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Abstract
Large-scale distributed training mainly consists of sub-model parallel training and parameter synchronization. With the 
expansion of training workers, the efficiency of parameter synchronization will be affected. To tackle this problem, we 
first propose 2D-TGA, a grouping AllReduce method based on the two-dimensional torus topology. This method synchro-
nizes the model parameters by grouping and makes full use of bandwidth. Secondly, we propose a distributed algorithm, 
2D-TGA-ADMM, which combines the 2D-TGA with the alternating direction method of multipliers (ADMM). It focuses on 
sub-model training and reduces the wait time among workers in the synchronization process. Finally, experimental results 
on the Tianhe-2 supercomputing platform show that compared with the ���_��������� , the 2D-TGA could shorten the 
synchronization wait time by 33%.
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1  Introduction

In recent years, with the development of information tech-
nology, data are exploding, and we have ushered in a new 
era of “Big Data”. Traditional machine learning focuses on 
the speed of data processing on a single machine, while it 
is impossible to store and calculate large amounts of data 
on a single machine. In addition, the development speed 
of computing engines has lagged far behind the growth 
speed of model computing demand. It is a necessary solu-
tion to distribute the data or model to multiple machines for 
computing.

The primary purpose of this revolution is to use large 
amounts of data to enable knowledge discovery and better 
decision-making. The primitive idea of distributed machine 
learning (DML) is to parallelize the computing operation 
across multiple local devices (aka workers and nodes) to 
solve the following distributed optimization problem

where �i presents model parameters vector; Li(�i) is the local 
objective function for workeri ( i ∈ 1, 2,⋯ ,N ). Distributed 
optimization algorithms are currently one of the most popu-
lar research directions, with a specific focus on approaches 
that try to optimize a performance criterion employing avail-
able data stored at local devices [1]. The ADMM combines 
the decomposability of dual ascent method with good con-
vergence of Lagrange multiplier method. It may be used 
to solve problem (1) and has a wide range of applications. 
Wang et al. [2] propose an ADMM-based DML architec-
ture that preserves privacy. Raja et al. [3] design a Secure 
and Private-Collaborative Intrusion Detection System (SP-
CIDS). Steck et al. [4] introduce the Sparse Linear Model, 
which may be employed in recommendation systems and is 
based on the ADMM algorithm architecture.

(1)min
{�i∈ℝ

d}N
i=1

N∑

i=1

Li(�i),
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Distributed training utilizes multiple workers to train 
simultaneously to accelerate the training process by coop-
erating with each other. Communication becomes an essen-
tial part of the cooperation process. The communication 
mechanism in DML is more challenging. Firstly, training 
machine learning models usually uses iterative optimiza-
tion algorithms, and more iterations will lead to high com-
munication frequency. Secondly, DML often trains large 
models. In order to obtain the updated information of the 
models, each worker needs to communicate with each other, 
which determines the large amount of communication data 
in DML. Thirdly, DML [5] has an important synchroniza-
tion problem of model parameters. Synchronization based 
on AllReduce will cause the problem of “slow workers”. 
Workers need to wait for each other and then complete the 
synchronization. Many methods have been proposed to deal 
with these challenges. Hasanov et al. [6] utilize the hier-
archical idea to design the MPI reduction algorithm, and 
Wang et al. [7] design an asynchronous ADMM algorithm 
based on a hierarchical view. Xie et al. [8] design a param-
eter synchronization architecture for the ADMM algorithm 
that combines a hierarchical architecture with Ring All-
Reduce. The architecture adopts a stale synchronous paral-
lel computing model. When the worker size is large, the 
flat parameter synchronization architecture will bring many 
problems, such as too small each parameter segment and too 
many transmission times in the Ring Allreduce architecture. 
A hierarchical parameter synchronization architecture can 
effectively alleviate these problems. The computing workers 
are organized in a hierarchical manner, and all workers are 
grouped at each level. The same worker can belong to differ-
ent groups at different levels. Different levels can indepen-
dently use different parameter synchronization architectures. 
We propose a grouping AllReduce algorithm based on the 
two-dimensional torus topology named 2D-TGA to alleviate 
these problems. The main contributions of this paper can be 
summarized as follows: 

1)	 This paper proposes a synchronous algorithm 2D-TGA, 
which uses a grouping mode. In the first phase of the 
algorithm, intra-group workers perform Ring AllReduce 
and the groups are parallelized. In the second phase, 
each group selects the worker with the lowest rank as 
Leader and acts as the leader group. The workers in the 
leader group execute Ring AllReduce in a two-dimen-
sional manner. This algorithm can further utilize the 
network bandwidth and reduce the synchronous time.

