
Vol:.(1234567890)

Data Science and Engineering (2022) 7:102–119
https://doi.org/10.1007/s41019-022-00183-7

1 3

RESEARCH PAPERS

Efficient Skyline Computation on Massive Incomplete Data

Jingxuan He1 · Xixian Han1 

Received: 6 March 2021 / Revised: 9 February 2022 / Accepted: 9 March 2022 / Published online: 3 April 2022
© The Author(s) 2022

Abstract
Incomplete skyline query is an important operation to filter out pareto-optimal tuples on incomplete data. It is harder than
skyline due to intransitivity and cyclic dominance. It is analyzed that the existing algorithms cannot process incomplete
skyline on massive data efficiently. This paper proposes a novel table-scan-based TSI algorithm to deal with incomplete
skyline on massive data with high efficiency. TSI algorithm solves the issues of intransitivity and cyclic dominance by two
separate stages. In stage 1, TSI computes the candidates by a sequential scan on the table. The tuples dominated by others
are discarded directly in stage 1. In stage 2, TSI refines the candidates by another sequential scan. The pruning operation
is devised in this paper to reduce the execution cost of TSI. By the assistant structures, TSI can skip majority of the tuples
in phase 1 without retrieving it actually. The extensive experimental results, which are conducted on synthetic and real-life
data sets, show that TSI can compute skyline on massive incomplete data efficiently.

Keywords  Massive data · TSI · Incomplete skyline · Pruning operation

1  Introduction

The skyline operator filters out a set of interesting tuples
from a potential huge data set. Among the specified skyline
criteria, a tuple p is said to dominate another tuple q if p is
strictly better than q in at least one attribute, and no worse
than q in the other attributes. The skyline query actually
discovers all tuples which are not dominated by any other
tuples.

Due to its practical importance, skyline queries have
received extensive attentions [2, 3, 5, 6, 8, 9, 14–17, 19,
20]. However, the overwhelming majority of the existing
algorithms only consider the data set of complete attrib-
utes, i.e., all the attributes of every tuple are available. In
real-life applications, because of the reasons such as the
delivery failure or the deliberate concealment, the data set
we encounter often is incomplete, i.e., some attributes of
tuples are unknown [13]. On incomplete data, the existing
skyline algorithms cannot be applied directly, since all of
them assume the transitivity of dominance relationship.

On complete data, the transitivity rule is that: if p1 domi-
nates p2 , and p2 dominates p3 , obviously p1 dominates p3
by the definition of dominance. The transitivity is the basis
of the efficiency of the existing skyline algorithms which
utilize indexing, partitioning and pre-sorting operation. On
incomplete data, some attributes of tuples are missing, the
traditional definition of dominance does not hold any more,
and the dominance relationship is re-defined on incomplete
data. Given the skyline criteria, p and q are two tuples on
incomplete data, let C be the common complete attributes
of p and q among the skyline criteria, p dominates q if p is
no worse than q among C and strictly better than q in at least
one attribute among C. From the dominance relationship
defined above, transitivity does not hold on incomplete data.

As illustrated in Fig. 1, the specified skyline criteria are
{A1,A2,A3} . In the table, p1 dominates p2 since the com-
mon attribute among the skyline criteria of p1 and p2 is A1 ,
p1.A1 < p2.A1 . Similarly, p2 dominates p3 . But p1 does not
dominate p3 here and transitivity does not hold. Besides,
it is found that p3 dominates p1 . On incomplete data, we
may face the issue of cyclic dominance. The two issues,
intransitivity and cyclic dominance, make the processing
of skyline on incomplete data different from the skyline on
complete data.

The current incomplete skyline algorithms can be clas-
sified into three categories: replace-based algorithms [7],

 *	 Xixian Han
	 xxhan1981@163.com

1	 School of Computer Science and Technology, Harbin
Institute of Technology, No.92, Xidazhi Street, Harbin,
Heilongjiang, China

http://orcid.org/0000-0001-5477-9249
http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-022-00183-7&domain=pdf

103Efficient Skyline Computation on Massive Incomplete Data﻿	

1 3

sorted-based algorithms [1], and bucket-based algorithms
[7, 10]. The replace-based algorithms first replace the
incomplete attributes with a specific value, then compute
traditional skyline on transformed data, and finally refine
the candidate to compute the results by pairwise compari-
son. Normally, the number of candidate on massive data is
large and the pairwise comparison is significantly expensive.
Sorted-based algorithms utilize the selected tuples with pos-
sible high dominance via pre-sorted structures one by one
to prune the non-skyline tuples. It usually performs many
passes on scan on the table and will incur high I/O cost on
massive data. Bucket-based algorithms first split the tuples
into different buckets according to their attribute encoding
to make the tuples in the same buckets have the same encod-
ing and hold the transitivity rule, then compute local skyline
results on every buckets, and finally merge the local skyline
results to obtain the results. In incomplete skyline computa-
tion, the skyline criteria size usually is greater than that on
complete data due to the cyclic dominance, the bucket num-
ber involved in bucket-based algorithms often is large, and
the number of local skyline results is relatively great. The
computation operation and merge operation of local skyline
results often incur high computation cost and I/O cost on
massive data. To sum up, the existing algorithms cannot
process incomplete skyline query on massive data efficiently.

Based on the discussion above, this paper proposes TSI
algorithm (Table-scan-based Skyline over Incomplete data)
to compute skyline results on massive incomplete data with
high efficiency. In order to reduce the computation cost and
I/O cost, the execution of TSI consists of two stages. In stage
1, TSI performs a sequential scan on the table and maintains
candidates in memory. For each tuple t retrieved currently in
stage 1, any candidate dominated by t is removed. And if t is
not dominated by any candidates, t is added to the candidate
set. In stage 1, TSI does not consider the intransitivity and
cyclic dominance in incomplete skyline computation, but
just discards the tuples which are not final results definitely.
In stage 2, another sequential scan is executed to refine the
candidates. For each tuple t retrieved currently in stage 2,
it discards any candidates dominated by it. When stage 2
terminates, the candidates in memory are the incomplete
skyline results. In this paper, it is found that the cost in stage
1 dominates the overall cost of TSI, so a pruning operation

is devised to skip the tuples in stage 1. The useful data struc-
tures are pre-constructed, which is used to check whether a
tuple is dominated before retrieving it. The extensive experi-
ments are conducted on synthetic and real-life data sets. The
experimental results show that the pruning operation can
skip overwhelming majority of tuples in stage 1 and TSI
outperforms the existing algorithms significantly.

The contributions of this paper are listed as follows:

–	 This paper proposes a novel table-scan-based TSI algo-
rithm of two stages to process skyline query on massive
incomplete data efficiently.

–	 Two novel data structure is designed to maintain infor-
mation of tuples and obtain pruning tuples with strong
dominance capability.

–	 This paper devises efficient pruning operations to reduce
the execution cost of TSI, which directly skips the tuples
dominated by some tuples before retrieving them actu-
ally.

–	 The experimental results show that TSI can compute
incomplete skyline on massive data efficiently.

The rest of the paper is organized as follows. The related
work is surveyed in Sect. 2, followed by preliminaries in
Sect. 3. The existing algorithms are analyzed in Sect. 4.
Baseline algorithm is developed in Sect. 5. Section 6 intro-
duces TSI algorithm. The performance evaluation is pro-
vided in Sect. 7. Section 8 concludes the paper.

2 � Related Work

Since [2] first introduces the skyline operator into database
environment, skyline has been studied extensively by data-
base researchers [2, 3, 5, 6, 8, 11, 14–17, 20]. However, the
most of the existing skyline algorithms only consider the
complete data, and they utilize the transitivity of dominance
relationship to acquire significant pruning power. They can-
not be directly used for the skyline query on incomplete data,
where the dominance relationship is intransitivity and cyclic.
In the rest of this section, we survey the skyline algorithms
on incomplete data. The current incomplete skyline algo-
rithms can be classified into three categories: replace-based
algorithms, sorted-based algorithms, and bucket-based
algorithms.

