
Vol:.(1234567890)

Data Science and Engineering (2022) 7:402–427
https://doi.org/10.1007/s41019-022-00193-5

1 3

REVIEW/SURVEY PAPERS

Dimensionality Reduction in Surrogate Modeling: A Review 
of Combined Methods

Chun Kit Jeffery Hou1  · Kamran Behdinan1 

Received: 2 March 2022 / Revised: 21 July 2022 / Accepted: 9 August 2022 / Published online: 21 August 2022 
© The Author(s) 2022

Abstract
Surrogate modeling has been popularized as an alternative to full-scale models in complex engineering processes such as 
manufacturing and computer-assisted engineering. The modeling demand exponentially increases with complexity and 
number of system parameters, which consequently requires higher-dimensional engineering solving techniques. This is 
known as the curse of dimensionality. Surrogate models are commonly used to replace costly computational simulations and 
modeling of complex geometries. However, an ongoing challenge is to reduce execution and memory consumption of high-
complexity processes, which often exhibit nonlinear phenomena. Dimensionality reduction algorithms have been employed 
for feature extraction, selection, and elimination for simplifying surrogate models of high-dimensional problems. By applying 
dimensionality reduction to surrogate models, less computation is required to generate surrogate model parts while retain-
ing sufficient representation accuracy of the full process. This paper aims to review the current literature on dimensionality 
reduction integrated with surrogate modeling methods. A review of the current state-of-the-art dimensionality reduction and 
surrogate modeling methods is introduced with a discussion of their mathematical implications, applications, and limitations. 
Finally, current studies that combine the two topics are discussed and avenues of further research are presented.
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1 Introduction

Data mining has become a rapidly growing field in recent 
years. At the same time, data generation has seen a surge in 
volume, leading to a growth in size, complexity, and data 
dimensionality. High-dimensional data exists where the 
number of data features is on the order of the number of 
samples or observations [1]. These datasets can be computa-
tionally expensive to learn and generating mapping functions 
between input and output can be a cumbersome task. Thus, 
reducing the number of features, or the problem dimen-
sionality, can greatly simplify the learning and training of 
regression and classification models for extracting patterns 
in the data. Dimensionality reduction (DR) techniques seek 
to reduce the data dimensionality and identify intrinsic data 

structure while sacrificing minimal accuracy and informa-
tion. DR can be achieved through feature elimination, feature 
selection, or feature extraction. Feature elimination involves 
reducing the input dimension space by eliminating features 
of the dataset that are deemed unimportant. Although this 
simplifies the computations afterwards, no information is 
gained by dropping those features. Feature selection involves 
using statistics to determine and rank features based on their 
information contribution to the overall dataset. These meth-
ods can be categorized as filter and wrapper methods and 
have been explored in detail in [2]. It is important to note 
that there is no universal method for ranking data features as 
different tests will yield different contribution scores. Global 
sensitivity analysis methods [3], which identify the ‘most 
important’ inputs in unstructured datasets and ignore the 
others, have emerged as a novel feature selection method for 
machine learning (ML) prediction models [4]. Finally, fea-
ture extraction methods, like principal component analysis 
(PCA), create new independent features that are combina-
tions of the original dataset features.

In this paper, dimensionality reduction methods are clas-
sified as linear and non-linear methods. Linear DR methods 
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transform data to a lower-dimension feature space through 
linear kernelization and combinations of original variables. 
The linear techniques presented in this paper predominantly 
perform dimensionality reduction through linear algebra. 
Non-linear DR methods are applied when the initial data 
space contains nonlinear relationships and structure. These 
include kernel PCA (kPCA), manifold learning methods, 
and autoencoders. Typically, non-linear DR techniques gen-
erate a lower-dimensional representation of the data while 
preserving distance between data points. Furthermore, these 
methods can subsequently be supervised or unsupervised 
schemes. Unsupervised DR methods, such as PCA, only 
consider the input feature matrix for pattern identification, 
while supervised methods such as partial least squares (PLS) 
and linear discriminant analysis (LDA) consider both fea-
tures and the responses. The overall goal of DR methods is 
to enhance the accuracy and efficiency of data mining by 
reducing the dataset and increasing data quality.

Surrogate models, or metamodels, approximate high-
fidelity models using statistical methods without compro-
mising on model accuracy or representation. These models 
can be used as analytical tools for model simplification [5], 
uncertainty quantification, or reducing ill-conditioning of 
optimization problems through incorporation of gradient 
information [6]. In the context of surrogate optimization 
models, local surrogates are updated within an iterative 
framework, while global surrogates are fitted only once 
with the training set [7]. The benefit of reduced runtimes 
and computational efficiency allows surrogates to be 
designed for real-time decision support environments and 
investigation of structural model uncertainty by simulating 

other model structures [8]. Typically, the models are 
trained with a set of in and output data and validated to 
emulate the full-scale simulations at much less computa-
tional cost [9]. Surrogate models can be categorized as 
interpolating and non-interpolating methods. Interpolating 
method such as Kriging rely on sufficient data around the 
points to be predicted. However, non-interpolation meth-
ods generate predictions without the need for data within 
the range of predicted values. For instance, neural net-
works (NNs) and support vector machines (SVMs) find the 
input–output mapping by minimizing error functions. Each 
category of non-interpolation methods composes of data-
driven, multi-fidelity, and projection-based methods with 
corresponding linear and nonlinear prediction schemes. 
Due to the variety of engineering problems that surrogate 
models can be applied, selecting the appropriate model to 
implement typically depends on the available dataset size 
and the number of parameters.

The organization of this review paper is shown in 
Fig. 1. A comprehensive review of the current literature on 
dimensionality reduction and surrogate modeling methods 
is presented. As well as summarizing their mathematical 
interpretations and limitations, we investigate the current 
state-of-the-art applications of each and the potential for 
improving computational efficiency in fields where they 
have not been applied. We further investigate existing 
research efforts that combine dimensionality reduction 
with surrogate modeling (DRSM) and the contributions 
and needs for further research in this growing field of ML 
application.

Fig. 1  Overview of Dimensionality Reduction in Surrogate Modeling
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2  Linear Dimensionality Reduction

Dimensionality reduction aims to transform data in high-
dimensional space into low-dimensional representations 
through feature extraction, elimination, or selection. In this 
section, we discuss several DR methods which utilize linear 
algebra relations to reduce the size of input data and associ-
ated applications of each method in the literature.

2.1  Unsupervised Linear Methods

Unsupervised Linear dimensionality reduction techniques 
(PCA, KPCA, Factor Analysis) are employed at the pre-
processing stage for surrogate modeling. These methods are 
trained using unlabeled data and only consider input features 
for discovering lower-dimensional representations.

2.1.1  Principal Component Analysis

Principal Component Analysis (PCA) is the most popular 
unsupervised learning method for linear dimensionality 
reduction.

The method considers n input samples with k features, 
excluding the output labels, and normalizes the dataset for 
comparable values across features. The covariance matrix, 
R, is computed for the input data and singular value decom-
position is used to produce a diagonal matrix of principal 
component eigenvalues, Ʌ, and associated eigenvectors, A, 
as shown in (1).

The elements of the covariance matrix indicate the 
correlation of each component with corresponding input 
variables. The eigenvalues are correlated with the level of 
variance captured by the associated principal component’s 
eigenvector. The resulting principal components are linear 
expressions of the initial input data and are independent of 
one another. Taking advantage of the diagonal properties of 
the eigenvector matrix, R can be rewritten in terms of the 
principal component loading matrix, L, with dimensionality 
r x k, where r < k, as shown in (2).

The principal components can be determined by multiply-
ing the input data matrix by the loading matrix, as shown 
in (3).

The number of retained r components is selected based on 
captured variance of the full data. The principal component 

(1)R = AΛ AT

(2)R = LLT

(3)P = XL

matrix is multiplied with the loading matrix, which recon-
structs the input features to n x r dimensions, as shown by 
(4).

Figure 2 shows the variance captured by each principal 
component. The curve indicates the cumulative variance that 
is captured with each additional principal component, while 
the bars show the contributed variance by each principal 
component.

PCA has been applied to a variety of engineering simu-
lation problems to reduce complexity, ease computations, 
and extract key information for simplified reconstruction of 
datasets with quantitative variables. For instance, [10] uti-
lized principal component analysis for feature extraction in 
nonlinear FEA U-structure. 24 input parameters were con-
verted to 11 principal components, which captured 98.5% 
of the total variance.

PCA has also drastically improved FEA procedures for 
biomechanics. Grassi et al. [11] developed a PCA-based 
statistical finite element modeling method for recon-
structing bone shape and density. Due to the shortage of 
available computed tomography-based FE models, bone 
shape and density indexation through PCA were used to 
reproduce a lower-order model for obtaining biomechani-
cal properties of bones. The statistical model was based 
on collected femoral CT datasets and the shape pre-pro-
cessing was based on isotopological meshes. After scaling 
the meshes, PCA was applied to both the bone shape and 
mineral density (BMD) properties. The number of com-
ponents maintained for shape reconstruction was based on 
the database mean reconstruction error compared to the 

(4)X̂ = PLT

Fig. 2  Variance v.s. Principal Components. Cumulative variance line 
and contributed variance by each subsequent principal component as 
bars
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CT data’s resolution, while a relative error threshold was 
used for BMD components. Upon validating with leave-
one-out tests, the proposed PCA-based statistical model 
reconstructed both the bone shape and mineral density 
properties within the tolerated error thresholds. However, 
coupling between shape and mineral density variations 
was not considered in the linear statistical model, which 
highlights the need for non-linear methods to solve high 
complexity FEA. Pellicer-Valero et al. [12] employed ML 
techniques for simulating the biomechanical behavior of 
the human liver under applied load. Liver images were 
processed in MATLAB and the loads were applied in 
increments to aid with convergence under large deforma-
tions and eliminate viscoelastic effects. PCA was applied 
to the vector of liver geometry inputs and a feedforward 
NN and random forest regressor were compared with lit-
erature methods for developing the non-linear mapping. 
While the proposed algorithm successfully predicted 
liver geometry under arbitrary loads, the approximation 
can be further improved by using convolutional layers in 
the image segmentation task prior to training the neural 
network.

