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Abstract
Mobile apps represent essential tools in our daily routines, supporting us in almost every task. However, this assistance 
might imply a high cost in terms of privacy. Indeed, mobile apps gather a massive amount of data about individuals (e.g., 
users’ profiles and habits) and their devices (e.g., locations), where not all are strictly needed for app execution. According 
to privacy laws, apps’ providers must inform end-users on adopted data usage practices (e.g., which data are collected and 
for which purpose). Unfortunately, understanding these practices is a complex task for average end-users. The result is that 
they install apps without understanding their privacy implications. To support users in making more privacy-aware deci-
sions on app usage, we propose a risk estimation approach based on an analysis of the app’s code. This analysis adopts a 
hybrid strategy, exploiting static and dynamic code analyses. Static analysis aims at discovering which personal data an app 
is collecting to determine whether the target app is asking more than required. This gives the first estimation of the app’s 
risk level. In addition, we also perform a dynamic analysis of the target app’s code. This further analysis helps determining 
whether the collected personal data is consumed locally on the mobile device or sent out to external services. If this happens, 
the risk level has to be increased, as personal data are more exposed. To prove the proposal’s effectiveness, we run several 
experiments involving different groups of participants. The obtained accuracy results are promising and outperform those 
obtained with static analysis only.

Keywords  Mobile apps · Privacy risk assessment · Hybrid analysis

1  Introduction

Mobile apps represent essential tools in our daily routines, 
supporting us in almost every task. The market provides 
apps offering services that vary from social media/enter-
tainment to health monitoring, just to mention a few. The 
total number of installed Android apps in the market is 
approximately 258B in 2022, which equates to 20–60 apps 
per user’s device on average.1

The downside of these apps’ services is the high cost for 
privacy individuals might need to pay. Indeed, mobile apps 
gather a massive amount of information about individuals 
(e.g., users’ profiles and habits) and their devices (e.g., loca-
tions). Some of these data are not strictly necessary for the 
app’s functionality execution [1]. To limit the collection of 
unnecessary information, new privacy laws have been issued 
recently. As an example, EU GDPR2 introduces the data 
minimization principle, which requires collecting and retain-
ing only the personal data necessary for the app’s purposes.

Although these efforts resulted in a reduced number of 
access permissions required by apps [2], individuals are still 
facing problems in fully understanding the privacy implica-
tions of permissions they grant to apps and thus the underly-
ing privacy risks. To cope with this issue, several research 
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groups have recently started to investigate tools supporting 
users in taking more privacy-aware decisions on app usage. 
Some approaches estimate the privacy risk considering the 
app’s requested permissions and the app’s description (see 
Sect. 7 for more details). However, these solutions are not able 
to detect those malicious apps that gain access to sensitive 
data by exploiting side channels to bypass permissions [3].

A more promising approach relies on investigating app 
behavior by analyzing its source code. For instance, in [4] 
we leverage on static analysis of the app’s code to determine 
the usage of functions/constants used to collect personal 
information. This determines the app behavior in terms of 
data collection. Then, the app risk level is defined based on 
the deviation of its behaviour w.r.t. the “regular” one, that is, 
the usage of these functions/constants done by the majority 
of apps with similar business goals.

In this paper, we extend the risk estimation proposed 
in [4] by also taking into account the app behaviour w.r.t. 
sharing of personal data to third-parties. More precisely, in 
addition to determine the collected personal data via static 
analysis (as [4] did), we also analyse the app at run-time, via 
source’s code dynamic analysis, to determine whether the 
collected personal data is consumed locally on the mobile 
device or sent out to external services. If this happens, the 
risk level has to be increased, as personal data are more 
exposed. To take into account the app’s behaviour w.r.t both 
data collection and sharing, in this paper, we propose a new 
hybrid analysis-based risk measure. Moreover, to prove that 
the hybrid analysis-based risk measure is more effective, we 
run several experiments with the involvement of different 
groups of participants (i.e., experts and crowd workers), by 
comparing static and hybrid analysis-based risk measures. 
The obtained results show that hybrid analysis received 
better accuracy (i.e., varying from 83.4 to 87%) than static 
analysis risk accuracy (i.e., varying from 78 to 80.7%).

The remainder of this paper is organized as follows. 
Sect.  2 provides the modeling of app’s behavior w.r.t. data 
collection, which is used by the considered risk measures. 
Sections 3 and 4 introduce the static and hybrid analysis-
based risk measures. Details on implemented hybrid-based 
approach are provided in Sect. 5. Section 6 presents experi-
mental results, whereas related work are discussed in Sec-
tion 7. Finally, Sect. 8 concludes the paper.

2 � Modelling Apps behavior

Both static and hybrid approaches consider how much per-
sonal information a target app potentially collects during its 
execution. The key idea is to estimate the risk by comparing 
its behavior w.r.t. data collection (called app signature) with 
the common behaviors of applications with a similar busi-
ness goal (called category signature).

