Researchers can use one 
day’s trip graph to compute the minimum number of taxis 
that can meet daily demands of residents in a city. In fact, 
the problem of minimizing the number can be converted to 
finding the minimum path cover on the trip graph. Using 
CopertIII model [4], which is a model to estimate the vol-
umes of CO2 emissions of vehicles, researchers can further 
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compute the CO2 reduction if the taxi fleet size decreases 
to the minimum number. However, it is time consuming to 
construct a trip graph for a large number of trips. In this 
paper, we study how to construct a trip graph efficiently.

The number of taxi trips in a large city (for example, 
shanghai, China) is about 300,000 one day. A trip graph 
models the citizens’ travel demands in a whole day and 
it consists of a large number of vertices (about 300,000) 
which indicate the trips. A trip (i.e., vertex) should be con-
nected with its tight follow-up trips with directed edges. 
Given two trips vi and vj , if the time interval between vi 
and vj is not too long and a driver can travel from vi ’s 
arrival location to vj ’s departure location in time, vj is a 
tight follow-up trip of vi . In this paper, our problem is to 
find out all tight follow-up trips of each trip. A straightfor-
ward way is checking trips one by one and identifying the 
tight follow-up trips of each trip. The time complexity of 
this method is O(n2 ), where n is the number of trips and n 
may be very large (for example, 300,000).

To find out tight follow-up trips more efficiently, we 
propose a trip index by considering the spatial and tempo-
ral constraints. The spatial constraint is that the distance 
between two trips cannot be too far away. The temporal 
constraint is that a driver needs enough time to travel to 
the destination. The trip index consists of an array of time 
slots and several R∗-trees. The array of time slots is a one-
dimensional array, which records information such as the 
time boundary of each time slot. R∗-trees record the loca-
tions of all trips in a single time slot. The array of time 
slots determines the content of R∗-trees.

We can find out the tight follow-up trips of one trip vi 
efficiently by using the trip index. First, we identify can-
didate time slots based on the arrival time of vi . Then we 
perform a spatial area search on each candidate time slot to 

find tight follow-up trips. In the search procedure, to desig-
nate an appropriate search area is very important. We study 
the distances-based search area and the traffics-based search 
area. The distance-based search area depends on the travel 
time and speed of the vehicle. If we allow drivers to drive 
longer, vehicles can reach a greater range. However, the traf-
fic conditions of different road sections are different, and 
the speed of vehicles is determined in the traffic grid. The 
traffic-based search area depends on the traffic grid. We map 
trajectories into cells and calculate the average speed. We 
implement a breadth-first search on the traffic grid, and find 
the traffic-based search area. Finally, we aggregate the search 
area by merging cells. If we designate the search area by 
considering the distances, we can obtain results fast. How-
ever, some results may be not the tight follow-up trips in 
reality. If we designate the search area by considering the 
traffics, we can obtain results that are closer to the reality. 
However the method requires much more time.

We evaluate the perfomances of the proposed index and 
search algorithms by using real datasets, which is the taxi 
trajectory data in Shanghai, China, in 2015. The experimen-
tal results show that using the trip index we can find out 
tight follow-up trips about 40 times faster than using the 
baseline methods. The experimental results also show that 
we can reduce false tight follow-up trips by nearly 40% if we 
designate traffic-based search areas. To illustrate the usage 
of the trip graph, we demonstrate the experimental results 
of minimum taxi fleet analyses. Using the trip graph, the 
minimum path coverage algorithm can estimate the mini-
mum number of taxis that can meet urban residents’ daily 
travel demands [2]. The experimental results show that 
we only need 12,000 taxis to meet urban residents’ daily 
travel demands of Shanghai. We also calculate the exhaust 
emissions that can be reduced according to the COPERT 

Fig. 1  An example of trips and its trip graph
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III model [4]. The experimental results show that when the 
average vehicle speed is 36 km/h, the scheduling method of 
the minimum taxi fleet can reduce the exhaust emissions by 
about 15%.

In summary, we make the following contributions:

• We propose a trip index that can organize taxi trips con-
sidering their spatial and temporal features.

• To construct a trip graph efficiently, we present a dis-
tance-based search algorithm and a traffic-based search 
algorithm that can find out the tight follow-up trips fast.

• Experiments results on real trajectory datasets show that 
our algorithms outperforms the straightforward algo-
rithm of constructing trip graphs.

Section 2 defines the problem of constructing trip graphs 
and introduces the baseline algorithms in details. Section 3 
introduces the trip index in details. Section 4 introduces how 
to find out tight follow-up trips according to distance-based 
search areas and according to traffic-based search areas, 
respectively. Section 5 analyzes the experimental results and 
demonstrates the usages of trip graphs. Section 6 presents a 
review of related work. Section 7 concludes the paper.

2  Preliminaries

The trip graph is used to model taxi demands of residents. In 
this section, we define the trip graph and related concepts. 
At the end of the section, we point out the problem we want 
to solve.

Definition 1 (Trip graph) A trip graph G(V, E) consists of a 
vertex set V and an edge set E, where a vertex vi ∈ V denotes 
a trip and an edge from vi to vj means vj is a tight follow-up 
trip of vi.

In the definition, a trip vi is used to model a taxi demand. 
It consists of four elements, i.e., ( vstart

i
,von
i

 , vend
i

 , voff
i

 ), where 
vstart
i

 and von
i

 are the departure time and location of vi , vendi
 

and voff
i

 are the arrival time and location of vi . The edges of a 
trip graph indicate the tight follow-up relationships between 
trips. Next, we define the follow-up relationship first and 
then define the tight follow-up relationship.

