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Abstract
Incomplete skyline query is an important operation to filter out pareto-optimal tuples on incomplete data. It is harder than 
skyline due to intransitivity and cyclic dominance. It is analyzed that the existing algorithms cannot process incomplete 
skyline on massive data efficiently. This paper proposes a novel table-scan-based TSI algorithm to deal with incomplete 
skyline on massive data with high efficiency. TSI algorithm solves the issues of intransitivity and cyclic dominance by two 
separate stages. In stage 1, TSI computes the candidates by a sequential scan on the table. The tuples dominated by others 
are discarded directly in stage 1. In stage 2, TSI refines the candidates by another sequential scan. The pruning operation 
is devised in this paper to reduce the execution cost of TSI. By the assistant structures, TSI can skip majority of the tuples 
in phase 1 without retrieving it actually. The extensive experimental results, which are conducted on synthetic and real-life 
data sets, show that TSI can compute skyline on massive incomplete data efficiently.
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1  Introduction

The skyline operator filters out a set of interesting tuples 
from a potential huge data set. Among the specified skyline 
criteria, a tuple p is said to dominate another tuple q if p is 
strictly better than q in at least one attribute, and no worse 
than q in the other attributes. The skyline query actually 
discovers all tuples which are not dominated by any other 
tuples.

Due to its practical importance, skyline queries have 
received extensive attentions [2, 3, 5, 6, 8, 9, 14–17, 19, 
20]. However, the overwhelming majority of the existing 
algorithms only consider the data set of complete attrib-
utes, i.e., all the attributes of every tuple are available. In 
real-life applications, because of the reasons such as the 
delivery failure or the deliberate concealment, the data set 
we encounter often is incomplete, i.e., some attributes of 
tuples are unknown [13]. On incomplete data, the existing 
skyline algorithms cannot be applied directly, since all of 
them assume the transitivity of dominance relationship. 

On complete data, the transitivity rule is that: if p1 domi-
nates p2 , and p2 dominates p3 , obviously p1 dominates p3 
by the definition of dominance. The transitivity is the basis 
of the efficiency of the existing skyline algorithms which 
utilize indexing, partitioning and pre-sorting operation. On 
incomplete data, some attributes of tuples are missing, the 
traditional definition of dominance does not hold any more, 
and the dominance relationship is re-defined on incomplete 
data. Given the skyline criteria, p and q are two tuples on 
incomplete data, let C be the common complete attributes 
of p and q among the skyline criteria, p dominates q if p is 
no worse than q among C and strictly better than q in at least 
one attribute among C. From the dominance relationship 
defined above, transitivity does not hold on incomplete data.

As illustrated in Fig. 1, the specified skyline criteria are 
{A1,A2,A3} . In the table, p1 dominates p2 since the com-
mon attribute among the skyline criteria of p1 and p2 is A1 , 
p1.A1 < p2.A1 . Similarly, p2 dominates p3 . But p1 does not 
dominate p3 here and transitivity does not hold. Besides, 
it is found that p3 dominates p1 . On incomplete data, we 
may face the issue of cyclic dominance. The two issues, 
intransitivity and cyclic dominance, make the processing 
of skyline on incomplete data different from the skyline on 
complete data.

The current incomplete skyline algorithms can be clas-
sified into three categories: replace-based algorithms [7], 

 *	 Xixian Han 
	 xxhan1981@163.com

1	 School of Computer Science and Technology, Harbin 
Institute of Technology, No.92, Xidazhi Street, Harbin, 
Heilongjiang, China

http://orcid.org/0000-0001-5477-9249
http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-022-00183-7&domain=pdf


103Efficient Skyline Computation on Massive Incomplete Data﻿	

1 3

sorted-based algorithms [1], and bucket-based algorithms 
[7, 10]. The replace-based algorithms first replace the 
incomplete attributes with a specific value, then compute 
traditional skyline on transformed data, and finally refine 
the candidate to compute the results by pairwise compari-
son. Normally, the number of candidate on massive data is 
large and the pairwise comparison is significantly expensive. 
Sorted-based algorithms utilize the selected tuples with pos-
sible high dominance via pre-sorted structures one by one 
to prune the non-skyline tuples. It usually performs many 
passes on scan on the table and will incur high I/O cost on 
massive data. Bucket-based algorithms first split the tuples 
into different buckets according to their attribute encoding 
to make the tuples in the same buckets have the same encod-
ing and hold the transitivity rule, then compute local skyline 
results on every buckets, and finally merge the local skyline 
results to obtain the results. In incomplete skyline computa-
tion, the skyline criteria size usually is greater than that on 
complete data due to the cyclic dominance, the bucket num-
ber involved in bucket-based algorithms often is large, and 
the number of local skyline results is relatively great. The 
computation operation and merge operation of local skyline 
results often incur high computation cost and I/O cost on 
massive data. To sum up, the existing algorithms cannot 
process incomplete skyline query on massive data efficiently.

Based on the discussion above, this paper proposes TSI 
algorithm (Table-scan-based Skyline over Incomplete data) 
to compute skyline results on massive incomplete data with 
high efficiency. In order to reduce the computation cost and 
I/O cost, the execution of TSI consists of two stages. In stage 
1, TSI performs a sequential scan on the table and maintains 
candidates in memory. For each tuple t retrieved currently in 
stage 1, any candidate dominated by t is removed. And if t is 
not dominated by any candidates, t is added to the candidate 
set. In stage 1, TSI does not consider the intransitivity and 
cyclic dominance in incomplete skyline computation, but 
just discards the tuples which are not final results definitely. 
In stage 2, another sequential scan is executed to refine the 
candidates. For each tuple t retrieved currently in stage 2, 
it discards any candidates dominated by it. When stage 2 
terminates, the candidates in memory are the incomplete 
skyline results. In this paper, it is found that the cost in stage 
1 dominates the overall cost of TSI, so a pruning operation 

is devised to skip the tuples in stage 1. The useful data struc-
tures are pre-constructed, which is used to check whether a 
tuple is dominated before retrieving it. The extensive experi-
ments are conducted on synthetic and real-life data sets. The 
experimental results show that the pruning operation can 
skip overwhelming majority of tuples in stage 1 and TSI 
outperforms the existing algorithms significantly.

The contributions of this paper are listed as follows:

–	 This paper proposes a novel table-scan-based TSI algo-
rithm of two stages to process skyline query on massive 
incomplete data efficiently.

–	 Two novel data structure is designed to maintain infor-
mation of tuples and obtain pruning tuples with strong 
dominance capability.

–	 This paper devises efficient pruning operations to reduce 
the execution cost of TSI, which directly skips the tuples 
dominated by some tuples before retrieving them actu-
ally.

–	 The experimental results show that TSI can compute 
incomplete skyline on massive data efficiently.

The rest of the paper is organized as follows. The related 
work is surveyed in Sect. 2, followed by preliminaries in 
Sect. 3. The existing algorithms are analyzed in Sect. 4. 
Baseline algorithm is developed in Sect. 5. Section 6 intro-
duces TSI algorithm. The performance evaluation is pro-
vided in Sect. 7. Section 8 concludes the paper.