2.1 � App signature

To model the app’s behavior, we first determine which per-
sonal information it collects. For this aim, we rely on the 
static analysis approach proposed in [4], where the app’s 
source code is parsed to only consider those instructions 
used to collect personal data. As described in [4], these 
instructions have been selected by reviewing the Google-
supported APIs and choosing only those related to seven 
types of personal data, namely: user location (e.g., city, 
country), public places where users have been; media (e.g., 
users’ image, video, audio); connection (e.g., wifi name, 
used to infer user location in case of public wifi, activity 
on Bluetooth, NFC); hardware (e.g., camera, USB devices); 
telephony (e.g., contacts info, phone number); user profile 
(e.g., birthday, gender, name); and health and fitness data 
(e.g., heart rate, step counts, body fat). In total, we identified 
66 APIs, with 1360 classes and 13535 functions/constants.3.

Given an app a, its app signature is computed by con-
sidering the collection of each of the above-mentioned data 
type separately. In particular, given a data type dt , the app 
behaviour w.r.t. dt is defined as a vector Vdt

a
 of n elements, 

where n is the number of functions/constants able to retrieve 
information of type dt . An element in Vdt

a
 is set to 1 if a’s 

source code contains the corresponding function/constant; 0, 
otherwise. The final app signature is modelled as a set Sa of 
seven vectors, one for each data type dt (i.e., Vlocation

a
 ; Vplaces

a  , 
Vmedia
a

 , Vconnection
a

 , Vhardware
a

 , Vtelephony
a  , Vprofile

a  , Vhealth&fitness
a ).

An example of a portion of app signature w.r.t. the 
media data type for app1 is given in Fig.  1b, where it is 
reported that app1 exploits the following functions/con-
stants: getDomain(), Authority, resume(), getMaxSpl(), 
and getMinSpl().

2.2 � Category Signature

To model the common behavior of applications with similar 
business goals, in [4] we compute the app signature for a 
selection of apps belonging to the same category and extract 
from them a common pattern.

More precisely, given a category Cat the corresponding 
category signature, denoted as SCat , consists of seven vec-
tors, one for each of the considered data type dt, denoted as 
Vdt
Cat

 . Let A be the set of apps selected in Cat category, each 
Vdt
Cat

 is generated such that: Vdt
Cat

[j] is 1 if at least 50% of the 
corresponding elements in the signatures of apps in A is 1 
(i.e., ‖{Vdt

a
[j] = 1 ∣ a ∈ A}‖ > 50% ); 0, otherwise.

3  The API taxonomy tree is available at https://​github.​com/​SonHa​
Xuan/​Andro​id-​App-​Risk-​Estim​ation/​tree/​master/​data/​Stati​cAnal​ysisP​
arseT​ree.​json.

https://github.com/SonHaXuan/Android-App-Risk-Estimation/tree/master/data/StaticAnalysisParseTree.json
https://github.com/SonHaXuan/Android-App-Risk-Estimation/tree/master/data/StaticAnalysisParseTree.json
https://github.com/SonHaXuan/Android-App-Risk-Estimation/tree/master/data/StaticAnalysisParseTree.json
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An example of a portion of signature for the entertain-
ment category w.r.t. media data type is given in Figure  1(b).

3 � Risk Estimation Based on Static Analysis

The key idea of the approach in [4] is to assess the risk of 
an app a of category Cat, by comparing its behaviour (i.e., 
app signature Sa ) with the behaviour extracted from the cor-
responding category (i.e., Cat’s signature, SCat ). The rational 
is that the lower is the deviation of Sa from SCat , the lower is 
the risk that a collects unnecessary personal data. Thus, to 
estimate the risk a function DF  is needed to measure the dis-
tance between Sa and SCat , aka two vectors of 0/1 elements. 
For this purpose, in [4] we did not exploit a vector distance, 
like the Hamming distance. Indeed, this type of distance 
only considers distributions of 0/1, without taking into 
account the semantics of the corresponding API functions. 
For example, apps with two very Hamming-similar signa-
tures (e.g., with only 1 bit of difference) may differ in using 
only one function/constant that collects very different data. 
In contrast, to consider the API’s semantics, [4] builds a 
distinct taxonomy for each data type, by exploiting the hier-
archy of APIs used to collected the corresponding data. Fig-
ure 1a presents a portion of the taxonomy for the media data 
type (media): the root node indicates the data type, first-level 
nodes represent the considered APIs, whereas second-level 
nodes model their classes. Finally, leaves indicate the func-
tions/constants, that is, the personal data item collected by 
that function/constant. According to this representation, each 
element in Vdt

a
 and Vdt

Cat
 corresponds to a leaf of the corre-

sponding dt taxonomy. Thanks to this taxonomy, the distance 
between an element in Vdt

a
 and one in Vdt

Cat
 is computed by 

exploiting a semantic similarity measure [5]. In particular, 
given two elements Vdt

a
[i] and Vdt

Cat
[i] , the similarity measure 

is exploited only when Vdt
a
[i] = 0 and Vdt

Cat
[i] = 1 . Indeed, 

this is the only deviation meaningful for risk estimation, 
since Vdt

a
[i] = 1 implies that a uses a function/constant (i.e., 

the one in the i-th position) to collect a piece of data that the 
majority of apps in the same category Cat is not collecting 
(i.e., Vdt

Cat
[i] = 0).4 In this case, to understand the importance 

of the deviation, the collected data (i.e., those corresponding 
to Vdt

a
[i] = 1 ) are compared with the most similar data item 

collected by the majority of apps in the same category. First, 
the data items usually required by the apps in the same cat-
egory are determined (i.e., those elements in Vdt

Cat
 with values 

1). From these, the item that, based on dt taxonomy, is more 
similar to the one required only by a, i.e., Vdt

a
[i] , is selected. 