If a taxi has enough time to reach von
j

 (i.e., the departure 
location of vj ) after she reaches voff

i
 (i.e., the arrival location 

of vi ), vj is a follow-up trip of vi . We give the formal defini-
tion as follows.

Definition 2 (Follow-up trip) Assuming a taxi spends at least 
tij time in traveling from voff

i
 to von

j
 , if

vj is a follow-up trip of vi.

In this paper, we estimate tij by considering the Euclidean 
distance between voff

i
 and von

j
 , or considering the traffics 

between the two locations. If vj is a follow-up trip of vi , a taxi 
driver can pick up vj after she finishes vi . But in real applica-
tions, a taxi driver may be not willing to pick up vj , if the 
time interval between the two trips (i.e., vstart

j
− vend

i
 ) is too 

long. To constrain the time interval, the tight follow-up rela-
tionship is defined as follows.

Definition 3 (Tight follow-up trip) Given a time interval 
threshold � , if vj is the follow-up trip of vi and their time 
interval is not larger than � , i.e.,

vj is a tight follow-up trip of vi.

In this paper, we set � to 15 minutes as [2] points out, and 
we use V∗

i
 to denote all the tight follow-up trips of vi.

Definition 4 (Trip graph construction problem) Given a trip 
set V and a time threshold � , the trip graph construction 
problem is to let trips V be vertices and to connect each trip 
vi with its tight follow-up trips V∗

i
.

To construct a trip graph, the most time consuming step 
is to find out the tight follow-up relationships and connect 
vertices. In this paper, we focus on solving the problem of 
finding out all the tight follow-up trips V∗

i
 of each trip vi 

efficiently.
Figure 2 shows a toy example. In Fig. 2a, there are three 

trips v1 , v2 and v3 . A driver spends 20 minutes in travel-
ling from voff

1
 to von

2
 and she spends 10 minutes in travelling 

from voff
1

 to von
3

 . Considering the departure time of v2 and the 
departure time of v3 , a driver can reach von

2
 or von

3
 in time after 

she finishes v1 . Therefore, both v2 and v3 are the follow-up 
trips of v1 . Since we set � to be 15 minutes, only v3 is a tight 
follow-up trip of v1 . Because the time interval between v1 
and v2 is larger than � , i.e., vstart

2
− vend

1
= 25minutes . Fig-

ure 2b shows the corresponding trip graph. The graph con-
sists of three vertices {v1, v2, v3} that indicate trips and an 
edge from v1 to v3 that indicates the tight follow-up relation-
ship .

2.1  Baseline Method

To find the tight follow-up trips V∗
i
 of a trip vi , a straight-

forward method is to check vj ∈ V − {vi} one by one and 
determine whether it is a tight follow-up trip according to 

(1)tij ≤ vstart
j

− vend
i

,

(2)tij ≤ vstart
j

− vend
i

≤ �
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Definition 3. The time complexity of this method is O(n2 ), 
where n is the total number of trips. In real applications, 
there are a lot of trips and n is very large. For example, there 
are about 300,000 taxi trips per day in shanghai.1 Thus, it is 
quite time-consuming to construct a trip graph. However, in 
fact one trip only has a small number of tight follow-up trips. 
For example, the average number of tight follow-up trips is 
about 1000 when � is 15 minutes.2

Considering spatial and temporal constraints, we can fil-
ter out a large number of trips and have a small number 
of trips left as candidates. To improve the straightforward 
method, we propose the sort and search algorithm. Firstly, 
we sort trips in the ascending order of their departure time 
instants and store their IDs in array Astart , and we also sort 
trips in the ascending order of their arrival time instants and 
store their IDs in another array Aend . Secondly, we look for 
the candidate trips of each vi . The candidate trips are the 
ones whose departure time are between vend

i
 and vend

i
+ � . 

Since Astart is a sorted array, we can find vend
i

 and vend
i

+ � 

quickly by using a binary search. Thirdly, we identify the 
real V∗

i
 of vi among the candidates according to Definition 3. 

This algorithm includes sorting, searching, and verifying. 
Since the time complexity of sorting is O(n log2 n ), the time 
complexity of searching is O(n log2 n ), and the time com-
plexity of verifying is O(nk), where k is the average number 
of candidates, the time complexity of the whole algorithm 
is O(n log2 n).

To further narrow down the range of each binary search, 
we use a cursor p to maintain the left position of the next 
binary search. As Fig. 3a shows, when looking for the can-
didate trips for v1 , which is the first trip in Aend , the cursor p 
is at the starting element of Astart . We have to search for vend

1
 

and vend
1

+ � in the whole Astart . Assuming that {s1
1
, s1

2
, ..., s1

k1
} 

are the candidates found, we move cursor p to s1
1
 . Thus, in 

the next iteration, when looking for the candidate trips for 
v2 , we can narrow down the search range from the whole 
Astart to a part of Astart , i.e., from the element pointed by p to 
the last element in Astart , as Fig. 3b shows. Because the 
departure time of any trip in front of s1

1
 is guaranteed to be 

earlier than vend
2

 . In this way, we gradually shrink the binary 
search range.

Fig. 2  An example of a trip graph

Fig. 3  Sort and Search Algo-
rithm

1 See Fig. 13a in Sect 5.1.
2 See Fig.13b in Sect. 5.1.
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Algorithm 1 summarizes the sort and search algorithm. 
Line 1 and Line 2 sort the trips according to their departure 
time and arrival time, respectively. The two arrays Astart and 
Aend are formed where elements are trip IDs. Line 4 sets 
cursor p to be zero which is the subscript of the first element 
in Astart . The outer loop (Line 5 to Line 13) searches for the 
tight follow-up trips of each trip vyi according to ID order in 
Aend . Line 7 and Line 8 use binary searches to find out lb 
and rb which are the starting subscript and ending subscript 
of candidate elements in Astart . Note that the search range is 
from p to n. Line 9 updates p in order to shrink the search 
range in every iteration. Line 12 verifies whether a candidate 

trip vcandid is a tight follow-up trip of vid . If so, Line 13 adds 
an edge (vid, vcandid) to the edge set E. The time complexity 
of Algorithm 1 is O(nlog2m ) where m is the average length 
of search ranges, which is about 0.48n.

