
Vol.:(0123456789)1 3

Data Science and Engineering (2023) 8:61–72
https://doi.org/10.1007/s41019-022-00202-7

RESEARCH PAPERS

A Communication Efficient ADMM‑based Distributed Algorithm Using
Two‑Dimensional Torus Grouping AllReduce

Guozheng Wang1  · Yongmei Lei1 · Zeyu Zhang1 · Cunlu Peng1

Received: 8 April 2022 / Revised: 5 October 2022 / Accepted: 14 December 2022 / Published online: 2 January 2023
© The Author(s) 2022

Abstract
Large-scale distributed training mainly consists of sub-model parallel training and parameter synchronization. With the
expansion of training workers, the efficiency of parameter synchronization will be affected. To tackle this problem, we
first propose 2D-TGA, a grouping AllReduce method based on the two-dimensional torus topology. This method synchro-
nizes the model parameters by grouping and makes full use of bandwidth. Secondly, we propose a distributed algorithm,
2D-TGA-ADMM, which combines the 2D-TGA with the alternating direction method of multipliers (ADMM). It focuses on
sub-model training and reduces the wait time among workers in the synchronization process. Finally, experimental results
on the Tianhe-2 supercomputing platform show that compared with the ���_��������� , the 2D-TGA could shorten the
synchronization wait time by 33%.

Keywords  ADMM · Grouping AllReduce · Two-dimensional torus topology · Synchronous algorithm

1  Introduction

In recent years, with the development of information tech-
nology, data are exploding, and we have ushered in a new
era of “Big Data”. Traditional machine learning focuses on
the speed of data processing on a single machine, while it
is impossible to store and calculate large amounts of data
on a single machine. In addition, the development speed
of computing engines has lagged far behind the growth
speed of model computing demand. It is a necessary solu-
tion to distribute the data or model to multiple machines for
computing.

The primary purpose of this revolution is to use large
amounts of data to enable knowledge discovery and better
decision-making. The primitive idea of distributed machine
learning (DML) is to parallelize the computing operation
across multiple local devices (aka workers and nodes) to
solve the following distributed optimization problem

where �i presents model parameters vector; Li(�i) is the local
objective function for workeri ( i ∈ 1, 2,⋯ ,N ). Distributed
optimization algorithms are currently one of the most popu-
lar research directions, with a specific focus on approaches
that try to optimize a performance criterion employing avail-
able data stored at local devices [1]. The ADMM combines
the decomposability of dual ascent method with good con-
vergence of Lagrange multiplier method. It may be used
to solve problem (1) and has a wide range of applications.
Wang et al. [2] propose an ADMM-based DML architec-
ture that preserves privacy. Raja et al. [3] design a Secure
and Private-Collaborative Intrusion Detection System (SP-
CIDS). Steck et al. [4] introduce the Sparse Linear Model,
which may be employed in recommendation systems and is
based on the ADMM algorithm architecture.

(1)min
{�i∈ℝ

d}N
i=1

N∑

i=1

Li(�i),

Zeyu Zhang, Cunlu Peng have contributed equally.

 *	 Guozheng Wang
	 gzh.wang@outlook.com

	 Yongmei Lei
	 lei@shu.edu.cn

	 Zeyu Zhang
	 zeyu_zhang@shu.edu.cn

	 Cunlu Peng
	 crystal886@shu.edu.cn

1	 School of Computer Engineering and Science, Shanghai
University, 99 Shangda Road BaoShan District,
Shanghai 20444, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-022-00202-7&domain=pdf
http://orcid.org/0000-0002-5260-3458

62	 G. Wang et al.

1 3

Distributed training utilizes multiple workers to train
simultaneously to accelerate the training process by coop-
erating with each other. Communication becomes an essen-
tial part of the cooperation process. The communication
mechanism in DML is more challenging. Firstly, training
machine learning models usually uses iterative optimiza-
tion algorithms, and more iterations will lead to high com-
munication frequency. Secondly, DML often trains large
models. In order to obtain the updated information of the
models, each worker needs to communicate with each other,
which determines the large amount of communication data
in DML. Thirdly, DML [5] has an important synchroniza-
tion problem of model parameters. Synchronization based
on AllReduce will cause the problem of “slow workers”.
Workers need to wait for each other and then complete the
synchronization. Many methods have been proposed to deal
with these challenges. Hasanov et al. [6] utilize the hier-
archical idea to design the MPI reduction algorithm, and
Wang et al. [7] design an asynchronous ADMM algorithm
based on a hierarchical view. Xie et al. [8] design a param-
eter synchronization architecture for the ADMM algorithm
that combines a hierarchical architecture with Ring All-
Reduce. The architecture adopts a stale synchronous paral-
lel computing model. When the worker size is large, the
flat parameter synchronization architecture will bring many
problems, such as too small each parameter segment and too
many transmission times in the Ring Allreduce architecture.
A hierarchical parameter synchronization architecture can
effectively alleviate these problems. The computing workers
are organized in a hierarchical manner, and all workers are
grouped at each level. The same worker can belong to differ-
ent groups at different levels. Different levels can indepen-
dently use different parameter synchronization architectures.
We propose a grouping AllReduce algorithm based on the
two-dimensional torus topology named 2D-TGA to alleviate
these problems. The main contributions of this paper can be
summarized as follows:

