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Abstract
This paper proposes a visualization recommender system for tabular data given visualization intents (e.g., “population trends 
in Italy” and “smartphone market share”). The proposed method predicts the most suitable visualization type (e.g., line, pie, 
or bar chart) and visualized columns (columns used for visualization) based on statistical features extracted from the tabular 
data as well as semantic features derived from the visualization intent. To predict the appropriate visualization type, we 
propose a bi-directional attention (BiDA) model that identifies important table columns using the visualization intent and 
important parts of the intent using the table headers. To determine the visualized columns, we employ a pre-trained neural 
language model to encode both visualization intents and table columns and predict which columns are the most likely to be 
used for visualization. Since there was no available dataset for this task, we created a new dataset consisting of over 100 K 
tables and their appropriate visualization. Experiments revealed that our proposed methods accurately predicted suitable 
visualization types and visualized columns.
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1  Introduction

This paper is an extension of our earlier report entitled 
“Intent-aware Visualization Recommendation for Tabular 
Data” presented at. Visualization is an effective means of 
gaining insight into and demonstrating trends in statisti-
cal data. Furthermore, properly visualizing data can help 
find specific data from large-scale data collections. How-
ever, because effective visualization requires special skills, 
knowledge, and deep data analysis, it is sometimes difficult 
for end users to produce appropriate data visualization for 
their purposes. Therefore, visualization recommendation, 
which predicts the appropriate visualization type (e.g., line, 
pie, or bar chart) and visualized columns (columns used 
for visualization) for tabular data, has recently attracted 
increased attention [1–5]. Visualization recommendation is 
often achieved by a machine learning (ML) approach using 
features extracted from tabular data, such as the means and 

variances of column values [2], to predict the visualization 
types and visualized columns.

However, existing studies on visualization recommender 
system have limitations. First, existing studies assume that 
only tabular data are given as input for visualization rec-
ommendation; however, appropriate visualization types are 
dependent on users’ visualization intents—specific charac-
teristics or content of the data that users wish to represent. 
For example, selecting the appropriate visualization type for 
smartphone sales data is challenging; namely, a pie chart 
should be selected if the intent is “to illustrate the market 
share”, whereas a line chart should be selected if the intent 
is “to illustrate the market growth”. Therefore, it would be 
helpful to also input the visualization intent of users into 
the recommender system. The second limitation of existing 
studies is that they assume that the columns used for data 
visualization are input to the visualization recommender sys-
tem. However, given tabular data and the users’ visualiza-
tion intent, the system would ideally automatically predict 
the appropriate visualization type and visualized columns 
without requiring additional effort from users.

In this paper, addressing the limitations discussed above, 
we focus on identifying the appropriate visualization type 
and visualized columns for tabular data given a visualization 
intent. We propose a novel method based on a bi-directional 
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attention (BiDA) mechanism for predicting the visualization 
type. The BiDA mechanism can automatically identify the 
table columns required for visualization, based on the given 
visualization intent. Furthermore, as it is bi-directional, 
our proposed model can attend to important terms of the 
visualization intent based on table headers and to impor-
tant columns in the tabular data based on the visualization 
intent, which are particularly useful for estimating the suit-
able visualization type. In addition, to identify the visualized 
columns, we propose three models that apply a pre-trained 
neural language model (i.e., BERT [6]) to tabular data. We 
use the BERT model as it has archived high performance 
in a variety of natural language processing tasks. Our three 
proposed models differ with respect to the input format. By 
inputting a pair of the visualization intent and column head-
ers to BERT, we can encode their textual information and 
use it with the statistical features derived from the table to 
effectively predict the visualized columns.

Since there is no publicly available dataset for the prob-
lem setting addressed in this paper, we created a new dataset 
consisting of over 100 K tables with visualization intents and 
appropriate visualization types by crawling publicly avail-
able visualization of tabular data from Tableau Public, a 
Web service that hosts user-generated data and visualization. 
To ensure the quality of users’ visualization, we manually 
examined a subset of datasets and found that most of the 
data visualization was appropriate. We conducted experi-
ments with the new dataset and found that our BiDA model 
accurately predicted suitable visualization types and out-
performed baseline models and models without BiDA. Fur-
thermore, our BERT-based models outperformed baseline 
models in the visualized column identification.

The contributions of this paper are as follows: 

1	 We proposed methods of identifying the appropriate 
visualization type and visualized columns for tabular 
data with a visualization intent (Sects. 2 and 3).

2	 We created a new dataset for visualization recommenda-
tion (Sect. 4).

3	 We demonstrated that the BiDA model and BERT-based 
models are effective in determining the appropriate vis-
ualization types and visualized columns, respectively 
(Sect. 4).

2 � Related Work

This section reviews existing approaches for visualization 
recommendation, which can be categorized into rule-based 
and ML-based approaches.

