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Abstract
Visual question answering is a complex multimodal task involving images and text, with broad application prospects in 
human–computer interaction and medical assistance. Therefore, how to deal with the feature interaction and multimodal 
feature fusion between the critical regions in the image and the keywords in the question is an important issue. To this end, 
we propose a neural network based on the encoder–decoder structure of the transformer architecture. Specifically, in the 
encoder, we use multi-head self-attention to mine word–word connections within question features and stack multiple layers 
of attention to obtain multi-level question features. We propose a mutual attention module to perform information exchange 
between modalities for better question features and image features representation on the decoder side. Besides, we connect 
the encoder and decoder in a meshed manner, perform mutual attention operations with multi-level question features, and 
aggregate information in an adaptive way. We propose a multi-scale fusion module in the fusion stage, which utilizes feature 
information at different scales to complete modal fusion. We test and validate the model effectiveness on VQA v1 and VQA 
v2 datasets. Our model achieves better results than state-of-the-art methods.

Keywords  Visual question answering · Multi-level · Mutual attention · Multi-head

1  Introduction

Visual question answering [1] combines the fields of natu-
ral language processing and computer vision. One of the 
most challenging tasks in machine learning is visual ques-
tion answering. This technology has broad application 
prospects in human–computer interaction [2] and medical 
assistance [3]. Visual question answering requires a simulta-
neous understanding of visual and linguistic information. So 
achieving information interaction and fusion across modali-
ties is a major challenge.

In early work, some scientists [4, 5] add or concatenate 
extracted image features and question features to obtain 
fused features. However, this processing does not tap into 
the interactions between modalities, which is important for 
visual question answering. Lu et al. [6, 7] considered the 

interaction between two modalities but ignored the dense 
interaction within a single modality.

One must first comprehend the question and image 
meanings, as shown in Fig. 1, before grasping keywords 
and image regions. Objects can be represented by multiple 
modalities. For example, the word “table” in Fig. 1 corre-
sponds to the table area in the image. So we need to map 
keywords and image regions together. This method can only 
obtain a rough inter-modal relationship between the two [6, 
7]. According to the human brain’s thinking process, we 
must first focus on the image and then understand the ques-
tion. We can get the correct answer by paying close attention 
to each other many times. We miss the implicit link between 
image and question without the mutual attention stage and 
thus miss the most relevant features between the two.

In addition, in the fusion stage, simply adding the two 
modal features will bring much noise, because the image 
or question respectively contains a lot of noise informa-
tion irrelevant to answering the question [8]. For example, 
The “table” in Fig. 1 on the right picture contains many 
electronic products that are not related to mobile phones. 
Furthermore, image features at different scales may repre-
sent the same information [9]-different models of mobile 
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phones in different areas as shown in the picture on the right 
in Fig. 1. Therefore, establishing mutual attention between 
modalities, mining hidden relationships between modalities, 
and exploring abstract information between different modali-
ties at multiple scales in the fusion stage are urgent problems 
to be solved in visual question answering.

Aiming to solve the above problems, we design a 
novel multi-level mesh mutual attention model. Different 
from [4, 10–12], this approach can be well used to explore 
the relationship between features [13–16]. Unlike previous 
works [7, 17–19], we achieve a more concise and effective 
way of information interaction between modes, making full 
use of multi-level question features to refine the abstract con-
nections between modes.

Considering that for the same image, different questions 
focus on different objects. The area objects involved in dif-
ferent images are also different for the same question. The 
interaction can not be expressed in the feature fusion stage 
by simply splicing or adding two features. Therefore, we also 
design a multi-scale adaptive fusion module. The module 
multiples mini-batch transformations of different dimensions 
to solve the above problem, and the fusion information of all 
scales is aggregated adaptively.

Briefly speaking, our contributions are summarized as 
follows: 

1.	 We build a multi-level mesh mutual attention model with 
an encoder–decoder architecture. The multi-level mesh 
decoder performs mutual attention operations on multi-
level question features and image features, aggregating 
information from all levels in an adaptive manner. We 
explore and verify that using both low-dimensional and 
high-dimensional multi-level question features is ben-
eficial for visual question answering.

2.	 We design an adaptive pyramid-shaped multi-scale 
fusion module in the fusion stage. Pyramid linear trans-
formation is performed on the fusion features in multi-

layer mini-batches, and multi-scale fusion is adaptively 
completed.

3.	 Numerous experiments on VQA v1 and VQA v2 data-
sets demonstrate that our model achieves state-of-the-
art results on the comparison algorithms. In ablation 
experiments, we build our baseline model, incrementally 
adding modules, and verify the effect of each proposed 
module.

The article is organized as follows: Sect. 2 reviews previous 
research on visual question answering. Section 3 presents 
the overall framework of our proposed method and details 
each module in the framework diagram. Section 4 is our 
experimental part, which includes comparative experiments, 
ablation experiments, and quantitative analysis. Section 5 
concludes the article.