3  Constructing Trip Index

Algorithm 1 uses temporal constraint to improve the perfor-
mance of the algorithm. But it does not consider the spatial 
constraint. In this section, we build a trip index considering 

Fig. 4  An example of time slot 
R
∗-tree forest
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both spatial and temporal constraints, and in next section we 
will introduce how to find results fast by using this index.

We divide a day into time slots {t1, t2, ..., tm} . Each trip is 
placed into the corresponding time slot tk according to its 
departure time vstart

i
 . We set up an R∗-tree index rtreek for 

each time slot tk in order to organize all trips in tk according 
to their departure locations (i.e., von

i
’s). As Fig. 4 shows, the 

whole day is divided into m time slots. Trips {v1, v3} are 
assigned to t781 and {v2, v4} are assigned to t25 according to 
their departure time. For each time slot, we build an R∗-tree 
considering the departure locations. For example, rtree25 
organizes the departure locations of the trips in t25 , and 
rtree781 organizes the departure locations of the trips in t781.

To create time slots, a simple way is to divide a day (24 
hours) evenly. For example, the whole day can be divided 

into 1440 time slots and every time slot has the same length 
(i.e., 1 minute). However, dividing a day evenly may cause 
the performances of the index degradates. As Fig. 5 shows, 
the number of trips fluctuates greatly throughout a day. At 
the morning peak and the evening peak, the number is much 
larger than that at the midnight. If we divide the whole day 
evenly, some time slots may have many trips, while some 
time slots may have very few trips. The imbalance will 
cause the height of R∗-tree to be dissimilar. Therefore, we 
distribute the trips (N in total) evenly into time slots and each 
time slot contains nunit trips. And the number of time slots is 
m = N∕nunit . Since the lengths of time slots are unequal, we 
use an auxiliary array to record the start time and end time 
of each time slot.

Fig. 5  Number of trips at differ-
ent time in one day
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Algorithm 2 describes the procedure of building the trip 
index. Line 1 calculates the number of time slots divided. 
Line 2 initializes the R∗-tree set. Line 3 to line 5 use a loop 
to initialize each tree of Trees. Line 6 uses function Sort() 
to sort V by departure time of vi . Line 7 to line 9 calculate 
the corresponding k of trip vi , and insert the departure loca-
tion of vi into treek . The time complexity of this algorithm 
is O(NlogMd ), where N is the total number of trips, M is the 
maximum fanout of R∗-tree, and d is the number of trips in 
each time slot.

Figure 6 shows the process of constructing a trip index. 
Figure 6a shows tree1 is initialized. Figure 6b shows we 
insert the departure location of a trip into tree1 if the trip’s 
departure time falls into the first time slot. In the same way, 
we construct the R ∗-tree for the second time slot, and so on, 
as Fig. 6c shows.

4  Finding Out Tight Follow‑up Trips

Using the trip index, we can find out tight follow-up trips V∗
i
 

of each trip vi ∈ V  considering both time and spatial con-
straints. Firstly, we use the time constraint. When a driver 

finishes vi at time vend
i

 , any trip vj with vstart
j

∈ [vend
i

, vend
i

+ �] 
could be a candidate for vi ’s tight follow-up trip. Therefore, 
we select the time slots {ti1, ..., tik} , where ti1 is the leftmost 
time slot containing vend

i
 and tik is the rightmost time slot 

containing vend
i

+ � . In other words, the time slot set can 
cover the interval [vend

i
, vend

i
+ �] , i.e.,

As Fig. 7 shows, given � and v99 , we select the time slots 
{t584, ..., t584+k} , because vend

99
∈ t584 and vend

99
+ � ∈ t584+k . The 

time slots {t584, ..., t584+k} can cover [vend
99

, vend
99

+ �].
Secondly, we search for candidates in each time slot hit 

under the spatial constraint. When a driver finishes vi , she 
is at voff

i
 . She can take on the trips with departure locations 

falling into a small area nearby voff
i

 . So we do the search 
by using a spatial range query on the R∗-tree w.r.t. the time 
slot, as Fig. 7 shows. We will introduce how to designate 
the area next. In Section 4.1, we designate the area under 
the assumption that the travel time can be estimated by 
Euclidean distances. In Section 4.2, our assumption is that 
the travel time can be estimated by using the traffic data. At 
last, we identify the real tight follow-up trips and add edges 
from vi to these trips.

(3)[vend
i

, vend
i

+ 𝛿] ⊆ ti1 ∪ ti2 ∪… ∪ tik.

Fig. 6  The process of construct-
ing a trip index

Fig. 7  Search for trips con-
sidering both time and spatial 
constraints
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Algorithm 3 summarizes how to find out tight follow-up 
trips by using R∗-tree forest. Line 3 uses function Get-
BoundaryTimeSlots() to compute the upper and lower 
bounds ti1 and tik of the time slots. Then, line 5 uses function 
GetSearchArea() to calculate the search range correspond-
ing to each time slot. Line 6 takes areax as the radius of the 
query range, and performs a spatial range search on the R∗-
tree corresponding to the time slot. We can obtain all candi-
date trips Vcandid whose departure position is within the 
query range. Line 7 to line 10 identify the real results from 
the candidates according to Definition 3. If vj is a real results, 
we add edge evi→vj

 to the graph G. The time complexity of 
this algorithm is O(N(KlogMd + Z) ), where N is the total 
number of trips, K is the number of time slots hit, Z is the 
average number of candidates, M is the maximum fanout of 
R∗-tree, and d is the number of trips in each time slot.