Rule-based approaches  [7–11] are mainly based on 
rules defined by experts. An example of such rule is that a 
pie chart is unlikely to be suitable for a table with a large 

number of rows. Therefore, within the scope of the rules, it 
is possible to create effective visualizations that appear to 
be created by experts. However, rule-based approaches are 
not flexible and are not effective for data with a large num-
ber of columns or rows. Nonetheless, they can be accurate 
when the columns used for visualization are provided as 
input. However, these approaches cannot be applied to our 
problem setting, where the columns to be visualized are not 
explicitly given. Moreover, applying rule-based approaches 
requires defining new rules for visualization types that are 
not used in existing studies such as multi-polygon charts, 
which requires high cost due to consultations with experts. 
Accordingly, it is difficult to compare rule-based approaches 
with our approach.

ML-based approaches primarily extract statistical features 
from tabular data and train a classifier based on the extracted 
features [1–4]. Examples of features include the means and 
variances of column values, and a binary feature indicating 
whether column values are categorical or numeric. Dibia 
and Demiralp proposed an encoder–decoder model that 
translates data specifications into visualization specifica-
tions in a declarative language [1]. In a different study, Luo 
et al. addressed the visualization recommendation problem 
by using both rule-based and ML-based (learning-to-rank) 
approaches [3]. Liu et al. also proposed a method for predict-
ing visualization types and visualized columns in the context 
of a table QA task, in which a table and question are given 
as input [5]. This method predicts the columns to be used 
for visualization by identifying the correspondence between 
the header of the tabular data and question about the tabular 
data. However, the table QA task requires a specific question 
for tabular data, which is substantially different from a visu-
alization intent we discussed in the present study. There have 
been studies on automatic data visualization from natural 
language [12–14], among which ncNet [14] took the most 
similar approach to ours. ncNet [14] is a machine transla-
tion model that takes a query for visualization as input and 
outputs a sentence that contains elements of visualization 
(e.g., visualization type and visualized columns). However, 
the nvBench dataset, which was used in their work and con-
sisted of query and visualization pairs, was generated from 
an existing dataset of natural language-to-SQL (NL2SQL) 
query and SQL query pairs. As the queries were gener-
ated from SQL based on predefined rules, the vocabulary 
in the queries are highly limited. In contrast, our dataset 
was developed based on texts generated from real users and 
contained a variety of expressions in the input (or visualiza-
tion intents).

Table 1 presents differences between existing ML-base 
models and our model. These ML-based approaches have 
different input and output from our proposed model. There-
fore, it is not appropriate to train these models on our dataset 
and to apply the dataset used in them to the our proposed 



303Intent‑Aware Data Visualization Recommendation﻿	

1 3

model, which makes comparison with the our proposed 
model difficult. A study given by Hu et al. [2] is closely 
related and comparable to ours: they extracted statistical fea-
tures from tabular data and applied ML models to predict the 
appropriate visualization type.

There are several differences between our study and exist-
ing studies. Specifically, our study predicts the appropri-
ate visualization type and visualized columns based on not 
only tabular data but also visualization intent. Since these 
inputs have different modalities, it is challenging to effec-
tively incorporate both of them for visualization recom-
mendation. Furthermore, our study faces the challenge of 
selectively using only parts of the tabular data, which is in 
contrast to existing studies, in which only several columns 
to be used for visualization are given as input for ML-based 
approach models with the statistical features in visualization 
recommendation.

3 � Methodology

In this section, we describe methods for visualization rec-
ommendation for tabular data given a visualization intent. 
Figure 1 illustrates our proposed methods using BiDA and 
BERT, which consist of five components. For visualization 

type prediction, (1) visualization intent embedding converts 
each token in the intent into a vector, while (2) tabular data 
embedding encodes table headers based on the word embed-
dings and extracts statistical features from each column. 
Then, (3) BiDA is applied to both embeddings to aggre-
gate information from the visualization intent and tabular 
data. Finally, the (5) output layer predicts the most suitable 
visualization type based on the output of BiDA. Our BiDA 
model, inspired by a reading comprehension model [15], 
attends to important columns in the tabular data based on 
the visualization intent and to important terms in the intent 
based on the tabular data. Therefore, the proposed method 
allows us to focus only on important columns and tokens in 
the intent and tolerate redundant columns in a table.

For the visualized column prediction, the visualization 
intent and table headers are directly input into (4) BERT to 
estimate the relevance of columns to the given visualization 
intent. We propose three BERT-based models that differ with 
respect to the input format: Single-Column BERT, Multi-
Column BERT and Pairwise-Column BERT. The output of 
BERT is combined with statistical features derived by (2) 
tabular data embedding and is then used to identify the most 
relevant columns. The details of each component of the pro-
posed methods are described in the following subsections.