2 � Related Work

Since [2] first introduces the skyline operator into database 
environment, skyline has been studied extensively by data-
base researchers [2, 3, 5, 6, 8, 11, 14–17, 20]. However, the 
most of the existing skyline algorithms only consider the 
complete data, and they utilize the transitivity of dominance 
relationship to acquire significant pruning power. They can-
not be directly used for the skyline query on incomplete data, 
where the dominance relationship is intransitivity and cyclic. 
In the rest of this section, we survey the skyline algorithms 
on incomplete data. The current incomplete skyline algo-
rithms can be classified into three categories: replace-based 
algorithms, sorted-based algorithms, and bucket-based 
algorithms.

2.1 � Replace‑Based Algorithms

Khalefa et al. [7] propose a set of skyline algorithms for 
incomplete data. The first two algorithms, replacement and 

Fig. 1   Data set of example table
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bucket, are the extension of the existing skyline algorithms 
to accommodate the incomplete data. Replacement algo-
rithm first replaces the incomplete attributes by a special 
value to transform the incomplete data to complete data. 
Traditional skyline algorithm can be used to compute the 
skyline results SKYcomp on the transformed complete data, 
which also is the superset of the skyline results on the 
incomplete data. Finally, the tuples in SKYcomp are trans-
formed into their original incomplete form, and the exhaus-
tive pairwise comparison between all tuples in SKYcomp is 
performed to compute the final results. Bucket algorithm 
first divides all the tuples on incomplete data into differ-
ent buckets to make all tuples in the same bucket have the 
same bitmap representation. The dominance relationship 
within the same bucket is transitive now since the tuples 
here have the same bitmap representation. The traditional 
skyline algorithm is utilized to compute the skyline results 
within each bucket, which is called local skyline. The local 
skyline results for all buckets are merged as the candidate 
skyline. The exhaustive pairwise comparison is performed 
on the candidate skyline to compute the query answer. ISky-
line algorithm employs two new concepts, virtual points and 
shadow skylines, to improve bucket algorithm. The execu-
tion of ISkyline consists of three phases. In phase I, each 
newly retrieved tuple is compared against the local skyline 
and the virtual points to determine whether the tuple needs 
to be (a) stored in the local skyline, (b) stored in the shadow 
skyline, (c) discarded directly. In phase II, the tuples newly 
inserted into local skyline are compared with the current 
candidate skyline; ISkyline updates the candidate skyline 
and the virtual points correspondingly. Every time t tuples 
are kept in the candidate skyline, ISkyline enters into phase 
III, updates the global skyline, and clears current candidate 
skyline. The similar processing continues until the end of 
input is reached and ISkyline returns the global skyline.

The replace-based algorithms first replace the incomplete 
attributes with a specific value, then compute traditional sky-
line on transformed data, and finally refine the candidate to 
compute the results by pairwise comparison. Normally, the 
number of candidate on massive data is large and the pair-
wise comparison is significantly expensive.

2.2 � Sorted‑Based Algorithms

Bharuka et al. [1] propose a sort-based skyline algorithm 
SIDS to evaluate the skyline over incomplete data. SIDS 
first sorts the incomplete data D in non-descending order for 
each attribute. Let Di be the sorted list with respect to the ith 
attribute. Only the ids of the tuples are kept in Di , and the 
ids of the tuples whose ith attributes are incomplete are not 

stored. SIDS performs a round-robin retrieval on the sorted 
lists. For each retrieved data p, if it is not retrieved before, 
it is compared with each data q in the candidate set, which 
is initialized to be the whole incomplete data. If p and q 
are compared already, the next data in the candidate set are 
retrieved and processed. Otherwise, if p dominates q, q is 
removed from the candidate set. And if q dominates p and p 
is in candidate set, p is removed from the candidate set also. 
If the number of p being retrieved during the round-robin 
retrieval is equal to the number of its complete attributes and 
p is not pruned yet, p can be reported to be one of the skyline 
results. SIDS terminates when candidate set becomes empty 
or all points in sorted lists are processed at least once.

Sorted-based algorithms utilize the selected tuples with 
possible high dominance via pre-sorted structures one by 
one to prune the non-skyline tuples. It usually performs 
many passes on scan on the table and will incur high I/O 
cost on massive data.

2.3 � Bucket‑Based Algorithms

Lee et al. [10] propose a sorting-based SOBA algorithm to 
optimize the bucket algorithm. Similar to the bucket algo-
rithm, SOBA also first divides the incomplete data into a 
set of buckets according to their bitmap representation, 
then computes the local skyline of tuples in each bucket, 
and finally performs the pairwise comparison for the sky-
line candidates (the collection of all local skylines). SOBA 
uses two techniques to reduce the dominance tests for the 
skyline candidates. The first technique is to sort the buckets 
in ascending order of the decimal numbers of the bitmap 
representation. This can identify the non-skyline points as 
early as possible. The second technique is to rearrange the 
order of tuples within the bucket. By sorting tuples in the 
ascending order of the sum of the complete attributes, the 
tuples accessed earlier have the higher probability to domi-
nate other tuples and this can help reduce the number of 
dominance tests further.

Bucket-based algorithms first split the tuples into differ-
ent buckets according to their attribute encoding to make 
the tuples in the same buckets have the same encoding and 
hold the transitivity rule, then compute local skyline results 
on every buckets, and finally merge the local skyline results 
to obtain the results. In incomplete skyline computation, 
the skyline criteria size usually is greater than that on com-
plete data due to the cyclic dominance, the bucket num-
ber involved in bucket-based algorithms often is large, and 
the number of local skyline results is relatively great. The 
computation operation and merge operation of local skyline 
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results often incur high computation cost and I/O cost on 
massive data.

For the algorithms mentioned above, the dominance over 
incomplete data is defined on the common complete attrib-
utes. There are also other definitions of dominance over 
incomplete data. Zhang et al. [21] propose a general frame-
work to extend skyline query. For each attribute, they first 
retrieve the probability distribution function of the values 
in the attribute by all the non-missing values on the attrib-
ute and then convert incomplete tuples to complete data by 
estimating all missing attributes. And a mapping dominance 
is defined on the converted data. Zhang et al. [18] propose 
PISkyline to compute probabilistic skyline on incomplete 
data. It is considered in [18] that each missing attribute value 
can be described by a probability density function. The prob-
ability is used to measure the preference condition between 
missing values and the valid values. Then, the probability 
of a tuple being skyline can be computed. PISkyline returns 
the K tuples with the highest skyline probability.

Discussion Throughout this paper, we use the definition 
of dominance over incomplete data as [7]. Firstly, this domi-
nance notion is commonly used in most skyline algorithms 
over incomplete data. Secondly, the estimation of the incom-
plete attribute values may be undesirable in some cases. 
Therefore, we do not guess the incomplete attribute in this 
paper and not consider such algorithms anymore.

In this paper, we consider the skyline over massive 
incomplete data, i.e., the data set cannot be kept in memory 
entirely. It is found that the existing algorithms, including 
[1, 7, 10], all assume their processing of the in-memory 
data. Their performance will be seriously degraded on mas-
sive data. Since the cardinality of skyline query increases 
exponentially with respect to the size of skyline criteria [4], 

replacement algorithm often generates a large number of 
skyline candidates and the pairwise comparison among the 
candidates incurs a prohibitively expensive cost. Bucket-
based algorithms, such as bucket algorithm, ISkyline and 
SOBA, have the problem that they have to divide the data set 
into different buckets. Given the size m of the skyline crite-
ria, the number of the buckets can be as high as 2m − 1 ; this 
will cause serious performance issue when m is not small. 
For SIDS, it utilizes one selected tuple to prune the non-
skyline tuples in the candidate set, and this incurs a pass of 
sequential scan on the data. Thus, it requires many passes of 
scan on the data to finish its execution, and this will incur a 
high I/O cost on massive data.