1)	 This paper proposes a synchronous algorithm 2D-TGA,
which uses a grouping mode. In the first phase of the
algorithm, intra-group workers perform Ring AllReduce
and the groups are parallelized. In the second phase,
each group selects the worker with the lowest rank as
Leader and acts as the leader group. The workers in the
leader group execute Ring AllReduce in a two-dimen-
sional manner. This algorithm can further utilize the
network bandwidth and reduce the synchronous time.

2)	 This paper proposes a distributed algorithm: 2D-TGA-
ADMM, which is a distributed algorithm based on
ADMM and uses 2D-TGA to synchronize model param-
eters. This algorithm has good scalability and can be
used to solve large-scale DML problems.

3)	 We use the proposed distributed algorithm to solve the
large-scale logistic regression problem on the Tianhe-2
supercomputing platform. The experimental results
show that the efficiency of the synchronous algorithm
proposed by us is better than that of the baseline algo-
rithm.

The remainder of this paper is organized as follows. Sec-
tion 2 illuminates the related work. Section 3 outlines the
2D-TGA algorithm in detail. Section 4 describes the design
of the ADMM-based distributed algorithm, which uses
2D-TGA to synchronize the local model parameters. In
Sect. 5, we first analyze the synchronization overhead of
four synchronous AllReduce algorithms theoretically. Then,
we use ADMM-based distributed algorithm to solve the
logistic regression problem with �2-norm on the Tianhe-2
supercomputing platform and verify the efficiency of our
proposed 2D-TGA for parameter synchronization. Section 6
concludes the paper and future work.

2 � Related Work

Compared with single-machine training, distributed training
introduces additional data communication between work-
ers, so that the speed of distributed training cannot improve
linearly with the increase in the number of computing work-
ers. When communication requirements and capabilities are
determined, distributed machine learning training can be
accelerated by improving communication efficiency.

In a decentralized parameter synchronization architecture,
each worker exchanges information only with its own neigh-
bors. The main advantage of a decentralized architecture
is that it effectively reduces traffic. The typical AllReduce
algorithm is to broadcast the root information to each pro-
cess after the Reduction operation. This means that the
root will have a communication bottleneck. The optimized
algorithms are based on a few principles: reduce broadcast,
recursive halving and doubling, butterfly, binary blocks, and
ring [9].

2.1 � Ring AllReduce

Ring-based AllReduce is an algorithm with constant com-
munication cost. OpenMPI [10] is implemented in 2007
based on the Ring AllReduce algorithm. Patarasuk et al [11]
propose a ring-based AllReduce based on the P2P architec-
ture and prove that a ring-based AllReduce has the optimal
bandwidth of the AllReduce algorithms in 2009. Baidu Sili-
con Valley Lab [12] integrates this strategy with the field of
deep learning in 2017 and solves the network bottleneck of
synchronous updates.

63A Communication Efficient ADMM‑based Distributed Algorithm Using Two‑Dimensional Torus…

1 3

The Ring AllReduce algorithm is depicted in Fig. 1a. The
algorithm uses two phases of Reduce-Scatter and AllGather
for synchronization. When N workers are in a ring topology,
2(N − 1) steps are required to accomplish the synchroniza-
tion. The Ring AllReduce can avoid contention on most net-
work topologies [11]. As the number of workers increases,
the Ring AllReduce algorithm will encounter issues such
as considerable delay and low fault tolerance, which is not
conducive to the scalability of distributed algorithms.

2.2 � 2D‑Torus AllReduce

Sony [13] proposes the 2D-Torus AllReduce algorithm in
2018 to reduce the communication overhead during model

parameters synchronization. The communication process
is divided into two dimensions and three phases. After the
two-phase combination, each GPU has some final model
parameters.

Figure 1b shows that the algorithm consists of three
phases, Reduce-Scatter, AllReduce and AllGather. Although
a 2D-Torus AllReduce has one phase more than a Ring All-
Reduce, its overall communication overhead is still smaller
[13]. The algorithm uses a 2D-Torus topology, which syn-
chronizes both horizontally and vertically. In a distributed
system with N workers, the algorithm requires 4(N − 1)
communication steps to accomplish the synchronization.