Hereafter, we refer to this item as the closest collected data 
item of Vdt

a
[i] , denoted as ccd(Vdt

a
[i]).

Example 1  Let us consider Fig. 1a, representing a portion 
of the media data type taxonomy, and the corresponding 
portion of app1 ’s signature and its category signature given 
in Fig. 1b. For simplicity, to each second-level nodes (i.e., 
classes) and leaves (i.e., functions/constants) we associate 
a distinct letter used as index (e.g., “A” is associated with 
android.media.tv.TVContentRanting).

Let us consider the 1-st element in app1 ’s signature (i.e., 
G). Since Vmedia

app1
[G] =1 and Smedia

ent
[G]=0, we need to find G’ 

Fig. 1   a Portion of the media 
data type taxonomy; b an 
example of app and category 
signature

4  Note that also Vdt
a
[i] = 0 and Vdt

Cat
[i] = 1 represents a deviation. 

However, it is not considered relevant in terms of risk estimation 
since, in this case, a does not collect a data item that the majority 
does.
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closest collected data item, (ccd(Vmed
app1

[G] ). According to 
Fig. 1a, this requires to search G’s closest collected data 
among leaves in the subtree rooted at G’s father node (i.e., 
A), that is, H. The value of H is 0; therefore, we examine 
other leaves by recursively traversing A’s parent (android.
media.tv). Here, we found B node with two leaves I and 
J. Since J’s value is 1, ccd(Vmed

app1
[G] ) is J.

Once the closest collected data item of Vdt
a
[i] has been 

determined, the risk level associated with the considered 
deviation is given as the dissimilarity between Vdt

a
[i] and 

ccd(Vdt
a
[i]) , in that more similar are the two data items less 

risky is the usage of Vdt
a
[i] by a. Thus, the risk of an app a, 

w.r.t a given data type dt, is computed as the sum of these 
dissimilarities, only in case Vdt

a
[i] = 0 and Vdt

Cat
[i] = 1 , as the 

following definition states.

Definition 1  Risk of an app w.r.t a data type [4]. Let a 
be a target app and Cat be its category. Let dt be one of the 
considered data types, and let Vdt

a
∈ Sa and Vdt

Cat
∈ SCat be the 

vectors corresponding to dt in Sa and in Cat’s signature SCat , 
respectively. The risk of app a w.r.t. data type dt is estimated 
as follows:

where df (Vdt
a
[i],Vdt

Cat
[i]) is computed as follows:

where

•	 ccd is the function returning the closest collected data 
item of Vdt

a
[i]);5

•	 WP() is the Wu & Palmer similarity measure [6] used to 
compute the semantic similarity between Vdt

a
[i] and its 

closet collected data item.6

(1)DF
dt (a) =

∑
i∈Vdt

a
df (Vdt

a
[i],Vdt

Cat
[i])

‖Vdt
a
‖

{
1 −WP(Vdt

a
[i], ccd(Vdt

a
[i])) ifVdt

a
[i] = 1,Vdt

Cat
[i] = 0;

0 otherwise

In the following, we provide an example of risk computa-
tion w.r.t. a data type.

Example 2  Let us consider again app1 signature and the sig-
nature of the entertainment category given in Fig.  1a. 
According to Example 1, the closest collected data item of 
the first app1 signature’s element set to 1 (i.e., Vmedia

app1
[G] =1) 

is node J. We therefore compute the Wu & Palmer similarity 
v a l u e  b e t w e e n  n o d e s  G  a n d  J  ( w i t h 
lca = }}android.media.tv�� ) as follows:

app1 ’s signature has also four other elements with value 1, 
namely I, P, Q, and R. Two of them (i.e., Q and R) have 
the same value of the corresponding element in the enter-
tainment category signature, so their similarity value is 
0. For the other two, that is, I and P, the closest collected 
items are J and O, respectively. Therefore, WP(I,  J) = 
WP(P, O)=0.667.

The risk of app1 w.r.t media data type is then computed 
as follows:

The risk of an app is then defined by combining the risk 
values w.r.t each data type dt, as the following definition 
explains.