2.1.2  Factor Analysis

Alternatively, factor analysis (FA) is an unsupervised 
dimensionality reduction technique for determining the 
relationships within a set of random variables observed or 
measured for each datapoint of a group [13]. The method 
aims to identify the number of factors and the underlying 
structure of a set of variables for dimensionality reduc-
tion [14, 15]. Factors, or latent variables, are presumed to 
exist in the observed dataset and cannot be measured or 
observed directly. FA can be interpreted as an extension of 
PCA, as both methods share similar assumptions regarding 
normal distributed variables and bivariate distribution of 
variable pairs [16]. While PCA decomposes the correlation 
matrix of continuous variables into principal components 
expressed as linear functions of the original set of feature 
variables, FA decomposes a correlation matrix adjusted for 
unique factors in the diagonal. Furthermore, PCA assumes 
the total variance is equivalent to common variance, while 
FA assumes unique variance also contributes to the total 
variance. The FA variables are expressed as linear com-
binations of common and unique factors. Unique factors 
are explained as unreliability due to measurement error 
and data variation and are unique for each variable, while 
common factors are shared among different variables. FA 
reduces the number of variables through factor extrac-
tion and factor rotation. In factor extraction, the type of 
model and number of factors to extract is selected. Then, 

the matrix of extract factors is rotated using orthogonal or 
oblique rotations for improving interpretability of results.

2.1.3  Mixed Data Type Methods

Real datasets often contain mixed-type variables such as 
continuous, binary, and categorical sets. Since linear PCA 
minimizes the squared loss function to determine principal 
components, the method may not be appropriate for data 
that is discontinuous [17]. PCA methods for mixed data 
types have been implemented in several R packages such 
as PCAmixdata [18], FactoMineR [19, 20], and ade4 [21]. 
FactoMineR uses an extended method of the FA method 
(FAMD) based on findings by [22, 23]. Pagès [24] further 
developed the FAMD method for survey analysis, ecology, 
and time series problems. The FAMD method works as PCA 
for quantitative variables and uses multiple correspondence 
analysis (MCA) for categorical and qualitative variables. 
Overall, the factors are determined based on maximizing 
the sum of correlations in qualitative and quantitative vari-
ables and selecting them based on highest squared correla-
tion coefficients.

2.2  Supervised Linear Methods

Linear Discriminant Analysis (LDA), Partial Least Squares 
(PLS), and active subspace methods are supervised, linear 
alternatives to PCA. As previously mentioned, these meth-
ods are trained using labelled input and output data. In the 
context of reducing dimensionality for surrogate models, 
supervised methods produce more suitable topology repre-
sentations of input–output maps compared to unsupervised 
methods [25].

2.2.1  Linear Discriminant Analysis

Linear discriminant analysis (LDA), derived as an exten-
sion from the general form of the Fisher’s discriminant 
analysis, is a feature selection method which performs the 
dimensionality reduction through maximizing class-sepa-
ration distance and minimizing distance within class data 
(the features). The underlying assumptions of LDA include 
normally distributed data behavior and homogeneous vari-
ance among variables. While PCA works better for smaller 
datasets, LDA is superior for multi-class classification prob-
lems and dimensionality reduction for classification in later 
steps. LDA performs best for Gaussian classes with identical 
covariance and normally distributed datasets, as a solution 
that minimizes the expected error. The method can perform 
well so long as the data is close to normality behavior.

In the LDA procedure, the mean vectors, m, of each data 
class are computed first. The within-class SW and between-
class SB scatter matrices are computed through (5) and (6), 
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where m is the overall mean, n is the number of classes, and 
mi and Ni denote the sample mean and sizes, respectively.

Next, eigendecomposition is performed to obtain the lin-
ear discriminants through (7), where λ and v are the eigen-
value and eigenvector matrices.

Finally, the number of linear discriminants for transform-
ing the dataset into the lower-dimensional feature space fol-
lows a similar procedure to the latter steps of Fig. 2.

2.2.2  Partial Least Squares

The Partial Least Squares (PLS) method is a dimensionality 
reduction method commonly used in multivariate calibration 
and classification problems [26, 27]. Unlike PCA which cal-
culates hyperplanes for maximum variance in the predictors/
input data, PLS projects the input and response/output vari-
ables to a new feature space based on maximum covariances 
and finds a regression mapping function relating them. PLS 
regression reduces the dimensionality by fitting multiple 
response variables into a single model. This is analogous to 
a multilayer perceptron, where the hidden layer nodes can be 
determined by the number of retained PLS components after 
applying the reduction [28]. Furthermore, the multivariate 
consideration does not assume fixed predictors. Thus, errors 
associated with each predictor can be considered, which 
makes PLS robust in measuring uncertainty. Equations (8) 
and (9) define the underlying PLS model.

Here, X and Y are the non-reduced predictors and 
responses, respectively. A and B are the projections of X 
and Y, C and D are the respective orthogonal loading matri-
ces, and E and F are error terms. In the PLS algorithm, the 
covariance of A and B is maximized when projecting X and 
Y into the new feature space.

PLS is applied to datasets with multicollinear predictors, 
and in problems with limited training data and high dimen-
sionality such as bioinformatics and neuroscience. However, 
PLS tends to perform poorly when screening factors that 

(5)SB =

c∑
i=1

Ni

(
mi − m

)(
mi − m

)T

(6)SW =

c∑
i=1

n∑
x∈Di

(
x − mi

)(
x − mi

)T

(7)S−1
W
SBv = �v

(8)X = ACT + E

(9)Y = BDT + F

have minimal effect on the response and general calculations 
are slower than traditional multivariate methods [29].

2.2.3  Active Subspace Methods

Active subspace methods have also been used for detecting 
directions of strongest variability in a function to construct 
a low-dimensional subspace of the function’s uncertain 
inputs [30], 31]. This is analogous to PCA, except gradient 
information is considered in the eigendecomposition. The 
effective variability in the model’s output due to uncertain 
inputs is captured in the directions of the active subspace. 
Given a set of N uncertain data points with model inputs X 
and outputs f, the output gradients with respect to the input 
parameters are used to construct the active subspace direc-
tions matrix, denoted by C, given by (10).

Here,� denotes the canonical variables mapped to a given 
mathematical model in the domain Ω and μ represents the 
probability density function. C is a symmetric and positive 
definite matrix, which can be expressed as a spectral decom-
position of eigenvalue Λ and orthonormal eigenvector W 
matrices, as shown in (11). The input vector is transformed 
into the active space by (12) and the approximated regres-
sion surface G(y) is computed in this reduced space by (13).

Overall, active subspace methods are accurate for classes 
of functions with decay in the eigenvalues of C and change 
predominantly in low-dimensional input subspaces. How-
ever, the gradient information must be available for active 
subspaces and must be approximated, otherwise, these meth-
ods perform poorly [32].

While linear dimensionality methods have successfully 
reduced complexity in classification problems and uncer-
tainty analysis, these methods are limited to datasets that 
are linearly separable. In the case of inseparable data, non-
linear techniques must be considered such as Kernel PCA 
and autoencoders.

3  Nonlinear Dimensionality Reduction

In this section, nonlinear dimensionality reduction meth-
ods are presented with a fundamental description of the 
mathematical interpretations and limitations of each. Many 

(10)C = ∫
Ω

(
∇�f

)(
∇�f

)T
�(d�)

(11)C = WΛWT

(12)y = WTX

(13)G(y) = f (Wy) = f
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non-linear dimensionality reduction methods have been 
developed as extensions of linear methods, such as kPCA 
and non-linear PLS. Furthermore, methods based on layered 
manifolds and artificial neural networks (ANNs) have been 
developed for understanding non-linear behavior in datasets 
and generating lower-dimensional mappings between input 
and output. Only unsupervised methods are presented in the 
following section, as these are commonly integrated with 
surrogate modeling methods in the literature. Supervised 
non-linear dimensionality reduction methods have been 
developed in [33], [34], but will not be discussed in detail.

3.1  Kernel Principal Component Analysis

Kernel PCA (kPCA) is a classical approach for nonlinear 
dimensionality reduction. The method projects the linearly 
inseparable data into a higher dimensional Hilbert space 
k
(
xi, xj

)
 through a kernel function φ, as shown by (14), 

where PCA method is performed afterwards.