2.1 � Replace‑Based Algorithms

Khalefa et al. [7] propose a set of skyline algorithms for
incomplete data. The first two algorithms, replacement and

Fig. 1   Data set of example table

104	 J. He, X. Han

1 3

bucket, are the extension of the existing skyline algorithms
to accommodate the incomplete data. Replacement algo-
rithm first replaces the incomplete attributes by a special
value to transform the incomplete data to complete data.
Traditional skyline algorithm can be used to compute the
skyline results SKYcomp on the transformed complete data,
which also is the superset of the skyline results on the
incomplete data. Finally, the tuples in SKYcomp are trans-
formed into their original incomplete form, and the exhaus-
tive pairwise comparison between all tuples in SKYcomp is
performed to compute the final results. Bucket algorithm
first divides all the tuples on incomplete data into differ-
ent buckets to make all tuples in the same bucket have the
same bitmap representation. The dominance relationship
within the same bucket is transitive now since the tuples
here have the same bitmap representation. The traditional
skyline algorithm is utilized to compute the skyline results
within each bucket, which is called local skyline. The local
skyline results for all buckets are merged as the candidate
skyline. The exhaustive pairwise comparison is performed
on the candidate skyline to compute the query answer. ISky-
line algorithm employs two new concepts, virtual points and
shadow skylines, to improve bucket algorithm. The execu-
tion of ISkyline consists of three phases. In phase I, each
newly retrieved tuple is compared against the local skyline
and the virtual points to determine whether the tuple needs
to be (a) stored in the local skyline, (b) stored in the shadow
skyline, (c) discarded directly. In phase II, the tuples newly
inserted into local skyline are compared with the current
candidate skyline; ISkyline updates the candidate skyline
and the virtual points correspondingly. Every time t tuples
are kept in the candidate skyline, ISkyline enters into phase
III, updates the global skyline, and clears current candidate
skyline. The similar processing continues until the end of
input is reached and ISkyline returns the global skyline.

The replace-based algorithms first replace the incomplete
attributes with a specific value, then compute traditional sky-
line on transformed data, and finally refine the candidate to
compute the results by pairwise comparison. Normally, the
number of candidate on massive data is large and the pair-
wise comparison is significantly expensive.

2.2 � Sorted‑Based Algorithms

Bharuka et al. [1] propose a sort-based skyline algorithm
SIDS to evaluate the skyline over incomplete data. SIDS
first sorts the incomplete data D in non-descending order for
each attribute. Let Di be the sorted list with respect to the ith
attribute. Only the ids of the tuples are kept in Di , and the
ids of the tuples whose ith attributes are incomplete are not

stored. SIDS performs a round-robin retrieval on the sorted
lists. For each retrieved data p, if it is not retrieved before,
it is compared with each data q in the candidate set, which
is initialized to be the whole incomplete data. If p and q
are compared already, the next data in the candidate set are
retrieved and processed. Otherwise, if p dominates q, q is
removed from the candidate set. And if q dominates p and p
is in candidate set, p is removed from the candidate set also.
If the number of p being retrieved during the round-robin
retrieval is equal to the number of its complete attributes and
p is not pruned yet, p can be reported to be one of the skyline
results. SIDS terminates when candidate set becomes empty
or all points in sorted lists are processed at least once.

Sorted-based algorithms utilize the selected tuples with
possible high dominance via pre-sorted structures one by
one to prune the non-skyline tuples. It usually performs
many passes on scan on the table and will incur high I/O
cost on massive data.

2.3 � Bucket‑Based Algorithms

Lee et al. [10] propose a sorting-based SOBA algorithm to
optimize the bucket algorithm. Similar to the bucket algo-
rithm, SOBA also first divides the incomplete data into a
set of buckets according to their bitmap representation,
then computes the local skyline of tuples in each bucket,
and finally performs the pairwise comparison for the sky-
line candidates (the collection of all local skylines). SOBA
uses two techniques to reduce the dominance tests for the
skyline candidates. The first technique is to sort the buckets
in ascending order of the decimal numbers of the bitmap
representation. This can identify the non-skyline points as
early as possible. The second technique is to rearrange the
order of tuples within the bucket. By sorting tuples in the
ascending order of the sum of the complete attributes, the
tuples accessed earlier have the higher probability to domi-
nate other tuples and this can help reduce the number of
dominance tests further.

Bucket-based algorithms first split the tuples into differ-
ent buckets according to their attribute encoding to make
the tuples in the same buckets have the same encoding and
hold the transitivity rule, then compute local skyline results
on every buckets, and finally merge the local skyline results
to obtain the results. In incomplete skyline computation,
the skyline criteria size usually is greater than that on com-
plete data due to the cyclic dominance, the bucket num-
ber involved in bucket-based algorithms often is large, and
the number of local skyline results is relatively great. The
computation operation and merge operation of local skyline

105Efficient Skyline Computation on Massive Incomplete Data﻿	

1 3

results often incur high computation cost and I/O cost on
massive data.

For the algorithms mentioned above, the dominance over
incomplete data is defined on the common complete attrib-
utes. There are also other definitions of dominance over
incomplete data. Zhang et al. [21] propose a general frame-
work to extend skyline query. For each attribute, they first
retrieve the probability distribution function of the values
in the attribute by all the non-missing values on the attrib-
ute and then convert incomplete tuples to complete data by
estimating all missing attributes. And a mapping dominance
is defined on the converted data. Zhang et al. [18] propose
PISkyline to compute probabilistic skyline on incomplete
data. It is considered in [18] that each missing attribute value
can be described by a probability density function. The prob-
ability is used to measure the preference condition between
missing values and the valid values. Then, the probability
of a tuple being skyline can be computed. PISkyline returns
the K tuples with the highest skyline probability.

Discussion Throughout this paper, we use the definition
of dominance over incomplete data as [7]. Firstly, this domi-
nance notion is commonly used in most skyline algorithms
over incomplete data. Secondly, the estimation of the incom-
plete attribute values may be undesirable in some cases.
Therefore, we do not guess the incomplete attribute in this
paper and not consider such algorithms anymore.

In this paper, we consider the skyline over massive
incomplete data, i.e., the data set cannot be kept in memory
entirely. It is found that the existing algorithms, including
[1, 7, 10], all assume their processing of the in-memory
data. Their performance will be seriously degraded on mas-
sive data. Since the cardinality of skyline query increases
exponentially with respect to the size of skyline criteria [4],

replacement algorithm often generates a large number of
skyline candidates and the pairwise comparison among the
candidates incurs a prohibitively expensive cost. Bucket-
based algorithms, such as bucket algorithm, ISkyline and
SOBA, have the problem that they have to divide the data set
into different buckets. Given the size m of the skyline crite-
ria, the number of the buckets can be as high as 2m − 1 ; this
will cause serious performance issue when m is not small.
For SIDS, it utilizes one selected tuple to prune the non-
skyline tuples in the candidate set, and this incurs a pass of
sequential scan on the data. Thus, it requires many passes of
scan on the data to finish its execution, and this will incur a
high I/O cost on massive data.

3 � Preliminaries

Given an incomplete table T of n tuples with attributes
A1,… ,AM , some attributes of the tuples in T are incomplete.
The attributes in T are considered to be numerical type, let
A1,… ,Am be the specified skyline criteria. Throughout the
paper, it is assumed that the smaller attribute values are
preferred. In this paper, the attributes with known values
are called complete attributes, while the attributes with
unknown values are called incomplete attributes. ∀t ∈ T  ,
t has at least one complete attribute among A1,A2,… ,Am ,
while all other attributes have a probability p ( 0 < p ≤ 1 ) of
being incomplete. The frequently used symbols in this paper
are listed in Table 1.

The dominance over incomplete data is given in Defini-
tion 1. The incomplete skyline returns the tuples in T which
are not dominated by any other tuples.

Table 1   Symbols description Symbol Description

T An incomplete table
Tpart The current part of T loaded in memory
t A tuple in T
C The common complete attribute(s)
PI The positional index of tuple X
S The size of allocated memory for storing tuples of T in each time X
Scnd A set maintaining candidate tuples
SLi The sorted list which is built for the i-th attribute
MCR The bit-vector representing the membership checking result of SLi
RIA The bit-vector representing whether the attribute is complete
Sc The set of the complete attributes of t
NUMc The number of the complete attributes for each tuple

106	 J. He, X. Han

1 3

Definition 1  (Dominance over incomplete data) Given
table T and skyline criteria A1,… ,Am , ∀t1, t2 ∈ T  , let C be
their common complete attributes among skyline criteria, t1
dominates t2 (denoted by t1 t2 ) if ∀A ∈ C , t1.A ≤ t2.A , and
∃A ∈ C , t1.A < t2.A.