2)	 This paper proposes a distributed algorithm: 2D-TGA-
ADMM, which is a distributed algorithm based on 
ADMM and uses 2D-TGA to synchronize model param-
eters. This algorithm has good scalability and can be 
used to solve large-scale DML problems.

3)	 We use the proposed distributed algorithm to solve the 
large-scale logistic regression problem on the Tianhe-2 
supercomputing platform. The experimental results 
show that the efficiency of the synchronous algorithm 
proposed by us is better than that of the baseline algo-
rithm.

The remainder of this paper is organized as follows. Sec-
tion 2 illuminates the related work. Section 3 outlines the 
2D-TGA algorithm in detail. Section 4 describes the design 
of the ADMM-based distributed algorithm, which uses 
2D-TGA to synchronize the local model parameters. In 
Sect. 5, we first analyze the synchronization overhead of 
four synchronous AllReduce algorithms theoretically. Then, 
we use ADMM-based distributed algorithm to solve the 
logistic regression problem with �2-norm on the Tianhe-2 
supercomputing platform and verify the efficiency of our 
proposed 2D-TGA for parameter synchronization. Section 6 
concludes the paper and future work.

2 � Related Work

Compared with single-machine training, distributed training 
introduces additional data communication between work-
ers, so that the speed of distributed training cannot improve 
linearly with the increase in the number of computing work-
ers. When communication requirements and capabilities are 
determined, distributed machine learning training can be 
accelerated by improving communication efficiency.

In a decentralized parameter synchronization architecture, 
each worker exchanges information only with its own neigh-
bors. The main advantage of a decentralized architecture 
is that it effectively reduces traffic. The typical AllReduce 
algorithm is to broadcast the root information to each pro-
cess after the Reduction operation. This means that the 
root will have a communication bottleneck. The optimized 
algorithms are based on a few principles: reduce broadcast, 
recursive halving and doubling, butterfly, binary blocks, and 
ring [9].

2.1 � Ring AllReduce

Ring-based AllReduce is an algorithm with constant com-
munication cost. OpenMPI [10] is implemented in 2007 
based on the Ring AllReduce algorithm. Patarasuk et al [11] 
propose a ring-based AllReduce based on the P2P architec-
ture and prove that a ring-based AllReduce has the optimal 
bandwidth of the AllReduce algorithms in 2009. Baidu Sili-
con Valley Lab [12] integrates this strategy with the field of 
deep learning in 2017 and solves the network bottleneck of 
synchronous updates.
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The Ring AllReduce algorithm is depicted in Fig. 1a. The 
algorithm uses two phases of Reduce-Scatter and AllGather 
for synchronization. When N workers are in a ring topology, 
2(N − 1) steps are required to accomplish the synchroniza-
tion. The Ring AllReduce can avoid contention on most net-
work topologies [11]. As the number of workers increases, 
the Ring AllReduce algorithm will encounter issues such 
as considerable delay and low fault tolerance, which is not 
conducive to the scalability of distributed algorithms.

2.2 � 2D‑Torus AllReduce

Sony [13] proposes the 2D-Torus AllReduce algorithm in 
2018 to reduce the communication overhead during model 

parameters synchronization. The communication process 
is divided into two dimensions and three phases. After the 
two-phase combination, each GPU has some final model 
parameters.

Figure 1b shows that the algorithm consists of three 
phases, Reduce-Scatter, AllReduce and AllGather. Although 
a 2D-Torus AllReduce has one phase more than a Ring All-
Reduce, its overall communication overhead is still smaller 
[13]. The algorithm uses a 2D-Torus topology, which syn-
chronizes both horizontally and vertically. In a distributed 
system with N workers, the algorithm requires 4(N − 1) 
communication steps to accomplish the synchronization.