The kPCA method is more commonly used for classifica-
tion problems, such as face recognition, and is more compu-
tationally expensive to perform than linear PCA. Gonzalez 
et al. [35] combined kPCA with the Proper Generalized 
Decomposition method for acquiring parametric solutions 
of liver geometry. kPCA was used to extract information on 
hidden parameters such as shape and microstructure behav-
ior. Wang [36] investigated the use of combining kPCA with 
active shape models (ASM) for facial recognition. They used 
ASMs to represent the deformation patterns of an object’s 
shape and to locate the object in new images. Furthermore, 
a Gaussian kernel was determined to be on the order of the 
nearest neighbor distance between two data points. This 
ensured maximum separation in the resulting kPCA feature 
space. The combined kPCA-ASM method achieved lower 
classification error rates and succeeded in revealing com-
plicated structures in data that could not be achieved with 
standard ASMs. The challenge with kPCA remains in the 
difficult kernel selection task that is problem-dependent.

3.2  Non‑linear Partial Least Squares Methods

Several nonlinear versions of PLS have been discussed in 
the literature [37]. The concept of nonlinear PLS modeling 
methods is divided into two representative models. The first 
model applies a nonlinear transformation to the sample data 
and a linear model is constructed as the new representation 
[38, 39]. To overcome the lack of interpretability with these 
models, the second set of methods assumes nonlinearity in 
the latent variables and the extracted latent vectors remain 
as linear combinations of the original variables rather than a 

(14)k
(
xi, xj

)
= �

(
xi
)
�
(
xj
)T

transformation [40–42]. For instance, [40] proposed a quad-
ratic, error-based algorithm for updating weights in the PLS 
method to incorporate nonlinearities. To relax the assump-
tion of a linear relationship between latent components and 
the response, the authors introduced additional loops for 
iterating between latent components and the response in the 
algorithm.

3.3  Multidimensional Scaling

Multidimensional scaling (MDS) methods are multivariate 
data analysis techniques used for translating high-dimen-
sional objects into low-dimensional representations of 
mapped points. The mapping is established such that the 
distances between objects are preserved as well as possi-
ble since there are some dissimilarities between the spaces. 
Classical MDS takes an input matrix of dissimilarities 
between items and outputs and seeks lower-dimensional 
representation by minimizing the difference of similarities 
in input and embedded spaces [43] shown in (15). Here, x 
denotes the data in the higher dimension and y denotes the 
embedded data.

The classical MDS method closely resembles that of 
PCA but differs in the matrix output from the eigende-
composition. The number of retained components is deter-
mined based on the m largest eigenvalues corresponding to 
eigenvectors from singular value decomposition of the cost 
function to obtain the Gram matrix. According to [43], the 
classical MDS method uses a linear kernel for optimization, 
hence it is a linear DR method. However, depending on the 
interpretation of the input matrix and dissimilarities’ rela-
tion to point distances, MDS algorithms optimize different 
variations of the Euclidean cost functions. In cases where 
distances are preserved rather than similarities of points, 
these cases of MDS become non-linear algorithms which 
optimize the stress error function c shown in (16) and (17). 
Here, g(x) denotes the monotonic, non-linear transformation 
of pairwise distances.

Specifically, metric MDS iteratively optimizes (16) 
where dissimilarities are proportional to distances, while 
nonmetric MDS optimizes (17) in cases containing ordinal 

(15)c =

n∑
i=1

n∑
j=1

(
xT
i
xj − yT

i
yj
)2

(16)c =

n∑
i=1

n∑
j=1

(||xi − xj|| − ||yi − yj||
)2

(17)c =

n∑
i=1

n∑
j=1

(
g(x) − ||yi − yj||

)2
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dissimilarities where the rank order of distances must be 
close to the rank of dissimilarities. In both cases, the dis-
tance matrix in reduced space is compared against the high-
dimensional distances and the coordinate positions in the 
lower dimensional space are corrected to minimize the stress 
function. Overall, the MDS methods yield very precise solu-
tions with little computational cost. However, both metric 
and nonmetric MDS have their respective limitations. Metric 
MDS may lead to poor results if the interval scale condition 
is not met by the dataset being analyzed and nonmetric MDS 
may identify local minima as the ideal solution [44].

3.4  Autoencoders

Autoencoders are unsupervised nonlinear dimensionality 
reduction methods with a NN structure whose output has 
the same shape as its input [45]. The architecture of the 
autoencoder can be convolutional (CNN), recursive (RNN) 
[46], or a traditional multilayer perceptron. Several studies 
have applied each NN structure for dimensionality reduction. 
Saenz et al. [47] used convolutional autoencoders for dimen-
sionality reduction of climate data models. The autoencoder 
was compared against PCA and showed improved recon-
struction of temperature fields based on the original dataset. 
The authors mention the potential for autoencoder-based DR 
methods to be applied for creating surrogate climate models 
in future works.

CNNs have been used to restore spatial features during 
image processing [48] and the neurons are connected to a 
small region of the previous layer, sharing their weights. 
This allows the system to adaptively learn spatial patterns 
in the input images and reduce the number of parameters to 
avoid overfitting [49, 50]. Stacked autoencoders have been 
used for improving computational efficiency and preserving 
spatial features in the original input space. Convolutional 
autoencoders have been used for extracting feature spatial 
features in geological models [51, 52, 53] and reducing data 
dimensionality for reconstructing images and classification 
tasks [54].

Figure 3 shows the typical structure of a standard autoen-
coder. The encoder compresses the input data into a smaller 
dimensional space while the decoder reconstructs the input 
back into the original space. In particular, the encoder is also 
useful for compressing data for classification and regression 
tasks [55]. The decoding layers typically mirror the shape 
of the encoding layers. The autoencoder is trained through 
backpropagation, where a loss function is minimized. If the 
input dataset values are between 0 and 1, cross-entropy is 
taken as the loss function. In regression tasks, the minimum 
least squares loss function is used for training the ANN. 
Wang et al. [45] found that when the reduced dimension 
size is near the intrinsic dimensionality of the original 
data, prediction accuracy is high. In general, the number of 

bottleneck nodes is selected to be less than the input nodes 
to avoid overfitting and for mapping input nodes to a smaller 
dimensional representation. This is known as an under com-
plete autoencoder. A penalty is applied to network during the 
reconstruction and the model learns the important attributes 
of the input data for decoding.

To ensure the latent attributes within a raw dataset are 
found, autoencoder models, incorporate regularization to 
enhance generalization capabilities depending on the nature 
of the dataset [56]. Denoising autoencoders resemble the 
standard autoencoder, except random Gaussian noise is 
introduced to the input dataset. The noise is applied to pre-
vent the autoencoder from simply copying the input data to 
the output without learning features. These autoencoders aim 
to make the decoding layers resistive to small fluctuations of 
the input and can be stacked to initialize deep architectures 
[57]. The ‘denoised’ target output is rid of noise datapoints 
and has a different shape compared to the noise-filled input 
[58]. Consequently, the model learns a vector field that maps 
the input to a lower-dimensional manifold that accurately 
describes the noise-free dataset. Denoising autoencoders 
have been used extensively for improving clustering and sta-
tistic scoring techniques [59], 60], but have also been used 
in data processing in engineering design. Shang et al. [61] 
designed a convolutional denoising autoencoder for dam-
age detection in bridges. The denoising encoder extracted 
features from field measurements that were sensitive to 
damage, but not noise. Contractive autoencoders make the 
encoder layers robust to small fluctuations in the input data. 
The model corresponds to the Frobenius norm of the Jaco-
bian matrix of encoder layer activation functions. That is, 
the derivatives of the encoder hidden layer activations are 
minimized with respect to the input data. The loss func-
tion for contractive autoencoders penalize large derivatives 
in encoder layers; error is added when a small change in 
input leads to large changes in the encoding space. Sparse 

Fig. 3  Standard Autoencoder Structure
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autoencoders introduce the bottleneck layer without reduc-
ing the number of nodes in the hidden layers. Rather than 
applying regularization to the weights of the network, sparse 
autoencoders apply penalties to the activation functions. 
Only non-zero nodes are activated. Thus the sparse autoen-
coder selectively activates regions of the network rather than 
every observation. The sparsity constraint is imposed either 
using L1 regularization or Kullback–Leibler-divergence 
(KL-divergence). L1 regularization adds the absolute value 
of the magnitude of penalty term coefficients to the loss 
function. KL-divergence considers the difference between 
two probability distributions. A sparsity parameter denotes 
the average activation of one neuron over the sample data 
set. By measuring the average activation of a neuron over 
its sample set, the model activates the neuron for a specific 
subset of observations. Variational autoencoders provide a 
probabilistic method for describing data in a latent space 
[62]. These autoencoders are applied in image processing 
and convert input datapoints into a probability distribution 
with weights and biases. Pu et al. [63] designed a variational 
autoencoder for deep learning applied to classifying images, 
labels, and captions. A CNN was used as the encoder to 
distribute the latent features to be decoded using a deep gen-
erative deconvolutional network.

Indeed, the autoencoder is a popular non-linear DR 
method for identifying and maintaining the key informa-
tion of a dataset and generating a lower-dimensional latent 
space representation. However, the data used to train the 
autoencoder must resemble the testing data, otherwise, the 
autoencoder will decrease the performance of the classifi-
cation or regression task on the reduced data afterwards. 
Furthermore, autoencoders determine the size of the latent 
dimension based on quantity of information rather than rel-
evance. If the most relevant information of a dataset can 
be represented by a small portion of the input parameters, 
the autoencoder may eliminate a large amount of informa-
tion leading to poor mappings and interpretations. Recent 
efforts have been made to improve upon the interpretability 
of autoencoder latent data representations [64], but require 
further research efforts for data containing high levels of 
non-linearity.