Definition 2  (Positional index) ∀t ∈ T  , its positional index
(PI) is a if t is the ath tuple in T.

The positional index is defined in Definition 2. We
denoted by T(a) the tuple with PI = a , by T(a,… , b)(a ≤ b)
the tuples in T whose PIs are between a and b, by
T(a,… , b).Ai be the set of attribute Ai in T(a,… , b).

4 � The Analysis for the Existing Algorithms

The existing skyline algorithms over incomplete data can
be classified into three types: replacement-based algorithm,
bucket-based algorithm, and sort-based algorithm. As dis-
cussed in Sect. 2, replacement-based algorithm usually gen-
erates too many skyline candidates and sort-based algorithm
often needs to perform many passes on the table before
returning the results. They both incur much high computa-
tion cost and I/O cost on massive data. In the following part
of this section, we analyze the performance of bucket-based
algorithm.

Given table T and the skyline criteria {A1,A2,… ,
Am} , ∀t ∈ T  , t can be encoded by an m-bit vector t.B.
∀i, 1 ≤ i ≤ m , if t.Ai is a complete attribute, the ith bit of t.B
is 1 (denoted by t.B(i) = 1 ); otherwise, the ith bit of t.B is
0 ( t.B(i) = 0 ). Note that the most significant bit is the first
bit. Bucket-based algorithm divides tuples in T according
to their encoded vectors. Therefore, the tuples in the same
bucket share the same vectors, and the transitive dominance
relation holds among the tuples in a bucket. Traditional sky-
line algorithm can be utilized to compute the local skyline
within the bucket. Any tuple t1 dominated by a tuple t2 in
the same bucket can be discarded directly, since it cannot

be skyline result and any tuples which can be dominated
by t1 can be dominated by t2 naturally. Of course, there are
other techniques to optimize the pairwise comparison among
skyline candidates [10].

As illustrated in Fig. 2, for analysis, we assume that the
bitmap encoding of the buckets consists of m cases with
equal likelihood: ∃i, 1 ≤ i ≤ m , the values of Ai must be
known and other attributes can be unknown with the prob-
ability p independently. Given an m-bit b = (b1b2 … bm)
of some bucket, Cnt1(b) = r , where Cnt1 is a function to
return the number of bit 1 in a bit-vector. Of course, in
this paper, 1 ≤ r ≤ m . The bit-vector b can be occurred
in r cases. In each case, the probability of generating b is
(1 − p)r−1 × pm−r , i.e., besides the selected complete attrib-
ute, there are (r − 1) complete attributes and (m − r) incom-
plete attributes. Therefore, the probability prb of generating
b among the overall cases is prb =

r

m
× (1 − p)r−1 × pm−r .

The number Nb of tuples which have the encoded bit-vector
b in T is nb = n × prb.

Theoretically, bucket-based algorithm can split T into
all 2m − 1 buckets. The size of skyline criteria of skyline
on incomplete data usually is greater than that on complete
data due to the cyclic dominance. This can be verified in the
existing skyline algorithms on incomplete data [1, 7, 10].
Then, the number of all buckets is not small. For example,
given m = 20 , there are possibly 1048575 buckets. Then,
bucket-based algorithm has to maintain a large number of
buckets. For one thing, this increases the management bur-
den of the file system; for another, this makes each bucket
maintain a relatively small number of tuples with not small
skyline criteria size.

The size of the skyline candidates for pairwise compari-
son, i.e., the local skylines of all buckets, is
sizesc =

∑(11…11)

b=(00…01)
�SKYb� , where SKYb are the skyline tuples

in bucket b. Under the independent assumption, the number
of local skyline in the bucket of encoded bit-vector b can be
estimated as ((ln nb)+�)

r−1

(r−1)!
 [4], where � ≈ 0.57721 is the Euler-

Mascheroni constant. But in this paper, it is found that the
cardinality estimation is much lower than the actual cardi-
nality when m is relatively large. Of course, we can use other
cardinality estimation methods [12, 22] in such case. For

Fig. 2   Different cases of bitmap encoding

Fig. 3   Illustration of row table in running example

107Efficient Skyline Computation on Massive Incomplete Data﻿	

1 3

simplicity, we still use the cardinality estimation in [4], since
it still can provide useful insight for our analysis. Given
n = 108 , m = 20 and p = 0.5 , the total number of all local
skyline results is 7641060 even by use of the cardinality
formula mentioned above, which is much lower than the
actual value. The number of local skyline results, which is
used to perform pairwise comparisons, is still too high.

To sum up, the existing skyline algorithms on massive
incomplete data all have their performance issue.

5 � Baseline Algorithm

The existing algorithms, as mentioned in Secst. 2 and 4,
have rather poor performance and very long execution time
on massive incomplete data. Therefore, this section first
devises a baseline algorithm BA which can be used as a
benchmark against the algorithm proposed in this paper.
Different from the existing methods, BA adopts a block-
nested-loop-like execution. It first retrieves T from the
beginning and loads a part of T into the memory, com-
pares the tuples in memory with all tuples in T, removes
the dominated tuples in the memory. Each time the tuples
left in memory are compared with all other tuples and can
be reported as part of incomplete skyline results. Then, the
next part of T is loaded and the similar processing is exe-
cuted; the iteration continues until all tuples in T are loaded
into memory once and compared with all other tuples. In

this paper, let S be the size of allocated memory for stor-
ing tuples of T each time, the number of table scan in BA
is 8×M×n

S
+ 1 . In order to reduce the I/O cost in BA, a n-bit

bit-vector Bret , each bit initialized with 1 is maintained.
In the first iteration, the tuples of size S bytes are loaded
into memory. Let Tpart be the current part of T loaded in
memory. The tuples in Tpart are compared with all tuples
in T. ∀t = T(a) , if t is dominated by some tuple in Tpart , the
ath bit in Bret is set to 0. Then, in the next iteration, suppose
that the next retrieved tuple is T(b), if Bret(b) = 1 , T(b) is
retrieved; otherwise, T(b) skips directly since it cannot be
a incomplete skyline tuple.

Example 1  In the rest of this paper, we use a running exam-
ple, as depicted in Fig. 3, to illustrate the execution of algo-
rithms proposed in this paper. In the running example, we
set M to be 3, m to be 3, n to be 16 and S to be 256 bytes.
The value field of the attribute is [0, 100). According to the
parameters, the execution of BA divides into two iterations.
In the first iteration, T(1,… , 8) are loaded into memory. As
depicted in Fig. 4, in the first iteration, only T(8) is left and
reported as a incomplete tuple. Besides, T(10), T(11), T(13)
are dominated by the in-memory candidates in the first itera-
tion and they are skipped in the second iteration. At the end
of the second iteration, T(12) and T(15) are left and reported
as incomplete skyline tuples. On the whole, the skyline
results in the running example are {T(8), T(12), T(15)}.

6 � TSI Algorithm

In this paper, we propose a new algorithm TSI (Table-scan-
based Skyline over Incomplete data) to process skyline over
massive incomplete data efficiently. TSI performs two passes
of scan on the table to compute the skyline results. Sec-
tion 6.1 describes the basic execution of TSI algorithm. The
pruning operation is presented in Sect. 6.2.

6.1 � Basic Process

The basic process of TSI consists of two stages. In stage 1,
TSI performs the first-pass scan on T to find the candidate
tuples, while in the stage 2, TSI scans T again to discard the
candidates which are dominated by some tuple. Algorithm 1
is the pseudo-code of the basic process.

Fig. 4   Illustration of execution of BA algorithm

108	 J. He, X. Han

1 3

Algorithm 1 TSI basic(T)
Input: T is an incomplete table
Output: Scnd a set maintaining the skyline tuples over T

1: initialize Scnd ← ∅
2: // Stage 1 find the candidate tuples
3: while T has more tuples do
4: retrieve the next tuple t of T ;
5: if Scnd = ∅ then
6: Scnd ← Scnd ∪ t;
7: else
8: while Scnd has more tuples do
9: retrieve the next tuple p of Scnd;
10: if p is dominated by t then
11: remove p from Scnd;
12: end if
13: end while
14: if t is dominated by p then
15: discard t;
16: else
17: Scnd ← Scnd ∪ t;
18: end if
19: end if
20: end while
21: // Stage 2 discard the candidates which are dominated by some tuples
22: while T has more tuples do
23: retrieve the next tuple t of T ;
24: while Scnd has more tuples do
25: retrieve the next tuple can of Scnd;
26: if can is dominated by t then
27: remove can from Scnd;
28: end if
29: end while
30: end while
31: return Scnd;

Theorem 1  When the first-pass scan of TSI is over, Scnd
maintains a superset of skyline results over T.