Ying et al. [14] find that, on a TPU Pod, the 1D Ring 
AllReduce algorithm is limited by the latency of pushing 

Fig. 1   Topology of AllReduce-
based synchronization algo-
rithm
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packets in a Hamiltonian circuit across all the nodes in the 
pod. They develop a 2D mesh algorithm, which performs 
the Reduction operation in two phases, one phase for each 
dimension. The 2D-Mesh algorithm has twice the through-
put of gradient aggregations than the 1D Ring AllReduce.

2.3 � Hierarchical AllReduce

Tencent proposes the hierarchical AllReduce algorithm 
[15], and the communication topology is shown in Fig. 1c. 
The algorithm uses a hierarchical ring topology and con-
sists of three phases: intra-groups AllReduce, inter-groups 
AllReduce, and broadcast within the group. In a distrib-
uted system where N workers are divided into L groups, 
3(N∕L − 1) + 2 communication steps are required to com-
plete the synchronization operation. Compared with a 
Ring AllReduce, this three-phase hierarchical AllReduce 
decreases the running steps from 2(N − 1) to 3(N∕L − 1) + 2 . 
Facebook [16] applies the hierarchical AllReduce algo-
rithm to large-scale model training, which greatly improves 
model training speed due to the algorithm’s ability to reduce 
latency costs.

Although this hierarchical method reduces the number of 
running steps, the inter-groups operation still encounters the 
problem of high latency of 1D Ring AllReduce. Since group-
ing rings into a few hierarchical collective operations seems 
to give a better performance, the optimal dimensions of this 
hierarchical communication depend on multiple aspects. 
Ueno et al. [17] provide a strategy for choosing the optimal 
hierarchical communication for deep learning workloads.

3 � Synchronous Algorithm 2D‑TGA​

The effectiveness of the synchronous algorithm is closely 
related to communication topology. The 2D-TGA method 
divides workers into groups to decrease communication 
latency and low fault tolerance when the number of work-
ers increases in a ring topology.

2D-TGA algorithm mainly adopts logical ring Reduce-
Scatter operation. As illustrated in Fig. 1d, the sixteen work-
ers are divided into four groups, and a leader is chosen from 
each group. After executing the Ring AllReduce algorithm, 
all the workers within the group have the same parameters. 
By establishing a Cartesian topology for the leaders, the 
leaders are arranged in the form of a two-dimensional grid. 
Each leader exchanged parameters with the adjacent leader 
in different directions (UP, DOWN, LEFT, RIGHT). The 
mechanism will be described in the following paragraphs.

Let N workers be W0,W1,… ,WN−1 . Each worker 
Wi  ,  0 ≤ i ≤ N − 1 ,  has E  model  parameter  ele-
ments a0

i
, a1

i
,… , aE−1

i
 , and we number the chunks by 

[chk0], [chk1],… , [chkN−1] . The elements in every worker 
are partitioned into N chunk, where {a0

i
,… , a

⌈ E

N
⌉

i
} ∈ chk0 , 

… ,  {a
(N−1)⌈ E

N
⌉

i
,… , aE−1

i
} ∈ chkN−1 .  The logical r ing 

mode includes the following communication process: 
W0 → W1 → W2 → ⋯ → WN−1 → W0 . We use a generic 
operator ⊕ to denote the reduce operator. The Reduce-
Scatter operation is performed as follows. In the first 
iteration, worker Wi sends chunk [chk(i+N)%N] to W(i+1)%N . 
After each worker receives the chunk, all workers have 
all chunk results W0[chk(N−1)%N],… ,WN−1[chk(2N−2)%N] , 
w h e r e  Wi[chk(i−1+N)%N]  =  Wi[chk(i−1+N)%N]  ⊕ 
W(i−1+N)%N[chk(i−1+N)%N] . Let j be the number of iterations, 
0 ≤ j ≤ N − 2 . The result of each worker in the j-th itera-
tion can be expressed as:

We illustrate how the 2D-TGA algorithm operates using 
an example. Figure 2 shows how to divide sixteen workers 
into four groups, and each group has four workers. Four 
distinct colors represent the four groups. In addition, we set 
the dimension of the parameter vector on each worker to 16, 
and each parameter vector value is composed of the serial 
number of the worker it corresponds to. Through the Ring 
AllReduce method after grouping, the size of the ring made 
by the worker can be significantly reduced, the communica-
tion delay can be reduced, and the communication efficiency 
can be improved. According to the number of workers in the 
group, the sixteen parameters are divided into four chunks. 
The data in a red box indicate the data chunk to be sent. 
The workers in the first group conduct Ring AllReduce, 
as shown in Fig. 2a. Leaders do Reduce-Scatter in parallel 
horizontally, as seen in Fig. 2b. The orange arrow shows the 
transmission direction of the parameters. The LEFT worker 
transmits parameters to the RIGHT worker, and each worker 
gets parameters from the LEFT worker. Figure 2c depicts 
leaders performing Segmented-Ring operations vertically in 
parallel. The green arrow shows the direction in which the 
parameters transfer. The UP worker provides parameters to 
the DOWN worker, while the DOWN worker gets param-
eters from the UP worker. Leaders conduct the AllGather 
operation horizontally in parallel, as shown in Fig. 2d. The 
first group leader executes the broadcast operation, as shown 
in Fig. 2e. Algorithm 1 depicts the 2D-TGA algorithm.

(2)
Wi[chk(i−1−j+N)%N] = Wi[chk(i−1−j+N)%N]

⊕W(i−1−j+N)%N[chk(i−1−j+N)%N].
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Fig. 2   2D-TGA algorithmic diagram with sixteen workers. a The first 
group performs the Ring AllReduce. b Establish Cartesian topology 
for four leaders and perform Reduce-Scatter operation horizontally. c 

Perform Segmented-Ring operation vertically. d Perform AllGather 
operation horizontally. e The first group performs the broadcast oper-
ation
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4 � Algorithm Development

4.1 � Distributed ADMM Algorithm

As demonstrated in Equ. (3), a supervised machine learning 
issue may be abstracted as an optimization problem.

where x ∈ ℝ
d denotes the model, d denotes the number 

of sample features , l(x) denotes the loss function, and r(x) 
denotes the regularization term. Typically, distributed opti-
mization is usually turned (3) into a consensus problem, as 
illustrated in (4).

Write problem (4) in the augmented Lagrangian form:

where {�i} symbolize Lagrangian multipliers, 𝜌 > 0 is the 
penalty parameter, and < ⋅, ⋅ > denotes the inner product. 
Convergence speed is also influenced by penalty parameter 

(3)min
x

l(x) + r(x),

(4)
min

z,{xi}
N
i=1

N∑

i=1

fi(xi),

s.t. xi = z,∀i.

(5)
L({xi}, z, {𝜆i}) =

N�

i=1

fi(xi)+ < 𝜆i, xi − z >

+
𝜌

2
‖xi − z‖2

2
,

� [4]. The value of � is verified through experiments [18]. 
They found that a lower � value can make the algorithm con-
verge more quickly. By updating xi and z iteratively (at the k-
th iteration, denoted xk

i
 and zk ), L({xi}, z, {�i}) is minimized. 

In order to integrate the decomposability of dual ascent with 
the excellent convergence properties of method multipliers, 
an improved form of optimized ADMM was proposed and 
use the alternate method to allow the problem to be easily 
decomposed. The ADMM algorithm update process is as 
follows: 

4.2 � Distributed algorithm 2D‑TGA‑ADMM

The distributed ADMM algorithm’s iterative phase is seen in 
(6). In distributed systems, the update approach works well. 
Equations (6a) and (6c) are used parallel by the workers to 
update the local parameters xi and �i . The global variable z is 
updated by the total of (xi +

�i

�
) of all workers, as indicated in 

Equ. (6b). Thus, we take (xi +
�i

�
) as a whole and define it as 

wi , as shown in Equ. (7)

Communication topology is an important factor that affects 
the scalability of distributed optimization algorithms. 
In order to minimize the synchronization time of model 

(6a)
xk+1
i

∶= argmin
xi

(fi(xi)+ < 𝜆k
i
, xi − zk >

+
𝜌

2
‖xi − zk‖2

2
),

(6b)zk+1 ∶=
1

N

N∑

i=1

(xk+1
i

+
1

�
�k
i
),

(6c)�k+1
i

∶= �k
i
+ �(xk+1

i
− zk+1).