3.1 � Visualization Intent Embedding

The visualization intent embedding component transforms T 
words in a given visualization intent into word embeddings. 
The tth word in the intent is represented by a one-hot rep-
resentation: �t of size |V|, where V is an entire set of words, 
or a vocabulary. A word embedding matrix �w ∈ ℝ

de×|V| is 
used to obtain a word embedding �t = �w�t , where de is the 
word embedding dimension.

Table 1   Differences between existing models and our model

Model Input Output

Data2Vis [1] Table Vega-Lite
Deepeye [3] Table Ranked visualizations
ncNet [13] Table & natural language Vega-Zero
Ours Table & natural language Visualization type & 

visualized columns

Fig. 1   Our proposed methods with BiDA and BERT-based models
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3.2 � Tabular Data Embedding

Given tabular data consisting of N columns, the tabular data 
embedding component produces a header embedding and 
extracts statistical features from each column. The header of 
the jth column consists of Mj words and is represented by 
the mean of their word embeddings; that is, �j =

1

Mj

∑Mj

t=1
�j,t 

where �j,t ∈ ℝ
de is the word embedding of the tth term in the 

header of the jth column. Statistical features are extracted 
from each column and denoted by �j ∈ ℝ

dc . We extract fea-
tures following a previous study on visualization recommen-
dation [2] ( dc = 78 ), which include the means and variances 
of column values and a binary feature indicating whether 
column values are categorical or numeric. These statistical 
features were used alone in the original study [2] to predict 
the appropriate visualization types. In our proposed meth-
ods, these statistical features are combined with textual fea-
tures for improved performance in both the visualization 
type and visualized column prediction tasks.

3.3 � Bi‑directional Attention (BiDA)

Figure  2 presents our BiDA model, which consists of 
Table2Intent and Intent2Table for predicting the visualiza-
tion types. BiDA computes the weight of each component on 
one side based on information from the other side, and vice 
versa. We compute the weight of each column based on the 

visualization intent (Intent2Table), and the weight of each 
term in the visualization intent based on the headers of the 
tabular data (Table2Intent). Our model then aggregates the 
word embeddings of the visualization intent and the statisti-
cal features of the tabular data with the estimated weights.

The attentions from both directions are based on the simi-
larity between a column header and a word in the visualiza-
tion intent, which is defined as follows:

where �  i s  a  t ra inable  funct ion def ined as 
�(�, �) = ��[�; �; �◦�] , � denotes a trainable weight vector, 
[; ] denotes vector concatenation across a row, and ◦ denotes 
the Hadamard product.

Intuitively, columns are considered important if their 
headers are similar to any of the visualization intent terms. 
This concept can be implemented as follows:

where the maximum similarity between the jth header and 
the intent terms is used as the Intent2Table attention a(c)

j
 . 

Formally, sof tmax function in this equation is defined as 
follows:

(1)stj = �(�t, �j)

(2)a
(c)

j
= sof tmax(max

t
(stj))

(3)sof tmax(max
t
(stj)) =

exp(maxt(stj))

∑N

j�=1
exp(maxt(stj� ))

Fig. 2   BiDA computes the 
weight of each component on 
one side based on information 
from the other side, and vice 
versa
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The statistical features are then aggregated into a single vec-
tor with the Intent2Table attentions:

The word embeddings of the visualization intent are also 
aggregated in the same way as � , namely,

where the Table2Intent attention a(i)t  is defined as 
a
(i)
t = sof tmax(maxj(stj)) . Finally, we obtain the concatena-

tion of the visualization intent and tabular data embeddings, 
� = [�; �].

3.4 � BERT

Figure 3 illustrates one of our proposed BERT-based models 
for visualized column identification. Although BERT was 
originally designed for text, it is used for the concatenation 
of the visualization intent and table headers in our model. As 
mentioned in the beginning of Sect. 3, three BERT models 
are proposed: Single-Column BERT, Multi-Column BERT 
and Pairwise-Column BERT. Single-Column BERT inputs 
a visualization intent and column header into BERT, while 
Multi-Column BERT inputs a visualization intent and all 
column headers into BERT. Pairwise-Column BERT inputs 

(4)� =

N∑

j=1

a
(c)

j
�j

(5)� =

T∑

t=1

a
(i)
t �t

a visualization intent and pair of column headers into BERT. 
These models then combine the output of BERT with the 
statistical features of the column to estimate which column 
should be used for visualization. We use the statistical fea-
tures of columns because they have been reported to be use-
ful for visualization type prediction in existing work [2]. 
We also use column statistical features in the prediction of 
visualized columns.

Letting X = {x1, x2,… , xT} be a visualization intent con-
sisting of T tokens, and Y = {yj1, yj2,… , yjMj

} be the jth col-
umn header containing Mj header tokens, we formally 
describe each of the BERT-based models below.