3.5  Manifold Learning Methods

Manifold learning methods are unsupervised, non-linear 
dimensionality reduction techniques that project high-
dimensional data onto a 2-D shape, or manifold. The method 
assumes the raw data lies on low-dimensional manifolds 
embedded within the high-dimensional space. Several mani-
fold learning methods are present in the literature, such as 
locally linear embedding (LLE), iso maps, diffusion maps, 
and t-SNE.

3.5.1  Local Linear Embedding

Local linear embedding (LLE) produces low-dimensional 
embedding of raw data by relating training instances to its 
closest neighbor without involving local minima. The dis-
tances within local neighborhoods are preserved and nonlin-
ear structures in the dataset are discovered. Given a training 
set of n-dimensional instances x(i) , LLE first finds the k near-
est neighbors based on Euclidean distances and expresses 
the instances as a weighted linear function. Equation (18) 
indicates the minimum least squares (MLS) cost function to 
be minimized to determine the weights [65].

Once the weights wi,j have been determined, the training 
instances are mapped to a lower dimensional vector y(i) with 
dimension d such that d < n . Using the calculated weights 
from (16), y(i) and its dimensionality can be determined by 
minimizing another cost function as shown by (19).

LLE offers many advantages as a non-linear dimension-
ality reduction tool [66]. Heureux et al. [67] used LLE to 
generate a low-dimensional representation of chemical data 
for simplifying quantitative structure–activity relationship 
methods. Compared to other non-linear dimensionality 
reduction algorithms, LLE proved to provide a stable repre-
sentation that captured non-linearities in the data.

In LLE, the local distances of the data in high-dimen-
sional space are preserved and the simple computations are 
fast and require little computation. However, the k-nearest 
neighbors search is based on Euclidean distances, which will 
fail when two points that do not lie in the same locally linear 
patch are grouped as neighbors. This makes LLE very sensi-
tive to outliers and non-smooth manifolds. Furthermore, the 
assumption that datapoints lie on the manifold is not valid 
for all datasets and must be carefully observed in multi-class 
classification problems. Finally, when the number of neigh-
bors k is greater than the input dimensionality, the regulari-
zation in error functions becomes rank-deficient and causes 
problems in the LLE algorithm [68]. Thus, other variations 
of LLE have been developed to overcome the identified defi-
ciencies. A modified version of LLE (MLLE) applies multi-
ple weight vectors in each neighborhood, which overcomes 
the regularization problem at the cost of additional complex-
ity. Wang et al. [69] developed the Maximal Linear Embed-
ding (MLE) method which utilized geometric properties of 
Landmarks-based Global Alignment to create an isometric 

(18)
m∑
i=1

(
xi −

m∑
j=1

wi, jx
j

)2

(19)
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m∑
j=1

wi, jy
i

)2
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embedding of the manifold. Compared to the standard LLE 
method, MLE was capable of modeling the underlying 
modes of variability in the manifold and was more compu-
tationally efficient as the method is non-iterative. Other nota-
ble improvements upon LLE, such as robustness to noise and 
incorporating output for supervised learning, can be found 
in [70], 71, 72, 73]

3.5.2  Isomaps

Isomaps [74], an extension of MDS, perform low-dimen-
sionality projection assuming a linear local feature space 
formed by the nearest neighbors and that the global non-
linear transformation to a lower dimensional space can be 
found by connecting the piece-wise local linear spaces. 
Unlike LLE and multidimensional scaling methods which 
maintain the Euclidean distances in the original feature 
space, isomaps preserve the geodesic distances between 
points along a manifold, as shown in Fig. 4. Constructing 
the transformation based on geodesic distances is beneficial 
for non-linear manifolds.

Like LLE, the procedure for constructing an isomap 
begins with constructing a neighborhood graph based on 
geodesic distances between nearest neighbors. The shortest 
paths of geodesic distances are commonly computed using 
Dijkstra’s algorithm and stored in a similarity matrix. After 
squaring the distance and double centering the similarity 
matrix, the eigendecomposition selects the first K eigenvec-
tors corresponding to the highest eigenvalues, where K is 
less than the original dimensionality n. This is analogous 
to PCA. Xing et al. [75] applied isomaps to reduce the out-
put space dimension of spatial/spatio-temporal fields as 
multi-variable functions. Correlation in the output data was 
exploited for the reduction of the permissible output space. 
Bhattacharjee and Matous [76] combined isomaps with 
NNs to create a reduced order model for multiscale analysis 

of heterogeneous hyperelastic materials. The macroscopic 
loading parameters are connected to a reduced space through 
the NN and the multiscale solution’s homogenization and 
localization were achieved.

Although isomaps accurately approximate distances in 
non-linear manifolds, they are not robust to noise perturba-
tion and have a set of mathematical drawbacks. However, 
the similarity matrix may not always be positive definite, 
which is required for the projected manifold to be a Euclid-
ean space. Choi and Choi [77] developed the kernel iso-
map method, which added robustness for non-Euclidean 
dissimilarity matrices. Next, the constructed matrix of geo-
desic distances must not have missing entries, otherwise 
the eigen-decomposition will fail [68]. Consequently, the 
neighborhood graph construction can be difficult, and the 
outliers lead isomaps to produce poor results. Several stud-
ies exist in the literature which extend upon the traditional 
isomap methods for improved pattern and image classifica-
tion [78–80].

3.5.3  Diffusion Maps

Diffusion maps [81] achieve non-linear dimensionality 
reduction by re-organizing data according to parameters of 
its underlying geometry. A time-dependent diffusion pro-
cess is created using the measured connectivity of the data 
set and the local geometry reveals geometric structures of 
the data set at different scales. The connectivity between 
two datapoints is determined by the random walk at these 
points expressed with a diffusion kernel function. The data is 
embedded in a lower-dimensional space, where the Euclid-
ean distance between points in the reduced space is used 
to estimate the diffusion distance in the original domain. 
Unlike isomaps which preserve geodesic distances, diffu-
sion maps are robust against noise, as it accumulates over all 
possible paths of a time step between points. The basic diffu-
sion process involves four steps. First, a kernel is defined for 
creating the kernel matrix. Afterwards, the kernel matrix is 
row-normalized to generate a diffusion matrix, from which 
eigenvectors are then determined. Finally, the input vector 
is mapped to a lower-dimension diffusion space using the 
dominant eigenvalues and eigenvectors.

3.5.4  t‑Distributed Stochastic Neighbor Embedding

t-Distributed stochastic neighbor embedding (t-SNE) is a 
non-linear dimensionality reduction method that has been 
extensively applied to image processing and speech recogni-
tion. The method was developed by [82, 83] for data visu-
alization in lower dimensions. This probabilistic technique 
calculates the conditional probability of similar points, under 
a Gaussian distribution, in the high-dimensional space. A 
student t-distribution, or Cauchy distribution, with one Fig. 4  Euclidean vs Geodesic Distance on a manifold [162]
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degree of freedom, is often used to obtain a second set of 
conditional probabilities of similar datapoints in the low-
dimensional space. The Cauchy distribution is chosen 
because it improves modeling for points that are farther 
apart in comparison to the Gaussian distribution. To ensure 
the probabilities in the high dimensional space are reflected 
as closely as possible in the low dimensional one, the dif-
ference between them must be minimized. The difference 
between these distributions is given by the KL-divergence. 
The algorithm minimizes the sum of KL-divergence of the 
datapoints using a gradient descent method.

The t-SNE method has extensively been applied to reduc-
ing dimensionality of hyperspectral data and data visualiza-
tion on lower-dimensional planes [82, 83]. For instance, [84] 
used t-SNE for reducing the number of band information in 
hyperspectral imaging data for efficient processing. Non-
linear similarity features between spectra were extracted and 
scaled into a 2D representation, which showed improved 
clustering quality compared with PCA. Pouyet [85] also 
used t-SNE for reducing hyperspectral data of paint pig-
ments for 2D visualization.

t-SNE preserves the distances between nearby datapoints 
and performs well for data lying on non-linear manifolds 
compared to linear methods such as PCA. However, limi-
tations exist for the t-SNE algorithm. Due to the heavy 
tails consisting of a large portion of probability mass in the 
Cauchy distribution, the t-SNE method cannot be extrapo-
lated to reducing the data to more than three dimensions 
while maintaining the local data structure. Also, due to the 
non-convexity of the t-SNE cost function, the same choice 
of optimization parameters yields slightly different solu-
tions each time t-SNE is performed. Thus, t-SNE produces 
a low-dimensional visualization of high-dimensional data 
but can lead to local optima due to the nature of the cost 
function to be minimized. Hsu and Huang [86] integrated 
t-SNE with distance hierarchy for dimensionality reduction 
of mixed datasets. Their proposed method preserved seman-
tic similarities between categorical values and proved to be 
an improvement from traditional 1-of-k coding schemes for 
handling categorical data.

4  Surrogate Modeling Methods

In engineering design, surrogate models/metamodels are 
employed for evaluating high-fidelity problems which would 
otherwise be too computationally expensive to analyze in its 
given dimensionality. Surrogate models have been imple-
mented in Finite Element problems involving a large mul-
titude of design parameters and constraints, such as rotor 
dynamics [87] and aerodynamics optimization.

Several surrogate models have been explored in the lit-
erature, such as Kriging, support vector machines (SVM), 

ANNs, radial basis functions, and polynomial response sur-
face models (PSRMs). These can be separated into inter-
polating and non-interpolating models. Interpolation-based 
methods offer higher flexibility, while non-interpolating 
methods generate results with better interpretability. Due to 
the variety of engineering problems that surrogate models 
can be applied, selecting the appropriate model to implement 
typically depends on the available dataset size and number 
of parameters.