3 � Preliminaries

Given an incomplete table T of n tuples with attributes 
A1,… ,AM , some attributes of the tuples in T are incomplete. 
The attributes in T are considered to be numerical type, let 
A1,… ,Am be the specified skyline criteria. Throughout the 
paper, it is assumed that the smaller attribute values are 
preferred. In this paper, the attributes with known values 
are called complete attributes, while the attributes with 
unknown values are called incomplete attributes. ∀t ∈ T  , 
t has at least one complete attribute among A1,A2,… ,Am , 
while all other attributes have a probability p ( 0 < p ≤ 1 ) of 
being incomplete. The frequently used symbols in this paper 
are listed in Table 1.

The dominance over incomplete data is given in Defini-
tion 1. The incomplete skyline returns the tuples in T which 
are not dominated by any other tuples.

Table 1   Symbols description Symbol Description

T An incomplete table
Tpart The current part of T loaded in memory
t A tuple in T
C The common complete attribute(s)
PI The positional index of tuple X
S The size of allocated memory for storing tuples of T in each time X
Scnd A set maintaining candidate tuples
SLi The sorted list which is built for the i-th attribute
MCR The bit-vector representing the membership checking result of SLi
RIA The bit-vector representing whether the attribute is complete
Sc The set of the complete attributes of t
NUMc The number of the complete attributes for each tuple
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Definition 1  (Dominance over incomplete data) Given 
table T and skyline criteria A1,… ,Am , ∀t1, t2 ∈ T  , let C be 
their common complete attributes among skyline criteria, t1 
dominates t2 (denoted by t1 t2 ) if ∀A ∈ C , t1.A ≤ t2.A , and 
∃A ∈ C , t1.A < t2.A.

Definition 2  (Positional index) ∀t ∈ T  , its positional index 
(PI) is a if t is the ath tuple in T.

The positional index is defined in Definition 2. We 
denoted by T(a) the tuple with PI = a , by T(a,… , b)(a ≤ b) 
the tuples in T whose PIs are between a and b, by 
T(a,… , b).Ai be the set of attribute Ai in T(a,… , b).

4 � The Analysis for the Existing Algorithms

The existing skyline algorithms over incomplete data can 
be classified into three types: replacement-based algorithm, 
bucket-based algorithm, and sort-based algorithm. As dis-
cussed in Sect. 2, replacement-based algorithm usually gen-
erates too many skyline candidates and sort-based algorithm 
often needs to perform many passes on the table before 
returning the results. They both incur much high computa-
tion cost and I/O cost on massive data. In the following part 
of this section, we analyze the performance of bucket-based 
algorithm.

Given table T and the skyline criteria {A1,A2,… , 
Am} , ∀t ∈ T  , t can be encoded by an m-bit vector t.B. 
∀i, 1 ≤ i ≤ m , if t.Ai is a complete attribute, the ith bit of t.B 
is 1 (denoted by t.B(i) = 1 ); otherwise, the ith bit of t.B is 
0 ( t.B(i) = 0 ). Note that the most significant bit is the first 
bit. Bucket-based algorithm divides tuples in T according 
to their encoded vectors. Therefore, the tuples in the same 
bucket share the same vectors, and the transitive dominance 
relation holds among the tuples in a bucket. Traditional sky-
line algorithm can be utilized to compute the local skyline 
within the bucket. Any tuple t1 dominated by a tuple t2 in 
the same bucket can be discarded directly, since it cannot 

be skyline result and any tuples which can be dominated 
by t1 can be dominated by t2 naturally. Of course, there are 
other techniques to optimize the pairwise comparison among 
skyline candidates [10].

As illustrated in Fig. 2, for analysis, we assume that the 
bitmap encoding of the buckets consists of m cases with 
equal likelihood: ∃i, 1 ≤ i ≤ m , the values of Ai must be 
known and other attributes can be unknown with the prob-
ability p independently. Given an m-bit b = (b1b2 … bm) 
of some bucket, Cnt1(b) = r , where Cnt1 is a function to 
return the number of bit 1 in a bit-vector. Of course, in 
this paper, 1 ≤ r ≤ m . The bit-vector b can be occurred 
in r cases. In each case, the probability of generating b is 
(1 − p)r−1 × pm−r , i.e., besides the selected complete attrib-
ute, there are (r − 1) complete attributes and (m − r) incom-
plete attributes. Therefore, the probability prb of generating 
b among the overall cases is prb =

r

m
× (1 − p)r−1 × pm−r . 

The number Nb of tuples which have the encoded bit-vector 
b in T is nb = n × prb.

Theoretically, bucket-based algorithm can split T into 
all 2m − 1 buckets. The size of skyline criteria of skyline 
on incomplete data usually is greater than that on complete 
data due to the cyclic dominance. This can be verified in the 
existing skyline algorithms on incomplete data [1, 7, 10]. 
Then, the number of all buckets is not small. For example, 
given m = 20 , there are possibly 1048575 buckets. Then, 
bucket-based algorithm has to maintain a large number of 
buckets. For one thing, this increases the management bur-
den of the file system; for another, this makes each bucket 
maintain a relatively small number of tuples with not small 
skyline criteria size.

The size of the skyline candidates for pairwise compari-
son, i.e., the local skylines of all buckets, is 
sizesc =

∑(11…11)

b=(00…01)
�SKYb� , where SKYb are the skyline tuples 

in bucket b. Under the independent assumption, the number 
of local skyline in the bucket of encoded bit-vector b can be 
estimated as ((ln nb)+�)

r−1

(r−1)!
 [4], where � ≈ 0.57721 is the Euler-

Mascheroni constant. But in this paper, it is found that the 
cardinality estimation is much lower than the actual cardi-
nality when m is relatively large. Of course, we can use other 
cardinality estimation methods [12, 22] in such case. For 

Fig. 2   Different cases of bitmap encoding

Fig. 3   Illustration of row table in running example
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simplicity, we still use the cardinality estimation in [4], since 
it still can provide useful insight for our analysis. Given 
n = 108 , m = 20 and p = 0.5 , the total number of all local 
skyline results is 7641060 even by use of the cardinality 
formula mentioned above, which is much lower than the 
actual value. The number of local skyline results, which is 
used to perform pairwise comparisons, is still too high.

To sum up, the existing skyline algorithms on massive 
incomplete data all have their performance issue.

5 � Baseline Algorithm

The existing algorithms, as mentioned in Secst. 2 and 4, 
have rather poor performance and very long execution time 
on massive incomplete data. Therefore, this section first 
devises a baseline algorithm BA which can be used as a 
benchmark against the algorithm proposed in this paper. 
Different from the existing methods, BA adopts a block-
nested-loop-like execution. It first retrieves T from the 
beginning and loads a part of T into the memory, com-
pares the tuples in memory with all tuples in T, removes 
the dominated tuples in the memory. Each time the tuples 
left in memory are compared with all other tuples and can 
be reported as part of incomplete skyline results. Then, the 
next part of T is loaded and the similar processing is exe-
cuted; the iteration continues until all tuples in T are loaded 
into memory once and compared with all other tuples. In 

this paper, let S be the size of allocated memory for stor-
ing tuples of T each time, the number of table scan in BA 
is 8×M×n

S
+ 1 . In order to reduce the I/O cost in BA, a n-bit 

bit-vector Bret , each bit initialized with 1 is maintained. 
In the first iteration, the tuples of size S bytes are loaded 
into memory. Let Tpart be the current part of T loaded in 
memory. The tuples in Tpart are compared with all tuples 
in T. ∀t = T(a) , if t is dominated by some tuple in Tpart , the 
ath bit in Bret is set to 0. Then, in the next iteration, suppose 
that the next retrieved tuple is T(b), if Bret(b) = 1 , T(b) is 
retrieved; otherwise, T(b) skips directly since it cannot be 
a incomplete skyline tuple.