3.4.1 � Single‑Column BERT

This model is inspired by an NL2SQL model based on 
BERT [16]. Single-Column BERT inputs a visualization 
intent and column header into BERT as follows:

where [CLS] and [SEP] are special tokens representing the 
entire sequence and a separator for BERT, respectively. Let-
ting �CLS,j ∈ ℝ

dBERT be the output of BERT for the [CLS] 
token ( dBERT = 768 in our experiment), we can obtain a vec-
tor �j as follows:

(6)[CLS]x1x2 ⋯ xT [SEP]yj1yj2 ⋯ yjM[SEP]

(7)�j = [�CLS,j; �j]

Fig. 3   Pairwise-column BERT 
model is inputs a visualization 
intent and a pair of column 
headers into BERT and identi-
fies the visualized columns
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which is the concatenation of the BERT output and statisti-
cal features, and is used to predict whether the jth column is 
a visualized column.

3.4.2 � Multi‑Column BERT

Multi-Column BERT inputs the visualization intent and all 
column headers in the tabular data into BERT and obtains 
the output of BERT for each header token. Given N columns 
of a table, Multi-Column BERT inputs the visualization 
intent and all column headers into BERT as follows:

BERT outputs �i,j ∈ ℝ
dBERT for the ith token of the jth header, 

which is averaged over all the header tokens of the header to 
embed the header; that is, �̄j =

1

Mj

∑Mj

i=1
�i,j . We then obtain 

the jth column vector �j by inputting the averaged vector �̄j 
into a linear layer as follows:

where �M ∈ ℝ
dM×dBERT and bM ∈ ℝ

dM are parameters of the 
linear layer ( m = 30 in our experiment). We finally obtain 
the vector representation of the jth column by concatenating 
the BERT output and statistical features as follows:

which is used to predict whether the jth column is a visual-
ized column.

3.4.3 � Pairwise‑Column BERT

This approach is inspired by a document ranking model 
based on BERT [17]. Figure 3 illustrates Pairwise-Column 
BERT model, which takes a visualization intent and a pair 
of column headers as input and predicts which column is 
more appropriate for visualization. This model inputs the 
visualization intent and pair of ith and jth column headers 
into BERT as follows:

When training the model, one of the columns is a visualized 
column while the other is a non-visualized column. Unlike 
the other models, Pairwise Column BERT predicts which 
column is more appropriate based on the BERT output for 
the [CLS] token, which includes information about both 
columns, and their statistical features. Thus, we use the fol-
lowing vector representation for prediction:

(8)
[CLS]x1x2 ⋯ xT [SEP]y11y12 ⋯ y1M1

[SEP]⋯

[SEP]yN1yN2 ⋯ yNMN
[SEP]

(9)�j = �M�̄j + �M

(10)�j = [�j; �j]

(11)
[CLS]x1x2 ⋯ xT [SEP]yi1yi2 ⋯ yiMi

[SEP]

yj1yj2 ⋯ yjMj
[SEP]

where �CLS,ij ∈ ℝ
dBERT is the output for the [CLS] token when 

a pair of ith and jth column headers is input into BERT.

3.5 � Output Layer

Although they have similar architectures, the output lay-
ers for visualization type prediction and visualized column 
identification are slightly different. Given either the output 
of BiDA � or that of BERT �j , we apply a multilayer percep-
tron with rectified linear unit activation. In addition, we use 
a softmax function to predict the visualization types and a 
sigmoid function to determine whether the jth column is a 
visualized column.

For Pairwise Column BERT, given a pair of columns, a 
sigmoid function is used to predict which column is a visu-
alized column. When predicting visualized columns, we 
first apply the model to every pair of columns and obtain 
a probability pi,j that the ith column is more appropriate 
than the jth column. Following earlier work on document 
ranking [17], we then aggregate the probability as follows:

where si is the score of the ith column, by which the most 
appropriate column is predicted.

4 � Experiments

This section describes the dataset, experimental settings and 
experimental results.

4.1 � Dataset

Our dataset consisted of quartets of tabular data, a visualiza-
tion intent, the appropriate visualization type, and a set of 
visualized columns. To create this dataset, we crawled pub-
licly available visualizations of tabular data from Tableau 
Public,1 which is a Web service that hosts user-generated 
data and visualization. We used the title of each visualization 
as the visualization intent and the mark type of each visu-
alization as the appropriate visualization type. The columns 
used in the charts were regarded as the visualized columns. 
Visualizations with three words or less in the visualization 
intent were excluded from the dataset, since short titles were 
usually insufficient to express an intent.

(12)�ij = [�CLS,ij; �i; �j]

(13)si =
∑

j≠i

(pi,j + (1 − pj,i))

1  https://​public.​table​au.​com/.

https://public.tableau.com/
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Only eight visualization types were used in the dataset, 
as other types were too infrequent. Each visualization type 
is described as follows: 

Area	� Figure  4 presents an example of Area 
chart.2 This type of chart usually repre-
sents the evolution of multiple numeric 
variables, such as population growth.