4.1  Interpolation‑Based Methods

Interpolation methods such as radial basis functions and 
Kriging calculate predictions based on surrounding data 
points. These methods are very flexible due to the variety of 
kernel choices and accurately predict unknown points in the 
vicinity of the data used to train the model.

4.1.1  Linear Interpolation

Radial Basis Function (RBF) surrogate models generate 
an interpolation function as a linear combination of basis 
functions. An interpolation function is developed for each 
training point and the coefficients of RBF are computed in 
the training phase. Equation (18) outlines the RBF predic-
tion method, where wp and wr are vectors of polynomial and 
RBF coefficients, respectively, with p(x) and �

(
x, xti

)
 vector 

mapping functions to the prediction y.

The inverse-distance weighting method interpolates 
unknown points based on weight averages of sample data. 
Equation (19) shows the inverse-distance weighting predic-
tion equation. Within the weighting function B

(
x, xti

)
 in (20), 

p denotes the order of the approximation. The order must be 
greater than 1 for continuous derivatives in the estimation.

The Regularized minimum-energy tensor-product splines 
(RMT) method interpolates low-dimensional problems, with 
large datasets, by calculating spline coefficients based on 
minimizing the energy function. Similarly, the least-squares 
approximation method fits a linear model by minimizing the 
residual sum of squares between predicted responses and 
labelled responses. The second-order polynomial regression 
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method utilizes a vector function of polynomial coefficients 
as the weighting function.

4.1.2  Kriging

Kriging, also known as Gaussian process regression (GPR), 
is a geostatistical method that generates an estimation 
surface based on spatial features in the sample data [88]. 
Unlike traditional interpolation methods, Kriging predic-
tions include autocorrelation for measuring the accuracy of 
the predictions. GPR was first introduced in surrogate mod-
eling for uncertainty quantification (UQ). These methods 
have been explored for UQ in groundwater flow applications 
[89–91] and QT interval estimation for preventing sudden 
cardiac death [92].

The Kriging space is assumed to be stationary with iso-
tropic data. In addition to performing the spatial predictions 
through interpolation, this nonparametric Bayesian regres-
sion method also measures the interpolation accuracy and 
variance. This surrogate modeling method is based on the 
regionalized variable theory (RVT) which interpolates data 
and measures drift aspects of spatial properties under the 
assumption of stochastic characteristics in the dataset. In 
simple applications, RVT is defined by Matheron’s Intrin-
sic Hypothesis assumption [88], which assumes a constant 
local mean and stationary variance between points sepa-
rated by a known distance. However, if a trend is observed 
in the random field, these assumptions are invalid, and the 
observed drift must be accounted for when applying the 
kriging method.

The Kriging method typically requires datasets with a 
moderate number of samples and low dimensionality for 
constructing reliable semivariograms. Furthermore, Kriging 
works well for problem sets where small changes in the input 
parameters lead to small changes in output. Predictions are 
made based on correlation variation, uncorrelation variation, 
and data trends. Fundamentally, the Kriging method pre-
dicts function values based on weighted averages of known 
values/data points near the point of interest and covariance 
functions of the data field. The covariance function acts as 
the kernel/weight of the Gaussian process to be optimized.

First, the Kriging method investigates the spatial vari-
ance of the dataset variables before constructing a function 
describing the degree of spatial dependence of the ran-
dom field as a function of distance between points called 
an empirical semivariogram. Equation (23) describes the 
method for calculating semivariance � , where h is the dis-
tance between N points located at z.

(23)� =
1

2N(h)

∑
N(h)

(
zi − zj

)2

However, the semivariogram function is an empirical esti-
mate of the variance and may not be positive definite; this is 
required for the final Kriging step involving matrix inverses. 
Different semivariogram models are designed to fit differ-
ent types of phenomena and can be expressed as bounded 
and unbounded functions. Empirical semivariograms with 
an upwards concaving behavior can be modelled with 
unbounded power functions. Furthermore, this may be an 
indication of local drift or global trend in the random field, 
which must be eliminated to separate the deterministic and 
stochastic elements of variation. Duarte et al. [93] critically 
reviewed current methods for separation in the literature.

If the semivariogram shows downward concaving behav-
ior, bounded models such as spherical, exponential, Gauss-
ian, and linear models are employed. For example, the 
spherical model shown in Fig. 5 is applied for progressive 
decrease in spatial autocorrelation with distance between 
data points.

As previously mentioned, the semivariogram describes 
the spatial autocorrelation in the dataset points. Semivari-
ance is inversely proportional to correlation, thus as the dis-
tance between datapoints increases, the correlation between 
them decreases.

Figure 6 shows the different aspects of the semivariogram 
that define the spatial inferences of the random field. The 
sill is achieved once the semivariogram reaches the model 
range. Theoretically, at zero distance, the semivariogram 
measures zero semivariance or perfect correlation. However, 
measurement errors or spatial variations at distances smaller 
than the sampling interval may occur, which are represented 
by a nugget variance.

Upon fitting the data into a semivariogram model, kriging 
is applied to determine the Gaussian process weights/kernels 
based on minimizing the variance of the model.

The kriging can be classified into linear and non-linear 
methods. Geostatistical data can be described as shown in 

Fig. 5  Spherical Semivariogram Model
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(22), where Z is the variable of interest, μ is the determin-
istic trend and ɛ are the autocorrelated errors.

Simple kriging is the most general form of linear krig-
ing methods. This method assumes μ and ɛ are known 
constants and the prediction relies upon the computed 
covariance function of the random field. In the absence of 
bias, the Kriging weights � are determined by (23), where 
K is the matrix of covariances computed by the selected 
semivariogram model, and k is the vector of covariances 
between the unsampled data point and surrounding data-
points. This is analogous to linear regression methods.

Ordinary kriging assumes � is an unknown constant 
and is well-suited for interpolation when the random field 
remains locally stationary. While the method can be used 
when a trend is observed, the results cannot be analyzed 
to determine whether any data patterns occur due to auto-
correlation or the identified trend in the random field. The 
universal kriging method assumes an overriding trend in 
data and models μ as a polynomial. The polynomial esti-
mation is subtracted from the original dataset to obtain 
the autocorrelation errors as random values. This method 
is suitable for random field variations consisting of drift 
and random components and can only be applied to data 
fields exhibiting a trend. Indicator kriging transforms the 
variable of interest, Z(s), into a binary variable I(s) for 
classification problems. The disjunctive kriging method 
assumes the random field exhibits a bivariate distribution 
and assumes an unknown constant μ and correlation coef-
ficients as a function of distance between data points. To 
apply the bivariate model, the random field Z(s) is trans-
formed into a normally distributed field I(s). Unlike ordi-
nary kriging which predicts the random field Z(s), disjunc-
tive kriging predicts a function of Z(s) by expanding into 

(24)Z(s) = �(s) + �(s)

(25)K𝜆 = k => 𝜆 = K−1k

Hermite polynomials. Rivoirard [94] describes disjunctive 
kriging and nonlinear geostatistics in detail.

Kriging is a powerful geostatistical model for solving 
mapping relations between input and output. The method 
can further predict outputs of unknown values based on data-
points in the vicinity of the value of interest. While Krig-
ing performs well for datasets with low dimensionality and 
moderate number of observations, its application is limited 
to isotropic datasets and are not useful for higher complexity 
models. Furthermore, Kriging experiences numerical stabil-
ity problems when the sample points are too close together 
and computation cost grows proportionally with the size of 
the training dataset. Finally, if the number of observations 
is small, Kriging leads to poor, underfitted spatial repre-
sentation and interpolation [95]. Hengl [95] proposed using 
Kriging regression methods for datasets with more than 
50 observations with at least 10 observations per feature. 
Dimensionality reduction can be implemented to the origi-
nal dataset to reduce the problem size for improved Kriging 
method-based results. In general, interpolation-based sur-
rogate models are popular for their flexibility and accuracy 
of prediction, but these can lead to complex nonconvex for-
mulations and mathematical instabilities.

Gradient-based surrogate models are also popular, as the 
consideration of derivative functions improves the predic-
tion accuracy under the assumption of continuous gradients 
in the sample data. Lockwood and Anitescu [96] developed 
a gradient-enhanced universal kriging (GEUK) model for 
uncertainty propagation in nuclear engineering systems 
with limited available sampling data. Here, the gradient 
information was considered in the covariance matrix com-
putations, which consisted of covariances between function 
observations and their associated derivatives. Compared to 
gradient-free approaches, the GEUK model required less 
computation and significantly improved prediction accuracy 
with the advantage of providing statistical prediction error 
estimates. Gradient-enhanced kriging surrogate models have 
also been used in biomechanics. Ulaganathan et al. [97] also 
considered gradient information in the correlation matrix. 
They tested their algorithm for predicting the wall thickness 
along the length of a simulated artery and found the gradi-
ent-enhanced kriging method achieved similar accuracy with 
60% less training compared to standard ordinary Kriging. 
Indeed, the inclusion of gradient reduces the amount of com-
putation required in Kriging. However, standard gradient-
enhanced Kriging methods do not scale well with the dataset 
size, as the correlation matrix rapidly grows with additional 
sampling points [98]. The gradient-enhanced KPLS (GEK-
PLS) generates approximations around each sampling point 
using a first-order Taylor series. PLS is applied to differ-
ent sampling points several times, where each PLS compo-
nent determines the contribution of each variable near the 
sampling points. The global influence of each variable is 

Fig. 6  Aspects of Semivariogram
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computed by taking an average of all PLS hyperparameters 
and the Kriging is performed based on the reduced dimen-
sional data. By reducing the number of hyperparameters and 
incorporating gradient computations, GEKPLS allows krig-
ing to be applicable to high-dimensional problems.