Ying et al. [14] find that, on a TPU Pod, the 1D Ring
AllReduce algorithm is limited by the latency of pushing

Fig. 1   Topology of AllReduce-
based synchronization algo-
rithm

64	 G. Wang et al.

1 3

packets in a Hamiltonian circuit across all the nodes in the
pod. They develop a 2D mesh algorithm, which performs
the Reduction operation in two phases, one phase for each
dimension. The 2D-Mesh algorithm has twice the through-
put of gradient aggregations than the 1D Ring AllReduce.

2.3 � Hierarchical AllReduce

Tencent proposes the hierarchical AllReduce algorithm
[15], and the communication topology is shown in Fig. 1c.
The algorithm uses a hierarchical ring topology and con-
sists of three phases: intra-groups AllReduce, inter-groups
AllReduce, and broadcast within the group. In a distrib-
uted system where N workers are divided into L groups,
3(N∕L − 1) + 2 communication steps are required to com-
plete the synchronization operation. Compared with a
Ring AllReduce, this three-phase hierarchical AllReduce
decreases the running steps from 2(N − 1) to 3(N∕L − 1) + 2 .
Facebook [16] applies the hierarchical AllReduce algo-
rithm to large-scale model training, which greatly improves
model training speed due to the algorithm’s ability to reduce
latency costs.

Although this hierarchical method reduces the number of
running steps, the inter-groups operation still encounters the
problem of high latency of 1D Ring AllReduce. Since group-
ing rings into a few hierarchical collective operations seems
to give a better performance, the optimal dimensions of this
hierarchical communication depend on multiple aspects.
Ueno et al. [17] provide a strategy for choosing the optimal
hierarchical communication for deep learning workloads.

3 � Synchronous Algorithm 2D‑TGA​

The effectiveness of the synchronous algorithm is closely
related to communication topology. The 2D-TGA method
divides workers into groups to decrease communication
latency and low fault tolerance when the number of work-
ers increases in a ring topology.

2D-TGA algorithm mainly adopts logical ring Reduce-
Scatter operation. As illustrated in Fig. 1d, the sixteen work-
ers are divided into four groups, and a leader is chosen from
each group. After executing the Ring AllReduce algorithm,
all the workers within the group have the same parameters.
By establishing a Cartesian topology for the leaders, the
leaders are arranged in the form of a two-dimensional grid.
Each leader exchanged parameters with the adjacent leader
in different directions (UP, DOWN, LEFT, RIGHT). The
mechanism will be described in the following paragraphs.

Let N workers be W0,W1,… ,WN−1 . Each worker
Wi  , 0 ≤ i ≤ N − 1 , has E model parameter ele-
ments a0

i
, a1

i
,… , aE−1

i
 , and we number the chunks by

[chk0], [chk1],… , [chkN−1] . The elements in every worker
are partitioned into N chunk, where {a0

i
,… , a

⌈ E

N
⌉

i
} ∈ chk0 ,

… , {a
(N−1)⌈ E

N
⌉

i
,… , aE−1

i
} ∈ chkN−1 . The logical r ing

mode includes the following communication process:
W0 → W1 → W2 → ⋯ → WN−1 → W0 . We use a generic
operator ⊕ to denote the reduce operator. The Reduce-
Scatter operation is performed as follows. In the first
iteration, worker Wi sends chunk [chk(i+N)%N] to W(i+1)%N .
After each worker receives the chunk, all workers have
all chunk results W0[chk(N−1)%N],… ,WN−1[chk(2N−2)%N] ,
w h e r e Wi[chk(i−1+N)%N] = Wi[chk(i−1+N)%N] ⊕
W(i−1+N)%N[chk(i−1+N)%N] . Let j be the number of iterations,
0 ≤ j ≤ N − 2 . The result of each worker in the j-th itera-
tion can be expressed as:

We illustrate how the 2D-TGA algorithm operates using
an example. Figure 2 shows how to divide sixteen workers
into four groups, and each group has four workers. Four
distinct colors represent the four groups. In addition, we set
the dimension of the parameter vector on each worker to 16,
and each parameter vector value is composed of the serial
number of the worker it corresponds to. Through the Ring
AllReduce method after grouping, the size of the ring made
by the worker can be significantly reduced, the communica-
tion delay can be reduced, and the communication efficiency
can be improved. According to the number of workers in the
group, the sixteen parameters are divided into four chunks.
The data in a red box indicate the data chunk to be sent.
The workers in the first group conduct Ring AllReduce,
as shown in Fig. 2a. Leaders do Reduce-Scatter in parallel
horizontally, as seen in Fig. 2b. The orange arrow shows the
transmission direction of the parameters. The LEFT worker
transmits parameters to the RIGHT worker, and each worker
gets parameters from the LEFT worker. Figure 2c depicts
leaders performing Segmented-Ring operations vertically in
parallel. The green arrow shows the direction in which the
parameters transfer. The UP worker provides parameters to
the DOWN worker, while the DOWN worker gets param-
eters from the UP worker. Leaders conduct the AllGather
operation horizontally in parallel, as shown in Fig. 2d. The
first group leader executes the broadcast operation, as shown
in Fig. 2e. Algorithm 1 depicts the 2D-TGA algorithm.