Bar	� This type of chart is often used to compare 
trends and multiple data values. Box-and-
whisker plots are included in this category.

Circle	� This type of chart is used to represent the 
distribution of data. Scatter plots and bub-
ble charts are included in this category.

Line	� Line chart is often used to illustrate the 
evolution of a variable, and can be used 
as an alternative to an area chart in many 
cases.

Multi-Polygon	� Figure 5 presents an example of multi-poly-
gon chart.3 This type of chart can represent 

a region in a map, and is often used to indi-
cate geographical regions.

Pie	� Pie chart is often used to represent a 
fraction.

Shape	� Figure 6 presents an example of Shape 
chart.4 Each instance is independent (not 
representing evolution of any kind), and 
is denoted by different shapes (e.g., circle, 
triangle, or any icon).

Square	� Figure 7 presents an example of Square 
chart.5 This type of chart represents values 
by the size of the squares.

In our experiment, the mark type defined in Tableau Pub-
lic was used as the visualization type. Therefore, although 
taxonomy of visualizations was partially different from the 
original visualization taxonomy, the mark types correspond 
to the original visualization types, and we used the mark 
types as visualization types. Table 2 presents the corre-
spondence between the original visualization type and the 
mark type.

Fig. 4   Example of area chart

2  https://​public.​table​au.​com/​app/​profi​le/​clive​2277/​viz/​AreaC​hart_​60/​
Area.
3  https://​public.​table​au.​com/​app/​profi​le/​sukum​ar.​roy.​chowd​hury/​viz/​
Asia-​Pacif​icPol​ygonM​ap/​AsiaP​acifi​cPoly​gonMap.

4  https://​public.​table​au.​com/​app/​profi​le/​navee​n2129/​viz/​Shape​sscat​
terch​art/​Shape​sscat​terch​art.
5  https://​public.​table​au.​com/​app/​profi​le/​veita/​viz/​Recom​menda​tion_​
Square/​Chart.

https://public.tableau.com/app/profile/clive2277/viz/AreaChart_60/Area
https://public.tableau.com/app/profile/clive2277/viz/AreaChart_60/Area
https://public.tableau.com/app/profile/sukumar.roy.chowdhury/viz/Asia-PacificPolygonMap/AsiaPacificPolygonMap
https://public.tableau.com/app/profile/sukumar.roy.chowdhury/viz/Asia-PacificPolygonMap/AsiaPacificPolygonMap
https://public.tableau.com/app/profile/naveen2129/viz/Shapesscatterchart/Shapesscatterchart
https://public.tableau.com/app/profile/naveen2129/viz/Shapesscatterchart/Shapesscatterchart
https://public.tableau.com/app/profile/veita/viz/Recommendation_Square/Chart
https://public.tableau.com/app/profile/veita/viz/Recommendation_Square/Chart
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Figure 8 and displays show the distributions of the length 
of the visualization intents, while Fig. 9 displays the number 
of columns. There were 7.23 words per visualization intent, 
and 18.10 columns and 3.76 visualized columns per table 
on average. After preprocessing the dataset, 115,183 data 
remained, which were split into training (93,297), validation 
(10,367), and test (11,519) sets.

Since the ground truth of the dataset (i.e., visualization 
types) was based on users’ visualization, we investigated 
the quality of the ground truth by manual assessment. Two 
annotators, who were university graduates, were instructed 
asked to examine the visualization intent and tabular data 
and select appropriate visualization types independently. 
The annotators were first given an explanation of each 
visualization type and engaged in a practice session. They 
were then instructed to examine 215 cases. They were 
allowed to skip a case when they thought there were four 
or more appropriate visualization types. Otherwise, they 
were allowed to select up to three appropriate visualiza-
tion types. We took the union and intersection of their 
answers for each case and examined whether the ground 
truth was in the union or intersection. As a result, we found 
that the union and intersection contained the ground truth 

for 63.0% and 51.6% of cases, respectively. These results 
suggest that most of the ground truth in our dataset was 
reasonable.

4.2 � Experimental Settings

We used a pre-trained GloVe model [18] for word embed-
dings, which was trained by the Wikipedia 2014 dump and 
Gigaword 5 corpus. The size of embeddings was de = 100.

4.2.1 � Visualization Type Prediction

In the BiDA model, the number of layers in the multilayer 
perceptron was set to six according to the results using the 
validation set. The model was trained with a cross-entropy 
loss function, and the Adam [19] optimizer was used.

We compared our proposed methods with existing 
ML-based approaches  [2]; however, we could not com-
pare our models with other approaches due to input and 
output incompatibility [1, 3, 4]. The compared ML-based 
approaches were based on 912 statistical features extracted 
from tabular data, and their hyperparameters were tuned 
using the validation set. We used Precision, Recall and F1 
score as the evaluation metrics in this task.