Example 1  In the rest of this paper, we use a running exam-
ple, as depicted in Fig. 3, to illustrate the execution of algo-
rithms proposed in this paper. In the running example, we 
set M to be 3, m to be 3, n to be 16 and S to be 256 bytes. 
The value field of the attribute is [0, 100). According to the 
parameters, the execution of BA divides into two iterations. 
In the first iteration, T(1,… , 8) are loaded into memory. As 
depicted in Fig. 4, in the first iteration, only T(8) is left and 
reported as a incomplete tuple. Besides, T(10), T(11), T(13) 
are dominated by the in-memory candidates in the first itera-
tion and they are skipped in the second iteration. At the end 
of the second iteration, T(12) and T(15) are left and reported 
as incomplete skyline tuples. On the whole, the skyline 
results in the running example are {T(8), T(12), T(15)}.

6 � TSI Algorithm

In this paper, we propose a new algorithm TSI (Table-scan-
based Skyline over Incomplete data) to process skyline over 
massive incomplete data efficiently. TSI performs two passes 
of scan on the table to compute the skyline results. Sec-
tion 6.1 describes the basic execution of TSI algorithm. The 
pruning operation is presented in Sect. 6.2.

6.1 � Basic Process

The basic process of TSI consists of two stages. In stage 1, 
TSI performs the first-pass scan on T to find the candidate 
tuples, while in the stage 2, TSI scans T again to discard the 
candidates which are dominated by some tuple. Algorithm 1 
is the pseudo-code of the basic process.

Fig. 4   Illustration of execution of BA algorithm
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Algorithm 1 TSI basic(T)
Input: T is an incomplete table
Output: Scnd a set maintaining the skyline tuples over T

1: initialize Scnd ← ∅
2: // Stage 1 find the candidate tuples
3: while T has more tuples do
4: retrieve the next tuple t of T ;
5: if Scnd = ∅ then
6: Scnd ← Scnd ∪ t;
7: else
8: while Scnd has more tuples do
9: retrieve the next tuple p of Scnd;
10: if p is dominated by t then
11: remove p from Scnd;
12: end if
13: end while
14: if t is dominated by p then
15: discard t;
16: else
17: Scnd ← Scnd ∪ t;
18: end if
19: end if
20: end while
21: // Stage 2 discard the candidates which are dominated by some tuples
22: while T has more tuples do
23: retrieve the next tuple t of T ;
24: while Scnd has more tuples do
25: retrieve the next tuple can of Scnd;
26: if can is dominated by t then
27: remove can from Scnd;
28: end if
29: end while
30: end while
31: return Scnd;

Theorem 1  When the first-pass scan of TSI is over, Scnd 
maintains a superset of skyline results over T.

Proof  ∀t1 = T(pi1) , if t1 is a skyline tuple, there is no other 
tuple in T which can dominate t1 . At the end of stage 1, t1 
obviously will be kept in Scnd . If t1 is not a skyline tuple, and 
there is another tuple t2 = T(pi2) which can dominate t1 . If 
pi1 < pi2 , t2 will be retrieved after t1 and remove t1 from Scnd . 
If pi1 > pi2 , t2 is retrieved before t1 . If t2 is dominated by 
some tuple and discarded, t1 still will be kept in Scnd at the 
end of stage 1. Q.E.D.

In stage 2, TSI performs another sequential scan on T. 
Let t be the currently retrieved tuple (line 22-23), any candi-
dates are removed from Scnd if they are dominated by t (line 
26-27). It is proved in Theorem 2 that the candidates in Scnd 
are the skyline results at the end of stage 2.

In stage 1, TSI retrieves the tuples in T sequentially and 
maintains the candidate tuples in a set Scnd (empty initially) 
(line 1). Let t be the currently retrieved tuple. If Scnd is 
empty, TSI keeps t in Scnd (line 5-6). Otherwise, Scnd is iter-
ated over, any candidate which is dominated by t is removed 
from Scnd (line 10-11). At the end of iteration, if t is domi-
nated by some candidate in Scnd , t is discarded (line 14-15); 
otherwise, TSI keeps t in Scnd (line 16-17). In stage 1, TSI 
does not consider the intransitivity and cyclic dominance 
of skyline on incomplete data. Any candidates is discarded 
if it is dominated by some tuple, even though the candidate 
may dominate the following tuples. In this way, TSI does 
not need to maintain the dominated tuples and reduces the 
in-memory maintenance cost significantly. It is proved in 
Theorem 1 that Scnd contains a superset of the query results 
at the end of stage 1.
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Theorem 2  When the second-pass scan of TSI is over, Scnd 
maintains the skyline results over T.

Proof  ∀t1 ∈ Scnd , if t1 is not a skyline tuple, there is another 
tuple t2 = T(pi2) which can dominate t1 . In the second-pass 
scan, TSI will discard t1 when retrieving t2 . Q.E.D.

The existing algorithms utilize many methods, such as 
replacement, sortedness and bucket, to deal with intransitiv-
ity and cyclic dominance. They usually incur high execution 
cost on massive incomplete data, as analyzed in Sects. 2 and 
4. In this paper, TSI neglects the intransitivity and cyclic 
dominance in the first-pass scan and leaves the refinement 
of the skyline results in the second-pass scan.

Example 2  The execution in stage 1 of TSI in the running 
example is illustrated in Fig. 5. Initially, the candidate set 
Scnd is empty. Then, as the first sequential scan is performed, 
Scnd = {T(8), T(12), T(15), T(16)} at the end of stage 1. In 
stage 2, another sequential scan is executed to refine the can-
didates. As depicted in Fig. 6, T(16) in Scnd is dominated by 
T(3). Finally, TSI returns {T(8), T(12), T(15)} as incomplete 
skyline results.

Time complexity On massive incomplete data, the major-
ity of the execution cost of TSI is consumed in stage 1. 
The reason is that every tuple retrieved in stage 1 needs 
to compare with all candidates in Scnd and the size of Scnd 

increases during the first-pass scan on T, while the size of 
Scnd decreases gradually in stage 2.

Time complexity of stage 1. As shown in Algorithm 1, 
the time complexity of stage 1 is determined by the nested 
loop, the outer loop from line 3 to Line 20, and the inner 
loop from Line 8 to Line 13. Assume that there are n tuples 
in the incomplete table, in other words, algorithm 1 needs 
to retrieve n tuples. The iteration count of the outer loop is 
O(n), since time complexity is the amount of time taken by 
an algorithm to run as a function of the input size. The inner 
loop involves one sequential scan on Scnd , whose size is no 
more than n. For each iteration in the inner loop, the opera-
tions take in constant time; thus, the time complexity of the 
inner loop is O(|Scnd|) . On the whole, the time complexity 
of stage 1 is determined by the number of tuples in T and 
the number of candidates in Scnd , i.e., the time complexity 
of stage 1 is O(n ∗ |Scnd|).