Gradient-based methods can also be implemented into 
ANNs. Gradient-enhanced neural network (GENNs) apply 
gradient information during the training phase for regression 
problems. Compared to standard ANNs, which only mini-
mize the error function, GENNs also optimize for the pre-
diction error using partial derivatives. GENNs outperform 
standard ANNs for low amounts of training points, but can 
only be applied to synthetic datasets generated by physics-
based models with continuous responses and defined gra-
dients [98]. Bouhlel et al. [99] trained a GENN for airfoil 
design optimization in subsonic and transonic operating con-
ditions. A modified version of the Sobolev method was used 
to train the ANN (mSANN), where gradient information 
was gradually introduced into the loss function. The model 
performance was evaluated based on the L1 and L2-norm of 
relative error of test and validation datasets in both operating 
conditions. The algorithm performed the optimization in the 
order of seconds, in comparison to CFD-based optimiza-
tion tools which require hours. Compared to standard ANNs, 
the mSANN method showed 3% improvement based on the 
L2-norm of relative error. While gradient-based methods 
offer improvements to surrogate model predictions, they 
require gradient information which is not readily available 
in many datasets.

4.2  Non‑interpolation Methods

Non-interpolating surrogate models achieve the mapping 
between input and output by minimizing the error between 
a predefined function and the dataset. These methods tend to 
produce interpretable low-dimensional representations but 
lack the flexibility of interpretation-based methods when 
dealing with highly nonlinear data. Nevertheless, the pre-
sented methods have been used extensively as surrogates to 
large-scale models in various applications due to the sim-
plicity achieved through the optimizations.

4.2.1  Support Vector Machines

Several material sciences studies have employed support 
vector machines (SVMs) for binary classification tasks 
such as crystal structure identification [100] and material 
type classifications as a preprocessing step for regression 
[101]. Figure 7 shows the basic working principles of SVMs. 
SVMs aim to identify the optimal hyperplane (middle line) 
with maximum distance � from key datapoints called sup-
port vectors (circled points on outside lines). The method 
is based on geometric properties of the input data and 

outperforms other linear classifiers for small datasets. As 
shown in (24) and (25), the �-insensitive hinge loss function 
[102] is defined as a function of weights/kernels, K(xi, x) , 
and biases, b, to be adjusted during the training phase. Here, 
f (x) denotes the SVM prediction and the contributed loss is 
determined based on the difference between the prediction 
error and threshold � . The values �i are hyperparameters that 
control the penalty applied for misclassifications.

The kernel function can be selected to classify data that 
is not linearly separable. Polynomial or radial basis func-
tion kernels can be used to project the data into a higher-
dimensional feature space, as shown in Fig. 8. The linear 
SVM is performed in this higher-dimensional feature space. 
This is similar to the procedure for kernel PCA. Again, the 
difficult problem of kernel parameter selection is prevalent 
for non-linear SVM.

4.2.2  Artificial Neural Networks

Artificial Neural Networks (ANNs) are multi-layer algo-
rithms, based on the biological learning process of the 
human brain, that perform high-complexity regression 
and non-linear classification analyses. ANNs have been 
employed as data-fitting surrogate models for complex 

(26)f (x) =

N∑
i=1

(�i − �∗
i
)K

(
xi, x

)
+ b

(27)Loss =

{
0

|y − f (x)| − 𝜀

if 𝜀 > |y − f (x)|
otherwise

Fig. 7  Middle line is the hyperplane. The circled points are support 
vectors. Errors in classification are evident and contribute to the hinge 
loss function
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system output prediction [103, 104]. Papadopoulos et al. 
[103] developed a NN-based surrogate model for carbon 
nanotubes (CNTs) with geometric nonlinearities. An NN-
based equivalent beam element was used for predicting the 
nonlinear behavior of CNTs at the nanoscale. The beam 
end-section displacements were used as inputs to the sur-
rogate model with predicted output reaction forces. ANNs 
are also commonly used for multi-fidelity models. Zhang 
[105] developed a multi-fidelity deep NN (MFDNN) 
surrogate model for aerodynamic shape optimization of 
an aircraft. Their proposed MFDNN first evaluated the 
low-fidelity data before approximating the correlation 
with high-fidelity data obtained with a finer mesh. In the 
optimization framework, the current optimum solution of 
surrogate modeling was added to the high-fidelity data-
base to obtain a better solution during local refinement. 
The method was compared with co-kriging and showed 
improvement in identifying discontinuities and nonlin-
earities during the optimization. Minisci and Vasile [106] 
developed an ANN for correcting aerodynamic forces in 
a low-fidelity models. The low-fidelity model generated 
samples globally over the range of design parameters, 
while the high-fidelity one locally refined the ANN in the 
latter optimization stages.

The ANN’s popularity stems from its ability to identify 
complex mapping functions between input features and 
outputs. Figure 9 shows the general structure of the ANN 
with one hidden layer. Typical ANNs contain one input and 
output layer with one or more hidden layers. The number of 
nodes in the input N and output layers M is dependent on 
the number of dataset features and labels, respectively. The 
number of hidden layers and number of nodes Q is chosen 
based on the complexity and size of the problem. A smaller 
number of hidden nodes may cause the model to predict out-
puts with poor accuracy, while too many nodes may lead to 
overfitting the training data, leading to poor generalization of 
new data samples. Several methods and good practices have 
been developed for selecting the number of hidden nodes. 
Generally, the rule-of-thumb is for the number of hidden 

nodes to be between the number of input and output nodes. 
Heuristic and systematic methods have been developed for 
selecting the number or nodes and hidden layers [107].

The dataset is pre-processed prior to training the neural 
network. Normalizing the input features improves conver-
gence capabilities of the ANN and the dimensionality of the 
dataset can be reduced to avoid long training times.

For a given sample, an input feature vector X is passed 
into the input layer of the ANN. An activation function φ 
transforms the ith input entry, with weights wi,j and biases 
bj connected to the jth output node of vector u, as shown 
in (28). Another transformation is performed on the hid-
den layer vector values to generate the prediction vector y, 
described by (29).

(28)uj = �1

(
N∑
i=1

w1

i,j
xi + b1

j

)

Fig. 8  Non-linear kernel con-
verts the input space to a higher-
dimensional feature space for 
linear SVM

Fig. 9  Structure of an Artificial Neural Network
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The sigmoid activation function as shown in (30), is com-
monly chosen for formulating the loss function to be opti-
mized through back-propagation.

For classification tasks, the softmax function, which 
transforms the hidden layer outputs into normally distrib-
uted values between 0 and 1 in the output layer, is commonly 
used.

Finally, the ANN is trained to minimize the cost func-
tion through an optimization algorithm. Stochastic Gradient 
Descent (SGD) is the most popular optimization method that 
computes functional gradients based on the ANN’s weights 
and biases. These weights and biases are updated through 
the SGD and new outputs are predicted. The training loop 
continues for a specified number of epochs, the number of 
times the entire training dataset is explored by the ANN, and 
the test dataset is used for validating the model’s accuracy 
with the optimized weights and biases.

Modular neural networks have also been employed as sur-
rogate models for multi-objective optimization in hydrology 
applications [108, 109]. Consisting of a series of independ-
ent NNs, each module in the surrogate model is assigned 
a specific task and reduces a single large NN into smaller 
components for efficient training and neuron robustness 
[110]. Sreekanth and Datta[109] linked a modular NN with 
a multi-objective genetic algorithm for solving a pumping 
optimization problem. Two stages of training and optimi-
zation of the combined model were sufficient to obtain 
Pareto-optimal solutions to the pumping problem, which 
was greatly reduced compared to a global surrogate model.

While NNs have proven to be high-accuracy surrogate 
models of computationally expensive problems, the training 
portion can be time-consuming and costly for high-dimen-
sionality input and output situations. Dimensionality meth-
ods can be applied to reduce the cost of training by reducing 
node vector size at different levels of the ANN.

4.3  Projection‑Based Methods

Projection-based surrogate modeling methods [111] exploit 
the low-dimensional behavior inherent in many high-
dimensional dynamic systems. The state of the system is 
approximated by a trial subspace and the high-fidelity model 
is projected onto a test subspace resulting in a square, lower-
dimensional representation. Projection-based surrogate 
models retain the underlying structure of the model, which 
is important for accurate representation of system state in 

(29)yk = �2

(
M∑
l=1

w1

1,k
ul + b1

k

)

(30)�(z) =
1

1 + e−z

dynamical systems. Many empirically-based approaches for 
generating trial and test subspaces exist in the literature such 
as proper orthogonal decomposition (POD) [112], Krylov 
subspace methods [113], and dynamic mode decomposi-
tion [114]. POD has been applied in mechanical engineer-
ing for reduced-order aeroelastic modeling [115] and con-
vection–diffusion modeling of contaminant concentration 
[116]. Krylov subspaces are mainly used for approximating 
solutions to high-dimensional linear problems [117]. Sev-
eral authors have investigated the use of these methods for 
creating sub-models in electrical engineering [118, 119] 
and fluid mechanics [120]. Although Krylov subspace and 
other projection-based methods are useful for approximating 
solutions to high-dimensional problems, they suffer from a 
phenomenon known as breakdown. This occurs when the 
method is unable to approximate the next iteration of the 
solution due to mathematical complications. These were 
reviewed in detail by [121]. Algorithms have been proposed 
for circumventing breakdown in.