2 � Related Work

Visual question answering Since the concept of visual 
question answering was proposed in [20], many large data-
sets such as VQA v1 [1], VQA v2 [21] and other datasets 
have been released to the public, attracting a large number 
of scholars to conduct research. Antol et al. [1] extended 
visual question answering to free-form and open-ended 
and proposed a model combining convolutional neural 
networks (CNN) and long short-term memory networks 
(LSTM) to solve visual question answering problems. Dif-
ferent from [5], Gao et al. [22, 23] adopted later fusion in the 
feature fusion strategy, obtained question features and image 
features separately, and then performed the feature fusion 
operation. The above works all use convolutional neural net-
works, resulting in incomplete object information extracted 
in image feature extraction. Anderson et al. [10] used the 
object detection network Faster-RCNN [24] to extract fea-
tures of the objects in the image and used a threshold to 

Fig. 1   Two examples from 
VQA v2 dataset. Simply stitch-
ing or fusing two modal features 
can make the model misun-
derstand the fused features 
and fail to answer the question 
accurately. Therefore, we need 
to strengthen the information 
interaction between modalities. 
In addition, critical information 
within the modality also needs 
to be mined



341A Multi‑level Mesh Mutual Attention Model for Visual Question Answering﻿	

1 3

select some detected objects as visual input. After that, this 
method became the mainstream image feature processing 
operation in visual question answering tasks. Teney et al. [6] 
improved the model on this basis and introduced several 
techniques to improve model performance. Lu et al. [25] 
combined the features obtained by CNN with the features 
obtained by the target detection network.

However, the above work selects all image features in 
feature extraction, which contain noise information that is 
irrelevant to the question, and feeding these into the classi-
fier will affect the prediction of the answer. Before feature 
fusion, the above methods only map the features of the two 
modalities to the same space in a linear projection manner, 
without considering the information interaction between 
modalities [8].

Attention mechanism Thanks to the research progress of 
the attention mechanism in machine translation and image 
description, many works have introduced the attention mech-
anism into the field of visual question answering, which 
has improved the correct rate of answering questions. Shih 
et al. [12] simply multiplied image features and question 
features to obtain attention weights. The attention weights 
are then used to guide the model to focus on image fea-
tures that are most relevant to the question. Yang et al. [26] 
built a stacked attention model on its basis, which made the 
model pay more attention to question-related regions in the 
image through multiple iterative attention operations. Xiong 
et al. [27] proposed a gated recurrent unit with attention 
to facilitate answer prediction. The above work filters out 
image features that are unrelated to the question by introduc-
ing an attention mechanism. Lu et al. [6] proposed a hier-
archical attention network to construct joint attention at the 
word level, phrase level, and sentence level, respectively, and 
provided two different attention construction methods. Nam 
et al. [28] introduced a memory vector based on it to obtain 
more detailed information about images and questions. The 
above methods mainly focus on using the attention mecha-
nism to select question features and image features. In terms 
of feature fusion, Fukui et al. [8] built a multi-modal com-
pact bilinear pooling model, which simultaneously uses the 
outer product and the Kronecker product to complete the 
multi-modal fusion operation. Kim et al. [7] modified it and 
built a multi-modal low-rank bilinear pooling model, which 
uses Hadamard product to fuse the two features. Through 
this way, the number of parameters of the model is reduced. 
Nguyen et al. [17] proposed a new attention mechanism that 
enables dense bidirectional interaction between two modali-
ties, which improves the accuracy of answering questions. 
Patro et al. [18] argued that previous image attention focuses 
on regions inconsistent with humans and proposed a differ-
entiated attention mechanism. Yang et al. [19] constructed 
a mutual attention network and considered different ques-
tion categories when fused. The previous work considers 

the information interaction between modalities, but the 
method is more complicated and ignores the interaction of 
key information within the modalities. Our work considers 
the information interaction between modalities and mines 
the implicit relationships between keywords or key regions 
within the modalities. The use of the Transformer method 
makes the information interaction between modalities more 
convenient. In addition, in the fusion stage, we also consider 
the information aggregation of fusion features from differ-
ent scales.

3 � Methodology

This section will introduce the proposed multi-level mesh 
mutual attention model in detail. As shown in Fig. 2, this 
model is mainly composed of five parts: feature extraction, 
encoder, multi-level mesh decoder, adaptive multi-level fea-
ture fusion, and answer classifier.

3.1 � Feature Extraction

In Sect. 2, we have mentioned that using basic CNN to 
extract image features results in incomplete object informa-
tion extracted in the image features extraction step. Anderson 
et al. [10] adopted Faster-RCNN to extract image features 
and won the VQA 2017 challenge. Furthermore, they also 
analyze in detail the performance impact of each choice on 
the challenge-winning model in [29]. After that, this image 
feature extraction method was widely adopted and became 
the mainstream image processing method in visual ques-
tion answering. Following Anderson et al. [10, 24, 29], we 
use the Faster-RCNN model1 pretrained on Visual Genome 
(VG) [30]2 as the image feature extraction network. After 
extracting image features from Faster-RCNN, we change 
the threshold for object detection [31] to obtain a dynamic 
object detection candidate region K, where K ∈ [10, 100] . 
The input image will be denoted as I = [v1, v2,… vk]

T , where 
vi ∈ R2048 is the convolutional features obtained after average 
pooling of the image in the target detection candidate box. 
Considering different images, the number of detected can-
didate regions is different. In order to facilitate processing, 
for different numbers of target detection candidate regions 
obtained by using Faster-RCNN in different pictures, we uni-
formly use zero vectors padding to fill the candidate regions 
to the maximum scale K. Ultimately, the image feature we 
get is a feature matrix I ∈ RK×2048.