Proof  ∀t1 = T(pi1) , if t1 is a skyline tuple, there is no other
tuple in T which can dominate t1 . At the end of stage 1, t1
obviously will be kept in Scnd . If t1 is not a skyline tuple, and
there is another tuple t2 = T(pi2) which can dominate t1 . If
pi1 < pi2 , t2 will be retrieved after t1 and remove t1 from Scnd .
If pi1 > pi2 , t2 is retrieved before t1 . If t2 is dominated by
some tuple and discarded, t1 still will be kept in Scnd at the
end of stage 1. Q.E.D.

In stage 2, TSI performs another sequential scan on T.
Let t be the currently retrieved tuple (line 22-23), any candi-
dates are removed from Scnd if they are dominated by t (line
26-27). It is proved in Theorem 2 that the candidates in Scnd
are the skyline results at the end of stage 2.

In stage 1, TSI retrieves the tuples in T sequentially and
maintains the candidate tuples in a set Scnd (empty initially)
(line 1). Let t be the currently retrieved tuple. If Scnd is
empty, TSI keeps t in Scnd (line 5-6). Otherwise, Scnd is iter-
ated over, any candidate which is dominated by t is removed
from Scnd (line 10-11). At the end of iteration, if t is domi-
nated by some candidate in Scnd , t is discarded (line 14-15);
otherwise, TSI keeps t in Scnd (line 16-17). In stage 1, TSI
does not consider the intransitivity and cyclic dominance
of skyline on incomplete data. Any candidates is discarded
if it is dominated by some tuple, even though the candidate
may dominate the following tuples. In this way, TSI does
not need to maintain the dominated tuples and reduces the
in-memory maintenance cost significantly. It is proved in
Theorem 1 that Scnd contains a superset of the query results
at the end of stage 1.

109Efficient Skyline Computation on Massive Incomplete Data﻿	

1 3

Theorem 2  When the second-pass scan of TSI is over, Scnd
maintains the skyline results over T.

Proof  ∀t1 ∈ Scnd , if t1 is not a skyline tuple, there is another
tuple t2 = T(pi2) which can dominate t1 . In the second-pass
scan, TSI will discard t1 when retrieving t2 . Q.E.D.

The existing algorithms utilize many methods, such as
replacement, sortedness and bucket, to deal with intransitiv-
ity and cyclic dominance. They usually incur high execution
cost on massive incomplete data, as analyzed in Sects. 2 and
4. In this paper, TSI neglects the intransitivity and cyclic
dominance in the first-pass scan and leaves the refinement
of the skyline results in the second-pass scan.

Example 2  The execution in stage 1 of TSI in the running
example is illustrated in Fig. 5. Initially, the candidate set
Scnd is empty. Then, as the first sequential scan is performed,
Scnd = {T(8), T(12), T(15), T(16)} at the end of stage 1. In
stage 2, another sequential scan is executed to refine the can-
didates. As depicted in Fig. 6, T(16) in Scnd is dominated by
T(3). Finally, TSI returns {T(8), T(12), T(15)} as incomplete
skyline results.

Time complexity On massive incomplete data, the major-
ity of the execution cost of TSI is consumed in stage 1.
The reason is that every tuple retrieved in stage 1 needs
to compare with all candidates in Scnd and the size of Scnd

increases during the first-pass scan on T, while the size of
Scnd decreases gradually in stage 2.

Time complexity of stage 1. As shown in Algorithm 1,
the time complexity of stage 1 is determined by the nested
loop, the outer loop from line 3 to Line 20, and the inner
loop from Line 8 to Line 13. Assume that there are n tuples
in the incomplete table, in other words, algorithm 1 needs
to retrieve n tuples. The iteration count of the outer loop is
O(n), since time complexity is the amount of time taken by
an algorithm to run as a function of the input size. The inner
loop involves one sequential scan on Scnd , whose size is no
more than n. For each iteration in the inner loop, the opera-
tions take in constant time; thus, the time complexity of the
inner loop is O(|Scnd|) . On the whole, the time complexity
of stage 1 is determined by the number of tuples in T and
the number of candidates in Scnd , i.e., the time complexity
of stage 1 is O(n ∗ |Scnd|).

Time complexity of stage 2. The execution of stage 2 is
described in Algorithm 1. Obviously, the cost of stage 2 is
similar to stage 1, i.e., the product of n and the size of Scnd ;
it might be insignificant compared with the cost of the fol-
lowing operations. The reason is that if the skyline candi-
dates are relatively small, the size of Scnd with skyline subset
generating in stage 1 is much large than the size of Scnd with
skyline tuples generating in stage 2 and the size of Scnd in
stage 1 often dominates the overall execution cost. On the
whole, the time complexity of algorithm 1 is O(n2).

In Sect. 6.2, we will propose pruning method to skip the
unnecessary tuples in the sequential scan to improve the per-
formance TSI further.

6.2 � Pruning Operation

6.2.1 � Intuitive Idea

On massive incomplete data, it is analyzed that the majority
of the execution cost of TSI is consumed in stage 1. In stage
1, TSI computes the candidates of the skyline over T. Obvi-
ously, any tuple must not be a skyline tuple if it is dominated
by some tuple. In stage 1, TSI utilizes some pre-constructed
data structure to skip the tuples in T which are dominated. In
this way, TSI will speed up its execution in stage 1, since the

Fig. 5   Illustration of execution in stage 1 of TSI

Fig. 6   Illustration of execution in stage 2 of TSI

110	 J. He, X. Han

1 3

pruning operation not only reduces the I/O cost to retrieve
tuples, but also reduces the computation cost of dominance
checking.

6.2.2 � Dominance Checking on Incomplete Data

Given t1 ∈ T  , ∀t2 ∈ T  , let C be the common complete
attributes among skyline criteria of t1 and t2 . For one thing,
if t1 t2 , it means that ∀A ∈ C , t1.A ≤ t2.A and ∃A ∈ C ,
t1.A < t2.A . Suppose that t1 is obtained currently, we can
utilize the values of t1 to skip the tuples dominated by it. For
another, it C is empty, t1 and t2 cannot be compared in terms
of dominance checking. Therefore, the key to the dominance
checking on incomplete data is (1) the comparison of com-
plete attributes, (2) the representation of incomplete attrib-
utes. In the following, we introduce how to construct data
structures to solve the two issues.

In the paper, the value of any incomplete attribute
is regarded as the positive infinity since the smaller val-
ues are preferred. Given table T(A1,… ,AM) , the sorted
list SLi(1 ≤ i ≤ M) is built for each attribute. The schema
of SLi is SLi(PIT ,Ai) , where PIT is the positional index of
the tuple in T, and the tuples of SLi are arranged in the
ascending order of Ai . By the sorted lists, TSI constructs
the structure MCR (Membership Checking Result) to com-
pare the complete attributes. For sorted list SLi(1 ≤ i ≤ M) ,
MCRi,b(1 ≤ b ≤ ⌊log2 n⌋) is a n-bit bit-vector represent-
ing the membership checking results of SLi(1,… , 2b).PIT .
∀t = T(a)(1 ≤ a ≤ n)  , i f a ∈ SLi(1,… , 2b).PIT  ,
MCRi,b(a) = 1 ; otherwise, MCRi,b(a) = 0 . MCRi,b(a) is the
ath bit of MCRi,b . The maximum values of SLi(1,… , 2b).Ai
(1 ≤ b ≤ ⌊log2 n⌋) are kept in a ar ray ITVi , i .e.,
ITVi[b] = SLi(2

b).Ai.
For the representation of incomplete attributes, TSI

performs a sequential scan on T and constructs the struc-
ture RIA, which consists of M n-bit bit-vectors. For
RIAi(1 ≤ i ≤ M) , ∀t = T(a)(1 ≤ a ≤ n) , if T(a).Ai is a com-
plete attribute RIAi(a) = 1 ; otherwise, RIAi(a) = 0.