Definition 2  Static risk of an app [4]. Let a be a target app 
and Cat be its category. The static risk of a is defined as:

Example 3  Let us consider again app1 ’s signature presented 
in Fig. 1a. Let’s assume that app1 collects only the media 
data type (media). The risk of app1 wrt the media data type 
computed in Example 2 is 0.111. The static risk of app1 is 
therefore as follows:

WP(G, J) =
2 × depth(lca)

dist(G) + dist(J) + 2 × depth(lca)

=
2 × 1

2 + 2 + 2 × 1
= 0.333

DF
media(app1)

=
(1 − 0.333) + (1 − 0.667) + (1 − 0.667) + 0 + 0

12

= 0.111

(3)Riskstatic(a) =

∑
∀dt DF

dt (a)

7

Riskstatic(app1) =
DF

med(app1)

7
=

0.111

7
= 0.016

5  Starting from the leaf corresponding to Vdt
a
[i] in dt’s taxonomy, 

ccd() traverses the taxonomy up to Vdt
a
[i] ’s father node f, and searches 

among the leaves in the subtree rooted at f an item whose correspond-
ing value in Vdt

Cat
 is 1. This process is repeated till finding a data item 

in Vdt
Cat

 with value 1 or reaching the root. In this latter case, ccd(Vdt
a
) is 

set to the root element.
6  Given two nodes n1 and n2 of a taxonomy, Wu & Palmer similarity 
measure is defined as:

where lca is the lowest common ancestor between n1 and n2 , 
depth(lca) is the length of the path from lca to the root of the tree, 

(2)WP(n1, n2) =
2 ∗ depth(lca)

dist(n1) + dist(n2) + 2 ∗ depth(lca)

and dist(n1) (i.e., dist(n2) ) is the length of the path from n1 to lca (i.e., 
n2 to lca).

Footnote 6 (continued)
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4 � Risk Estimation Based on Hybrid Analysis

As described in the previous section, the risk estimation pro-
posed in [4] takes into consideration only the app behavior 
w.r.t. data collection. With the hybrid approach, we acknowl-
edge that in addition to data collection is also relevant to 
consider the data usage, particularly whether the collected 
data are passed to third parties during the app execution. At 
this aim, we exploit dynamic analysis to determine whether 
the collected data are used only locally or embedded into 
communication packets sent to external service (see Sect. 5 
for more details). More precisely, given an app, for each 
function/constant detected by the static analysis, we deter-
mine if the corresponding collected data are shared with 
third parties, transferred to the app server, or elaborated 
only locally. Then, the percentage of functions/constants 
that transfer data outside is used as a weight to increase the 
risk obtained through the static analysis. This is done at the 
level of data type as the following definition explains.

Definition 3  Hybrid risk of an app w.r.t a data type . Let 
a be a target app and dt be one of the considered data types. 
Let Count(Vdt

a
= 1) be the number of elements in Vdt

a
 with 

value equal to 1. Let Countoutside be the number of functions/
constants in Vdt

a
 that transfer data outside. The hybrid risk of 

a w.r.t. data type dt is estimated as follows:

Example 4  Let us consider again app1 whose signature has 
been given in Fig. 1a, and its risk w.r.t the media data type 
( DF

media(app1) ) computed in Example 2. Let us assume that 
4 of the 5 functions used by app1 transfer data outside. The 
risk of app1 w.r.t the media data type is as follows:

Once the hybrid risk value for each data type has been 
computed, we can compute the hybrid risk of an app, as 
follows.

Definition 4  Hybrid risk of an app. Let a be a target app. 
The hybrid risk of a is defined as:

Example 5  Let us consider again app1 whose signature is 
given in Fig. 1b, and let us assume that app1 shares only the 
media data type. The hybrid risk of app1 is as follows:

(4)DF
dt
hybrid

(a) = DF
dt (a) +

Countoutside

Count(Vdt
a
= 1)

DF
media
hybrid

(app1) = DF
media(app1) +

4

5

= 0.111 + 0.8 = 0.911

(5)Riskhybrid(a) =

∑
∀dt DF

dt
hybrid

(a)

7

5 � Implementation and Datasets

This section provides more details on the implemented 
hybrid analysis. Moreover, we explain how we generate the 
datasets used to validate the risk measures.

5.1 � Hybrid Analysis

Given a target app a, we first perform the static analysis to 
compute the app signature. For this aim, we retrieve the app 
Java code by decompiling its Android apk files to retrieve 
the app’s class files. Then, we parse the obtained code 
to detect the invoked/declared APIs, classes, functions, and 
constants, based on the keyword import and their activ-
ity scopes specified in ”{” … ”}”. This is done consider-
ing only functions/constants related to the seven selected 
personal data types as described in Sect. 3.7 We then run 
the dynamic analysis of the target app a, to determine the 
data sharing behavior of each function/constant used by the 
app. More precisely, based on Definition 3, we determine 
for each data type dt, the number of functions/constants in 
Vdt
a

 that transfer data outside (i.e., Countoutside ) and the num-
ber of functions/constants that appear in app’s code (i.e., 
Count(Vdt

a
= 1)).