For question features, we first perform word segmentation 
on the input question text. In the VQA dataset, only 0.25% 
of the questions are longer than 14 words [29]. This part of 

1  https://​github.​com/​petea​nders​on80/​bottom-​up-​atten​tion.
2  http://​visua​lgeno​me.​org/.

https://github.com/peteanderson80/bottom-up-attention
http://visualgenome.org/
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the question data has little impact on model performance. 
Based on this, we compress each question into 14 tokens, 
and the tokens after the 14th will be discarded. For questions 
whose length is less than 14 tokens, we use zero vectors for 
padding. After this, we use 300-D GloVe model to perform 
word embeddings for each token in the question, converting 
each token into a 300-D word vector. This step obtains a 
word vector sequence of length n × 300 , where n ∈ [1, 14] . 
n represents the number of tokens in each question. We then 
feed the sequence of GloVe encoded word vectors into a dQ 
dimensional single-layer LSTM network, where dQ ∈ R512 . 
Finally, the question feature is obtained as a vector matrix 
Q ∈ Rn×dQ.

3.2 � Encoder

In order to mine the connection between words in question 
features and obtain multi-level question features, encoder is 
composed of a stacked multi-head self-attention mechanism, 

as shown in Fig. 2. The self-attention mechanism [13] is 
defined as follows:

where Q, K, V are vector matrices of the same dimension, 
d is the scaling factor, Softmax(⋅) stands for softmax activa-
tion function.

The input of each multi-head self-attention layer is the 
output of previous layer. Among them, the input of the first 
layer is the question features after passing through the LSTM 
network. Through this operation, the upper layers utilize the 
known information of the previous layer and further mine it, 
we can obtain multi-level question features Qmulti in different 
semantic dimensions.

(1)Self_att(Q,K,V) = Softmax

�

QKT

√

d

�

V ,

(2)Qatt = Self_att(WqQ,WkQ,WvQ),

Fig. 2   The overall structure of the proposed multi-level mesh mutual 
attention model under the example question–answer pair: “What 
color is the man’s jacket? Red.” The model consists of five parts: fea-
ture extraction, encoder, multi-level mesh decoder, adaptive multi-
level fusion module, answer classifier. Figure  3 shows the details 

of mutual attention module. Multi-level mesh decoder consists of 
mutual attention module and multi-level mesh connection as shown 
in Fig. 4. More details of the adaptive multi-level fusion module are 
in Fig. 5
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where Q is the question features obtained after passing 
through the LSTM network, and Wq,Wk,Wv represents three 
learnable matrix, Add&Norm(⋅) is composed of residual con-
nection [32] and layer normalization [33], concat(⋅) stands 
for concatenation operation, m is the number of stacked 
multi-head attention layers.

3.3 � Multi‑level Meshed Decoder

We take the multi-level question features Qmulti from the 
encoder and the preprocessed image features I as inputs.

Mutual attention module For the self-attention lay-
ers in the Transformer model, Q, K, V all come from the 
same modality. In this way, only the information inside 
the modal can be captured, and the information interac-
tion between the modal can not be captured. We imple-
ment mutual attention based on the self-attention module 

(3)head = Add&Norm(Qatt),

(4)Out = concat(head1, head2,… , headi),

(5)Qmulti = (Out1,Out2,… ,Outm),

to realize the information interaction between different 
modalities fully.

As shown in Fig. 3, we first pass the image features I 
through the self-attention module to obtain image features 
Is . Then, together with the question features Out, it is sent 
to the mutual attention module for information exchange 
between modalities. Image features Is and question features 
Out are transformed into the same dimensions Q1 , K1 , V1 and 
Q2 , K2 , V2 through three linear layers with different weight 
parameters, respectively.

We perform the dot-product operation on Q2 and K1 to get 
the dot-product similarity weight between Q2 and K1 . Use 
this weight to refine V1 to get the question features Qmutual 
after interacting with the image features Is.

where mutual_att(⋅) represents our mutual attention mod-
ule, modified on the basis of the self-attention mechanism, 
details can be seen in Fig. 3, Wq2

,Wk1
,Wv1

 represents three 
different matrices of learnable parameters.

Similarly, Q1 and K2 perform the dot-product operation 
and then use their dot-multiply similarity to refine V2 to 

(6)Qmutual = mutual_att(Out, Is),

(7)mutual_att(Out, Is) = Self_att(Wq2
Out,Wk1

Is,Wv1
Is),

Fig. 3   The process of mutual 
attention module, which is 
obtained by changing the self-
attention structure. We use Q

2
 

from the question features to 
refine the image features and 
Q

1
 from the image features to 

refine the question features, 
respectively. Thereby, the 
interaction information between 
the two features is obtained. 
Image features are nested with 
Add&Norm(⋅) and a pointwise 
feed-forward layer in the final 
stage
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obtain the image features Imutual after interacting with the 
question features Out. Add&Norm(⋅) and a pointwise feed-
forward layer are nested again.

where Wq1
,Wk2

,Wv2
 represents three different matrices of 

learnable parameters.
Multi-level mesh decoding layer In the field of machine 

translation, the traditional transformer only considers the 
information of the last layer of the encoder at the decoder 
side. And each time it passes through a layer of self-attention 
layer, the important information in the question features will 
change. We design a multi-level mesh decoding layer that 
utilizes multi-level question features at the encoder side to 
interact with image features and aggregates information in 
a mesh-connected fashion, as shown in Fig. 4.

The inputs to the multi-level mesh decoder are the multi-
level image features Imulti output from the previous decoding 

(8)Imutual = mutual_att(Is,Out),

(9)mutual_att(Is,Out) = Self_att(Wq1
Is,Wk2

Out,Wv2
Out),

layer and the multi-level question features Qmulti from the 
encoder. For the first layer of the decoder, the inputs are 
image features Is and multi-level question features Qmulti . 
The decoder is defined as follows:

where ∗ denotes element multiplication operation, �i is a 
weight matrix that can measure the contribution of different 
levels of question features in the interaction and the similar-
ity between the interaction results, �i is defined as follows:

where Sigmoid(⋅) represents the sigmoid activation function, 
Wi is a learnable parameter matrix, bi is a learnable bias 
vector.