(2)
Wi[chk(i−1−j+N)%N] = Wi[chk(i−1−j+N)%N]

⊕W(i−1−j+N)%N[chk(i−1−j+N)%N].

65A Communication Efficient ADMM‑based Distributed Algorithm Using Two‑Dimensional Torus…

1 3

Fig. 2   2D-TGA algorithmic diagram with sixteen workers. a The first
group performs the Ring AllReduce. b Establish Cartesian topology
for four leaders and perform Reduce-Scatter operation horizontally. c

Perform Segmented-Ring operation vertically. d Perform AllGather
operation horizontally. e The first group performs the broadcast oper-
ation

66	 G. Wang et al.

1 3

4 � Algorithm Development

4.1 � Distributed ADMM Algorithm

As demonstrated in Equ. (3), a supervised machine learning
issue may be abstracted as an optimization problem.

where x ∈ ℝ
d denotes the model, d denotes the number

of sample features , l(x) denotes the loss function, and r(x)
denotes the regularization term. Typically, distributed opti-
mization is usually turned (3) into a consensus problem, as
illustrated in (4).

Write problem (4) in the augmented Lagrangian form:

where {�i} symbolize Lagrangian multipliers, 𝜌 > 0 is the
penalty parameter, and < ⋅, ⋅ > denotes the inner product.
Convergence speed is also influenced by penalty parameter

(3)min
x

l(x) + r(x),

(4)
min

z,{xi}
N
i=1

N∑

i=1

fi(xi),

s.t. xi = z,∀i.

(5)
L({xi}, z, {𝜆i}) =

N�

i=1

fi(xi)+ < 𝜆i, xi − z >

+
𝜌

2
‖xi − z‖2

2
,

� [4]. The value of � is verified through experiments [18].
They found that a lower � value can make the algorithm con-
verge more quickly. By updating xi and z iteratively (at the k-
th iteration, denoted xk

i
 and zk ), L({xi}, z, {�i}) is minimized.

In order to integrate the decomposability of dual ascent with
the excellent convergence properties of method multipliers,
an improved form of optimized ADMM was proposed and
use the alternate method to allow the problem to be easily
decomposed. The ADMM algorithm update process is as
follows:

4.2 � Distributed algorithm 2D‑TGA‑ADMM

The distributed ADMM algorithm’s iterative phase is seen in
(6). In distributed systems, the update approach works well.
Equations (6a) and (6c) are used parallel by the workers to
update the local parameters xi and �i . The global variable z is
updated by the total of (xi +

�i

�
) of all workers, as indicated in

Equ. (6b). Thus, we take (xi +
�i

�
) as a whole and define it as

wi , as shown in Equ. (7)

Communication topology is an important factor that affects
the scalability of distributed optimization algorithms.
In order to minimize the synchronization time of model

(6a)
xk+1
i

∶= argmin
xi

(fi(xi)+ < 𝜆k
i
, xi − zk >

+
𝜌

2
‖xi − zk‖2

2
),

(6b)zk+1 ∶=
1

N

N∑

i=1

(xk+1
i

+
1

�
�k
i
),

(6c)�k+1
i

∶= �k
i
+ �(xk+1

i
− zk+1).

(7)wk+1
i

= xk+1
i

+
�k
i

�
.

Table 1   Notations

Symbol Description Value

N The total number of workers 32∼1280
L The number of groups 16
� Delay between two communication workers 0.7�s
S The total size of parameters on each worker 3231961
B The bandwidth capacity of cluster 56 Gb/s
C Computation time per byte of data −

Table 2   Global synchronous
time of different algorithms

Syn-algorithm Synchronous time

Ring AllReduce 2(N − 1)(� +
S

BN
) + (N − 1)

SC

N

Hierarchical AllReduce 2(
N

L
− 1)(� +

LS

BN
) + (� +

S

B
) + 2(L− 1)(� +

S

BL
)

+(
N

L
− 1)

LSC

N
+ (L − 1)

SC

L

2D-Torus AllReduce 2(
√

N − 1)(� +
S

B

√

N

) + 2(
√

N − 1)(� +
S

BN
)

+(
√
N − 1)

SC√
N

+ (
√
N − 1)

SC

N

2D-TGA​ 2(
N

L
− 1)(� +

LS

BN
) + (� +

S

B
) + 2(

√

L− 1)(� +
S

B

√

L

)

+2(
√

L− 1)(� +
S

BL
) + (

√
L − 1)

SC√
L

+ (
√
L − 1)

SC

L

67A Communication Efficient ADMM‑based Distributed Algorithm Using Two‑Dimensional Torus…

1 3

parameters, we adapt the communication-efficient group-
ing AllReduce based on the two-dimensional torus topology
(2D-TGA) proposed in Sect. 3. Next, all wi in each worker
are reduced to w by the synchronous algorithm 2D-TGA. The
value of the global variable z is obtained by averaging w . The
dual variable �i is generated by completing (6c).