Fig. 5   Example of multi-polygon chart
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4.2.2 � Visualized Column Identification

We use a pre-trained BERT model from Hugging Face6 and 
fine-tuned the three layers on the output side. The number 
of layers in the multilayer perceptron was set to two. The 
BERT model was trained using a binary cross-entropy loss 
function, and the Adam [19] optimizer was used.

We compared our proposed method with three baselines 
methods. “Random” is a weak baseline method that gives 
each columns a random score. “Word similarity”, which cal-
culates the cosine similarity between the mean vectors of 
words in a visualization intent and that of words in a column 
header. “BM25” uses the BM25 score between the visualiza-
tion intent and column headers to rank columns. We treated 
the visualized column identification task as a ranking task 
rather than a classification task, and used R-precision and 
nDCG@10 as the evaluation metrics, where the visualized 

columns were regarded as relevant items of relevance grade 
+1.

4.3 � Experimental Results

4.3.1 � Visualization Type Prediction

Table 3 presents the results of baseline models and our 
proposed models in the visualization type prediction task. 
Some of the baseline models trained with dedicated features 
performed well; however, they were not comparable to the 
proposed models with both visualization intents and table 
features. In Table 3, “Ours (without BiDA)” refers to simpli-
fied versions of the proposed model in which � and � are the 
mean vectors of word embeddings �t and statistical features 
�j , respectively. When BiDA was applied to those models, 
there was significant performance improvement. “Intent” 
denotes the model without the statistical features of the 
table, while “Table” denotes the model without word embed-
dings from the visualization intent. Comparing “Intent” and 
“Table”, “Intent” showed a exhibited higher performance 

Fig. 6   Example of shape chart

6  https://​github.​com/​huggi​ngface/​trans​forme​rs.

https://github.com/huggingface/transformers
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than “Table”, and “Intent & Table” exhibited the highest 
performance, suggesting that both types of features were 
effective and visualization intents were more effective than 
tabular features. We conducted a randomized test with Bon-
ferroni correction for the differences between the best model 
and the other models, and found that all the pairs were sig-
nificant at � = 0.01.

We further investigated the performance of the best 
model with BiDA. Table  4 presents the performance 
for each visualization type, while Table 5 provides the 
terms that received the most attention in the visualiza-
tion intent for each visualization type. Formally, the 

“Attention” column in Table 5 indicates the average of 
the attention values for each word in the test set. We found 
that multi-polygon chart exhibited the highest prediction 
accuracy. The terms receiving the most attention in the 
multi-polygon chart included geographical terms such as 
state and region. Since the multi-polygon chart was the 

Fig. 7   Example of square chart

Table 2   Correspondence between mark type and visualization type

Mark type (this paper) Original visualization type

Area Area
Bar Bar, Stacked Bar
Circle Scatter, Bubble
Line Line
Multi-polygon Map
Pie Pie
Shape Scatter
Square Treemap

Fig. 8   Length of visualization intents
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only geography-related visualization type, prediction was 
easier than for the other visualization types. The second 
highest prediction accuracy was achieved by the Pie chart. 
The most attended terms in the Pie chart included pie and 
donut, which were related to the shape of the visualization. 
The visualization types that had high prediction accuracy 
had unique shapes and features that were not found in 
other visualizations. In contrast, area charts and line charts 
exhibited lower prediction accuracy, and tended to have 
low attention to visualization intents. This may be because 
there were no particularly effective words for predicting 
these types of visualizations.

Figure 10 illustrates the similarity between a column 
header and a word in a visualization intent, defined in Eq. 1. 
The correct visualization type for this example is “line” 
chart, which was successfully predicted by our model. The 
user-generated visualization was a line chart comparing the 
sales of paper and computing products. The figure demon-
strates that the depth of each word in the visualization intent 
changed significantly and that the similarity was not affected 
by the header, but was greatly affected by the visualization 
intent. It can be seen that the term trend received high atten-
tion in the visualization intent. Furthermore, our model also 
attended to visualized columns, such as Order Priority and 
Order Date.