In the decoding layer, image features interact with multi-
level question features from different levels in the encoder 
respectively, resulting in a feature set:

(10)Imulti =

n
∑

i=1

(�i ∗ concat(mutual_att(Is,Qmulti), Is)),

(11)
�i = Sigmoid(Wi(concat(mutual_att(Is,Qmulti), Is)) + bi),

Fig. 4   The processing flow of 
the multi-level mesh decoder. 
First, the multi-level question 
features Qmulti and image fea-
tures Is are fed into the mutual 
attention module. The image 
feature sets Imutual after mutual 
attention are aggregated accord-
ing to formula (10) to obtain 
multi-level image features Imulti . 
The multi-level image features 
Imulti and the multi-level ques-
tion features Qmulti from the 
encoder will be fed into the next 
decoding layer as inputs
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According to Fig. 4, we spliced Imutual and Is , and then multi-
plied by �i after a linear layer dimensionality reduction, and 
finally summed to get Imulti , Imulti will continue to be sent to 
the next decoding layer for mesh interaction with multi-level 
question features. We take the question features Qi

mutual
 and 

Imulti obtained after the last layer of mesh interactions in the 
decoder as outputs.

3.4 � Adaptive Multi‑level Feature Fusion

He et al. [32] demonstrates that multi-layer learning with 
a small number of hidden units for higher layers can learn 
more abstract information in the features. Inspired by He 
et al. [32], to fully and effectively integrate feature repre-
sentations at different levels of abstraction, we design an 
adaptive multi-level feature fusion module shown in Fig. 5 
to fuse the feature representations of all layers in different 
dimensions to obtain the final fused features.

Before fusion, we apply a multi-layer perceptron [31] to 
reduce the dimensionality of features output by the decoder. 
The adaptive multi-level feature fusion module takes the 
question features Qi

mutual
 , image features Imulti from the 

decoder as inputs and finally outputs the multi-level fusion 
features f in different dimensions.

The adaptive multi-level feature fusion module is 
defined as follows:

where Tan(⋅) stands for tan activation function, f 1
1024

, f 2
512

, f 3
512

 
are the fusion features of different dimensions, they are 
obtained by the following operation:

where W1 , W2 , W3 are three different matrices of learn-
able parameters respectively, b1024, b512 are two different 
learnable bias vectors. This transformation can learn more 
abstract information in the fused features [32]. At the same 
time, multi-layer fusion features can provide more helpful 
information for the classifier. Furthermore, we introduce � 
following the inspiration of Multi-level Meshed Decoder:

(12)Imutual = [I1
mutual

, I2
mutual

, ..., Ii
mutual

],

(13)Qmutual = [Q1
mutual

,Q2
mutual

, ...,Qi
mutual

],

(14)f = Tan(concat(�1
1024

∗ f 1
1024

, �2
512

∗ f 2
512

, �3
512

∗ f 3
512

)),

(15)f 1
1024

= Tan((concat(Qi
mutual

, Imulti)W1 + b1024)),

(16)f 2
512

= Tan((concat(Qi
mutual

, Imulti)W2 + b512)),

(17)f 3
512

= Tan((concat(Qi
mutual

, Imulti)W3 + b512)),

3.5 � Answer Classifier

The answer classifier consists of a layer normalization layer, 
a linear layer, and a sigmoid nonlinear layer. The answer 
classifier projects the previously obtained fused features as 
probabilities:

where Norm(⋅) stands for layer normalization operation, 
W1024×3129 represents a learnable parameter matrix with a 
dimension of 1024 × 3129 , b3129 is a learnable bias vector.

The multi-level fusion features first pass through a layer 
normalization layer. Then a linear layer is used to convert 

(18)�
1
1024

= Sigmoid(f 1
1024

),

(19)�
2
512

= Sigmoid(f 2
512

),

(20)�
3
512

= Sigmoid(f 3
512

)

(21)logits = Sigmoid(Norm(fW1024×3129 + b3129)),

Fig. 5   The process of multi-level fusion modules. We take the multi-
level image features and question features from the multi-level mesh 
decoder as inputs. The fusion features in different dimensions are 
obtained in the form of pyramids, and the fusion features from differ-
ent dimensions are adaptively aggregated in the form of formula (14)
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them to 3129 dimensions, which performs pre-classification 
operations on the features. After that, the sigmoid activation 
function projects the 3129-dimensional fused features into 
answer probabilities. Following Teney et al. [29], we train 
the classifier with a binary cross-entropy loss function on 
fused features f.

4 � Experiments

In this section, we validate the performance of the proposed 
model on the VQA v1 [1] and VQA v2 [21] dataset.3 First, 
we will introduce the dataset and detailed parameter set-
tings in the experiments. Then, we compare and discuss the 
experimental results with different methods. Finally, consid-
ering the influence of different structures and parameters on 
the model performance, we conduct ablation experiments 
on the method proposed in this paper. We also conduct a 
quantitative analysis to explore the effect of combining dif-
ferent levels of multi-level features and different numbers of 
decoding layers on the model efficiency.

4.1 � Dataset

There are two primary large-scale datasets about vis-
ual question answering: VQA v1 [1] and VQA v2 [21]. 
Both are built on the Microsoft Common Objects in 
Context(MSCOCO) [34] image dataset and divided into 
training, validation, and test set.