Figure 8 shows the process of constructing a trip graph. 
At the beginning, the trip graph only contains nodes which 
represent different trips {v1, v2,… , v9} , as Fig. 8a shows. 
Next, we search for the tight follow-up trips of trip v1 , and 
v2 is the result. So, we add a directed edge which is from v1 
to v2 , as Fig. 8b shows. In the same way, we search for the 
tight follow-up trips of v2 and the results are v3 , v4 , and v5 . 

So, we add three directed edges from v2 to the three trips, 
as Fig. 8c shows. We search for tight follow-up trips and 
add directed edges iteratively. After processing the last 
trip v9 , we obtain the whole trip graph, as Fig. 8d shows.

4.1  Distance‑Based Search

In Algorithm 3, designating the search area areax for rtreex 
(w.r.t. time slot tx ) is a key problem. Here we use t⊢

x
 to 

denote tx ’s starting time and use t⊣
x
 to denote its ending 

Fig. 8  The process of constructing a trip graph

Fig. 9  Distance-based search areas
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time. We regard a trip vj to be a candidate, if a driver trav-
els from voff

i
 and can reach von

j
 before t⊣

x
 . Assume we evalu-

ate the distance between two locations by their Euclidean 
distance. Thus, areax could be the disc region of rx radius 
from voff

i
 , where

and speed is the average speed of taxis.
As Fig. 9 shows, to find out tight follow-up trips of v99 , 

we select time slots {t584, t585,… , t584+k} . Next, for these 
time slots we must designate corresponding search areas 
{area99

0
, area99

0
,… , area99

k
} . These search areas have the 

same center, namely, voff
99

 , however, they have different radii. 
For example, the radius of area99

1
 is speed × |t⊣

584
− t⊢

584
| , 

and the radius of area99
2

 is speed × |t⊣
585

− t⊢
584

| , and so on. 
Because a driver can spend more time in taking trips that 
are in later time slots.

4.2  Traffic‑Based Search Areas

In Sect. 4.1, we assume a driver travels at a constant speed, 
which is an empirical value. However, in real scenarios, the 
driving speed depends on traffics. This section introduces 
how to designate search areas considering traffics.

(4)rx = speed × |t⊣
x
− t⊢

i1
|,

4.2.1  Traffic Grid

Since the driving speed varies in different places, we parti-
tion the whole space by a grid C, which consists of 
row × col cells. The grid C is called a traffic grid where 
each cij has a speed cspeed

ij
 . To calculate cspeed

ij
 , we use the 

taxi trajectory data. We map trajectory points into cells 
according to their latitudes and longitudes and calculate 
the average speed of the trajectory points falling in every 
cell, i.e.,

where m is the number of trajectory points falling in the 
cell. The px ’s position pcoord

x
 falls into cij and its speed pspeedx  

is used to calculate the average speed. Note that GPS can 
collect a taxi’s position together with its speed at each time 
instant.

Figure 10 illustrates the forming procedure of a traf-
fic grid. The black points indicate trajectory points. After 
dividing the whole space into a 5 × 5 grid, the black points 
fall into different cells. According to Eq. 5, we can obtain 
the average speed of each cell.

(5)c
speed

ij
=

∑m

x=1
p
speed
x

m
,

Fig. 10  Build traffic grid
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Algorithm 4 describes how to build a traffic grid. In lines 
2-5, we map each trajectory point. Line 3 uses function Get-
Cell() to calculate the corresponding cell of pi according to 
its latitude and longitude. Line 4 accumulates the sum speed 
of the trajectory points falling into the cell. Line 5 updates 
the number of trajectory points falling in the cell. Line 6 and 
line 7 calculate the average speed of each cell. The traffics 
can be estimated more accurately if make the cells smaller, 
however, it is time consuming to build a traffic grid with 
very small cells.

4.2.2  Getting Search Areas

In the traffic grid C, we find the search areas by expanding 
cells gradually. The distance between two cells are reduced 
to the distance between the centers of two cells. The travel 
time between two cells (from cxi,yi to cxj,yj ) is

Where ‖distancei,j‖ denotes the distance from cxi,yi to 
cxj,yj . We take the cell cxi,yi of a departure location voff

i
 as 

the starting point of the expansion. We extend the search 
area to all that are eight cells adjacent to cxi,yi , namely, 
{cxi−1,yi−1, cxi−1,yi,… , cxi,yi+1} as Fig. 11a shows. We check 
whether a cell should be included into the search areas 
according to the travel time from cxi,yi to this cell. If a driver 
can reach it within the time threshold � , we add it into the 
search areas and continue to check its adjacent cells. The 
process terminates when the search areas cannot not be 
expanded.