4.3.2 � Visualized Column Identification

Table 6 presents the performance of the baseline and pro-
posed models in the task of visualized column prediction. 
“Table” is a simplified version of our proposed model and 
uses only the statistical features, that is, �j = �j . “Single”, 
“Multi” and “Pairwise” represent the model that does not 
use statistical features derived from the table. The results 

demonstrate that our BERT-based models significantly out-
performed the baseline models, which did not use BERT. 
In particular, our proposed Pairwise-Column BERT model 
outperformed the other models, indicating the effectiveness 
of using this model for predicting visualized columns. In 
contrast, Multi-Column BERT exhibited lower performance 
than Pairwise-Column BERT and Single-Column BERT, 
likely because Multi-Column BERT inputs all column head-
ers and cannot effectively train the correspondence between 
a visualization intent and a column header. In addition, 
Pairwise-Column BERT achieved a higher accuracy than 
Single-Column BERT. This finding is consistent with the 
higher effectiveness of the pairwise approach than that of 
the non-pairwise approach in document ranking tasks [17]. 
The prediction accuracy of Single-Column BERT and 
Multi-Column BERT was higher when used together with 
statistical features, whereas the prediction accuracy of Pair-
wise-Column BERT did not change greatly when statistical 
features were used. A Tukey honestly significant difference 
test revealed that the differences for all pairs were statisti-
cally significant ( p < 0.01 ) except for the pair of Pairwise 
Column BERT and Pairwise Column BERT with statistical 
features.

Table 7 presents the performance of Pairwise-Column 
BERT for each visualization type. “Area” and “Line” charts 
exhibited relatively high performance. Upon examining 
examples of these visualization types, we found that these 
types of charts were likely to have a visualized column rep-
resenting temporal information. This trend may help predict 
the correct visualized column. In contrast, “Pie” chart exhib-
ited the lowest performance among the eight visualization 
types, possibly because there are a wide variety of visualized 
columns used for “Pie” charts.

Figure 11 presents the performance of Pairwise-Column 
BERT for different numbers of terms in the visualization 

Fig. 9   Number of columns and visualized columns

Table 3   Performance of proposed and comparison methods in pre-
dicting the appropriate visualization type

The bold values indicate which model exhibited the highest perfor-
mance for each evaluation metric

Category Model Precision Recall F1

Baselines [2] Naive Bayes 0.222 0.139 0.084
K-Nearest Neighbor 0.468 0.415 0.434
Logistic Regression 0.313 0.205 0.201
Random Forest 0.467 0.420 0.438

Ours (without 
BiDA)

Intent 0.474 0.431 0.444
Table 0.463 0.362 0.372
Intent & Table 0.510 0.481 0.489

Ours (with BiDA) Intent + BiDA 0.491 0.428 0.442
Table + BiDA 0.454 0.374 0.395
Intent & Table + 

BiDA
0.536 0.500 0.512
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intents. It can be seen that the prediction accuracy was 
low for short visualization intents and increased as the 
length of the visualization intent increased. An exception 
was observed for 12 terms: the performance significantly 
decreased compared to that of 11 terms. This may be due to 
our experimental settings, in which that visualization intents 
were truncated at 12 words and, as a result, important terms 
in a visualization intent could not be used for predicting 
visualized columns. Figure 12 displays the performance of 
Pairwise-Column BERT for different numbers of columns. 
When the number of columns increased, the prediction accu-
racy decreased. This may simply indicate that the difficulty 
of the task increased as the number of choices increased. 
The difficulty did not appear to change significantly for more 
than 15 columns.

Figure 13 illustrates the strength of attention from [CLS] 
in the output layer of the Pairwise Column BERT model. 
Figure 13a presents the case in which a visualized column 
was successfully predicted by our model; this visualization 
displayed nations participating in the Olympic games. The 
header word “attended” received high attention, and our 
model appeared to capture the similarity between the header 
word “attended” and the visualization intent word “partici-
pate”. Figure 13b presents an example where a visualized 
column was successfully predicted. The ground truth of this 
example consisted of soccer player statistics. The header 
word “metric” received relatively high attention, which sug-
gests that our model was able to find a strong relationship 
between the word “metric” in the header and the word and 
“stats” in the visualization intent. Figure 13c presents a fail-
ure case, where the ground truth consisted of deer-vehicle 
collision statistics. The highest attention was given to term 
“id”, although this column was not a visualized column. A 
possible reason for this failure is that the model could not 
find appropriate correspondence between the visualization 
intent words and the column header words and mistakenly 
selected a column that is frequently used for visualization, 
(i.e., “id”).

4.4 � User Study

We conducted a user study and evaluated the proposed models 
using the visualization intent given by users. Four annotators 
were recruited to provide visualization intents. Each annotator 
provided 25 visualization intents, and we collected a total of 

Table 5   Most attended terms in the visualization intent for each visu-
alization type. The “Attention” column is the average of the attention 
values for each word in the test set