VQA v1 VQA v1 [1] is the first large dataset in the visual 
question answering domain, consisting of 204,721 images 
from the MSCOCO [34] image dataset, with at least three 
questions per image and ten manually annotated answers 
per question. There are 614,163 questions and 3,698,610 
answers. The questions were divided into three subsets: the 
training set (248,349 questions), the validation set (121,512 
questions), and the test set (244,302 questions). All ques-
tions can be divided into three categories: yes/no, number, 
and other. Answers are divided into training set answers 
(2,483,490 answers) and validation set answers (1,215,120 
answers). Furthermore, the test set is divided into a test 
development set and a test standard set. The results of these 
two test subsets can only be obtained online on the VQA 
Challenge.4

VQA v2 VQA v2 [21] dataset, updated from VQA v1 
[1] dataset, also contains 204,721 images and is currently 
the most commonly used large-scale public dataset in the 
visual question answering field. Unlike the VQA v1 [1], the 
VQA v2 [21] dataset has a larger sample of questions, solv-
ing the data imbalance problem in the VQA v1 [1] dataset 

and making the dataset smoother in terms of linguistic bias. 
Specifically, VQA v2 [21] has 1,105,904 questions divided 
into three subsets: the training set (443,757 questions), the 
validation set (214,354 questions) and the test set (447,793 
questions). The data set had a total of 6,581,110 answers and 
was divided into training set answers (4,437,570 answers) 
and validation set answers (2,143,540 answers).

Data Augmented We have used VG [30] dataset as a 
means of data enhancement in the experimental part for a 
fair comparison. Similar to existing strategies [10, 11, 35], 
we first select images in the VG [30] dataset that appear in 
both the MSCOCO [34] train and val datasets, and obtain 
question–answer pairs associated with these images. Next, 
we select the question–answer pairs whose answers appear 
in the candidate answer set(described in 4.2) as the final 
data-augmented question–answer pairs. We will briefly 
introduce the VG [30] dataset later.

Visual Genome The VG [30] dataset consists of 108,249 
images from YFCC100M [36] and MSCOCO [34]. The 
dataset has 1.7 million question–answer pairs, with an aver-
age of 17 question–answer pairs per image. The VG [30] 
dataset does not have the yes/no binary of the VQA dataset, 
in order to encourage the use of more complex questions.

VQA v1 [1] and VQA v2 [21] are large-scale mainstream 
general datasets in visual question answering. Therefore, we 
will conduct experiments on these two datasets. We will 
validate the model’s overall performance and conduct abla-
tion experiments to verify individual module performance.

4.2 � Evaluation Metric

Open visual question answering is defined as a multi-cat-
egory classification problem. Simple accuracy can also be 
used in it. But in this case, the answer predicted by the algo-
rithm must be exactly the same as the ground truth. This 
evaluation standard is too strict, which will lead to ambigu-
ity problems [37]. The creator of the VQA dataset, Antol 
et al. [1], proposed a new VQA evaluation metric widely 
accepted as a consensus in the VQA field. The VQA evalu-
ation metric is defined as follows:

where n is the same number of predicted answers as cor-
rect answers, a represents an answer, min(⋅) is the minimum 
value operation.

Under the VQA evaluation metric, as long as the answer 
predicted by the algorithm can be consistent with three or 

(22)Accuracy(a) = min
{

n

3
, 1
}

,

3  https://​visua​lqa.​org/​downl​oad.​html.
4  https://​eval.​ai/​web/​chall​enges/​chall​enge-​page/​830/​submi​ssion.

https://visualqa.org/download.html
https://eval.ai/web/challenges/challenge-page/830/submission
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more manually annotated answers, it is judged as the cor-
rect answer. The category label of visual question answering 
is a predefined set of candidate answers, and we select the 
answers that are more than nine times in the VQA dataset 
as the candidate answer set [29]. There are 2,185 candidate 
answers in the candidate answer set for the VQA v1 [1] 
dataset and 3,129 candidate answers in the candidate answer 
set for the VQA v2 [21] dataset.

4.3 � Implementation Details

All experiments we conducted are based on the PyTorch 
deep learning framework and use a TITAN XP to train the 
model. Our models are trained in an end-to-end manner. 
Below we will introduce the parameters used by the model 
in the experiments. For image features, the image features 
extracted from Faster R-CNN are 2048-dimensional. For 
question features, the length of each question is set to 14, 
and the dimension of the question features processed by a 
single layer LSTM network is 512-dimensional. Following 
the setting in [13], for the parameters of the multi-head self-
attention and mutual attention layers, we set the dimension 
of hidden features to 512. Number of attention heads is 8, 
and the feature dimension of the attention head is 64. We 
set the initial learning rate as min(2.5te?5, 1e?4), where t is 
the current step and the starting value is 1. When t is greater 
than 10, the learning rate decreases by 1/5 every two steps. 
The parameters of the dropout layer used in the model are 
set to 0.1. For the linear layers in the model, we initialize the 
parameters with a uniform distribution. The bias of the linear 
layer is initialized to 0. We set the batch size to 64 and train 
the model for a total of 15 epochs. We choose the best epoch 
parameter to test the model and generate a json file for online 
submission. For the VQA v2 [21] validation set results, we 

use only the training set to train the model. For online test 
results on test-dev set and test-std set, we use the training set 
and validation set for model training. In addition, VG [30] 
dataset is also used as a means of data augmentation.

4.4 � Overall Accuracy

All comparison algorithms are trained on training and vali-
dation sets, and tested on test-dev and test-std sets for a fair 
comparison. We also conduct fair comparisons for some 
additional methods using the VG [30] dataset. For ease of 
reference, we will first briefly describe the models used for 
comparison5 in Tables 1 and 2.