This paper proposes a distributed algorithm 2D-TGA-
ADMM to handle distributed optimization problems,
which combines the ADMM algorithm with the com-
munication-efficient 2D-TGA algorithm. Algorithm 2
depicts the algorithm flow. The 2D-TGA-ADMM algo-
rithm can be implemented in a distributed computing
environment like MPI or Spark.

5 � Evaluation and Experiment

5.1 � Evaluation

This paper provides theoretical analysis to compare the
AllReduce-based synchronous algorithm’s performance,
reflecting the theoretical time in a single worker synchroni-
zation action. The denotation is provided in Table 1. Based
on this denotation, global synchronization time (GST) in
different synchronization algorithms can be calculated.

The design of the 2D-TGA algorithm is based on Ring
AllReduce, where the synchronization process consists
of some Reduction phases (e.g., Scatter-Reduce, and All-
gather), each of which is composed of communication steps.
The Ring AllReduce algorithm has two phases. The first
phase is the Scatter-Reduce, which passes through N − 1
steps. The communication time of each step is � +

S

BN
 , and

the calculation time is SC
N

 . The second phase is the Allgather,
and the communication time of each step is � +

S

BN
 . Overall

time consumption is 2(N − 1)(� +
S

BN
) + (N − 1)

SC

N
 . Table 2

shows the synchronous time of different algorithms, includ-
ing communication time and calculation time. Communica-
tion time is shown by the bold formula, whereas the non-
bold formula indicates computing time. Figure 3a displays
the communication time for Ring-AllReduce, Hierarchical-
AllReduce, 2D-Torus-AllReduce, and 2D-TGA algorithms
with different #workers. We use the values in Table 1 to get
the theoretical analysis results, as shown in Fig. 3a.

In this paper, the global communication time formula
is used to calculate the communication time of the corre-
sponding worker, as shown in the bold formula in Table 2.
As shown in Fig. 3a, we set #groups to 16. As #workers

increase, the communication time of Ring-AllReduce will
grow linearly. The communication time of 2D-TGA and
Hierarchical-AllReduce algorithms is comparable and
does not rise as #workers increase and maintain steady,
which can enhance the scalability of distributed algorithm.
Figure 3a also shows that the 2D-TGA method is slightly
better than the Hierarchical-AllReduce algorithm.

In addition, both the 2D-TGA and Hierarchical-All-
Reduce algorithms leverage the concept of grouping. To
investigate the impact of grouping on both algorithms,
we increase the number of workers to 1024 and examine
the impact of varying #groups on the two algorithms over
time. Figure 3b shows that when the number of groups
increases, the performance of the 2D-TGA is much better
than Hierarchical-AllReduce algorithm. The main reason
is that the algorithm uses Segmented-Ring operation in the
process of vertical AllReduce, which may greatly reduce
the communication time. Compared with using the All-
Reduce algorithm directly, the synchronous time will be

68	 G. Wang et al.

1 3

reduced, which is also an advantage of the method pre-
sented in this paper.

Since grouping impacts the 2D-TGA algorithm, this
study estimates the influence of different groups on the
algorithm as the number of workers grows. It can be seen
from Fig. 4a that grouping is closely related to algorithm
performance. As shown in Fig. 4b, the less groups, the
better the performance of the algorithm.

5.2 � Experiment

Logistic regression is a machine learning method used to
solve binary classification problems. To obtain strong gen-
eralization abilities, one adds an �2 regularization term; in
this paper, we consider the following form of regularized
logistic regression:

where x ∈ ℝ
d represents model parameters, n represents the

number of samples, Di ∈ ℝ
d represents the i-th sample, and

bi ∈ {−1, 1} represents the label of the i-th sample.
Experimental Settings. In this section, distributed ADMM

algorithm is used to solve the logistic regression problem
with the �2-norm. Combining the ADMM algorithm with
different synchronous algorithms is used to compare the
impact of different synchronous algorithms on the scalability
of distributed algorithms. To solve sub-problems in distrib-
uted ADMM method, we employ the Trust Region Newton
method (TRON) [19], and the dataset uses the public dataset
url1 and webspam2, as shown in Table 3. The Tianhe-2