Example 3  The required data structures mentioned above are
illustrated in Fig. 7. SL1, SL2, SL3 are three sorted lists, whose
elements are arranged in the ascending order of A1,A2,A3 ,
respectively. MCR1,1 is a 16-bit bit-vector representing the
membership checking results of SL1(1, 21).PIT  , i.e., 12
and 8. Therefore, the 8th bit and 12th bit in MCR1,1 are 1,
MCR1,1 = 0000000100010000 . ITV1 keeps the attribute val-
ues of exponential gaps in SL1 , i.e., SL1(21).A1 , SL1(22).A1 ,
SL1(2

3).A1 , SL1(24).A1 , ITV1 = {26, 47, 65,+∞} . The other
MCR bit-vectors and other ITVs can be obtained similarly.
The structure RIAi represents the incomplete values of Ai .

In the running example, T(1).A1 and T(4).A1 are incomplete
attribute values, therefore, RIA1 = 0110111111111111 .
Similarly, we can generate RIA2 and RIA3.

By the structures MCR and RIA, given t1 ∈ T  , we
want to know which tuples in T are dominated by t1 . Let
Sc be set of the complete attributes among A1,A2,… ,Am
of t1 , without loss of generality, assume that S

c
= {A1,… ,

A|Sc|} . ∀Ai ∈ Sc(1 ≤ i ≤ |Sc|) , we determine the first
value ITVi[bi] of ITVi which is greater than t1.Ai , i.e.,
ITVi[bi − 1] ≤ t1.Ai < ITVi[bi] , here ITVi[0] is assigned
negative infinity. Let DBVt1

 be the n-bit bit-vector of domi-
nance checking corresponding to t1 , whose bits are initial-
ized to bit 1. It is proved by Theorem 3 that the bit 1s of
DBVt1

= (
⋀�Sc�

i=1
¬MCRi,bi

) ∧ (
⋁�Sc�

i=1
RIAi) correspond to the

tuples dominated by t1.

Theorem 3  The bit 1s of DBV
t1
= (

⋀�S
c
�

i=1
¬MCR

i,b
i
) ∧ (

⋁�S
c
�

i=1
RIA

i
)

represent the tuples which are dominated by t1.

Proof  As mentioned above, the value bi is determined as the
minimum integer value satisfying ITVi[bi] > t1.Ai . There-
fore, the bit 1s of ¬MCRi,bi

 represent the tuples whose Ai
values are greater than t1.Ai . Since we treat the incomplete
attribute values as positive infinity,

⋀�Sc�
i=1

¬MCRi,bi
 represents

the tuples whose values of A1,… ,A|Sc| are all greater than
those of t1 . Given t2 among these tuples, if at least one of
A1,… ,A|Sc| of t2 is complete attribute, t2 is dominated by t1
according to the dominance definition over incomplete data.
If all of A1,… ,A|Sc| of t2 are incomplete, t1 and t2 are not
comparable from the perspective of dominance relationship.

Fig. 7   Illustration of MCR and RIA in the running example

111Efficient Skyline Computation on Massive Incomplete Data﻿	

1 3

The bit 1s of
⋁�Sc�

i=1
RIAi mean that at least one of A1,… ,A|Sc|

is complete, and the bit 0s of
⋁�Sc�

i=1
RIAi indicate that all of

A1,… ,A|Sc| are incomplete. Consequently, the bit 1s of
DBVt1

= (
⋀�Sc�

i=1
¬MCRi,bi

) ∧ (
⋁�Sc�

i=1
RIAi) represent the tuples

which are dominated by t1 . Q.E.D.

6.2.3 � The Extraction of the Pruning Tuples

In order to skip the unnecessary tuples of T in stage 1, we
first extract some pruning tuples for the following execution
of TSI. The number of pruning tuples should not be large
and they should have relatively strong dominance capability.
Since the dimensionality of T can be high, we do not extract
the pruning tuples with respect to the combination of dif-
ferent attributes, but to the values of single attribute and the
number of complete attributes for each tuple. It is known that
the cardinality of skyline results grows exponentially with
the size of skyline criteria [4] and on incomplete data, dom-
inance relationship between two tuples is performed over
their common complete attributes. Intuitively, for a tuple, if
it has a small number of complete attributes and one of its
complete attributes is very small, it tends to have a relatively
strong dominance capability.

The pruning tuples can be extracted from M sorted col-
umn files SC1 , SC2 , … , SCM . The schema of SCi(1 ≤ i ≤ M)
is (PIT ,NUMc,Ai) , where NUMc is the number of the com-
plete attributes for each tuple. The tuples of SCi(1 ≤ i ≤ M)
are sorted on NUMc and Ai , i.e., they are first arranged in
the ascending order of NUMc , then all tuples with the same
NUMc are arranged in the ascending order of Ai.

For each sorted column file SCi , we retrieve its tuples
sequentially. Let sc be the current retrieved tuple, if sc.Ai
is within the first f% proportion among all Ai values, the
PIT value of sc is maintained in memory, and otherwise,
the next tuple is retrieved. The process continues until the
number of PIT values maintained in memory reaches npt or
it reaches to the end of file. Then, the corresponding tuples
of T are extracted and kept in a separate pruning tuple file
PTi . In this paper, f is set to 5 and npt is set 1000; the prun-
ing effect with such parameter setting is satisfactory in the
performance evaluation.

Example 4  Figure 8 illustrates the extracting of pruning
tuples in the running example. SCi(1 ≤ i ≤ 3) is arranged

first in the ascending order of NUMc , and the tuples with
the same value of NUMc are sorted in ascending of Ai .
In the running example, f = 12.5(16 × 12.5% = 2) and
npt = 1 , one pruning tuple will be retrieved for SCi . For
SC1 , SC1(1,… , 11) cannot be used to generate pruning
tuples since their attribute values are not within the first two
smallest values of Ai . Then, SC1(12) is selected to obtain the
pruning tuple T(SC1(12).PIT) since it is the first tuple in SC1
whose A1 value is among the first two smallest values of A1 .
Other pruning tuples (T(14) and T(6)) are obtained similarly.

6.2.4 � The Execution of Pruning Operation

By the pre-constructed structures described above, TSI
can utilize pruning operation to reduce the execution cost
in stage 1. In order to execute the pruning operation, TSI
maintains a n-bit pruning bit-vector PRB in memory, which
is filled with bit 0 initially.

Fig. 8   Illustration of extracting pruning tuples in the running example

112	 J. He, X. Han

1 3

Algorithm 2 TSI Pruning(T , Scnd)
Input: T is an incomplete table, Scnd a set maintaining the candidate tuples
Output: Scnd a set maintaining the skyline tuples over T

1: MH is a min-heap to keep mpruningtuples with the highest dominance capability.
2: initialize Scnd ← ∅, MH ← ∅;
3: // Stage 1 find the candidate tuples
4: extract the involved pruning tuples PT1, PT2, ..., PTm for each skyline criteria of T ,

and put PT1, PT2, ..., PTm in to MH;
5: while MH has more pruning tuples do
6: retrieve the next tuple pt of MH;
7: Sc is the complete attributes of pt, Sc = {A1, . . . , A|Sc|}};
8: if PRB(pt)=1 then
9: pt can be skipped;
10: else
11: for (i = 1; i ≤ |Sc|; i++) do
12: compute the first value ITVi[bi] of ITVi, ITVi[bi] ← SLi(2bi).Ai;
13: end for
14: the (pt.P IT)th bit of PRB to be 1;
15: if Scnd = ∅ then
16: Scnd ← Scnd ∪ t;
17: else
18: while Scnd has more tuples do
19: retrieve the next tuple p of Scnd;
20: if p is dominated by t then
21: remove p from Scnd;
22: end if
23: end while
24: if t is dominated by p then
25: discard t;
26: else
27: Scnd ← Scnd ∪ t;
28: end if
29: DBVpt ← (|Sc|

i=1 ¬MCRi,bi) ∧ (|Sc|
i=1 RIAi);

30: PRB = PRB ∨ (m
b=1 DBVpt);

31: end if
32: end if
33: end while
34: // Stage 2 discard the candidates which are dominated by some tuples
35: while T has more tuples do
36: retrieve the next tuple t of T ;
37: while Scnd has more tuples do
38: retrieve the next tuple can of Scnd;
39: if can is dominated by t then
40: remove can from Scnd;
41: end if
42: end while
43: end while
44: return Scnd;

is computed to be
∏�Sc�

i=1

2bi

n
 (line 11-13). For the retrieved

pruning tuple pt, TSI sets the (pt.PIT)th bit of PRB to be
1, since it is retrieved already (line 14). Besides, for each
pruning tuple pt, TSI removes any candidates in Scnd
which are dominated by pt (line 18-23). If pt is not domi-
nated by any candidate in Scnd , TSI keeps it in Scnd (line
26-27). ∀ptb ∈ MH(1 ≤ b ≤ m) , TSI computes its corre-
sponding bit-vector DBVptb

 of dominance checking as in
Sect. 6.2.2 (line 29). The final pruning bit-vector PRB is
PRB = PRB ∨ (

⋁m

b=1
DBVptb

) (line 30).