To compute Countoutside , we exploit the MobiPurpose 
approach proposed in [7]. Using the approach in [7], we 
obtain the runtime network traffic between an app a and 
its server/third parties. The outcome of the network traffic 
analysis is modeled as Key-Value ( K − V  ) pairs, where 
K is the type of transferred data (a.k.a data item) and V is its 
value (see [7] for more details).

To determine Countoutside , we need then to associate each 
transferred data (i.e., ( K − V ) pair) with a data type. For this 
purpose, we analyze each function/constant of a data type 
and, based on its returned value, we associate a possible data 
item. Figure 2 shows the result of this process, that is, (a 
portion of) data items associated with the seven considered 
personal data types. We then link the data item in the K − V  
pair to the corresponding functions/constants.

5.2 � Datasets

To run the experiments, we build two datasets: the Training-
Set used to generate category signatures, and the TargetSet 

Riskhybrid(a) =
DF

media
hybrid

(app1)

7
=

0.911

7
= 0.130

7  The static analysis code is available at https://​github.​com/​SonHa​
Xuan/​IEEE-​Smart​IoT.

https://github.com/SonHaXuan/IEEE-SmartIoT
https://github.com/SonHaXuan/IEEE-SmartIoT
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containing apps to be evaluated with the proposed risk 
measures.

We exploit the dataset used in [4], which was obtained 
by downloading in November 2019, some apps from the 
first 10% of the most-downloaded apps list.8 In particular, 
those apps whose APK files were available in the app mar-
ket.9 This resulted in 21,784 apps, out of which 18,098 were 
successfully decompiled (83.08%) for running the static 
analysis approach presented in [4]. The resulting apps were 
then divided into two disjoint datasets: the TrainingSet with 
16,266 apps (90%) and TargetSet with 1,832 target apps 
(10%). W refer the interested reader to [4] for more details 
on this dataset.

More recently, in November 2021, before running the 
dynamic analysis, we updated the TargetSet by removing 
those apps that became unavailable in Play Store since 
November 2019. We removed 453 apps, resulting thus a 
TargetSet with 1,379 apps.

To run the dynamic analysis on apps in the TargetSet, 
we used 3 smartphones with different version of Android 
OS (i.e., 7, 10, and 12). We run each app from a minimum 
of 3–5  mins as maximum, depending on the device’s hard-
ware and the OS version. Not all apps in the TargetSet have 
generated traffic. This is due to three main reasons: (i) the 
app works offline; (ii) our dynamic analysis tool did not gen-
erate any input that activates requests to the servers; (iii) 
the app requires login (e.g., Whatsapp) preventing the tool 
from using the service. During this test, we captured 145,656 
packets over seven days. Among those, we removed the traf-
fic with empty-body requests, resulting thus in a final dataset 
of 92,561 packets. All the collected data are presented in our 

proof-of-concept prototype available at: https://​github.​com/​
SonHa​Xuan/​Andro​id-​App-​Risk-​Estim​ation.

6 � Experiments

The purpose of the experiments is to validate our hybrid risk 
measure and compare it with the static one proposed in [4], 
by comparing the risk estimations with those provided by 
users. To collect user risk evaluation, we developed a web 
application through which participants to the experiments 
provide their feedback and risk estimation based on a three-
step survey. In the first step, participants read some informa-
tion related to the target app, namely: the app’s description, 
features, and category. In the second step, participants are 
asked to rate whether they feel necessary that the target app 
collects and/or shares a given data item. This is done for 
each data item (e.g., address, image, audio, video) collected 
and/or transferred by the app. Participants can express their 
opinion based on a five-level scale, ranging from Very 
unnecessary to Very necessary. This step ensures 
that each participant carefully considers which data items 
are indeed collected/shared by the target app and thus makes 
a conscious judgment of the app’s risk level. Moreover, the 
collected information is used to verify the quality of partici-
pant feedback, in that, we manually inspected all feedback 
to check consistency between associated risk levels and col-
lected labels to remove possible random answers.

The last step requires participants to select a risk level 
for the target app. The level is selected as a grade from a 
five-point Likert scale, Very low –Very high.10 As a 

Fig. 2   A portion of the seven personal data types

10  We used a five-point Likert scale since it is a good settlement 
between required users’ effort and response quality [8].

8  https://​www.​appbr​ain.​com/​stats/​google-​play-​ranki​ngs/.
9  APK files have been downloaded at https://​apkpu​re.​com/.

https://github.com/SonHaXuan/Android-App-Risk-Estimation
https://github.com/SonHaXuan/Android-App-Risk-Estimation
https://www.appbrain.com/stats/google-play-rankings/
https://apkpure.com/
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further quality check, we requested each participant to write 
a short motivation for the selected risk level. The duration 
of each survey is about 30 minutes.

The following sections describe the participants involved 
in the experiments and the obtained results.