Type Term Attention

Area Area 0.984
Sheet 0.878
Chart 0.779
Time 0.585
Year 0.345

Bar Bar 1.449
Trend 1.086
Change 1.069
Area 0.950
Sheet 0.880

Circle Bubble 1.530
Map 1.490
Box 1.340
Trend 1.132
Sheet 0.870

Line Trend 1.040
Trends 1.001
Line 0.996
Sheet 0.883
Chart 0.839

Multipolygon Map 1.594
State 0.888
Sheet 0.878
Region 0.750
Top 0.681

Pie Pie 1.962
Donut 1.464
Sheet 0.874
Gender 0.826
Chart 0.819

Shape Map 1.649
Sheet 0.880
Top 0.698
Time 0.568
Year 0.419

Square Map 1.735
Table 1.230
Heat 0.946
Sheet 0.881
Top 0.618

Table 4   Performance of Intent & Table + BiDA for each visualiza-
tion type

Visualization type # of examples Precision Recall F1

Area 613 0.515 0.383 0.440
Bar 2761 0.486 0.596 0.535
Circle 2301 0.524 0.488 0.506
Line 1584 0.440 0.506 0.471
Multi-polygon 836 0.614 0.663 0.638
Pie 1365 0.565 0.570 0.568
Shape 1093 0.588 0.415 0.486
Square 966 0.558 0.381 0.453
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100 visualization intents from all annotators. They were pre-
sented with the title of visualization, visualization type, tabular 
data, and visualized columns, and asked to describe visualiza-
tion intents assuming that they were users trying to visualize 
the tabular data in the presented way. We then evaluated our 
model with the collected real users’ visualization intents, and 
found that results were similar to our original experiments.

Table 8 presents the results of visualization type predic-
tion with user-generated visualization intents. Our proposed 
model outperformed the baseline models and was able to 
perform effective prediction even with the input of user-
generated visualization intents.

Table 9 presents the results of visualized column predic-
tion with user-generated visualization intents. It can be seen 
that our proposed BERT-based models outperformed the 

paper vs computing trend strong growth trend for computing products
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Fig. 10   Visualization of the similarity matrix. The correct visualization type for this example is “line”, which was successfully predicted by our 
model. The user-generated visualization is a line chart comparing the sales of paper and computing products

Table 6   Performance of proposed and comparison methods for visu-
alized column identification

The bold values indicate which model exhibited the highest perfor-
mance for each evaluation metric

Category Model R-Precision nDCG@10

Baselines Random 0.335 0.506
Word similarity 0.356 0.543
BM25 0.449 0.622

Ours (without BERT) Table 0.439 0.592
Ours (with BERT) Single 0.592 0.719

Single & Table 0.603 0.734
Multi 0.531 0.663
Multi & Table 0.544 0.678
Pairwise 0.746 0.887
Pairwise & Table 0.750 0.890

Table 7   Performance of “Pairwise & Table” for each visualization 
type

Visualization type # of examples R-Precision nDCG@10

Area 613 0.792 0.918
Bar 2761 0.754 0.895
Circle 2301 0.742 0.885
Line 1584 0.780 0.908
Multi-polygon 836 0.758 0.892
Pie 1365 0.715 0.869
Shape 1093 0.742 0.880
Square 966 0.737 0.884
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baseline models and could successfully predict visualized 
columns. The results thus indicate that our proposed models 
perform well with user-generated visualization intents.

5 � Conclusions

In this paper, we proposed a visualization recommender 
system for tabular data given a visualization intent. The 
proposed method predicts the most suitable visualization 
type and visualized columns based on statistical features 
extracted from the tabular data, as well as semantic fea-
tures derived from the visualization intent. To predict 
the appropriate visualization type, we proposed a BiDA 
model that identifies important table columns using the 
visualization intent, and important parts of the intent 
using the table headers. To identify visualized columns, 

Fig. 11   Performance of “Pairwise & Table” for each length of visu-
alization intents

Fig. 12   Performance of “Pairwise & Table” for each number of col-
umns

Fig. 13   Visualization of the BERT attention

Table 8   Results of visualization type prediction with user-generated 
visualization intents

The bold values indicate which model exhibited the highest perfor-
mance for each evaluation metric

Model Precision Recall F1

Naive Bayes 0.032 0.118 0.039
Logistic Regression 0.200 0.180 0.169
K-Nearest Neighbor 0.363 0.257 0.277
Random Forest 0.329 0.251 0.273
Intent & Table + BiDA 0.382 0.385 0.379

Table 9   Results of visualized column prediction with user-generated 
visualization intents

The bold values indicate which model exhibited the highest perfor-
mance for each evaluation metric

Model R-score nDCG@10

Random 0.323 0.540
Word Similarity 0.357 0.570
BM25 0.465 0.650
Single BERT + Table 0.619 0.736
Multi BERT + Table 0.515 0.651
Pairwise BERT + Table 0.760 0.902
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we employed BERT to encode both visualization intents 
and table columns, and estimate which columns are the 
most likely to be used for visualization. Since there was 
no available dataset for this task, we created a new data-
set consisting of over 100 K tables and their appropriate 
visualizations. The experiments revealed that our proposed 
methods accurately estimated suitable visualization types 
and visualized columns. Future work will include predic-
tion of more detailed settings for data visualization such 
as layouts and styles.
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