Time complexity of stage 2. The execution of stage 2 is 
described in Algorithm 1. Obviously, the cost of stage 2 is 
similar to stage 1, i.e., the product of n and the size of Scnd ; 
it might be insignificant compared with the cost of the fol-
lowing operations. The reason is that if the skyline candi-
dates are relatively small, the size of Scnd with skyline subset 
generating in stage 1 is much large than the size of Scnd with 
skyline tuples generating in stage 2 and the size of Scnd in 
stage 1 often dominates the overall execution cost. On the 
whole, the time complexity of algorithm 1 is O(n2).

In Sect. 6.2, we will propose pruning method to skip the 
unnecessary tuples in the sequential scan to improve the per-
formance TSI further.

6.2 � Pruning Operation

6.2.1 � Intuitive Idea

On massive incomplete data, it is analyzed that the majority 
of the execution cost of TSI is consumed in stage 1. In stage 
1, TSI computes the candidates of the skyline over T. Obvi-
ously, any tuple must not be a skyline tuple if it is dominated 
by some tuple. In stage 1, TSI utilizes some pre-constructed 
data structure to skip the tuples in T which are dominated. In 
this way, TSI will speed up its execution in stage 1, since the 

Fig. 5   Illustration of execution in stage 1 of TSI

Fig. 6   Illustration of execution in stage 2 of TSI
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pruning operation not only reduces the I/O cost to retrieve 
tuples, but also reduces the computation cost of dominance 
checking.

6.2.2 � Dominance Checking on Incomplete Data

Given t1 ∈ T  , ∀t2 ∈ T  , let C be the common complete 
attributes among skyline criteria of t1 and t2 . For one thing, 
if t1 t2 , it means that ∀A ∈ C , t1.A ≤ t2.A and ∃A ∈ C , 
t1.A < t2.A . Suppose that t1 is obtained currently, we can 
utilize the values of t1 to skip the tuples dominated by it. For 
another, it C is empty, t1 and t2 cannot be compared in terms 
of dominance checking. Therefore, the key to the dominance 
checking on incomplete data is (1) the comparison of com-
plete attributes, (2) the representation of incomplete attrib-
utes. In the following, we introduce how to construct data 
structures to solve the two issues.

In the paper, the value of any incomplete attribute 
is regarded as the positive infinity since the smaller val-
ues are preferred. Given table T(A1,… ,AM) , the sorted 
list SLi(1 ≤ i ≤ M) is built for each attribute. The schema 
of SLi is SLi(PIT ,Ai) , where PIT is the positional index of 
the tuple in T, and the tuples of SLi are arranged in the 
ascending order of Ai . By the sorted lists, TSI constructs 
the structure MCR (Membership Checking Result) to com-
pare the complete attributes. For sorted list SLi(1 ≤ i ≤ M) , 
MCRi,b(1 ≤ b ≤ ⌊log2 n⌋) is a n-bit bit-vector represent-
ing the membership checking results of SLi(1,… , 2b).PIT . 
∀t = T(a)(1 ≤ a ≤ n)  ,  i f  a ∈ SLi(1,… , 2b).PIT  , 
MCRi,b(a) = 1 ; otherwise, MCRi,b(a) = 0 . MCRi,b(a) is the 
ath bit of MCRi,b . The maximum values of SLi(1,… , 2b).Ai 
(1 ≤ b ≤ ⌊log2 n⌋) are kept in a ar ray ITVi ,  i .e., 
ITVi[b] = SLi(2

b).Ai.
For the representation of incomplete attributes, TSI 

performs a sequential scan on T and constructs the struc-
ture RIA, which consists of M n-bit bit-vectors. For 
RIAi(1 ≤ i ≤ M) , ∀t = T(a)(1 ≤ a ≤ n) , if T(a).Ai is a com-
plete attribute RIAi(a) = 1 ; otherwise, RIAi(a) = 0.

Example 3  The required data structures mentioned above are 
illustrated in Fig. 7. SL1, SL2, SL3 are three sorted lists, whose 
elements are arranged in the ascending order of A1,A2,A3 , 
respectively. MCR1,1 is a 16-bit bit-vector representing the 
membership checking results of SL1(1, 21).PIT  , i.e., 12 
and 8. Therefore, the 8th bit and 12th bit in MCR1,1 are 1, 
MCR1,1 = 0000000100010000 . ITV1 keeps the attribute val-
ues of exponential gaps in SL1 , i.e., SL1(21).A1 , SL1(22).A1 , 
SL1(2

3).A1 , SL1(24).A1 , ITV1 = {26, 47, 65,+∞} . The other 
MCR bit-vectors and other ITVs can be obtained similarly. 
The structure RIAi represents the incomplete values of Ai . 

In the running example, T(1).A1 and T(4).A1 are incomplete 
attribute values, therefore, RIA1 = 0110111111111111 . 
Similarly, we can generate RIA2 and RIA3.

By the structures MCR and RIA, given t1 ∈ T  , we 
want to know which tuples in T are dominated by t1 . Let 
Sc be set of the complete attributes among A1,A2,… ,Am 
of t1 , without loss of generality, assume that S

c
= {A1,… , 

A|Sc|} . ∀Ai ∈ Sc(1 ≤ i ≤ |Sc|) , we determine the first 
value ITVi[bi] of ITVi which is greater than t1.Ai , i.e., 
ITVi[bi − 1] ≤ t1.Ai < ITVi[bi] , here ITVi[0] is assigned 
negative infinity. Let DBVt1

 be the n-bit bit-vector of domi-
nance checking corresponding to t1 , whose bits are initial-
ized to bit 1. It is proved by Theorem 3 that the bit 1s of 
DBVt1

= (
⋀�Sc�

i=1
¬MCRi,bi

) ∧ (
⋁�Sc�

i=1
RIAi) correspond to the 

tuples dominated by t1.

Theorem  3  The bit 1s of DBV
t1
= (

⋀�S
c
�

i=1
¬MCR

i,b
i
) ∧ (

⋁�S
c
�

i=1
RIA

i
)  

represent the tuples which are dominated by t1.

Proof  As mentioned above, the value bi is determined as the 
minimum integer value satisfying ITVi[bi] > t1.Ai . There-
fore, the bit 1s of ¬MCRi,bi

 represent the tuples whose Ai 
values are greater than t1.Ai . Since we treat the incomplete 
attribute values as positive infinity, 

⋀�Sc�
i=1

¬MCRi,bi
 represents 

the tuples whose values of A1,… ,A|Sc| are all greater than 
those of t1 . Given t2 among these tuples, if at least one of 
A1,… ,A|Sc| of t2 is complete attribute, t2 is dominated by t1 
according to the dominance definition over incomplete data. 
If all of A1,… ,A|Sc| of t2 are incomplete, t1 and t2 are not 
comparable from the perspective of dominance relationship. 

Fig. 7   Illustration of MCR and RIA in the running example
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The bit 1s of 
⋁�Sc�

i=1
RIAi mean that at least one of A1,… ,A|Sc| 

is complete, and the bit 0s of 
⋁�Sc�

i=1
RIAi indicate that all of 

A1,… ,A|Sc| are incomplete. Consequently, the bit 1s of 
DBVt1

= (
⋀�Sc�

i=1
¬MCRi,bi

) ∧ (
⋁�Sc�

i=1
RIAi) represent the tuples 

which are dominated by t1 . Q.E.D.