Algorithm 2 is the pseudo-code of the execution of prun-
ing operation. At the beginning of the stage 1, TSI deter-
mines the involved pruning tuple files PT1,PT2,… ,PTm
according to the current skyline criteria and retrieves prun-
ing tuples from them. In the process of retrieving PT1,PT2 ,
… ,PTm , TSI maintains a min-heap MH in memory to keep
m pruning tuples with the highest dominance capability
(line 4). Given a pruning tuple pt, let Sc be its complete
attributes. Likewise, assume that Sc = {A1,… ,A|Sc|}} (line
5-6). ∀1 ≤ i ≤ |Sc| , we determine the first value ITVi[bi] of
ITVi which is greater than pt.Ai , its dominance capability

113Efficient Skyline Computation on Massive Incomplete Data﻿	

1 3

Example 5  The construction of PRB in the running example
is illustrated in Fig. 9. For the pruning tuple T(6)(56, 3, 0),
TSI determines MCR1,3 , MCR2,1 , MCR3,1 which correspond
to the values of T(6). The tuples dominated by T(6) can be
specified by a bit-vector PRB6 = 1101001011000000 . Simi-
larly, we obtain PRB12 and PRB14 . Since T(6), T(12), T(14)
are the pruning tuples, after retrieving them, PRB is
set to be 0000010000010100, i.e., the 6th bit, the 12th
and the 14th bit are 1. The final pruning bit-vector
PRB = PRB ∨ (DBV6 ∨ DBV12 ∨ DBV14) = 1111111011111100.

In stage 1, ∀1 ≤ a ≤ n , if PRB(a) = 1 , T(a) can be
skipped; otherwise, TSI needs to retrieve T(a). The rest of
the execution in stage 1 is the same as that in Sect. 6.1.

Example 6  In the running example, TSI only needs to
retrieve three tuples (T(8), T(15), T(16)) in stage 1 by use
of PRB. This reduces the I/O cost and computation cost
significantly.

7 � Performance Evaluation

7.1 � Experimental Settings

To evaluate the performance of TSI, we implement it in Java
with jdk-8u20-windows-x64. The experiments are executed
on LENOVO ThinkCentre M8400 (Intel (R) Core(TM) i7
CPU @ 3.40GHz (8 CPUs) + 32G memory + 3TB HDD +
64 bit windows 7). In the experiments, we implement TSI,
BA, SOBA [10] and SIDS [1]. With the experimental setting
below, the execution time of SOBA and SIDS is so long that
we do not report its experimental results with the settings
below, but evaluate it in Sect. 7.8 separately. For BA, the size

S of the allocated memory is 4GB. We do not use a larger
size for BA because, with the assistance of the bit-vector Bret
as mentioned in Sect. 5, the larger value of S makes more
tuples of T loaded in memory at a time and reduces the num-
ber of iteration, but it also reduces the proportion of retrieval
which can use the optimization of skipping operation.

In the experiments, we evaluate the performance of TSI
in terms of several aspects: tuple number (n), used attrib-
ute number (m), incomplete ratio (p), correlation coefficient
(c). The experiments are executed on three data sets: two
synthetic data sets (independent distribution and correlated
distribution) and a real data set. The used parameter set-
tings are listed in Table 2. For correlated distribution, the
first two attributes have the specified correlation coefficient,
while the left attributes follow the independent distribution.
In order to generate two sequences of random numbers with
correlation coefficient c, we first generate two sequences of
uncorrelated distributed random number X1 and X2 , then
a new sequence Y1 = c × X1 +

√
1 − c2 × X2 is generated,

and we get two sequences X1 and Y1 with the given cor-
relation coefficient c. When generating synthetic data, we
fix the number of M to be 60 and generate data with all
complete attributes. Then, according to used skyline crite-
ria, we select one attribute first, this attribute is complete.
Other (m − 1) attributes in skyline criteria have a probability
p of being incomplete independently. The real data used are
HIGGS Data Set from UCI Machine Learning Repository1,
it is provided to classification problem including 11000000
instances. The main reasons for using HIGGS are that 1)
HIGGS is one of the largest databases to our knowledge,
accordingly, we have better access to compare the perfor-
mance of above algorithms. 2) and it is an open dataset that
we can find and obtain expediently. On real data, we evaluate
the performance of TSI with varying values of p.

The required structures are pre-constructed before the
experiments. Under the default setting of the experiments,
i.e., M = 60 , n = 50 × 106 , and p = 0.3 , it takes 6840.573
seconds to pre-construct the required data structures.

Fig. 9   Illustration of constructing PRB in the running example

Table 2   Parameter Settings

Parameter Used values

Tuple number(106 ) (syn) 5, 10, 50, 100, 500
Skyline criteria size (syn) 10, 15, 20, 25
Incomplete ratio (syn) 0.3, 0.4, 0.5, 0.6, 0.7
Correlation coefficient (syn) -0.8, -0.4, 0, 0.4, 0.8
Incomplete ratio (real) 0.3, 0.4, 0.5, 0.6, 0.7

1  https://archive.ics.uci.edu/ml/datasets/HIGGS#

114	 J. He, X. Han

1 3

7.2 � The Comparison of TSI with and Without
Pruning

The performance of TSIB and TSI is compared in different
aspects, where TSIB is the TSI algorithm without pruning
operation. As depicted in Fig. 10a, TSI runs 18.84 times
faster than TSIB and the speedup ratio increases with a
greater value of n. This significant advantage is due to the
effective pruning operation. The numbers of the candidates
after stage 1 are illustrated in Fig. 10b. TSI maintains more
candidates than TSIB after stage 1. This is because the prun-
ing operation skips most of the tuples in stage 1, and there-
fore, many candidates which should be removed by some
tuples are left. But the pruning operation reduces the cost in
stage 1 significantly. Figure 10c reports the time decomposi-
tion of TSIB . Obviously, the execution time of stage 1 domi-
nates its overall time. We even cannot see the time in stage 2
due to its rather small proportion. Figure 10d gives the time

decomposition of TSI, which consists of four parts: the time
to retrieve pruning tuples, the time to load the required bit-
vectors, the time in stage 1, and the time in stage 2. The time
in stage 2 of TSI is longer than that of TSIB due to the greater
number of candidates left. However, the time reduction in
stage 1 of TSI is much significant compared with TSIB and
TSI runs one order of magnitude faster than TSIB averagely.
As shown in Fig. 10(e and f), the pruning operation makes
TSI incur less I/O cost and perform fewer number of domi-
nance checking.

7.3 � Experiment 1: the Effect of Tuple Number

Given m = 20 , M = 60 , p = 0.3 and c = 0 , experiment 1
evaluates the performance of TSI on varying tuple numbers.
As shown in Fig. 11a, TSI runs 60.42 times faster than BA
averagely. The speedup ratio of TSI over BA increases with
a greater value of n, from 8.31 at n = 5 × 106 to 166.58 at

Fig. 10   Comparison between
TSI

B
 and TSI

 100

 1000

 10000

 100000

 1e+006

5 10 50 100 500

tim
e(

s)

tuple number (106)

TSIB
TSI

 100

 1000

 10000

 100000

 1e+006

5 10 50 100 500

tim
e(

s)

tuple number (106)

TSIB
TSI

(a)Execution time

 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000
 20000

5 10 50 100 500

tim
e(

s)

tuple number (106)

TSIB
TSI

 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000
 20000

5 10 50 100 500

tim
e(

s)

tuple number (106)

TSIB
TSI

(b)Candidate size

 0

 50000

 100000

 150000

 200000

 250000

5 10 50 100 500

tim
e(

s)

tuple number (106)

S1
S2

 0

 50000

 100000

 150000

 200000

 250000

5 10 50 100 500

tim
e(

s)

tuple number (106)

S1
S2

(c)TSIB decomposition

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

5 10 50 100 500

tim
e(

s)

tuple number (106)