5  Dimensionality Reduction in Surrogate 
Modeling

Surrogate models suffer from the curse of dimensionality 
(Verleysen & Francois), where complexity and computa-
tional demand scale according to the feature size of the prob-
lem. As mentioned before, surrogate models are non-intru-
sive, computationally inexpensive substitutes that mimic 
the real model response within parameter bounds. However, 
these suffer from large cost in training or computation for 
high-dimensionality problems. Thus, dimensionality reduc-
tion methods have been combined with surrogate models for 
extending them to high-dimensional problems [122].

5.1  Principal Component Analysis Surrogate 
Modeling

PCA has been introduced extensively for reducing compu-
tational cost of designing surrogate models. For instance, 
[123] applied PCA for confining and scaling the domain of 
a data-driven surrogate model for predicting responses of a 
rat-race coupler and transformer. Compared with conven-
tional kriging and RBF models, the proposed PCA-based 
surrogate model method predicted responses with higher 
accuracy. Higdon et al. [124] applied PCA for non-proba-
bilistic, dimensionality reduction in Gaussian processes for 
uncertainty quantification of material properties. PCA has 
also improved optimization of surrogate models in calibra-
tion [125, aerodynamics [126], 127], and air pollution [128].

As mentioned before, PCA’s applicability is limited to 
linearly separable datasets and projections onto a linear sub-
space. Thus, kPCA has been used extensively for enhancing 
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surrogate models. For instance, kPCA has been combined 
with PCE in the material science field [129], GPR in high 
dimensionality reliability analysis [130], and metamodels 
for accelerating evolutionary optimization algorithms [131]. 
Bird [132] developed linear and non-linear dimensional-
ity reduction-based surrogate models for predicting nodal 
stresses and coordinates of a compressor blade. They found 
that the stress space exhibited more nonlinear behavior than 
the coordinate space and found that kPCA and LLE resulted 
in the lowest surrogate error in high complex design spaces. 
While these kPCA-based DRSMs improved computation 
times and surrogate errors, there is a lack of research to 
determine the best general DRSM for a given dataset. The 
authors identify the need to test these algorithms on new 
datasets to determine their usefulness and applicability in 
other fields.

5.2  Partial Least Squares Surrogate Modeling

PLS has also been used in combination with different sur-
rogate modeling techniques. Straus and Skogestad [133] 
developed extended surrogate model fitting methods by 
incorporating PLS regression for reducing the number of 
independent variables in an ammonia process case study. 
The non-linear surrogate models were fitted to the PLS 
latent variables. The preprocessing with PLS improved 
the surrogate model fit by a factor of two. Ehre et al. [134] 
developed a polynomial chaos expansion (PCE) method 
based on PLS called PLS-PCE for global sensitivity analy-
sis in high dimensions. The novel algorithm had comparable 
accuracy as Monte-Carlo-based solutions and approxima-
tions based on low-rank appoximations for two different 
numerical problems. The authors provided recommendations 
for further research into extending their method for general 
basis adaptation.

5.3  Variational Autoencoder Surrogate Modeling

Variational autoencoders (VAEs) have been extensively used 
for feature extraction and data reduction in the preprocessing 
step for regression and classification tasks. Na et al. [135] 
used a variational autoencoder for reducing data input to 
a DNN for predicting CFD gas dispersion rates and death 
probability. The proposed algorithm optimized weights 
based on minimizing the mean squared error (MSE) and 

was compared against standard autoencoders and single-
layer neural networks. The VAEDC-DNN predicted results 
with 48% less error on the probability of death and accu-
rately predicted nonlinearities of image cracks and topogra-
phy. Laubscher and Rousseau [136] combined multiple fully 
connected VAEs with a DNN for compressing CFD data of a 
simulated turbulent jet diffusion flame. The VAE and DNN 
were trained separately. The VAE was trained on the target 
data set, whereas the DNN was trained to predict latent layer 
encodings. Compared to a standalone DNN, the VAE-DNN 
yielded lower MAE and provided accurate predictions of 
2D contours of fluid values in a jet flame combustion setup.

Ullah et al. [137] compared the performance of PCA, 
kPCA, autoencoders, and variational autoencoders com-
bined with Kriging and Polynomial Regression. A total of 
72 cases were explored, with their performance aggregated 
across ten benchmark functions. Their experimental set-
up and hyperparameter optimization process are shown in 
Fig. 10.

The relative mean absolute error function (RMAE) was 
used to evaluate the quality of each low dimensionality 
surrogate model (LDSM). The hyperparameters were opti-
mized for both DR and surrogate model together based on 
the aggregated quality of the LDSMs on all benchmark func-
tions. Overall, their study showed that autoencoder-based 
LDSMs achieved the best modeling accuracy (lowest RMAE 
values) in 132/720 cases. With regards to global optimal-
ity, LDSMs based on PCA and kPCA performed better in 
combination with Kriging, while all LDSMS based on poly-
nomial regression performed similarly in most cases. While 
this study provides insight on the performance of different 
LDSM methods, further research must be conducted using 
real-world data, as the benchmark functions explored were 
noiseless, single-objective functions. Further work must be 
performed to validate these models’ performance for prob-
lems exhibiting large uncertainties.

5.4  Dimensionality Reduction for Support Vector 
Machines

SVM has shown to be robust against the curse of dimension-
ality in classification tasks [138]. Yet, several studies explore 
the use of DR methods as preprocessing in SVM classifica-
tion, with the intent of improving classification accuracy and 
speed. George [139] applied PCA as preprocessing for SVM 

Fig. 10  Hyperparameter training and optimization of DRSM from [137]



418 C. K. J. Hou, K. Behdinan 

1 3

classification for anomaly detection. Their results showed a 
decrease in execution time and increased accuracy for clas-
sification. However, their conclusions require further vali-
dation using different anomaly datasets with higher number 
of features. Wang and Carreira-Perpinan[140] studied the 
influence of dimensionality reduction in SVM classification. 
They used auxillary coordinates to jointly optimize the clas-
sification error jointly over an RBF-based DR mapping and 
a wrapper approach to classification. The final non-linear 
low-dimensional classifier achieved similar errors as previ-
ous literature methods but accelerated model training time. 
Furthermore, their results showed the DR mapping elimi-
nated variation in the original data space. Bai et al. [141] 
compared different DR methods, such as PCA, LLE, and 
Isomaps, for low-dimensional representation of data prior 
to developing an SVM modeling applied to manufacturing 
quality prediction. Based on qualitative and quantitative 
analysis, each DR method improved prediction accuracy 
compared to SVM alone. In particular, the Isomap-SVM 
model showed the best regression performance for the multi-
parameter manufacturing system.

In terms of applicability, DR-based SVM classification 
methods have obtained state-of-the-art prediction accura-
cies in the medical field. Most commonly, LDA has been 
superior compared to other linear DR methods for SVM 
models in epilepsy prediction [142] and detection of diabe-
tes disease [143]. Ali [144] extended these works and devel-
oped a threefold hybrid algorithm which includes a genetic 
algorithm optimization component with the LDA-SVM 
model. The algorithm was validated on the HCC dataset 
and improved prediction accuracy while lowering process-
ing time in hyperparameter optimization and training time.

5.5  Dimensionality Reduction for Manifold 
Learning

Manifold learning methods have been used for constructing 
surrogate models in the data’s intrinsic dimensionality for 
cost-efficient representation of high-dimensional systems. 
Kalogeris and Papadopoulos [145] used diffusion mapping 
for constructing locally clustered interpolation schemes 
between the parameter space, diffusion map space, and 
solution space for linear stochastic uncertainty qualification 
problems. Two case studies were conducted, and the prob-
ability density functions were predicted with 80% less time, 
while maintaining high accuracy, compared to full computa-
tion of the detailed models. Chen et al. [146] developed a 
manifold Gaussian process method using isomaps for dimen-
sionality reduction. The method was applied to extract cou-
pling coefficients in fourth and sixth order coupling filters, 
where few samples of high dimensional data were available. 
The test error of both filters was reduced with the isomap 
dimensionality reduction. Decker et al. combined POD, 

LLE, and isomaps with RBF for reduced-order modeling of 
hypersonics systems. The POD was unable to resolve dis-
continuous features without oscillatory behavior, but LLE 
and isomaps accurately predicted the steady-state response 
and resolved geometric discontinuities. However, this study 
was limited to simple 2D CFD cases and further research 
must be done considering shape variations and optimi-
zation of parameters in training LLE and isomaps. More 
recently, authors employed nonlinear manifold methods due 
to their ability to represent nonlinear field features for study-
ing shocks [147, 148] and adaptive design of experiments 
[149]. Finally, t-SNE has become a standard for interpret-
ing DNNs, revealing information about the data structure at 
local and global scales [150, 151]. Furthermore, the method 
generates better visualizations compared to other manifold 
learning methods [82, 83]. However, research that utilizes 
the t-SNE method has largely been limited to 2D and 3D 
representations.

5.6  Dimensionality Reduction for Kriging

Gaussian process-based (GP) methods, such as Kriging, 
perform poorly in high-dimensionality problems. Thus, 
dimensionality reduction methods have been implemented 
for overcoming these issues.