6.2.3 � The Extraction of the Pruning Tuples

In order to skip the unnecessary tuples of T in stage 1, we 
first extract some pruning tuples for the following execution 
of TSI. The number of pruning tuples should not be large 
and they should have relatively strong dominance capability. 
Since the dimensionality of T can be high, we do not extract 
the pruning tuples with respect to the combination of dif-
ferent attributes, but to the values of single attribute and the 
number of complete attributes for each tuple. It is known that 
the cardinality of skyline results grows exponentially with 
the size of skyline criteria [4] and on incomplete data, dom-
inance relationship between two tuples is performed over 
their common complete attributes. Intuitively, for a tuple, if 
it has a small number of complete attributes and one of its 
complete attributes is very small, it tends to have a relatively 
strong dominance capability.

The pruning tuples can be extracted from M sorted col-
umn files SC1 , SC2 , … , SCM . The schema of SCi(1 ≤ i ≤ M) 
is (PIT ,NUMc,Ai) , where NUMc is the number of the com-
plete attributes for each tuple. The tuples of SCi(1 ≤ i ≤ M) 
are sorted on NUMc and Ai , i.e., they are first arranged in 
the ascending order of NUMc , then all tuples with the same 
NUMc are arranged in the ascending order of Ai.

For each sorted column file SCi , we retrieve its tuples 
sequentially. Let sc be the current retrieved tuple, if sc.Ai 
is within the first f% proportion among all Ai values, the 
PIT value of sc is maintained in memory, and otherwise, 
the next tuple is retrieved. The process continues until the 
number of PIT values maintained in memory reaches npt or 
it reaches to the end of file. Then, the corresponding tuples 
of T are extracted and kept in a separate pruning tuple file 
PTi . In this paper, f is set to 5 and npt is set 1000; the prun-
ing effect with such parameter setting is satisfactory in the 
performance evaluation.

Example 4  Figure 8 illustrates the extracting of pruning 
tuples in the running example. SCi(1 ≤ i ≤ 3) is arranged 

first in the ascending order of NUMc , and the tuples with 
the same value of NUMc are sorted in ascending of Ai . 
In the running example, f = 12.5(16 × 12.5% = 2) and 
npt = 1 , one pruning tuple will be retrieved for SCi . For 
SC1 , SC1(1,… , 11) cannot be used to generate pruning 
tuples since their attribute values are not within the first two 
smallest values of Ai . Then, SC1(12) is selected to obtain the 
pruning tuple T(SC1(12).PIT ) since it is the first tuple in SC1 
whose A1 value is among the first two smallest values of A1 . 
Other pruning tuples (T(14) and T(6)) are obtained similarly.

6.2.4 � The Execution of Pruning Operation

By the pre-constructed structures described above, TSI 
can utilize pruning operation to reduce the execution cost 
in stage 1. In order to execute the pruning operation, TSI 
maintains a n-bit pruning bit-vector PRB in memory, which 
is filled with bit 0 initially.

Fig. 8   Illustration of extracting pruning tuples in the running example
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Algorithm 2 TSI Pruning(T , Scnd)
Input: T is an incomplete table, Scnd a set maintaining the candidate tuples
Output: Scnd a set maintaining the skyline tuples over T

1: MH is a min-heap to keep mpruningtuples with the highest dominance capability.
2: initialize Scnd ← ∅, MH ← ∅;
3: // Stage 1 find the candidate tuples
4: extract the involved pruning tuples PT1, PT2, ..., PTm for each skyline criteria of T ,

and put PT1, PT2, ..., PTm in to MH;
5: while MH has more pruning tuples do
6: retrieve the next tuple pt of MH;
7: Sc is the complete attributes of pt, Sc = {A1, . . . , A|Sc|}};
8: if PRB(pt)=1 then
9: pt can be skipped;
10: else
11: for (i = 1; i ≤ |Sc|; i++) do
12: compute the first value ITVi[bi] of ITVi, ITVi[bi] ← SLi(2bi ).Ai;
13: end for
14: the (pt.P IT )th bit of PRB to be 1;
15: if Scnd = ∅ then
16: Scnd ← Scnd ∪ t;
17: else
18: while Scnd has more tuples do
19: retrieve the next tuple p of Scnd;
20: if p is dominated by t then
21: remove p from Scnd;
22: end if
23: end while
24: if t is dominated by p then
25: discard t;
26: else
27: Scnd ← Scnd ∪ t;
28: end if
29: DBVpt ← ( |Sc|

i=1 ¬MCRi,bi ) ∧ ( |Sc|
i=1 RIAi);

30: PRB = PRB ∨ ( m
b=1 DBVpt);

31: end if
32: end if
33: end while
34: // Stage 2 discard the candidates which are dominated by some tuples
35: while T has more tuples do
36: retrieve the next tuple t of T ;
37: while Scnd has more tuples do
38: retrieve the next tuple can of Scnd;
39: if can is dominated by t then
40: remove can from Scnd;
41: end if
42: end while
43: end while
44: return Scnd;

is computed to be 
∏�Sc�

i=1

2bi

n
 (line 11-13). For the retrieved 

pruning tuple pt, TSI sets the (pt.PIT )th bit of PRB to be 
1, since it is retrieved already (line 14). Besides, for each 
pruning tuple pt, TSI removes any candidates in Scnd 
which are dominated by pt (line 18-23). If pt is not domi-
nated by any candidate in Scnd , TSI keeps it in Scnd (line 
26-27). ∀ptb ∈ MH(1 ≤ b ≤ m) , TSI computes its corre-
sponding bit-vector DBVptb

 of dominance checking as in 
Sect. 6.2.2 (line 29). The final pruning bit-vector PRB is 
PRB = PRB ∨ (

⋁m

b=1
DBVptb

) (line 30).

Algorithm 2 is the pseudo-code of the execution of prun-
ing operation. At the beginning of the stage 1, TSI deter-
mines the involved pruning tuple files PT1,PT2,… ,PTm 
according to the current skyline criteria and retrieves prun-
ing tuples from them. In the process of retrieving PT1,PT2 , 
… ,PTm , TSI maintains a min-heap MH in memory to keep 
m pruning tuples with the highest dominance capability 
(line 4). Given a pruning tuple pt, let Sc be its complete 
attributes. Likewise, assume that Sc = {A1,… ,A|Sc|}} (line 
5-6). ∀1 ≤ i ≤ |Sc| , we determine the first value ITVi[bi] of 
ITVi which is greater than pt.Ai , its dominance capability 
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Example 5  The construction of PRB in the running example 
is illustrated in Fig. 9. For the pruning tuple T(6)(56, 3, 0), 
TSI determines MCR1,3 , MCR2,1 , MCR3,1 which correspond 
to the values of T(6). The tuples dominated by T(6) can be 
specified by a bit-vector PRB6 = 1101001011000000 . Simi-
larly, we obtain PRB12 and PRB14 . Since T(6), T(12), T(14) 
are the pruning tuples, after retrieving them, PRB is 
set to be 0000010000010100, i.e., the 6th bit, the 12th 
and the 14th bit are 1. The final pruning bit-vector 
PRB = PRB ∨ (DBV6 ∨ DBV12 ∨ DBV14) = 1111111011111100.