(6)

travelTimecxi,yi→cxj,yj
=

1

2
×

⎛
⎜
⎜
⎝

‖distancei,j‖

c
speed

xi,yi

+
‖distancei,j‖

c
speed

xj,yj

⎞
⎟
⎟
⎠
,

Fig. 11  The process of forming 
search areas
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Figure  11 illustrates the forming process of search 
areas. The gray cells denote current search areas. Fig-
ure 11a shows the starting point of the expansion. The 
numbers denote the cells’ average speeds. Since the travel 
time from cxi,yi to each cell should be smaller than � , in 
Fig. 11b we obtain three reachable cells. Note that the 
numbers in this figure indicate the priorities of the cells. 
A cell with a smaller number will be expanded earlier. 
The priority of a cell depends on the travel time from 

cxi,yi to the cell. A cell with a shorter travel time can get a 
higher priority. Figure 11c shows we expand the cell with 
the highest priority, and Fig. 11d shows the results after 
this expansion. A new cell is included in the search area 
and the priorities are changed. Since the expansion order 
depends on priorities, we use a priority queue to imple-
ment the procedure.
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Fig. 12  The procedure of merg-
ing cells

Fig. 13  Statistics of taxi trips
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Algorithm 5 introduces how to get the search areas of a trip 
vi . The algorithm expands search areas in a breadth-first way. 
Line 1 initializes an array mtimei,j , which is used to capture 
the minimum travel time from cxi,yi to every other cell. Line 2 
use function GetCel() to get the cell corresponding to the trip 
vi . Line 3 to line 5 initialize a priority queue Q and add cxi,yi 
to it. Line 6 set the minimum travel time of cxi,yi to 0, because 
cxi,yi is the departure cell. Line 7 and line 8 initialize x and 
max, where x denotes the id of the current time slot and max 
denotes the maximum travel time allowed. Line 10 pop the 
top element of Q. Line 12 to 16 record the search areas. Line 
12 judges whether the record condition is met. Line 13 uses 
function Merge() to merge the search area, and line 14 and 15 
update x and max. Line 18 to line 24 expand the search areas. 
Line 20 uses function GetTravelTime() to calculate the travel 
time between ctop.id and ci,j . If ci,j is reachable, we update the 
minimum travel time of ci,j and push it into Q. We expand the 
search areas until there are no more reachable cells.

4.2.3  Merge Cells

The search area consists of a number of reachable cells. A 
straightforward way is to take each cell as a query range and 
issue many range queries on R ∗-tree. But it is time consum-
ing. Another way is to make an MBR (minimum bounding 
rectangle) of all the cells and take the MBR as the query range. 
But there will be many unreachable cells included in the query 
range. On the one hand, we want to reduce the number of 
range queries, and on the other hand, we want to reduce the 

number of unreachable cells included in the query range. In 
this section, we propose a tradeoff method which can obtain a 
small number of query ranges by merging cells. We merge a 
cell with its neighboring block if the effect of merging is good 
enough. The mergeability score is used to evaluate the quality 
of a new block that will be formed by merging.

Figure 12 graphically depicts the cell merging process. The 
cells that have been merged into blocks are in light gray. Fig-
ure 12a shows the state before merging. At this time, there is a 
block b1 and a cell c to be merged, and we try to merge c into 
the b1 connected to it. Figure 12b is the state of pre-merging, 
we expand c, and expect to merge this column of cells into b1 , 
and calculate the mergeability score. The mergeability score 
of a block is

where mtotal is the total number of cells contained in the 
block, m1 is the number of reachable cells, m2 is the num-
ber of blank cells (cells without GPS points), and m3 is the 
number of cells that have been merged already. Given a 
minimum score threshold � , the block is merged if its mer-
geability score is larger than � . Figure 12c shows the new 
block b′

1
 formed. When there is more than one block adjacent 

to cell c, we select the block with the highest mergeability 
score for merging. When the score is not satisfied, the cell 
is generated as a new block by itself, as b2 in Fig. 12d. Note 
the score should be increased when a cell is determined to 
be reachable.

(7)score =
m1 + m2

mtotal

×
1

m3 + 1
,
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Algorithm 6 introduces the procedure of merging cells. 
The inputs of the algorithm are cells to be merged and � . The 
outputs are the blocks formed. For each cell to be merged, 
line 2 determines whether it has been merged. If not, line 3 
initializes the best block ID and the best score. Line 4 to line 
8 pre-merges each block adjacent to the cell and calculate 
the mergeability. We keep the best score and the best block 
ID. Line 5 uses function GetMergeScore() to calculate 
the score of pre-merging ci,j into bk . Line 9 checks whether 
the best score meets the minimum mergeability score. If so, 
function MergeOneCell() merges ci,j into bbestID . If not, line 
12 makes the cell a separate block. When merging, in order 
to ensure that the block is a rectangle, some irrelevant cells 
are merged into the block, as shown in Fig. 12b. Each block 
will records m1 , m2 , m3 , mtotal , and update them.

This merging problem is in fact to subdivide a rectangular 
polygon into rectangles [5]. We want to cover all cells with 

the least rectangles to reduce the number of spatial range 
queries. But the time complexity of the exact algorithm is 
high, so we propose this approximation algorithm with a 
low time complexity.

5  Experiment

We conduct experiments to evaluate the performances of 
the proposed algorithms. We build trip graphs-based on the 
taxi trajectory data in Shanghai, 2015, and demonstrate the 
results of minimum fleet analyses by using the trip graphs. 
All the experiments are executed on a Windows 10 Pro with 
an Intel(R) Xeon(R) W-2123 3.60GHz CPU and 32GB 
RAM.

Fig. 14  Elapsed time of constructing trip index

Fig. 15  The index sizes w.r.t. different parameter settings
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5.1  Experimental Setting

Datasets The experiments are performed on the taxi trajec-
tory data collected in Shanghai, 2015. We select the trajec-
tory data of one Tuesday, one Wednesday, one Thursday, one 
Friday, one Saturday, and one Sunday. Each day’s dataset 
contains about 130 million trajectory points. The GPS col-
lects the information of taxi every 5 seconds which includes 
its position, its speeds, its status (operating, available, sus-
pended), and so on. In the experiments, we extract the taxi 
ID, the time stamp, the location, and the service status from 
each trajectory point collected by GPS.