Methods based on CNN+LSTM structure:

•	 LSTM Q+I [1] uses VGGNet to extract image features, a 
two-layer LSTM network encodes question features, and 
finally fuses them by element multiplication.

•	 DPPnet [23] proposes a CNN dynamic parameter layer 
that can be adaptively changed according to the ques-
tions.

•	 VQA Team-LSTM+CNN [21] aims to address the lin-
guistic bias that exists in VQA v1 [1] dataset, the VQA 
v2 [21] dataset is proposed by collecting complementary 
images to balance the dataset. The model extracts image 
and text features using a CNN+LSTM network structure.

Methods based on attention mechanism:

Table 1   The performance 
comparison of our method and 
other methods on the VQA 
v1 [1] dataset

Results in Table 1 are the performance of a single model of the compared methods on the same training set. 
“–” indicates the result is not available. “Overall” represents the final overall accuracy. “Yes/No”, “Num”, 
and “Other” respectively indicate the accuracy of three different question types under the subdivision
Bold value is the best among all the methods

Methods VQA v1 test-dev VQA v1 test-std

Overall Yes/No Numbers Other Overall Yes/No Numbers Other

LSTM Q+I [1] 53.74 78.94 35.24 36.42 54.10 79.00 35.60 36.80
DPPnet [23] 57.22 80.71 37.24 45.77 57.36 80.28 36.92 42.24
MLB [38] 65.08 84.14 38.21 54.87 65.07 84.02 37.90 54.77
DCN [18] 65.4 83.8 39.1 55.2 – – – –
DCA [17] 66.89 84.61 42.35 57.31 67.02 85.04 42.34 56.98
CAQT [19] 66.37 82.63 42.02 57.98 66.53 82.88 41.15 58.05
ATCG [39] 69.47 86.72 43.05 60.70 69.64 86.87 42.63 60.77
ALMA [40] 68.94 85.49 42.09 59.97 68.76 84.11 42.59 58.06
UFSCAN [35] 69.06 – – – 69.34 – – –
Ours 69.74 84.63 45.25 61.51 69.86 86.67 45.48 60.95

5  Please note that if one of the following methods does not appear in 
Tables 1 or 2, it means that the method has no test results on the data-
set corresponding to Tables 1 or 2.
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•	 MF-SIG  [11] proposes a Conditional Random 
Field(CRF) method to construct structural attention for 
image regions, which solves the problem of limited per-
ceptual field of CNN.

•	 MLB [38] proposes a low-rank bilinear pooling method 
using Hadamard product for multimodal fusion learning.

•	 Adelaide Model+detector [10] applies the bottom-up 
attention mechanism with Faster R-CNN model to the 
field of visual question answering. This strategy can 
obtain question-relevant region-level objects in the 
image.

•	 DCN [18] proposes a differentiated attention mechanism 
to solve the inconsistency between the attention regions 
of previous methods and human attention regions.

Methods based on modal interaction:

•	 DCA [17] proposes a dense co-attention layer. The dense 
co-attention layer improves the representation of fused 
features by considering a dense symmetric interaction 
between the input image features and the problem fea-
tures.

•	 CAQT  [19] obtains the interaction features between 
modalities through a common attention mechanism and 
introduces problem categories in the fusion stage.

•	 SOMA [41] proposes a second order-enhanced multi-
glimpse attention model, which utilizes a second order 
module to accurately model the interaction between ques-
tion features and co-embedded features in multi-glimpse 
outputs.

•	 ATCG [39] proposes a multi-step attention mechanism, 
which allows the model to gradually adjust its attention 
to image regions guided by the question features.

•	 ALMA [40] uses the siamese similarity learning method 
to achieve multimodal attention between images and text. 
Furthermore, an adversarial learning mechanism is intro-
duced so that the learned multimodal features contain 
answer-related information.

•	 UFSCAN [35] proposes a feature-wise attention mecha-
nism. This mechanism provides more discriminative fea-
tures for the representation of image and question fea-
tures by suppressing irrelevant features and emphasizing 
informative features.

Results on VQA v1 From Table 1, we can see that our model 
achieves an overall accuracy of 69.74% and 69.86% on the 
test-dev and test-std of the VQA v1 dataset, respectively, 
which are higher than all the comparison algorithms. We can 
also see that the methods MLB [38] and DCN [18] using the 

Table 2   The performance 
comparison of our method and 
other methods on the VQA 
v2 [21] dataset

Results in Table 2 are the performance of a single model of the compared methods on the same training set. 
“*” indicates augmented with VG [30] dataset. “–” indicates the result is not available. “Overall” represents 
the final overall accuracy. “Yes/No”, “Num”, and “Other” respectively indicate the accuracy of three differ-
ent question types under the subdivision
Bold value is the best among all the methods