(7)wk+1
i

= xk+1
i

+
�k
i

�
.

Table 1   Notations

Symbol Description Value

N The total number of workers 32∼1280
L The number of groups 16
� Delay between two communication workers 0.7�s
S The total size of parameters on each worker 3231961
B The bandwidth capacity of cluster 56 Gb/s
C Computation time per byte of data −

Table 2   Global synchronous 
time of different algorithms

Syn-algorithm Synchronous time

Ring AllReduce 2(N − 1)(� +
S

BN
) + (N − 1)

SC

N

Hierarchical AllReduce 2(
N

L
− 1)(� +

LS

BN
) + (� +

S

B
) + 2(L− 1)(� +

S

BL
)

+(
N

L
− 1)

LSC

N
+ (L − 1)

SC

L

2D-Torus AllReduce 2(
√

N − 1)(� +
S

B

√

N

) + 2(
√

N − 1)(� +
S

BN
)

+(
√
N − 1)

SC√
N

+ (
√
N − 1)

SC

N

2D-TGA​ 2(
N

L
− 1)(� +

LS

BN
) + (� +

S

B
) + 2(

√

L− 1)(� +
S

B

√

L

)

+2(
√

L− 1)(� +
S

BL
) + (

√
L − 1)

SC√
L

+ (
√
L − 1)

SC

L
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parameters, we adapt the communication-efficient group-
ing AllReduce based on the two-dimensional torus topology 
(2D-TGA) proposed in Sect. 3. Next, all wi in each worker 
are reduced to w by the synchronous algorithm 2D-TGA. The 
value of the global variable z is obtained by averaging w . The 
dual variable �i is generated by completing (6c).

This paper proposes a distributed algorithm 2D-TGA-
ADMM to handle distributed optimization problems, 
which combines the ADMM algorithm with the com-
munication-efficient 2D-TGA algorithm. Algorithm 2 
depicts the algorithm flow. The 2D-TGA-ADMM algo-
rithm can be implemented in a distributed computing 
environment like MPI or Spark.

5 � Evaluation and Experiment

5.1 � Evaluation

This paper provides theoretical analysis to compare the 
AllReduce-based synchronous algorithm’s performance, 
reflecting the theoretical time in a single worker synchroni-
zation action. The denotation is provided in Table 1. Based 
on this denotation, global synchronization time (GST) in 
different synchronization algorithms can be calculated.

The design of the 2D-TGA algorithm is based on Ring 
AllReduce, where the synchronization process consists 
of some Reduction phases (e.g., Scatter-Reduce, and All-
gather), each of which is composed of communication steps. 
The Ring AllReduce algorithm has two phases. The first 
phase is the Scatter-Reduce, which passes through N − 1 
steps. The communication time of each step is � +

S

BN
 , and 

the calculation time is SC
N

 . The second phase is the Allgather, 
and the communication time of each step is � +

S

BN
 . Overall 

time consumption is 2(N − 1)(� +
S

BN
) + (N − 1)

SC

N
 . Table 2 

shows the synchronous time of different algorithms, includ-
ing communication time and calculation time. Communica-
tion time is shown by the bold formula, whereas the non-
bold formula indicates computing time. Figure 3a displays 
the communication time for Ring-AllReduce, Hierarchical-
AllReduce, 2D-Torus-AllReduce, and 2D-TGA algorithms 
with different #workers. We use the values in Table 1 to get 
the theoretical analysis results, as shown in Fig. 3a.

In this paper, the global communication time formula 
is used to calculate the communication time of the corre-
sponding worker, as shown in the bold formula in Table 2. 
As shown in Fig. 3a, we set #groups to 16. As #workers 

increase, the communication time of Ring-AllReduce will 
grow linearly. The communication time of 2D-TGA and 
Hierarchical-AllReduce algorithms is comparable and 
does not rise as #workers increase and maintain steady, 
which can enhance the scalability of distributed algorithm. 
Figure 3a also shows that the 2D-TGA method is slightly 
better than the Hierarchical-AllReduce algorithm.