(8)min
x

f (x) ≡

n�

i=1

log(1 + e−bix
TDi) +

1

2
‖x‖2

2
,

Fig. 3   Communication time of different synchronous algorithm

Fig. 4   Communication time of 2D-TGA algorithm in different groups

1  https://​www.​csie.​ntu.​edu.​tw/​cjlin/​libsv​mtools/​datas​ets/​binary.​html.
2  https://​www.​csie.​ntu.​edu.​tw/​cjlin/​libsv​mtools/​datas​ets/​binary.​html.

https://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/binary.html
https://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/binary.html

69A Communication Efficient ADMM‑based Distributed Algorithm Using Two‑Dimensional Torus…

1 3

supercomputing cluster serves as the paper’s experimental
platform. Each node is equipped with two Xeon E5 12-core
CPUs and 88 GiB of memory. Our experimental schemes
are set as follows: 16 cores× 2 nodes, 16 cores× 4 nodes, 16
cores× 8 nodes, 16 cores× 32 nodes. Each node uses 16 cores,
and each core runs one process. Each process represents a
worker.

Convergence. This paper uses the relative error function
( frerr ) to present the convergence of the ADMM algorithm.
The definition of frerr is shown in Equ. (9),

where f represents the value of the objective function in the
current state and f ∗ represents the minimum value of the
objective function.

Figures 5b and 6b, respectively, show the convergence of
the ADMM algorithm using three different AllReduce-based
synchronous algorithms to solve the logistic regression prob-
lem under the url and webspam datasets on 64 workers in
4 nodes. As can be seen from the two figures, the distributed
ADMM algorithm based on three synchronous algorithms
has the same convergence rate, which means that the three
synchronous algorithms do not affect the convergence of
the ADMM algorithm. This setting can eliminate interfer-
ence and test the performance of the three synchronous algo-
rithms more accurately.

Synchronization Wait Time. Table 4 shows the running
time of the experiments, including updating time and syn-
chronization wait time. The updating time refers to the

(9)frerr = |f − f ∗|∕f ∗,

computation time of the TRON method. Due to different
calculation speeds of the workers, in a single iteration of
the ADMM algorithm, we store the longest computation
time between workers and accumulate it with the number
of iterations of the ADMM algorithm. The synchronization
wait time refers to the time for the model parameters wi to
communicate among workers and Reduction operations.

We select different #workers to test the distributed
ADMM algorithm based on the three different synchronous
algorithms. Figure 5a shows the synchronous overhead of
testing the distributed ADMM algorithm on the url pub-
lic dataset. Compared with the ���_��������� algorithm
in the MPI library, as #workers increase, the 2D-TGA syn-
chronous algorithm can reduce the synchronization wait
time by 32.6% . However, this algorithm still has drawbacks
compared with the Ring-AllReduce synchronous algorithm
on the url dataset. As shown in Fig. 5a, we also find that,
as #workers increase, the synchronization wait time of the
2D-TGA gradually approaches to the Ring-AllReduce algo-
rithm. This is also the same as the theoretical analysis in
Fig. 3a. As #workers increase, the communication time of
the Ring-AllReduce algorithm is higher than the 2D-TGA
synchronous algorithm proposed in this paper.

In distributed machine learning, the dimension of the
model is the decisive factor of the communication vol-
ume. In order to evaluate the effectiveness of the 2D-TGA
synchronous algorithm, we test it on the high-dimensional
webspam dataset. As shown in Fig. 6a, comparing the
collection communication algorithm ���_���������
and Ring-AllReduce algorithms, the synchronization wait
time of the 2D-TGA under different #workers has appar-
ent advantages, and the efficiency can be improved by
33.8% compared with the collection communication algo-
rithm ���_��������� . Why do the Ring-AllRedcue and
2D-TGA have different performances on datasets with differ-
ent dimensions? Through the theoretical analysis of Fig. 3a,

Table 3   A summary of datasets

Dataset #Training samples #Testing samples #Features

Url 2156517 239613 3231961
Webspam 337254 37254 16609143

Fig. 5   Experimental results of url dataset

70	 G. Wang et al.

1 3

it can be found that as #workers increase, the performance of
the Ring-AllReduce algorithm gets worse and worse than the
2D-TGA algorithm. Figure 6a also shows that the 2D-TGA
algorithm is more suited to high-dimensional datasets than
the Ring-AllReduce technique.