In stage 1, ∀1 ≤ a ≤ n , if PRB(a) = 1 , T(a) can be 
skipped; otherwise, TSI needs to retrieve T(a). The rest of 
the execution in stage 1 is the same as that in Sect. 6.1.

Example 6  In the running example, TSI only needs to 
retrieve three tuples (T(8), T(15), T(16)) in stage 1 by use 
of PRB. This reduces the I/O cost and computation cost 
significantly.

7 � Performance Evaluation

7.1 � Experimental Settings

To evaluate the performance of TSI, we implement it in Java 
with jdk-8u20-windows-x64. The experiments are executed 
on LENOVO ThinkCentre M8400 (Intel (R) Core(TM) i7 
CPU @ 3.40GHz (8 CPUs) + 32G memory + 3TB HDD + 
64 bit windows 7). In the experiments, we implement TSI, 
BA, SOBA [10] and SIDS [1]. With the experimental setting 
below, the execution time of SOBA and SIDS is so long that 
we do not report its experimental results with the settings 
below, but evaluate it in Sect. 7.8 separately. For BA, the size 

S of the allocated memory is 4GB. We do not use a larger 
size for BA because, with the assistance of the bit-vector Bret 
as mentioned in Sect. 5, the larger value of S makes more 
tuples of T loaded in memory at a time and reduces the num-
ber of iteration, but it also reduces the proportion of retrieval 
which can use the optimization of skipping operation.

In the experiments, we evaluate the performance of TSI 
in terms of several aspects: tuple number (n), used attrib-
ute number (m), incomplete ratio (p), correlation coefficient 
(c). The experiments are executed on three data sets: two 
synthetic data sets (independent distribution and correlated 
distribution) and a real data set. The used parameter set-
tings are listed in Table 2. For correlated distribution, the 
first two attributes have the specified correlation coefficient, 
while the left attributes follow the independent distribution. 
In order to generate two sequences of random numbers with 
correlation coefficient c, we first generate two sequences of 
uncorrelated distributed random number X1 and X2 , then 
a new sequence Y1 = c × X1 +

√
1 − c2 × X2 is generated, 

and we get two sequences X1 and Y1 with the given cor-
relation coefficient c. When generating synthetic data, we 
fix the number of M to be 60 and generate data with all 
complete attributes. Then, according to used skyline crite-
ria, we select one attribute first, this attribute is complete. 
Other (m − 1) attributes in skyline criteria have a probability 
p of being incomplete independently. The real data used are 
HIGGS Data Set from UCI Machine Learning Repository1, 
it is provided to classification problem including 11000000 
instances. The main reasons for using HIGGS are that 1) 
HIGGS is one of the largest databases to our knowledge, 
accordingly, we have better access to compare the perfor-
mance of above algorithms. 2) and it is an open dataset that 
we can find and obtain expediently. On real data, we evaluate 
the performance of TSI with varying values of p.

The required structures are pre-constructed before the 
experiments. Under the default setting of the experiments, 
i.e., M = 60 , n = 50 × 106 , and p = 0.3 , it takes 6840.573 
seconds to pre-construct the required data structures.

Fig. 9   Illustration of constructing PRB in the running example

Table 2   Parameter Settings

Parameter Used values

Tuple number(106 ) (syn) 5, 10, 50, 100, 500
Skyline criteria size (syn) 10, 15, 20, 25
Incomplete ratio (syn) 0.3, 0.4, 0.5, 0.6, 0.7
Correlation coefficient (syn) -0.8, -0.4, 0, 0.4, 0.8
Incomplete ratio (real) 0.3, 0.4, 0.5, 0.6, 0.7

1  https://archive.ics.uci.edu/ml/datasets/HIGGS#
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7.2 � The Comparison of TSI with and Without 
Pruning

The performance of TSIB and TSI is compared in different 
aspects, where TSIB is the TSI algorithm without pruning 
operation. As depicted in Fig. 10a, TSI runs 18.84 times 
faster than TSIB and the speedup ratio increases with a 
greater value of n. This significant advantage is due to the 
effective pruning operation. The numbers of the candidates 
after stage 1 are illustrated in Fig. 10b. TSI maintains more 
candidates than TSIB after stage 1. This is because the prun-
ing operation skips most of the tuples in stage 1, and there-
fore, many candidates which should be removed by some 
tuples are left. But the pruning operation reduces the cost in 
stage 1 significantly. Figure 10c reports the time decomposi-
tion of TSIB . Obviously, the execution time of stage 1 domi-
nates its overall time. We even cannot see the time in stage 2 
due to its rather small proportion. Figure 10d gives the time 

decomposition of TSI, which consists of four parts: the time 
to retrieve pruning tuples, the time to load the required bit-
vectors, the time in stage 1, and the time in stage 2. The time 
in stage 2 of TSI is longer than that of TSIB due to the greater 
number of candidates left. However, the time reduction in 
stage 1 of TSI is much significant compared with TSIB and 
TSI runs one order of magnitude faster than TSIB averagely. 
As shown in Fig. 10(e and f), the pruning operation makes 
TSI incur less I/O cost and perform fewer number of domi-
nance checking.

7.3 � Experiment 1: the Effect of Tuple Number

Given m = 20 , M = 60 , p = 0.3 and c = 0 , experiment 1 
evaluates the performance of TSI on varying tuple numbers. 
As shown in Fig. 11a, TSI runs 60.42 times faster than BA 
averagely. The speedup ratio of TSI over BA increases with 
a greater value of n, from 8.31 at n = 5 × 106 to 166.58 at 

Fig. 10   Comparison between 
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n = 500 × 106 . Figure 11b depicts that TSI incurs 6.73 times 
less I/O cost than BA. And as illustrated in Fig. 11c, TSI 
performs 38.17 times fewer number of dominance checking 

than BA. The performance advantage of TSI over BA is 
widened with the greater value of n. At n = 5 × 106 , BA can 
load all T into memory and perform another table scan on 

Fig. 11   Effect of tuple number
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Fig. 12   Effect of skyline criteria 
size
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T to compute incomplete skyline results. At n = 500 × 106 , 
BA needs to execute 56 iterations, each loading a part of T 
and then followed by a table scan on T to remove the domi-
nated tuples. On the contrary, TSI shows a slower growing 

trend on tuple number due to its execution process and 
pruning operation. As illustrated in Fig. 11d, the pruning 
operation of TSI can skip vast majority of tuples in stage 
1. The pruning ratio in the experiments is computed by the 

Fig. 13   Effect of incomplete 
ratio
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Fig. 14   Effect of correlation 
coefficient
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formula nskip
n

 , where nskip is the number of tuples skipped in 
stage 1.