Methods VQA v2 test-dev VQA v2 test-std

Overall Yes/
No

Numbers Other Overall Yes/
No

Numbers Other

VQA Team-Prior [21] – – – – 25.98 00.36 01.07 61.20
VQA Team-Language Only [21] – – – – 44.26 31.55 27.37 67.01
VQA Team-LSTM+CNN [21] – – – – 54.22 35.18 41.83 73.46
MLB [38] – – – – 62.54 79.85 38.64 52.95
MF-SIG* [11] 64.73 81.29 42.99 55.55 – – – –
Adelaide Model+detector* [10] 65.32 81.82 44.21 57.10 65.67 82.2 56.26 43.9
DCA [17] 65.12 83.18 47.32 56.10 66.08 83.48 56.33 47.12
CAQT [19] 66.37 82.63 42.02 57.98 66.53 82.88 58.05 47.15
SOMA [41] 68.38 84.86 47.59 59.06 68.67 – – –
ATCG [39] 69.13 85.80 51.54 59.17 69.57 86.17 59.27 51.46
ALMA [40] 68.12 84.62 47.08 58.14 – – – –
UFSCAN* [35] 69.83 85.21 50.98 60.98 70.09 85.51 61.22 51.46
Ours 69.54 86.05 50.91 59.67 70.08 86.23 51.23 60.35
Ours* 70.03 86.32 52.21 60.16 70.28 86.69 51.83 60.22
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attention mechanism perform better than the LSTM Q+I [1] 
and DPPnet [23] based purely on the CNN+LSTM structure 
but are weaker than the methods based on modal interaction. 
Our model belongs to the modal interaction-based approach. 
Our performance is 0.27% and 0.22% higher than the best 
method among the comparison algorithms, ATCG [39], on 
test-dev and test-std, respectively. In addition, our perfor-
mance is also much higher than other methods based on 
modal interaction in the comparison algorithm, such as 
2.85% higher than DCA [17] and 3.37% higher than CAQT 
[19] on the test-dev dataset.

Results on VQA v2 As can be seen from Table 2, our 
model outperforms all contrasting algorithms, achieving a 
new state-of-the-art performance of up to 70.03% on test-dev 
set and 70.28% on test-std set, respectively. The first three 
methods in Table 2 are all based on CNN+LSTM structure 
and use simple addition, multiplication, and splicing opera-
tions to complete feature fusion. On the test-dev set and 
test-std set, the performance of our model is significantly 
higher than the above three methods. Therefore, the attention 
mechanism and feature fusion strategy have a great impact 
on the overall performance of the model. The fourth, fifth, 
and sixth methods use the attention mechanism but only 
filter image features. Our model outperforms these methods 
and outperforms Adelaide Model+detector [10] by 4.22% on 
the test-dev set and 4.41% on the test-std set without aug-
mentation with the VG dataset. This is because the attention 
mechanism in this paper considers the attention of the ques-
tion to the image and considers the attention of the image to 
the question and realizes the information interaction between 
modalities. In Table 2, DCA [17], CAQT [19], SOMA [41], 
ATCG [39], ALMA [40], UFSCAN [35] all use attention 
mechanism to realize the implicit information exchange 
between modalities. It can be seen that these methods out-
perform the previous ones, which validates the importance 
of inter-modal interactions in visual question answering.

For results on test-dev set, Our model performs better 
than other methods mentioned above that realize the infor-
mation interaction between modalities, which are 0.41%, 
1.42%, 3.17% and 4.42% higher than those of ATCG [39], 
ALMA [40], CAQT [19] and DCA [17], respectively. For 
the UFSCAN [35] method additionally using the VG data-
set, our model also outperforms by 0.2% on the test-dev set. 
Besides, for test-std set, our model outperforms DCA [17] 
by 4%, CAQT [19] by 3.55%, SOMA [41] by 1.42%, and 
ATCG [39] by 0.51%, respectively. It is worth mentioning 
that our model achieves the same effect as the UFSCAN [35] 
method without additional use of the VG dataset. With the 
VG dataset, our model outperforms UFSCAN [35] by 0.19% 
on the test-std set.

4.5 � Ablation Study

Our proposed multi-level mesh mutual attention model com-
prises multiple modules. To explore the individual effects of 
the proposed module, we build a baseline model, incremen-
tally add the proposed modules, and evaluate the effect of 
each module on the VQA v2 validation set.

For baseline model Modelbaseline , encoder keeps one 
multi-layer perceptron, and decoder keeps one multi-head 
self-attention layer and one multi-layer linear perceptron. 
Question features and image features are simply added and 
fed into the answer classifier. Based on the baseline model, 
we gradually add the proposed modules. Modelbaseline+att rep-
resents adding one multi-head self-attention layer only in 
the encoder. Modelbaseline+mutual stands for adding a mutual 
attention module to the decoder. Modelbaseline+fusion repre-
sents the use of multi-level fusion modules in the fusion 
stage. Modelbaseline+multi−mesh represents the use of multi-level 
mesh connection. In this model, encoder consists of two 
stacked multi-head self-attention layers. A mutual atten-
tion layer is included in the decoder. Modelbaseline+transformer 
represents using the connection method in the traditional 
transformer, only using the information of the last layer in 
the encoder. Other settings of the model remain the same as 
Modelbaseline+multi−mesh . Modelfull represents our final popula-
tion model.

Table 3 demonstrates the results of the ablation experi-
ments. The addition of each proposed module over the 
baseline model improves the model effect, which confirms 
the effectiveness of the proposed module. The data in the 
first row and second row in Table 3 show Modelbaseline+att 
is 0.83% higher than Modelbaseline , which means that add-
ing a self-attention module on the encoder side and mining 
the relationship between words in the question informa-
tion is conducive to improving the effect. The results in the 
third and fourth rows in Table 3 show that after adding the 
mutual attention module and the multi-level fusion module, 

Table 3   Model ablation experiment results on VQA v2 validation set. 
Model is trained using only the training set and tested on the valida-
tion set