Extract Trips We extract trips from the raw trajectory 
dataset where the trajectory points are neither grouped by 
taxi IDs nor sorted by time. In the experiments, we group 
the trajectory points according to different taxi IDs. For 
each group we sort the trajectory points in chronological 
order, and obtain the whole trajectory of a taxi. From the 
whole trajectory, we extract the trips that are characterized 
by continuous trajectory points with “operation” status. The 
“operation” status means the taxi is carrying passengers.

Statistics of Taxi Trips We extract trips from trajectory 
data on different days. As Fig. 13a shows, the average num-
ber of daily trips is 380 thousand. The number of taxi trips 
on weekdays (i.e., Tuesday, Wednesday, and Thursday) is 
smaller than the number of taxi trips on weekends (i.e., Fri-
day, Saturday and Sunday). Figure 13b shows the number of 
tight follow-up trips w.r.t. different �’s. In the experiments, � 
is set to 5 minutes, 10 minutes and 15 minutes, respectively. 
The larger the � is, the larger the number of tight follow-up 
trips becomes, because a larger � means a driver has longer 
time to drive to the departure location of the next trip.

5.2  Algorithm Performance

Firstly, we evaluate the performances of the algorithm used 
to build a trip index. We implement Algorithm 2 in C++ 
and use the R ∗-tree source code3. We conduct experiments 
on datasets of different sizes. The datasets contain 10,000, 

Fig. 16  Running time of finding out tight follow-up trips

Fig. 17  Running time when � or m varies

3 https:// super limin al. com/ sourc es/.

https://superliminal.com/sources/
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100,000, and 300,000 trips, respectively. As Fig. 14a shows, 
the parameter m, which is the number of trips in each time 
slot, is set to 100, 200 and 300, respectively. It takes more 
time when m is larger. Because a larger m means we should 

insert more items to the R ∗-tree. As Fig. 14b shows, the 
fanout of R ∗-tree, which is the maximum number of child 
nodes, is set to 10, 20, and 30, respectively. It takes more 
time when the fanout is larger. Because a larger fanout 

Fig. 18  Number of tight follow-up trips found

Fig. 19  Performances of trip-index-based-2 w.r.t. different grid sizes

Fig. 20  Performances of merging cells (Algorithm 6)
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makes the tree traverse more child nodes under each node, 
it takes longer to insert a node, even though the tree is there-
fore shorter.

As Fig. 15 shows, we analyze the index sizes under differ-
ent parameter settings. There are two factors that can influ-
ence the index size. One of them is the number of trips in 
each time slot (i.e., nunit ), and the other one is the fanout of 
R ∗-tree. Figure 15a shows the average size of a single R∗

-tree w.r.t. different nunit’s. The parameter nunit is set to be 
100, 200 and 300, respectively, while the fanout of R ∗-tree 
keeps in 10. The results show that the R∗-tree is small when 
nunit is small. Note that we do not show the size of a whole 
trip index because a trip index is in fact a group of R ∗-trees 
and nunit cannot influence the whole size. Different from 
Fig. 15a and b shows the whole size of a trip index w.r.t. 
different fanouts of R∗-tree. The fanout of R∗-tree, which is 
the maximum number of branches, is set to be 10, 20, and 
30, respectively, while nunit keeps in 300. The whole index 
becomes smaller when the fanout grows larger. In this figure, 
we also show the sizes of indexes for organizing the trips 
on different days, i.e., Tuesday, Wednesday, and Saturday. 
Saturday has the largest index for it has the largest number 
of trips.

Secondly, we evaluate the algorithms for finding out tight 
follow-up trips. As Fig. 16 shows, we compare four algo-
rithms. The baseline indicates the straightforward algo-
rithm with time complexity O(n2 ). The sort-and-search 
indicates Algorithm 1 which improves baseline. The trip-
index-based-1 and trip-index-based-2 indicates the two 
algorithms supported by the trip index. Both of them con-
form to the flow of Algorithm 3, while they designate search 
areas in different ways. The trip-index-based-1 designates 
search areas considering Euclidean distances (See Sect. 4.1). 
The trip-index-based-2 designates search areas considering 
traffics (See Sect. 4.2).

Figure 16 shows the running time of the four algorithms 
on a weekday (Tuesday, in Fig. 16a) and a weekend (Satur-
day, in Fig. 16b). The time threshold � is set to 15 minutes, 

and the dataset size is set to 104 , 105 and 3 × 105 . As shown 
in the figures, it takes more time to process larger datasets. 
The running time of baseline grows dramatically, while the 
running time of the other three algorithms grows relatively 
smoothly. The trip-index-based-1 runs fastest. The trip-
index-based-2 runs slowly, but its results are more real-
istic since it considers the traffics. It becomes faster than 
baseline when the dataset size grows to 105 and 3 × 105 . 
Because trip-index-based-2 needs to query the traffic grid, 
when the grid size is set, the running time of a single query 
is determined. However, with the increase of data scale, the 
number of trips checked in baseline increases.

Figure 17 compares the algorithms when the parameter 
� or m varies. As Fig. 17a shows, � is set to 5 minutes, 10 
minutes, and 15 minutes, respectively. The � value has little 
influence on baseline, however, it has obvious influence 
on the other three algorithms. When � grows, their running 
time increases. Because a larger � means more trips can be 
candidates. Fig. 17b shows the running time of trip-index-
based-1 w.r.t. to different m’s. We use the Tuesday and 
Saturday datasets. Each of them contains 3 × 105 trips. The 
m is set to 100, 200, 300, 400 and 500 respectively. The 
experimental results show that when m is about 300, the 
algorithm runs fastest.