6.1 � Participants

We utilized two groups of participants to better evaluate the 
performance of our measures and how these are influenced 
by user characteristics. The first group consists of expert 
users. These are 59 experts working in the Computer Sci-
ence field, in both academic (40 users) and industrial insti-
tutions (19 users) in different countries (e.g., USA, Italy, 
Switzerland, Germany, Sweden, France, Cyrus, Greece, 
Vietnam, Morocco, and Singapore). Among 40 participants 
working in academic institutions, 14 are lecturers/profes-
sors, whereas the others are Ph.D. students and post-docs. 
For the participants working in industry, they are junior and 
senior developers. Participants have an average age of 29.5 
(from 25 to 34).

The second group of participants was selected to ensure 
the involvement of a good number of participants of different 
nationalities, ages, and educational levels. At this purpose, 
we exploit the Microworkers crowdsourcing platform11 for 
the enrollment of participants (called workers), by selecting 
only those with the best rating in the Microworkers platform. 
We received 131 participants’ feedback; however, we used 
only 92 of them, because 30 workers do not pass our qual-
ity checks (e.g., the worker used answer automation tools); 
whereas, 9 workers do not join our second experiment, that 
is, the one to evaluate our risk estimation based on hybrid 

analysis. The participants are from different countries (e.g., 
UK, Italy, India, Spain, Portugal, USA), with an average 
age of 28.6 (from 18 to 52). They have different educational 
levels (e.g., student, bachelor) and profile (e.g., accountant, 
teacher, manager). 58% of the participants have a bachelor 
degree or equivalent, whereas 6% of them have a master 
degree or a Ph.D. Workers were paid $6 USD for each suc-
cessful feedback.

6.2 � Evaluation of Crowdsourcing‑Based 
Participants

We first compare the static and hybrid risk levels of the 
crowdsourcing-based dataset (cfr. Definition 4) with the risk 
level provided by the participants. For each each risk level 
(i.e. Very Low (VL), Low (L), Neutral (N), 
High (H) and Very High (VH)), we compute the F1 
score, accuracy (Ac), precision (Pr) and recall (Re) (see [4] 
for more details on the adopted metrics). Table 1 presents the 
results for both experiments. Generally, the accuracy of risk 
levels generated by the hybrid analysis (83.46%) is higher 
than that of the static analysis (78.04%).

6.3 � Evaluation of Expert‑Based Participants

Table 2 presents the results obtained by comparing our the 
static and hybrid risk measures with the risk levels provided 
by the expert participants. For both groups, the experiments 
reported in Table 2 confirms that the hybrid risk measure 
is in line with the participants’ feedback, with an accuracy 
higher than that of the crowdworkers, i.e., static analysis 
(80.78 vs.78.04%) and hybrid analysis (87.03 vs. 83.46%), 
respectively.

Comparing the experiments’ results for both datasets (i.e., 
Tables 1 and 2 ), we observe that the accuracy is improved 

Table 1   Precision (Pr), Recall 
(Re), F1, and Accuracy (Ac) 
scores for the crowdsourcing- 
based dataset

Static risk measure Hybrid risk measure

VL L N H VH VL L N H VH
Pr 71.0% 80.1% 87.7% 76.3% 77.1% 79.5% 84.0% 95.0% 82.5% 88.3%
Re 73.1% 84.8% 67.6% 74.6% 79.4% 86.1% 77.8% 76.0% 75.0% 94.2%
F1 72.0% 82.4% 76.3% 75.4% 78.3% 82.7% 80.8% 84.4% 78.6% 91.1%
Ac 78.04% 83.46%

Table 2   Precision (Pr), Recall 
(Re), F1, and Accuracy (Ac) 
scores for the expert-based 
dataset

Static risk measure Hybrid risk measure

VL L N H VH VL L N H VH
Pr 80.3% 82.3% 76.3% 78.5% 83.0% 84.2% 86.1% 91.1% 84.6% 95.1%
Re 76.8% 83.2% 70.3% 76.3% 89.0% 91.4% 93.9% 78.5% 89.2% 95.6%
F1 78.5% 82.8% 73.2% 77.4% 85.9% 87.7% 89.9% 84.3% 86.8% 95.4%
Ac 80.78% 87.03%

11  https://​www.​micro​worke​rs.​com/.

https://www.microworkers.com/
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by the hybrid risk measure for both the participant groups. 
We explain this improvement by the fact that the hybrid 
risk measure provides participants with more information 
to assess the app’s risk level. Indeed, we noticed crowd-
workers assign the Neutral rating when they lack the 
knowledge/background to assess the risk level of target 
apps. This has been confirmed by also analysing the partici-
pant’s comments. As an example, let us consider comments 
provided by crowdworker Crow48 for a given app. In the 
experiment on the static risk measure he/she commented: 
“It is not enough information to conclude whether the app 
is risky or not. Neutral is my choice for this app” => Neu-
tral. Whereas, in the experiment on hybrid risk measure, 
he/she commented: “I see this app not very reliable, I would 
not share my data”=> High. A further example is from an 
expert participant, i.e. Expert12, that in the experiment on 
static risk measure commented: “...I don’t understand what 
this app is expected to do...”=> Neutral; whereas, in the 
experiment on hybrid risk measure he commented, for the 
same app: “This app does not appear, based on its descrip-
tion, to require advanced access to the phone to function 
properly. The fact that it requires so many permissions is 
therefore troubling. Several access categories do not seem 
directly related to what the app does. Specifically, telephony 
and media access should not be necessary based on the app 
description...” => High.