Models Overall Yes/No Number Other

Modelbaseline 54.57 69.62 36.31 47.93
Modelbaseline+att 55.40 69.87 37.08 49.24
Modelbaseline+mutual 62.14 79.07 42.34 54.51
Modelbaseline+fusion 59.08 77.60 39.52 50.16
Modelbaseline+multi−mesh 65.40 83.31 45.31 57.10
Modelbaseline+transformer 64.25 82.30 43.32 56.06
Modelfull 66.31 83.94 48.69 57.57
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the model effect is improved by 7.57% and 4.51%, respec-
tively, over the baseline model. This fully demonstrates the 
importance of information interaction between modalities 
and multi-scale modal information fusion in visual ques-
tion answering. Furthermore, the mutual attention module 
and multi-level fusion module are also verified. Compared 
with the connection method of traditional Transformer in 
the field of machine translation, Modelbaseline+multi−mesh is 
1.15% higher than Modelbaseline+transformer . The multi-level 
mesh connection method has significantly improved, which 
verifies our proposed assumption. At the same time, using 
the low-dimensional and high-dimensional question infor-
mation in the encoder for modal interaction, we can obtain 
better feature representation and improve the model effect. 
In the last row of Table 3, the effect of our overall model is 
still improved, which indicates that the proposed modules 
play a positive role in promoting each other.

4.6 � Quantitative Analysis

To further explore the effect of the multi-level mesh decoder, 
we quantitatively analyze the decoding layers and mesh 
multi-level features in the decoder, respectively.

Table 4 demonstrates the overall effect of different multi-
level question features connection methods under other num-
bers of decoding layers. The rows represent different mesh 
connection methods. “only 1” means to use only the last 
layer of question features in the multi-level question features 
for mesh interaction. “2-to-1” and “4-to-1” respectively indi-
cate using two-layer question features and four-layer ques-
tion features in the multi-level question features for mesh 
interaction at the decoder side. “DLayer-1”, “DLayer-2”, and 
“DLayer-4” indicate the use of one, two, and four decoding 
layers, respectively.

From Table 4, we can see that when the number of decod-
ing layers is fixed, as the number of multi-level question fea-
tures increases, the overall effect of the model first increases 
and then decreases. The model achieves the best overall 
performance in “2-to-1” when using two layers of question 
features for decoder-side mesh interactions. This means that 
using multi-level question features containing different lev-
els of question information helps to improve the correct rate 
of question answering. However, the multi-level question 
features with too many levels have little improvement even a 
slight decrease in the model effect. This is because different 
levels of question features focus on inconsistent objects, and 
there is partially redundant noise information for the final 
question answer.

When the feature connection mode of the multi-level 
question is fixed, the number of decoding layers increases 
and the model’s overall effect is improved. When the number 
of decoding layers is increased from one layer to two layers, 

the impact of the model is greatly enhanced. When the num-
ber of decoding layers is increased from two layers to four 
layers, the effect of the model is minimal, and the bottleneck 
of the model has been reached. This means that the decoding 
layer can reasonably complete the mesh interaction between 
modalities, further improving the efficiency of the model.

Figure 6 shows the details of the model performance with 
different levels of multi-level question features and differ-
ent decoding layers. From Fig. 6c, we can see that the con-
nection method that only uses the last layer of multi-level 
question features has a higher correct rate on the question 
type “Yes/No” than the “2-to-1” and “4-to-1” connection 
methods. The situation is just the opposite in Fig. 6b, d. 
Among the question types, the “Yes/No” question type is 
linguistically biased, often does not require reasoning about 
pictures and questions, and has a 50% chance of being cor-
rect for random answers. The correct answer to the “Other” 
and “Num” type questions needs to find the relevant attrib-
utes between the picture and the question and make multiple 
inferences to get it. Therefore, the above cases also further 
demonstrate the effectiveness of our proposed multi-level 
features and mesh decoder for answering questions. An 
interesting phenomenon is that in Fig. 6a, as the number of 
decoding layers increases, the overall effect of the “only-1” 
connection method is greater than that of the “4-to-1” con-
nection method. This also verifies that different levels of 
question features focus on inconsistent objects, and there is 
noise redundant information.

5 � Conclusion

This paper proposes a multi-level mesh mutual attention 
model for visual question answering. The multi-level mesh 
mutual attention model utilizes mutual attention to fully 
explore the information interaction between visual and 
language modalities and improve the model efficiency. 
The model cleverly uses a multi-level mesh connection 
and at the same time utilizes low-dimensional and high-
dimensional question information at different levels, pro-
viding more feature information for modal interactions. 
Besides, an adaptive multi-scale feature fusion module is 
designed to mine abstract information in fused features at 
different scales in the fusion stage. We perform compara-
tive experiments on VQA v1 and VQA v2 datasets. The 
results verify the significance of our proposed module and 
the performance of the overall model, respectively. As for 
future work, we intend to consider introducing inference 
mechanisms, such as causal inference, graph neural net-
works, etc., to establish more complex relationships and 
reasoning between modalities, so as to improve the accu-
racy about answering questions.
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Fig. 6   Details of the accuracy of the model with different levels of 
multi-level question features and different numbers of decoding lay-
ers. There are three types of questions: binary choice questions “Yes/
No”, counting reasoning questions “Num” and other types of reason-

ing questions “Other”. “Overall” represents the overall model accu-
racy. The question features are connected in three ways: “only-1”, 
“2-to-1” and “4-to-1”. The number of decoding layers is 1, 2, and 4, 
respectively

Table 4   Results of models with different levels of multi-level ques-
tion features and different numbers of decoding layers on the VQA v2 
val dataset

Bold value is the best among all the methods

Multi-mesh DLayer-1 DLayer-2 DLayer-4

Only 1 65.80 66.15 66.22
2-to-1 65.96 66.31 66.34
4-to-1 65.86 66.12 66.14
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