Figure 18 compares the number of tight follow-up trips 
found by trip-index-based-1 and trip-index-based-2. We 
conduct experiments on both the Tuesday dataset (Fig. 18a) 
and the Saturday dataset (Fig. 18b). The � is set to 5 min-
utes, 10 minutes, and 15 minutes, respectively. The num-
ber increases when � gets larger, since a driver has more 
time to reach departure locations of next trips. In addition, 
the difference between the number of results found by trip-
index-based-1 and the number of results found by trip-
index-based-2 also increases when � gets larger. Because 
trip-index-based-2 uses the traffic grid, the results are 
closer to actual situations. When � increases, the number 

Fig. 21  Trips and the dispatch of taxis
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of candidates also increases and the trip-index-based-1 
returns much more results.

To observe the statistics of speeds, as Fig. 19a shows, we 
count the number of cells in different speed intervals. The 
side length of each cell is set to 1000 meters, 500 meters, 

and 100 meters, respectively. The x-axis has several speed 
ranges. The y-axis shows the ratio of the number of cells 
with a speed range to the total number of cells. The over-
all distributions of the ratios are similar w.r.t. different cell 
sizes. However, the uniformity of the speed distribution 

Fig. 22  An example of the minimum taxi fleet analysis

Fig. 23  Analyses of minimum taxi fleets

Fig. 24  An example of the minimum total “idle” mileage analysis
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varies, and the smaller the cell size, the more uniform the 
speed distribution. Figure 19 shows the performances of trip-
index-based-2 w.r.t. different cell sizes. As Fig. 19b shows, 
the algorithm runs faster when the cell size is larger, because 
a larger cell size means fewer cells should be checked.

Figure 20a compares the performances of merging cells 
w.r.t. different minimum score threshold � . We set � to 0.5, 
0.75, and 1.0, respectively. The symbol “No-Merge” is the 
case where no merging is performed. Too many blocks will 
degrade the performance of trip-index-based-2. Thus, we 
hope to reduce the blocks as many as possible. As the fig-
ure shows, comparing with “No-Merge”, the blocks can be 
reduced by about 85% after merging ( � = 1 ). It means that 
the merging operations can reduce the number dramati-
cally. When the threshold � becomes smaller, the number of 
blocks decreases. Figure 20b illustrates the role of the prior-
ity queue used in trip-index-based-2. The “pq” legend indi-
cates the usage of a priority queue. As the figure shows, the 
number of blocks can reduce by about 60%, if we implement 
trip-index-based-2 by using a priority queue. Because the 
priority queue can make the breadth-first search to be car-
ried out in a way that can improve the merging performance.

5.3  Application Scenario of Trip Graph

Traffic congestion and exhaust pollution are common prob-
lems in large cities, however, to restrict the number of taxies 
blindly may have negative impacts on residents’ daily trav-
els. To solve the urban traffic problem, a possible way is to 
mine the residents’ travelling demands and then to estimate 
how many taxies needed at least. Santi el al. [1] use the trip 
graph to model residents’ travelling demands and solve the 
minimum fleet problem based on the graph. In fact, the mini-
mum fleet problem is a minimum path cover problem, which 
is NP-hard and could be solved by using the Hopcroft-Karp 

algorithm. Another task is to compute an ideal scheduling 
scheme that can minimize the total “idle” mileage of taxis. 
Here “idle” means a taxi is travelling without carrying pas-
sengers. Given the taxi number and a trip graph, this task is 
to find out a scheduling scheme that taxis can complete all 
trips while the total “idle” mileage should be minimized. 
This task can be converted to a minimum cost flow prob-
lem. In this section, we demonstrate both the minimum taxi 
fleet analysis and the minimum total “idle” mileage analysis 
based on the trip graph we constructed.

Figure 21 shows the instances of trips and the dispatch 
of taxis. In Fig. 21a, an arrow with two ballons indicates 
the beginning and the end of a trip. For simple, we only 
demonstrate 7 trips in the figure, while in fact the number 
of trips one day in Shanghai reaches more than 300,000. In 
Fig. 21b, the two polylines with different colors represent the 
trips completed by two taxis. A solid arrow indicates a trip. 
A dotted arrow indicates a driver transfers from one trip to 
the next trip. The 7 trips in Fig. 21a could be completed by 
two drivers in Fig. 21b.

Figure 22 shows a trip graph and the minimum path cover 
on the graph. The trip graph used is a part of the Shanghai’s 
trip graph on one day which consists of 20 trips, as Fig. 22a 
shows. In the graph, the vertices (i.e., the blue points) denote 
the trips while the directed edges denote the tight follow-up 
relationships between two trips. To find out the minimum 
taxi fleet, we compute the optimal path cover of the graph, 
as Fig. 22b shows. In the figure, the polylines with different 
colors illustrate the paths which can cover all the vertices 
in the graph. In other words, each path indicates a sequence 
of trips that should be completed by a taxi. Three taxis is 
enough to complete the 20 trips.

Figure 23 shows the results of the minimum taxi fleet 
analysis in Shanghai. Figure 23a compares the number of 
taxis in practice and the number of taxis in the minimum 

Fig. 25  Analyses of minimum total “idle” mileage
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fleet computed. On different days, the number difference is 
about 1500. It means that there is still room for the reduction 
of taxis in Shanghai. Figure 23b compares the CO2 emis-
sions of real taxi fleets and the minimum fleets on different 
days. The volumes of CO2 emissions is computed using the 
CopertIII model [4]. If the number of taxis in Shanghai is 
reduced to the minimum number, the volumes of CO2 emis-
sions can be reduced by nearly 15%.