PT
BM
S1
S2

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

5 10 50 100 500

tim
e(

s)

tuple number (106)

PT
BM
S1
S2

(d)TSI decomposition

 1e+009

 1e+010

 1e+011

 1e+012

5 10 50 100 500

io
 c

os
t(b

yt
es

)

tuple number (106)

TSIB
TSI

 1e+009

 1e+010

 1e+011

 1e+012

5 10 50 100 500

io
 c

os
t(b

yt
es

)

tuple number (106)

TSIB
TSI

(e)The I/O cost

 1e+009

 1e+010

 1e+011

 1e+012

 1e+013

5 10 50 100 500

nu
m

be
r o

f d
om

in
an

ce
 c

he
ck

in
g

tuple number (106)

TSIB
TSI

 1e+009

 1e+010

 1e+011

 1e+012

 1e+013

5 10 50 100 500

nu
m

be
r o

f d
om

in
an

ce
 c

he
ck

in
g

tuple number (106)

TSIB
TSI

(f)Comparison number

115Efficient Skyline Computation on Massive Incomplete Data﻿	

1 3

n = 500 × 106 . Figure 11b depicts that TSI incurs 6.73 times
less I/O cost than BA. And as illustrated in Fig. 11c, TSI
performs 38.17 times fewer number of dominance checking

than BA. The performance advantage of TSI over BA is
widened with the greater value of n. At n = 5 × 106 , BA can
load all T into memory and perform another table scan on

Fig. 11   Effect of tuple number

 100

 1000

 10000

 100000

 1e+006

5 10 50 100 500

tim
e(

s)

tuple number (106)

BA
TSI

 100

 1000

 10000

 100000

 1e+006

5 10 50 100 500

tim
e(

s)

tuple number (106)

BA
TSI

(a)Execution time

 1e+009

 1e+010

 1e+011

 1e+012

 1e+013

5 10 50 100 500

re
tri

ev
ed

 b
yt

e
nu

m
be

r

tuple number (106)

BA
TSI

 1e+009

 1e+010

 1e+011

 1e+012

 1e+013

5 10 50 100 500

re
tri

ev
ed

 b
yt

e
nu

m
be

r

tuple number (106)

BA
TSI

(b)The I/O cost

 1e+009

 1e+010

 1e+011

 1e+012

 1e+013

5 10 50 100 500

nu
m

be
r o

f d
om

in
an

ce
 c

he
ck

in
g

tuple number (106)

BA
TSI

 1e+009

 1e+010

 1e+011

 1e+012

 1e+013

5 10 50 100 500

nu
m

be
r o

f d
om

in
an

ce
 c

he
ck

in
g

tuple number (106)

BA
TSI

(c)Comparison number

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

5 10 50 100 500

pr
un

in
g

ra
tio

tuple number (106)

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

5 10 50 100 500

pr
un

in
g

ra
tio

tuple number (106)

(d)The pruning ratio

Fig. 12   Effect of skyline criteria
size

 10

 100

 1000

 10000

 100000

 1e+006

10 15 20 25

tim
e(

s)

skyline criteria size

BA
TSI

 10

 100

 1000

 10000

 100000

 1e+006

10 15 20 25

tim
e(

s)

skyline criteria size

BA
TSI

(a)Execution time

 1e+008

 1e+009

 1e+010

 1e+011

 1e+012

10 15 20 25

re
tri

ev
ed

 b
yt

e
nu

m
be

r

skyline criteria size

BA
TSI

 1e+008

 1e+009

 1e+010

 1e+011

 1e+012

10 15 20 25

re
tri

ev
ed

 b
yt

e
nu

m
be

r

skyline criteria size

BA
TSI

(b)The I/O cost

 10000
 100000
 1e+006
 1e+007
 1e+008
 1e+009
 1e+010
 1e+011
 1e+012
 1e+013

10 15 20 25

nu
m

be
r o

f d
om

in
an

ce
 c

he
ck

in
g

skyline criteria size

BA
TSI

 10000
 100000
 1e+006
 1e+007
 1e+008
 1e+009
 1e+010
 1e+011
 1e+012
 1e+013

10 15 20 25

nu
m

be
r o

f d
om

in
an

ce
 c

he
ck

in
g

skyline criteria size

BA
TSI

(c)Comparison number

 0.91
 0.92
 0.93
 0.94
 0.95
 0.96
 0.97
 0.98
 0.99

 1

10 15 20 25

pr
un

in
g

ra
tio

skyline criteria size

 0.91
 0.92
 0.93
 0.94
 0.95
 0.96
 0.97
 0.98
 0.99

 1

10 15 20 25

pr
un

in
g

ra
tio

skyline criteria size

(d)The pruning ratio

116	 J. He, X. Han

1 3

T to compute incomplete skyline results. At n = 500 × 106 ,
BA needs to execute 56 iterations, each loading a part of T
and then followed by a table scan on T to remove the domi-
nated tuples. On the contrary, TSI shows a slower growing

trend on tuple number due to its execution process and
pruning operation. As illustrated in Fig. 11d, the pruning
operation of TSI can skip vast majority of tuples in stage
1. The pruning ratio in the experiments is computed by the

Fig. 13   Effect of incomplete
ratio

 1

 10

 100

 1000

 10000

 100000

0.3 0.4 0.5 0.6 0.7

tim
e(

s)

incomplete ratio

BA
TSI

 1

 10

 100

 1000

 10000

 100000

0.3 0.4 0.5 0.6 0.7

tim
e(

s)

incomplete ratio

BA
TSI

(a)Execution time

 1e+008

 1e+009

 1e+010

 1e+011

 1e+012

0.3 0.4 0.5 0.6 0.7

re
tri

ev
ed

 b
yt

e
nu

m
be

r

incomplete ratio

BA
TSI

 1e+008

 1e+009

 1e+010

 1e+011

 1e+012

0.3 0.4 0.5 0.6 0.7

re
tri

ev
ed

 b
yt

e
nu

m
be

r

incomplete ratio

BA
TSI

(b)The I/O cost

 100
 1000

 10000
 100000
 1e+006
 1e+007
 1e+008
 1e+009
 1e+010
 1e+011
 1e+012

0.3 0.4 0.5 0.6 0.7

nu
m

be
r o

f d
om

in
an

ce
 c

he
ck

in
g

incomplete ratio

BA
TSI

 100
 1000

 10000
 100000
 1e+006
 1e+007
 1e+008
 1e+009
 1e+010
 1e+011
 1e+012

0.3 0.4 0.5 0.6 0.7

nu
m

be
r o

f d
om

in
an

ce
 c

he
ck

in
g

incomplete ratio

BA
TSI

(c)Comparison number

 0.994

 0.995

 0.996

 0.997

 0.998

 0.999

 1

0.3 0.4 0.5 0.6 0.7

pr
un

in
g

ra
tio

incomplete ratio

 0.994

 0.995

 0.996

 0.997

 0.998

 0.999

 1

0.3 0.4 0.5 0.6 0.7

pr
un

in
g

ra
tio

incomplete ratio

(d)The pruning ratio

Fig. 14   Effect of correlation
coefficient

 1000

 10000

 100000

-0.8 -0.4 0 0.4 0.8

tim
e(

s)

correlation coefficient

BA
TSI

 1000

 10000

 100000

-0.8 -0.4 0 0.4 0.8

tim
e(

s)

correlation coefficient

BA
TSI

(a)Execution time

 1e+010

 1e+011

 1e+012

-0.8 -0.4 0 0.4 0.8

re
tri

ev
ed

 b
yt

e
nu

m
be

r

correlation coefficient

BA
TSI

 1e+010

 1e+011

 1e+012

-0.8 -0.4 0 0.4 0.8

re
tri

ev
ed

 b
yt

e
nu

m
be

r

correlation coefficient

BA
TSI

(b)The I/O cost

 1e+009

 1e+010

 1e+011

 1e+012

-0.8 -0.4 0 0.4 0.8

nu
m

be
r o

f d
om

in
an

ce
 c

he
ck

in
g

correlation coefficient

BA
TSI

 1e+009

 1e+010

 1e+011

 1e+012

-0.8 -0.4 0 0.4 0.8

nu
m

be
r o

f d
om

in
an

ce
 c

he
ck

in
g

correlation coefficient

BA
TSI

(c)Comparison number

 0.992
 0.9925
 0.993

 0.9935
 0.994

 0.9945
 0.995

 0.9955
 0.996

-0.8 -0.4 0 0.4 0.8

pr
un

in
g

ra
tio

correlation coefficient

 0.992
 0.9925
 0.993

 0.9935
 0.994

 0.9945
 0.995

 0.9955
 0.996

-0.8 -0.4 0 0.4 0.8

pr
un

in
g

ra
tio

correlation coefficient

(d)The pruning ratio

117Efficient Skyline Computation on Massive Incomplete Data﻿	

1 3

formula nskip
n

 , where nskip is the number of tuples skipped in
stage 1.