Through the theoretical analysis in Fig. 4, we find that
as #workers increase, the number of groups also affects the
performance of the 2D-TGA algorithm. As shown in Fig. 4b,
theoretical analysis demonstrates that as the increase in #
workers, the more #groups, the worse the performance of
the algorithm. In this paper, 512 workers are evaluated using
the url and webspam datasets, as illustrated in Fig. 7. 4,
16, and 64 groups are set to test the 2D-TGA algorithm.
Four groups are preferable to sixteen, which is supported by
the theoretical analysis. Furthermore, Fig. 4a demonstrates
that the number of workers also determines the size of the
grouping.

6 � Conclusion

Synchronization of model parameters is critical in DML.
With the increase in model parameters and #workers, the
parameter synchronization mechanism will become an
important factor that limits the scalability of the DML. In
this paper, a new synchronous algorithm 2D-TGA is pro-
posed, which can shorten the synchronous time by effec-
tively utilizing the network bandwidth. Firstly, we intro-
duce the topology of this algorithm. Then, we analyze the
synchronous time of four AllReduce-based algorithms. The
results show that the performance of 2D-TGA is good. To
verify our analysis, we propose an ADMM-based distributed

algorithm named 2D-TGA-ADMM, which combines the
ADMM algorithm and 2D-TGA. We test it on the Tianhe-2
supercomputing platform to solve logistic regression prob-
lems. The synchronization cost of 2D-TGA is verified by
selecting different datasets and #workers. Experimental
results show that compared with the previous algorithms,
this synchronous algorithm can reduce the synchronization
wait time by 33% . With the increase in the number of work-
ers, the 2D-TGA algorithm will neither increase the synchro-
nization cost nor affect the convergence of the numerical
algorithm. It is well suited to large-scale distributed machine
learning.

This paper only studies the distributed ADMM algorithm
to solve the logistic regression problem for sparse datasets.
The next step is to test the algorithm on new unseen data, so
as to improve the generalization ability. Since the distributed

Fig. 6   Experimental results of webspam dataset

Fig. 7   Synchronization wait time of different #groups on the
2D-TGA-ADMM algorithm

71A Communication Efficient ADMM‑based Distributed Algorithm Using Two‑Dimensional Torus…

1 3

ADMM algorithm has a higher computing and communica-
tion ratio, future research will further reduce the synchroni-
zation wait time of the distributed ADMM algorithm.

Acknowledgements  Thanks to the National Supercomputer Center in
Guangzhou for providing computing resources and technical support.

Author Contributions  GW involved in conceptualization, methodol-
ogy, software, formal analysis, writing—original draft, visualization.
YL took part in writing—review & editing, project administration,
project administration, funding acquisition. ZZ took part in data cura-
tion, supervision. CP involved in validation, resources, formal analysis.

Data Availability  The data that support the findings of this study are
available in LIBSVM at https://​www.​csie.​ntu.​edu.​tw/​~cjlin/​libsv​
mtools/​datas​ets/​binary.​html.

Declarations 

Conflict of interest  The authors declare that they have no known com-
peting financial interests or personal relationships that could have ap-
peared to influence the work reported in this paper.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Chen Y, Blum RS, Sadler BM (2022) Communication efficient
federated learning via ordered admm in a fully decentralized set-
ting. arXiv preprint arXiv:​2202.​02580

	 2.	 Wang X, Ishii H, Du L, Cheng P, Chen J (2020) Privacy-pre-
serving distributed machine learning via local randomization and
admm perturbation. IEEE Trans Signal Proc 68:4226–4241

	 3.	 Raja G, Anbalagan S, Vijayaraghavan G, Theerthagiri S,
Suryanarayan SV, Wu X-W (2020) Sp-cids: secure and pri-
vate collaborative ids for vanets. IEEE Trans Int Trans Syst
22(7):4385–4393

	 4.	 Steck H, Dimakopoulou M, Riabov N, Jebara T (2020) Admm
slim: sparse recommendations for many users. In: Proceedings of
the 13th international conference on web search and data mining,
pp 555–563

	 5.	 Verbraeken J, Wolting M, Katzy J, Kloppenburg J, Verbelen T,
Rellermeyer JS (2020) A survey on distributed machine learning.
ACM Comput Surv (CSUR) 53(2):1–33

	 6.	 Hasanov K, Lastovetsky A (2017) Hierarchical redesign of classic
mpi reduction algorithms. J Supercomput 73(2):713–725

	 7.	 Wang D, Lei Y, Xie J, Wang G (2021) Hsac-aladmm: an asynchro-
nous lazy admm algorithm based on hierarchical sparse allreduce
communication. J Supercomput 77(8):8111–8134

	 8.	 Xie J, Lei Y (2019) Admmlib: a library of communication-effi-
cient ad-admm for distributed machine learning. In: IFIP interna-
tional conference on network and parallel computing. Springer,
pp 322–326

	 9.	 Sanders P, Speck J, Träff JL (2009) Two-tree algorithms for
full bandwidth broadcast, reduction and scan. Parallel Comput
35(12):581–594