The F1 score of the last two classes (High, Very 
high) is also increased in the hybrid risk setting, especially 
the Very high class. The explanation for this improve-
ment is that the participants become aware of the app sharing 
behaviour, and this increases the assigned risk level. As an 
example, the expert participant Expert2 commented: “They 
transfer data regarding WiFi so they can infer the location. 
For their use case, they only need internet connection”. This 
aligns well with our hybrid analysis approach, i.e., the more 
data are shared, the higher the risk (cfr. Def. 1).

7 � Related Work

In the following, we review existing proposals for risk analy-
sis of mobile apps. We organize the surveyed approaches 
based on the adopted techniques.

7.1 � Risk Estimation Based on App Metadata 
Analysis

Several studies detect malicious behavior by analyzing app’s 
metadata available on the Android market (e.g., app descrip-
tion, requested permissions, rating). For instance, Sarma 
et al. [9] and Peng et al. [10] used probabilistic models to 
detect malicious apps by comparing the app’s functionali-
ties with its required permission. Similarly, Wu et al. [11] 

developed a framework exploiting deep learning to detect 
correlations between the app’s description and the requested 
permissions. These correlations assist users in determining 
whether an app description is accurate. Besides permissions, 
Chia et al. [12] employed app popularity, user evaluations, 
and external community ratings to define an app privacy 
risk. Unfortunately, metadata does not always precisely 
describe the app actual behaviour w.r.t. personal data col-
lection. Indeed, many studies (e.g., [13]) shown that apps 
can utilise more permissions than what they state in their 
metadata. To cope with this limitation, static analysis has 
been used to analysis apps’ behaviour.

7.2 � Risk Estimation Based on Static Analysis

Literature offers several proposals exploiting static analysis 
to examine app’s permissions. As an example, Felt et al. 
[14] determine whether an Android app is over-privileged 
by analysing the Android Manifest.xml file, search-
ing for those permissions that are rarely used. Moreover, 
Moutaz et al. [15] and Jianmao et al. [16] considered a set 
of 30 permissions labeled by Google LLC as dangerous,12 
and marked apps using these permissions as risky. Enck 
et al. [17] proposed a system that identifies if an app uses a 
dangerous combination of permissions. To this end, authors 
manually defined a set of permission combinations, such 
as WRITE_SMS and SEND_SMS, representing a risk. Via 
static analysis, they then labelled an app as malicious if it 
makes use of these combinations. All the above-mentioned 
approaches determine the app’s risk depending only on its 
requested permissions. However, malicious apps could cir-
cumvent the permission system and gain access to protected 
data by applying side channels [3], such as employing device 
sensors to uniquely identify users [18], or using the MAC 
address of the WiFi access point to infer user’s location [19].

To overcome this issue, similarly to this proposal, some 
studies proposed to exploit static analysis of app’s code to 
detect the APIs/libraries usage rather than only simply per-
mission requests. As an example, the approaches proposed 
by [20–23] assumed an API/library secure (i.e., “regular”) 
when it is used by several apps (as an example, more than 
60% in [21]). On this basis, these proposals cluster apps 
based on their APIs/libraries usage. They label an app as 
not risky if it belongs to a cluster, that is, the app exploits 
API/libraries commonly used, or risky if it is an outlier. 
For instance, Backes et al. [20] focus only on third party 
libraries to detect risky apps (aka, outlier). Wang et al. [21] 
considered the APIs exploited by apps of the same category 
to define regular usage and detect risky apps. Whereas, 

12  The list of dangerous permission is available at: https://​devel​oper.​
andro​id.​com/​refer​ence/​andro​id/​Manif​est.​permi​ssion.

https://developer.android.com/reference/android/Manifest.permission
https://developer.android.com/reference/android/Manifest.permission
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leveraging on machine learning classifiers, Zhang et al. [22] 
developed APIGraph to model app’s API usage, for malware 
detection.

Static analysis has been exploited also by Zhuo et al. [24], 
and Abhishek et al. [25] to generate a graph representing 
the data flow among API/classes and the possible data col-
lection. In particular, these approaches build two distinct 
graphs, the first considering a set of malicious apps and the 
second one based on a set of apps considered safe. Then, 
by comparing the two graphs, authors are able to identify 
whether an app has to be considered dangerous.

However, the main limitation of the above-mentioned 
approaches is that they provide a binary label (i.e., risky/not 
risky) for apps, which might not be so practical in assisting 
users in their decisions.