In addition, both the 2D-TGA and Hierarchical-All-
Reduce algorithms leverage the concept of grouping. To 
investigate the impact of grouping on both algorithms, 
we increase the number of workers to 1024 and examine 
the impact of varying #groups on the two algorithms over 
time. Figure 3b shows that when the number of groups 
increases, the performance of the 2D-TGA is much better 
than Hierarchical-AllReduce algorithm. The main reason 
is that the algorithm uses Segmented-Ring operation in the 
process of vertical AllReduce, which may greatly reduce 
the communication time. Compared with using the All-
Reduce algorithm directly, the synchronous time will be 
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reduced, which is also an advantage of the method pre-
sented in this paper.

Since grouping impacts the 2D-TGA algorithm, this 
study estimates the influence of different groups on the 
algorithm as the number of workers grows. It can be seen 
from Fig. 4a that grouping is closely related to algorithm 
performance. As shown in Fig. 4b, the less groups, the 
better the performance of the algorithm.

5.2 � Experiment

Logistic regression is a machine learning method used to 
solve binary classification problems. To obtain strong gen-
eralization abilities, one adds an �2 regularization term; in 
this paper, we consider the following form of regularized 
logistic regression:

where x ∈ ℝ
d represents model parameters, n represents the 

number of samples, Di ∈ ℝ
d represents the i-th sample, and 

bi ∈ {−1, 1} represents the label of the i-th sample.
Experimental Settings. In this section, distributed ADMM 

algorithm is used to solve the logistic regression problem 
with the �2-norm. Combining the ADMM algorithm with 
different synchronous algorithms is used to compare the 
impact of different synchronous algorithms on the scalability 
of distributed algorithms. To solve sub-problems in distrib-
uted ADMM method, we employ the Trust Region Newton 
method (TRON) [19], and the dataset uses the public dataset 
url1 and webspam2, as shown in Table 3. The Tianhe-2 

(8)min
x

f (x) ≡

n�

i=1

log(1 + e−bix
TDi) +

1

2
‖x‖2

2
,

Fig. 3   Communication time of different synchronous algorithm

Fig. 4   Communication time of 2D-TGA algorithm in different groups

1  https://​www.​csie.​ntu.​edu.​tw/​cjlin/​libsv​mtools/​datas​ets/​binary.​html.
2  https://​www.​csie.​ntu.​edu.​tw/​cjlin/​libsv​mtools/​datas​ets/​binary.​html.

https://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/binary.html
https://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/binary.html
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supercomputing cluster serves as the paper’s experimental 
platform. Each node is equipped with two Xeon E5 12-core 
CPUs and 88 GiB of memory. Our experimental schemes 
are set as follows: 16 cores× 2 nodes, 16 cores× 4 nodes, 16 
cores× 8 nodes, 16 cores× 32 nodes. Each node uses 16 cores, 
and each core runs one process. Each process represents a 
worker.

Convergence. This paper uses the relative error function 
( frerr ) to present the convergence of the ADMM algorithm. 
The definition of frerr is shown in Equ. (9),

where f represents the value of the objective function in the 
current state and f ∗ represents the minimum value of the 
objective function.

Figures 5b and 6b, respectively, show the convergence of 
the ADMM algorithm using three different AllReduce-based 
synchronous algorithms to solve the logistic regression prob-
lem under the url and webspam datasets on 64 workers in 
4 nodes. As can be seen from the two figures, the distributed 
ADMM algorithm based on three synchronous algorithms 
has the same convergence rate, which means that the three 
synchronous algorithms do not affect the convergence of 
the ADMM algorithm. This setting can eliminate interfer-
ence and test the performance of the three synchronous algo-
rithms more accurately.

Synchronization Wait Time. Table 4 shows the running 
time of the experiments, including updating time and syn-
chronization wait time. The updating time refers to the 

(9)frerr = |f − f ∗|∕f ∗,

computation time of the TRON method. Due to different 
calculation speeds of the workers, in a single iteration of 
the ADMM algorithm, we store the longest computation 
time between workers and accumulate it with the number 
of iterations of the ADMM algorithm. The synchronization 
wait time refers to the time for the model parameters wi to 
communicate among workers and Reduction operations.