Figure 24a shows the same trip graph with Fig. 22a. The 
difference is in this figure the thickness of an edge means 
its weight. The weight indicates the travel distance between 
two trips. When a taxi is travelling from the arrival location 
of the previous trip to the departure location of the next trip, 
it is in the “idle” state. Fig. 24b shows the ideal scheduling 
scheme of five taxis. The arrows with the same color rep-
resent the order of trips carried by one taxi. Following this 
scheme, the total “idle” mileage is minimized and thus the 
volume of CO2 emissions is also reduced.

Figure 25 shows the results of the minimum total “idle” 
mileage analyses. Since the algorithm of solving the mini-
mum cost flow problem is time consuming, we extract 1000 
trips from 12:00 to 13:00 on Tuesday, Wednesday and Sat-
urday as the experimental datasets. We construct the cor-
responding trip graphs based on these datasets and compute 
the ideal scheduling schemes that can minimize the total 
“idle” mileages. Figure 25a shows the total mileages and 
Fig. 25b shows the volumes of CO2 emissions w.r.t. different 
fleet sizes, i.e., 400, 500 or 600. The experimental results 
show that when the number of taxis increases, the total mile-
age and the CO2 emission are reduced.

6  Related Work

A key point of our work is to construct a trip index which 
can organize a large amount of trips efficiently. However, 
most of the existing indexes aim at organizing trajectories 
and improving the efficiencies of spatial-temporal queries, 
rather than organizing trips and improving the efficiencies 
of finding out tight follow-up trips. The queries on trajec-
tories include k nearest neighbor (kNN) queries, range que-
ries, path queries and so on [6, 7]. To support these que-
ries, 3D-Rtree [8] considers the timestamps of trajectory 
points as well as their spatial coordinates, when organizing 
the points by an R ∗-tree. STR-tree [9] takes the identifica-
tions of trajectories into account. It modifies the insertion 
and the split strategies of tree nodes. MV3R-tree [10] has 
good performances for time interval queries. It combines 
two structures and has small auxiliary 3D-Rtrees built on 
the leaf nodes of the multiversion R-tree. CSE-tree [11] is a 
probabilistic model that simulates user behaviors of upload-
ing trajectories. CSR-tree, which is a variation of CSE-tree, 
combines B +-tree and dynamic arrays. It has a smaller size 

and lower updating costs. GAT [12] is a novel hybrid grid 
index, which can organize the trajectories and activities 
hierarchically. PPQ-trajectory [13] aims at improving the 
performances of queries on massive dynamic trajectories 
by using spatio-temporal quantization methods. To improve 
the memory throughput and to reduce CPU-cache misses, 
Wang et al. propose an in-memory column-oriented trajec-
tory storage [14]. They divide the database into parts, where 
trajectory points collected at the same moment are stored 
together and aligned in main memory. TrajStore [15] is a 
dynamic storage system which let the storage change with 
the index. TrajStore maintains an optimal index which can 
answer incoming queries. TrajMesa [16] is a holistic dis-
tributed NoSQL trajectory storage engine. It adopts a dis-
tributed storage mode, reduces the storage size, and designs 
a pruning strategy. Fang et al. propose a multi-source deep 
traffic prediction framework over spatio-temporal trajectory 
data [17]. Fang et al. propose ST2Vec [18], a representation 
learning based solution that considers fine-grained spatial 
and temporal relations between trajectories. Lan et al. pro-
pose VRE [19], which is a system used to manage trajectory 
data in a versatile, robust, and economical manner. VRE can 
support various queries and multiple distance functions. Our 
problem is different from the problems they focus on.

The trip graph we constructed can be used to solve the 
minimum taxi fleet problem [2]. Comparing the minimum 
number of taxis with the real number of taxis one day, taxi 
operation companies can further optimize the vehicle sched-
uling algorithm [1, 20]. Governments can further evaluate 
the impact of the number of taxis on environments [3] by 
using the exhaust emission model [4]. In addition, research-
ers also study the fleet management problems in the real time 
scenarios. Jin et al. regard the taxi scheduling as a paral-
lel sorting problem and make decisions hierarchically [21]. 
Zhang et al. propose a method to match multiple order pairs 
simultaneously within a short time window [22]. Seow et al. 
solve the multi-agent taxi scheduling problem in local areas 
[23]. Xu et al. propose a reinforcement learning method 
to optimize vehicle utilizations and user satisfactions in a 
global perspective [24]. Considering the uncertainties of 
future orders, Wei et al. propose a reinforcement learning 
method that can make forward-looking decisions in order 
to improve the service qualities [25]. Lin et al. propose a 
context-multi-agent and actor-critic framework to capture 
random supplies and demand variations [26]. Xu et al. pro-
pose a recommender system which guides drivers to better 
locations with more passengers [27]. Li et al. propose a fleet 
manager that brings agents closer to resources [28]. The fleet 
manager uses a dynamic weighting method to send agents 
(i.e., the taxi drivers) to locations where more resources (i.e., 
passengers) may show up. Ming et al. propose a collabo-
rative spatio-temporal searching method for fleet manage-
ments [29]. Wang et al. propose a citywide and real-time 
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model for estimating the travel time [30]. They use a three 
dimension tensor to model drivers’ travel time, and find the 
estimated optimal trajectories by using a dynamic program-
ming solution.

7  Conclusions

In this paper, we propose a trip index that can organize daily 
trips in big cities. Supported by the trip index, we propose 
search algorithms which can find out the tight follow-up 
trips fast. We construct the trip graph by taking the trips 
as vertices and connecting the vertices if the tight follow-
up relationships exist. The trip graph can be used to solve 
various transportation problems including the minimum fleet 
problem. The experimental results show that the proposed 
algorithms can construct trip graphs faster than the straight-
forward methods. We also demonstrate the analyses of the 
minimum taxi fleet in Shanghai which is a typical applica-
tion scenarios of the trip graphs constructed.
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