To cope with this limitation, in [4] we proposed a risk 
assessment approach able to assign a risk level to a mobile 
app leveraging on static analysis. As explained also in Sec-
tion 3, given a target app, the risk level is computed based 
on the deviation of its behaviour w.r.t personal data col-
lection (app signature) from the common behaviour (called 
category signature) of apps having the same business goal 
of the target app. Even if this solution overcome some of the 
limitations of previous proposals based on static analysis, 
it does not take into consideration whether apps share the 
collected data to external parties, which might compromise 
user privacy. Moreover, static analysis techniques have some 
limitations in case of code obfuscation [26], code encoding 
[27], and dynamic loading [28].

7.3 � Risk Estimation Based on Hybrid Analysis

In general, dynamic analysis can be used to capture the app’s 
malicious behaviors at runtime, overcoming the main draw-
backs of static analysis mentioned in the previous section. 
For instance, by monitoring the network traffic, it is possible 
to detect whether an app shares the collected data with third 
parties [29, 30].

However, dynamic analysis might demand high resources 
and a long time to perform the analysis. To overcome this 
limitation, hybrid approaches combining static and dynamic 
analysis are emerging [31, 32]. As an example, some propos-
als (e.g., SmartDroid [33]) exploited static analysis to iden-
tify user-interface (UI) components to be then dynamically 
analyzed, rather than evaluating all UI components.

Similarly, other approaches used static analysis to speed 
up subsequent dynamic analysis, by removing some unnec-
essary tests in the app’s runtime analysis, that do not com-
promise the final result [34, 35]. Cam et al. [36] developed 
uitHydroid, a tool to detect the collection of sensitive data by 
apps. In particular, it exploited static analysis of permissions 
to determine the types of required data (e.g., address, per-
sonal information). Then, uitHydroid applied the dynamic 

analysis to monitor the actual data flow exiting from the 
mobile to capture any sharing activity that leaks the col-
lected data to other apps/parties. Similarly, AspectDroid 
[37] first exploited static analysis to determine the expected 
collected data based on the required permissions. Via an 
automated testing environment, AspectDroid then detected 
the abuse resource behavior, i.e., data collected without the 
corresponding permission.

A further proposal, Sensdroid [38], exploited the hybrid 
approach to detect collaboration among apps to collect user 
data (i.e., side-channel attacks). In particular, it classified 
permissions into two groups of intents, namely explicit and 
implicit intent. The explicit-intentioned permissions allow 
the collection of data that are used only by app’s execu-
tion without sharing them with other parties. In contrast, 
implicit-intentioned permissions allow data sharing with 
other apps/parties. Sensdroid exploited dynamic analysis to 
determine the implicit-based permissions of the installed 
apps.

In contrast, Hou et al. [39] introduced a structured het-
erogeneous information network (called HinDroid) for mal-
ware detection. HinDroid models not only API calls but also 
relationships among them (e.g., API calls belonging to the 
same code block, having the same package name, or using 
the same invoke method). Based on this network, HinDroid 
is able to determine the similarity level between two apps. 
Malware can be detected by identifying similarities between 
the target apps and the labelled apps (i.e., malware data-
set). Along the same line, Ye et al. [40] focused not only on 
exploiting relationships between API calls but also relation-
ships between apps within the same ecosystem (i.e., whether 
they coexist in the same smartphone, they are developed by 
the same developer, or manufactured by the same company). 
In addition, [40] proposed the HG-Learning method based 
on a deep neural network (DNN) classifier to detect anoma-
lous malware behavior. This approach was then extended in 
[41] to cope with new attack techniques; for instance, Com-
mand and Control (CC) malware (e.g., TigerEyeing trojan).

Nevertheless, the above-mentioned approaches focus only 
on specific data/resource (e.g., SMS [37], API calls [39–41]), 
or permissions [38, 42] extracted from Android-Mani-
fest.xml. In particular, the static analysis is adopted in a 
coarse-grained manner since these approaches only consider 
permissions and APIs. Therefore, it is not possible to detect 
fine-grained personal data leakage (e.g., longitude, latitude, 
locale). In contrast, in our approach we perform a more fine-
grained analysis, as we analyze functions/constants calls. 
Moreover, the focus of the above-mentioned approaches is 
binary malware detection, whereas our target is to determine 
the risk of an app (also a begign one) in terms of leakage of 
personal information. As such, we keep track of information 
such as the purpose of data collection and sharing, which are 
not considered by the above-mentioned proposals.
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8 � Conclusions

This paper addresses the issue of assessing an app’s risk 
level, by proposing an approach that estimate the risk based 
on the data collection behavior of an app and its data shar-
ing pattern. More precisely, we have proposed an hybrid 
analysis approach consisting of two phases i) static analy-
sis of app’s code to determine data collection behavior; ii) 
dynamic analysis of the network traffic to determine data 
sharing behavior. We experimentally evaluate our approach 
with both expert users and crowd-workers, and the achieved 
results are encouraging. In the future, we plan to conduct 
a more comprehensive experimental assessment. We also 
plan to extend the approach to detect possible mismatches 
between an app privacy policy and its actual behavior w.r.t 
personal data usage. Finally, we plan to test alternative mod-
ellings of category and app signatures (e.g., taking also into 
account the frequency of functions/constants usage).
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