Kriging Partial Least Squares (KPLS) [152] performs 
the Kriging after reducing the number of hyperparameters 
through PLS. Consequently, the KPLS method converges 
much faster than standard Kriging methods. An extension 
of KPLS is the kernel KPLS (KPLSK) method which con-
sists of two steps. First, KPLS is performed to estimate the 
hyperparameters in a reduced space. The hyperparameters 
are transformed back into the original, higher dimension 
space where the estimated parameters are now used as a 
starting point for optimizing the standard Kriging interpola-
tion procedure.

Constantine et al. [153] integrated the active subspace 
method with Kriging for constructing a response surface. 
The method was tested on an elliptic PDE model with 100 
Gaussian random variables and proved to yield a more 
accurate approximation of the response surface compared 
to kriging on the full domain. PCA methods have also been 
applied to reduce computational burdens in Kriging. Steer 
et al. [154] developed a PCA-Kriging model for predict-
ing FEA residual limb morphologies and prosthetic socket 
designs. The computation expense was reduced by an order 
of six magnitudes compared to traditional Kriging and pro-
duced real-time rendering of pressure and shear distribution 
of the residual limb, indicating the potential of surrogate 
models for improving clinical settings. However, this study 
simplified the dynamic load cases and total surface bearing 
design to three press points. Further studies in this field need 
to consider complex parametric socket models and variation 
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in morphology and loading. Lataniotis et al. [25] proposed 
the supervised DSRM method, which optimized param-
eters through combined compression of kPCA with PCE 
and Kriging surrogate models and reduced dimensionality 
through solving a nested optimization problem. An aniso-
tropic Gaussian kernel was used in both surrogate models 
and the DSRM was trained on three benchmark problems 
and compared against classical approaches of sequentially 
tuning the dimensionality reduction and surrogate model 
parameters separately. The DSRM showed superior perfor-
mance based on generalization error, but still suffered from 
the curse of dimensionality in the nested optimization of 
objective functions. Gadd et al. [155] developed a surrogate 
modeling approach that combined a novel non-linear dimen-
sionality reduction method, local tangent space alignment 
(LTSA), with GPR using Markov Chain Monte Carlo for UQ 
in groundwater flow models. In contrast to other manifold 
learning methods, LTSA is a local method which estimates 
points on the manifold on localized regions rather than iden-
tifying a global basis solution for the reduced space.

Other GP-based methods such as Bayesian surrogate 
models also require smooth patterns of objective func-
tions to accurately represent full-scale systems. Lei et al. 
[156] developed a more flexible and adaptive Bayesian sur-
rogate modelling method for improving search efficiency 
and robustness in two different case studies. By implement-
ing Bayesian multivariate adaptive regression splines, the 
authors found that their proposed method required less tri-
als and computation when performing material discovery 
compared to the standard GP-based methods. Moriconi et al. 
[157] utilized the response surface method for reconstruct-
ing the parameter space in a lower dimensional represen-
tation for improving Bayesian optimization of black-box 
functions. Compared to previous Bayesian optimization 
methods, their proposed method reduced computational 
complexity with faster computations when a small number 
of data points were available. Bayesian optimization has also 
been enhanced using a restricted-projection-pursuit (RPP) 
GP [158]. In their study, the authors used RPP to reduce 
the function dimensionality without restricting the projec-
tion to an axis-aligned representation. Compared to previ-
ous methods such as additive models and low-dimensional 
assumption models, the proposed method provided a more 
expressive framework for Bayesian optimization.

Linear and Kernel-based dimensionality reduction in 
Kriging and other GP-based surrogate models extend the 
method’s applicability to higher dimensions and has proven 
to increase accuracy of the method. However, the discussed 
methods are largely dependent on specific types of kernels 
and require further research to generate kernel-based Krig-
ing models for general application.

5.7  Dimensionality Reduction for Projection‑Based 
Surrogate Models

PCA has been applied with Krylov subspace models for 
computationally efficient and inexpensive modeling of large-
scale systems. Awais et al. [159] created a hybrid algorithm 
using PCA for dimensionality reduction and the Arnoldi 
algorithm for constructing an oblique Krylov subspace pro-
jection. Their hybrid algorithm was validated on random 
models with 100 and 200 input parameters. Compared to 
the standard scheme of using balanced truncation for reduc-
ing the model size from 200 to 10 dimensions, the hybrid 
method reduced computation time by 43% and floating-point 
operations per second (FLOPS) by 60%. However, optimiz-
ing the trade-off between reducing instabilities generated by 
oblique projection methods and improving computational 
time remains a challenge. Ubaru  et al. [160] proposed a 
method for simultaneously estimating the underlying prin-
cipal subspace dimensionality of covariance matrices and 
applying it to the Krylov subspace method to compute an 
approximation of the subspace. This method known as Kry-
lov PCA uses the Lanczos algorithm for identifying the key 
eigenvalues and approximating the principal subspace of 
the covariance matrix. Since the covariance matrix for PCA 
does not need to be formed with this method, less storage 
space is required for the overall modeling process, with runt-
imes in the order of seconds to complete. While Krylov sub-
space DRSMs have been applied successfully for reducing 
computation times of large-scale systems, projection-based 
methods suffer from several convergence issues, which 
require further investigation to validate their use in other 
applications.

6  Discussion

Table 1 summarizes the literature on combined dimension-
ality reduction-surrogate model (DRSM) methods. In the 
accuracy column, only the model structures with the best 
performance are reported. The literature can be visited for 
further details on training and optimizing the model struc-
tures for reducing error and computation. Overall, DR meth-
ods have benefitted surrogate models by reducing computa-
tion times and improving prediction accuracies.

PCA-based DRSMs [123], 125, 126, 127, 128, 132 have 
shown to improve modeling accuracies while reducing the 
number of samples required to complete the training por-
tion of the surrogate model. Other researchers have found 
that applying kPCA for nonlinear DR captured skewness 
behavior better than linear PCA [129]. Manifold-based DR 
methods [145, 146], 147, 148] have mainly been used with 
interpolation methods and showed improvement in both 
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computation time and prediction error compared to tradi-
tional Monte Carlo and NN models.

DR methods have improved SVM classification accura-
cies in manufacturing quality [141] and medical data [143]. 
Kriging DRSMs [152, 153], 154] have mainly been tested 
on benchmark functions and shown improvements compared 
to standalone surrogate models and Monte Carlo functions. 
Projection-based DR methods have also been applied for 
improving predictions using GP-based surrogate models 
[161]. Finally, PCA has been applied to Krylov subspace 
methods for reducing memory use and time required to 
obtain the lower-dimensional model of the data space [159], 
160]. These methods, however, require further research to 
circumvent the convergence issues.

By identifying and retaining the key information in the 
data, DRSMs have successfully improved optimization and 
calibration methods in engineering fields such as aerody-
namics and finite element analysis. However, DRSMs are a 
new field of research and have mainly been applied to data-
sets with minor nonlinearities. In fact, surrogate modelling 
methods such as random forest and tree -structured Parzen 
estimator have not been explored with dimensionality reduc-
tion methods. Several of the reviewed literatures propose the 
need to apply their methods to more complex cases to vali-
date the DRSM methods for general use cases and explore 
ways to overcome the mathematical limitations imposed.

7  Conclusion

Machine learning algorithms have largely been applied for 
aiding surrogate modeling construction and reducing com-
putational costs of modeling full-scale, high-dimensionality 
problems. In this paper, we discussed the state-of-the-art 
methods of linear and nonlinear dimensionality reduction 
methods and surrogate modeling, as well as the literatures 
that combine them. DR methods have been used to create 
more cost-efficient surrogates. Traditional surrogate models 
perform poorly because of limitted data availability, high 
dimensionality, and rigid training. The literature shows the 
DR-SR methods have potential for other fields of application 
beyond their traditional use in quality assurance and uncer-
tainty quantification. However, DRSM methods are a new 
field of research and require further exploration to validate 
their applicability to datasets with uncertainty and ambigu-
ous underlying structures. Indeed, these methods are still 
evolving and will continue to be applied to high-dimensional 
problems in other engineering fields.

Appendix

Acronyms

DR Dimensionality reduction
ML Machine learning
DRSM Dimensionality reduction-surrogate model
PCA Principal component analysis
kPCA Kernel PCA
LDA Linear discriminant analysis
FA Factor analysis
FAMD Factor analysis of mixed data
MCA Multiple correspondence analysis
PLS Partial least squares
KPLS Kernel PLS
GEKPLS Gradient-enhanced kernel PLS
ASM Active subspace methods
ANN Artificial neural network
CNN Convolutional neural network
RNN Recursive neural network
GENN Gradient-enhanced neural network
mSANN Modified Sobolev artificial neural network
MFDNN Multi-fidelity deep neural network
KL-divergence Kullback–Leibler-divergence
LLE Local linear embedding
MLLE Modified local linear embedding
MLE Maximal linear embedding
MDS Multi-dimensional scaling
t-SNE t-Distributed stochastic neighbor embedding
SVM Support vector machine
PSRM Polynomial response surface models
RBF Radial basis function
RMT Regularized minimum energy tensor product
GPR Gaussian process regression
FLOP Floating-point operations per second
UQ Uncertainty quantification
RVT Regionalized variable theory
SGD Stochastic gradient descent
PCE Polynomial chaos expansion
MSE Mean squared error
MAE Mean absolute error
MAPE Mean absolute percentage error
GP Gaussian Process
RPP Restricted-projection pursuit
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