7.4 � Experiment 2: the Effect of Skyline Criteria Size

Given M = 60 , n = 50 × 106 , p = 0.3 and c = 0 , experiment 
2 evaluates the performance of TSI on varying skyline cri-
teria sizes. As illustrated in Fig. 12a, with a greater value of 
m, the execution times of BA and TSI both increase signifi-
cantly; TSI still runs 85.79 times faster than BA averagely. 
For BA, its I/O cost depends on two parts. For one thing, BA 
needs to retrieve T once to load it into memory. For another, 
BA performs a sequential scan on T in each iteration to dis-
card the candidates in memory which are dominated by some 

tuples. For the first part, BA may not retrieve all tuples into 
memory since the current tuples may be dominated by the 
previous iterations. For the second part, if the current can-
didates all are discarded, BA does not have to continue the 
sequential scan but just performs the next iteration directly. 
When the value of m increases, given other parameters are 
fixed, the probability that a tuple is dominated by other tuple 
becomes lower. Therefore, the I/O cost increases on both 
parts. This is reported in Fig. 12b. For TSI, its I/O cost also 
consists of two parts. In stage 1, TSI performs a selective 
scan on T to obtain the candidates of incomplete skyline 
results. In stage 2, TSI does another sequential scan on T to 
compute the results, in which if all candidates are removed, 
TSI can terminate directly. As the value of m increases, the 
pruning effect in TSI becomes worse in stage 1, which also 

Fig. 15   Effect of real data
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Fig. 16   Comparison with BA, 
SOBA, and SIDS
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is verified in Fig. 12d, and TSI has to retrieve more tuples 
before it terminate in stage 2. This makes a higher I/O cost 
for TSI with a greater value of m, as illustrated in Fig. 12b. 
With the similar explanation, as shown in Fig. 12c, the num-
bers of dominance checking for both algorithms increase 
with a greater value of m.

7.5 � Experiment 3: the Effect of Incomplete Ratio

Given m = 20 , M = 60 , n = 50 × 106 and c = 0 , experiment 
3 evaluates the performance of TSI on varying incomplete 
ratios. As the value of p increases, the execution time of 
BA decreases quickly, while the execution time of TSI first 
decreases and then increases gradually. For BA, the decline 
of execution time is easy to understand. With a greater value 
of p, the probability that any tuple is dominated by other 
tuples increases. This makes more in-memory candidates 
in each iteration dominated by some tuples in the sequential 
scan, and can reduce the I/O cost and dominance checking 
cost. As illustrated in Fig. 13c, with a greater value of p, the 
number of dominance checking in BA decreases constantly. 
And as shown in Fig. 13b, the I/O cost of BA first decreases 
significantly when p increases from 0.3 to 0.4, then remains 
unchanged basically ever since. When p increases from 0.3 
to 0.4, the number of in-memory candidates is reduced dur-
ing the sequential scan and in each iteration, BA terminates 
earlier. This makes less I/O cost for BA. When the value of 
p is greater than 0.4, the number of in-memory candidates is 
reduced also, but in each iteration, BA reaches an approxi-
mately equal scan depth before it terminates. For TSI, the 
effect of pruning operation depends on two factors. One is 
the probability that one tuple can be dominated by other 
tuples. The other is whether all common attributes of two 
tuples are incomplete. The two factors have different effects 
in different cases. With a greater value of p, the probabil-
ity of a tuple dominated by some tuples increases, also the 
probability that the common attributes of two tuples are all 
incomplete. When p increases from 0.3 to 0.5, the first factor 
has a greater impact, and ever since, the second factor plays 
a larger role. This explains the trend of the execution time 
of TSI. Similarly, this can explain the variation trend of TSI 
in I/O cost (Fig. 13b), the number of dominance checking 
(Fig. 13c), and the pruning ratio (Fig. 13d).

7.6 � Experiment 4: the Effect of Correlation 
Coefficient

Given m = 20 , M = 60 , n = 50 × 106 and p = 0.3 , experi-
ment 4 evaluates the performance of TSI on varying correla-
tion coefficients. As illustrated in Fig. 14a, TSI runs 47.72 
times faster than BA. The correlation coefficients considered 
range from -0.8 to 0.8. A negative correlation means that 
there is an inverse relationship between two variables, when 

one variable decreases, the other increases. And a positive 
correlation means that variables tend to move in the same 
direction. Therefore, the skyline computation on negatively 
correlated data usually is more expensive than that on posi-
tively correlation data. The variations in TSI and BA both 
show a downward trend in experiment 4. Here, the trend is 
not significant because the incomplete attributes in the data 
set reduce the impact of correlation. The I/O cost and num-
ber of dominance checking are depicted in Fig. 14(b and c), 
respectively, and they have the similar variation trends. The 
effect of pruning operation of TSI is illustrated in Fig. 14d. 
Due to the impact of incomplete attributes, the pruning ratio 
shows considerable change, but it still shows upward trend 
overall.

7.7 � Experiment 5: Real Data

The real data, HIGGS Data Set, are obtained from UCI 
Machine Learning Repository. It contains 11,000,000 tuples 
with 28 attributes. We select the first 20 attributes as skyline 
criteria and evaluate the performance of TSI with varying 
incomplete ratios. Before the experiment is executed, one 
attribute first is chosen to be complete and other (m − 1) 
attributes in skyline criteria have a probability p of being 
incomplete independently. As depicted in Fig. 15a, TSI runs 
40.46 times faster than BA. The variation trends of execution 
times of BA and TSI are very close to those in Sect. 7.5 and 
can be explained similarly. The I/O cost and the number of 
dominance checking are depicted in Fig. 15(b and c), respec-
tively. The pruning ratio in TSI is illustrated in Fig. 15d. 
The variation in these figures can be explained similarly as 
in Sect. 7.5.

7.8 � Experiment 6: the Comparison with SOBA 
and SIDS

In this part, we evaluate the performance of TSI against BA, 
SOBA and SIDS on a relatively small data set with relatively 
small skyline criteria size. Given n = 10 × 106 , p = 0.3 and 
c = 0 , in order to acquire a better performance for SOBA 
and SIDS, we set the value of m to be from 6 to 10, and the 
value of M equal to that of m. This can reduce the length of 
each tuple and also lower the cost of bucket partitioning for 
SOBA and SIDS.

As illustrated in Fig. 16a, SIDS is the slowest among the 
four algorithms while TSI is the faster in various skyline 
criteria size, and the execution time of SOBA increases sig-
nificantly with the number of m. When m = 10 , SOBA runs 
10.96 times slower than BA, the baseline algorithm in this 
paper, and runs 200.91 times slower than TSI. As for SIDS, 
it runs 21.11 times slower than BA and runs 386.84 times 
slower than TSI. On disk resident data, SOBA and SIDS 
cannot process incomplete skyline efficiently. The bucket 
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partitioning of SOBA involves two passes of table scan, not 
to mention the maintenance cost of the large number of par-
titions in the disk if the number of m is not small. Then, the 
computation of local skyline involves another pass of tuple 
retrieval. On the relatively large value of m, the number of 
local skyline is great also. As depicted in Fig. 16b, the local 
skyline makes up 11.7% of the total tuples at m = 10 . The 
I/O cost of SIDS is much larger than others, SIDS and BA 
are much close in I/O cost. The growth trend of the execu-
tion time of SIDS is fast with respect to skyline criteria size. 
The performance of TSI is efficient not only for the in-mem-
ory data set with small size of skyline criteria, but also for 
the disk-resident data with not small size of skyline criteria.

8 � Conclusion

This paper considers the problem of incomplete skyline 
computation on massive data. It is analyzed that the existing 
algorithms cannot process the problem efficiently. A table-
scan-based algorithm TSI is devised in this paper to deal 
with the problem efficiently. Its execution consists of two 
stages. In stage 1, TSI maintains the candidates by a sequen-
tial scan. And in stage 2, TSI performs another sequential 
scan to refine the candidate and acquire the final results. 
In order to reduce the cost in stage 1, which dominates the 
overall cost of TSI, a pruning operation is utilized to skip the 
unnecessary tuples in stage 1. The experimental results show 
that TSI outperforms the existing algorithms significantly.
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