We select different #workers to test the distributed 
ADMM algorithm based on the three different synchronous 
algorithms. Figure 5a shows the synchronous overhead of 
testing the distributed ADMM algorithm on the url pub-
lic dataset. Compared with the ���_��������� algorithm 
in the MPI library, as #workers increase, the 2D-TGA syn-
chronous algorithm can reduce the synchronization wait 
time by 32.6% . However, this algorithm still has drawbacks 
compared with the Ring-AllReduce synchronous algorithm 
on the url dataset. As shown in Fig. 5a, we also find that, 
as #workers increase, the synchronization wait time of the 
2D-TGA gradually approaches to the Ring-AllReduce algo-
rithm. This is also the same as the theoretical analysis in 
Fig. 3a. As #workers increase, the communication time of 
the Ring-AllReduce algorithm is higher than the 2D-TGA 
synchronous algorithm proposed in this paper.

In distributed machine learning, the dimension of the 
model is the decisive factor of the communication vol-
ume. In order to evaluate the effectiveness of the 2D-TGA 
synchronous algorithm, we test it on the high-dimensional 
webspam dataset. As shown in Fig. 6a, comparing the 
collection communication algorithm ���_��������� 
and Ring-AllReduce algorithms, the synchronization wait 
time of the 2D-TGA under different #workers has appar-
ent advantages, and the efficiency can be improved by 
33.8% compared with the collection communication algo-
rithm ���_��������� . Why do the Ring-AllRedcue and 
2D-TGA have different performances on datasets with differ-
ent dimensions? Through the theoretical analysis of Fig. 3a, 

Table 3   A summary of datasets

Dataset #Training samples #Testing samples #Features

Url 2156517 239613 3231961
Webspam 337254 37254 16609143

Fig. 5   Experimental results of url dataset
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it can be found that as #workers increase, the performance of 
the Ring-AllReduce algorithm gets worse and worse than the 
2D-TGA algorithm. Figure 6a also shows that the 2D-TGA 
algorithm is more suited to high-dimensional datasets than 
the Ring-AllReduce technique.

Through the theoretical analysis in Fig. 4, we find that 
as #workers increase, the number of groups also affects the 
performance of the 2D-TGA algorithm. As shown in Fig. 4b, 
theoretical analysis demonstrates that as the increase in #
workers, the more #groups, the worse the performance of 
the algorithm. In this paper, 512 workers are evaluated using 
the url and webspam datasets, as illustrated in Fig. 7. 4, 
16, and 64 groups are set to test the 2D-TGA algorithm. 
Four groups are preferable to sixteen, which is supported by 
the theoretical analysis. Furthermore, Fig. 4a demonstrates 
that the number of workers also determines the size of the 
grouping.

6 � Conclusion

Synchronization of model parameters is critical in DML. 
With the increase in model parameters and #workers, the 
parameter synchronization mechanism will become an 
important factor that limits the scalability of the DML. In 
this paper, a new synchronous algorithm 2D-TGA is pro-
posed, which can shorten the synchronous time by effec-
tively utilizing the network bandwidth. Firstly, we intro-
duce the topology of this algorithm. Then, we analyze the 
synchronous time of four AllReduce-based algorithms. The 
results show that the performance of 2D-TGA is good. To 
verify our analysis, we propose an ADMM-based distributed 

algorithm named 2D-TGA-ADMM, which combines the 
ADMM algorithm and 2D-TGA. We test it on the Tianhe-2 
supercomputing platform to solve logistic regression prob-
lems. The synchronization cost of 2D-TGA is verified by 
selecting different datasets and #workers. Experimental 
results show that compared with the previous algorithms, 
this synchronous algorithm can reduce the synchronization 
wait time by 33% . With the increase in the number of work-
ers, the 2D-TGA algorithm will neither increase the synchro-
nization cost nor affect the convergence of the numerical 
algorithm. It is well suited to large-scale distributed machine 
learning.

This paper only studies the distributed ADMM algorithm 
to solve the logistic regression problem for sparse datasets. 
The next step is to test the algorithm on new unseen data, so 
as to improve the generalization ability. Since the distributed 

Fig. 6   Experimental results of webspam dataset

Fig. 7   Synchronization wait time of different #groups on the 
2D-TGA-ADMM algorithm
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ADMM algorithm has a higher computing and communica-
tion ratio, future research will further reduce the synchroni-
zation wait time of the distributed ADMM algorithm.
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