	10.	 Graham RL, Barrett BW, Shipman GM, Woodall TS, Bosilca
G (2007) Open mpi: A high performance, flexible implementa-
tion of mpi point-to-point communications. Parallel Process Lett
17(01):79–88

	11.	 Patarasuk P, Yuan X (2009) Bandwidth optimal all-reduce algo-
rithms for clusters of workstations. J Parallel Distrib Comput
69(2):117–124

Table 4   Training time of the ADMM algorithm based on various All-
Reduce-based synchronous algorithms for different datasets

Dataset #Workers Syn-algorithm Updating time
(s)

Synchronous
wait time (s)

Url 32 AllReduce 369.93 9.82
Ring-All-

Reduce
396.80 6.58

2D-TGA​ 369.84 9.93
64 AllReduce 348.80 10.38

Ring-All-
Reduce

323.14 4.04

2D-TGA​ 331.46 8.08
128 AllReduce 275.65 12

Ring-All-
Reduce

277.64 4.85

2D-TGA​ 279.38 10.89
512 AllReduce 212.55 12.72

Ring-All-
Reduce

214.33 7.88

2D-TGA​ 212.24 8.58
Webs-

pam
32 AllReduce 1113.81 54.91

Ring-All-
Reduce

1215.15 56.61

2D-TGA​ 1109.43 53.72
64 AllReduce 819.1 49.64

Ring-All-
Reduce

816.18 63.48

2D-TGA​ 818 46.07
128 AllReduce 862.51 67.6

Ring-All-
Reduce

855.47 59.5

2D-TGA​ 859.58 48.2
512 AllReduce 754.5 71.1

Ring-All-
Reduce

749.23 64.39

2D-TGA​ 747.71 47.57

https://www.csie.ntu.edu.tw/%7ecjlin/libsvmtools/datasets/binary.html
https://www.csie.ntu.edu.tw/%7ecjlin/libsvmtools/datasets/binary.html
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2202.02580

72	 G. Wang et al.

1 3

	12.	 Research B (2017) baidu-allreduce. [Online]. https://​github.​com/​
baidu-​resea​rch/​baidu-​allre​duce

	13.	 Mikami H, Suganuma H, Tanaka Y, Kageyama Y, et al (2018)
Massively distributed sgd: imagenet/resnet-50 training in a flash.
arXiv preprint arXiv:​1811.​05233

	14.	 Ying C, Kumar S, Chen D, Wang T, Cheng Y (2018) Image classi-
fication at supercomputer scale. arXiv preprint arXiv:​1811.​06992

	15.	 Jia X, Song S, He W, Wang Y, Rong H, Zhou F, Xie L, Guo Z,
Yang Y, Yu L, et al Highly scalable deep learning training system
with mixed-precision: training imagenet in four minutes. arXiv
preprint arXiv:​1807.​11205

	16.	 Goyal P, Dollár P, Girshick R, Noordhuis P, Wesolowski L, Kyrola
A, Tulloch A, Jia Y, He K (2017) Accurate, large minibatch sgd:
training imagenet in 1 hour. arXiv preprint arXiv:​1706.​02677

	17.	 Ueno Y, Yokota R (2019) Exhaustive study of hierarchical all-
reduce patterns for large messages between gpus. In: 2019 19th
IEEE/ACM international symposium on cluster, cloud and grid
computing (CCGRID). IEEE, pp 430–439

	18.	 Sun DL, Fevotte C (2014) Alternating direction method of
multipliers for non-negative matrix factorization with the beta-
divergence. In: 2014 IEEE international conference on acoustics,
speech and signal processing (ICASSP). IEEE, pp 6201–6205

	19.	 Lin C-J, Weng RC, Keerthi SS (2008) Trust region newton
method for large-scale logistic regression. J Mach Learn Res,
9(4):627-650

https://github.com/baidu-research/baidu-allreduce
https://github.com/baidu-research/baidu-allreduce
http://arxiv.org/abs/1811.05233
http://arxiv.org/abs/1811.06992
http://arxiv.org/abs/1807.11205
http://arxiv.org/abs/1706.02677

	A Communication Efficient ADMM-based Distributed Algorithm Using Two-Dimensional Torus Grouping AllReduce
	Abstract
	1 Introduction
	2 Related Work
	2.1 Ring AllReduce
	2.2 2D-Torus AllReduce
	2.3 Hierarchical AllReduce

	3 Synchronous Algorithm 2D-TGA​
	4 Algorithm Development
	4.1 Distributed ADMM Algorithm
	4.2 Distributed algorithm 2D-TGA-ADMM

	5 Evaluation and Experiment
	5.1 Evaluation
	5.2 Experiment

	6 Conclusion
	Acknowledgements
	References