7.4 � Experiment 2: the Effect of Skyline Criteria Size

Given M = 60 , n = 50 × 106 , p = 0.3 and c = 0 , experiment
2 evaluates the performance of TSI on varying skyline cri-
teria sizes. As illustrated in Fig. 12a, with a greater value of
m, the execution times of BA and TSI both increase signifi-
cantly; TSI still runs 85.79 times faster than BA averagely.
For BA, its I/O cost depends on two parts. For one thing, BA
needs to retrieve T once to load it into memory. For another,
BA performs a sequential scan on T in each iteration to dis-
card the candidates in memory which are dominated by some

tuples. For the first part, BA may not retrieve all tuples into
memory since the current tuples may be dominated by the
previous iterations. For the second part, if the current can-
didates all are discarded, BA does not have to continue the
sequential scan but just performs the next iteration directly.
When the value of m increases, given other parameters are
fixed, the probability that a tuple is dominated by other tuple
becomes lower. Therefore, the I/O cost increases on both
parts. This is reported in Fig. 12b. For TSI, its I/O cost also
consists of two parts. In stage 1, TSI performs a selective
scan on T to obtain the candidates of incomplete skyline
results. In stage 2, TSI does another sequential scan on T to
compute the results, in which if all candidates are removed,
TSI can terminate directly. As the value of m increases, the
pruning effect in TSI becomes worse in stage 1, which also

Fig. 15   Effect of real data

 1

 10

 100

 1000

 10000

 100000

0.3 0.4 0.5 0.6 0.7

tim
e(

s)

skyline criteria size

BA
TSI

 1

 10

 100

 1000

 10000

 100000

0.3 0.4 0.5 0.6 0.7

tim
e(

s)

skyline criteria size

BA
TSI

(a)Execution time

 1e+007

 1e+008

 1e+009

 1e+010

0.3 0.4 0.5 0.6 0.7

re
tri

ev
ed

 b
yt

e
nu

m
be

r

skyline criteria size

BA
TSI

 1e+007

 1e+008

 1e+009

 1e+010

0.3 0.4 0.5 0.6 0.7

re
tri

ev
ed

 b
yt

e
nu

m
be

r

skyline criteria size

BA
TSI

(b)The I/O cost

 10
 100

 1000
 10000

 100000
 1e+006
 1e+007
 1e+008
 1e+009
 1e+010
 1e+011

0.3 0.4 0.5 0.6 0.7

nu
m

be
r o

f d
om

in
an

ce
 c

he
ck

in
g

skyline criteria size

BA
TSI

 10
 100

 1000
 10000

 100000
 1e+006
 1e+007
 1e+008
 1e+009
 1e+010
 1e+011

0.3 0.4 0.5 0.6 0.7

nu
m

be
r o

f d
om

in
an

ce
 c

he
ck

in
g

skyline criteria size

BA
TSI

(c)Comparison number

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

0.3 0.4 0.5 0.6 0.7

pr
un

in
g

ra
tio

skyline criteria size

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

0.3 0.4 0.5 0.6 0.7

pr
un

in
g

ra
tio

skyline criteria size

(d)The pruning ratio

Fig. 16   Comparison with BA,
SOBA, and SIDS

 1

 10

 100

 1000

 10000

 100000

6 7 8 9 10

tim
e(

s)

skyline criteria size

BA
TSI
SOBA
SIDS

 1

 10

 100

 1000

 10000

 100000

6 7 8 9 10

tim
e(

s)

skyline criteria size

BA
TSI
SOBA
SIDS

(a)Execution time

 1x107

 1x108

 1x109

 1x1010

 1x1011

 1x1012

6 7 8 9 10

ca
nd

id
at

e
si

ze

skyline criteria size

BA
TSI
SOBA
SIDS

 1x107

 1x108

 1x109

 1x1010

 1x1011

 1x1012

6 7 8 9 10

ca
nd

id
at

e
si

ze

skyline criteria size

BA
TSI
SOBA
SIDS

(b)The I/O cost

118	 J. He, X. Han

1 3

is verified in Fig. 12d, and TSI has to retrieve more tuples
before it terminate in stage 2. This makes a higher I/O cost
for TSI with a greater value of m, as illustrated in Fig. 12b.
With the similar explanation, as shown in Fig. 12c, the num-
bers of dominance checking for both algorithms increase
with a greater value of m.

7.5 � Experiment 3: the Effect of Incomplete Ratio

Given m = 20 , M = 60 , n = 50 × 106 and c = 0 , experiment
3 evaluates the performance of TSI on varying incomplete
ratios. As the value of p increases, the execution time of
BA decreases quickly, while the execution time of TSI first
decreases and then increases gradually. For BA, the decline
of execution time is easy to understand. With a greater value
of p, the probability that any tuple is dominated by other
tuples increases. This makes more in-memory candidates
in each iteration dominated by some tuples in the sequential
scan, and can reduce the I/O cost and dominance checking
cost. As illustrated in Fig. 13c, with a greater value of p, the
number of dominance checking in BA decreases constantly.
And as shown in Fig. 13b, the I/O cost of BA first decreases
significantly when p increases from 0.3 to 0.4, then remains
unchanged basically ever since. When p increases from 0.3
to 0.4, the number of in-memory candidates is reduced dur-
ing the sequential scan and in each iteration, BA terminates
earlier. This makes less I/O cost for BA. When the value of
p is greater than 0.4, the number of in-memory candidates is
reduced also, but in each iteration, BA reaches an approxi-
mately equal scan depth before it terminates. For TSI, the
effect of pruning operation depends on two factors. One is
the probability that one tuple can be dominated by other
tuples. The other is whether all common attributes of two
tuples are incomplete. The two factors have different effects
in different cases. With a greater value of p, the probabil-
ity of a tuple dominated by some tuples increases, also the
probability that the common attributes of two tuples are all
incomplete. When p increases from 0.3 to 0.5, the first factor
has a greater impact, and ever since, the second factor plays
a larger role. This explains the trend of the execution time
of TSI. Similarly, this can explain the variation trend of TSI
in I/O cost (Fig. 13b), the number of dominance checking
(Fig. 13c), and the pruning ratio (Fig. 13d).

7.6 � Experiment 4: the Effect of Correlation
Coefficient

Given m = 20 , M = 60 , n = 50 × 106 and p = 0.3 , experi-
ment 4 evaluates the performance of TSI on varying correla-
tion coefficients. As illustrated in Fig. 14a, TSI runs 47.72
times faster than BA. The correlation coefficients considered
range from -0.8 to 0.8. A negative correlation means that
there is an inverse relationship between two variables, when

one variable decreases, the other increases. And a positive
correlation means that variables tend to move in the same
direction. Therefore, the skyline computation on negatively
correlated data usually is more expensive than that on posi-
tively correlation data. The variations in TSI and BA both
show a downward trend in experiment 4. Here, the trend is
not significant because the incomplete attributes in the data
set reduce the impact of correlation. The I/O cost and num-
ber of dominance checking are depicted in Fig. 14(b and c),
respectively, and they have the similar variation trends. The
effect of pruning operation of TSI is illustrated in Fig. 14d.
Due to the impact of incomplete attributes, the pruning ratio
shows considerable change, but it still shows upward trend
overall.

7.7 � Experiment 5: Real Data

The real data, HIGGS Data Set, are obtained from UCI
Machine Learning Repository. It contains 11,000,000 tuples
with 28 attributes. We select the first 20 attributes as skyline
criteria and evaluate the performance of TSI with varying
incomplete ratios. Before the experiment is executed, one
attribute first is chosen to be complete and other (m − 1)
attributes in skyline criteria have a probability p of being
incomplete independently. As depicted in Fig. 15a, TSI runs
40.46 times faster than BA. The variation trends of execution
times of BA and TSI are very close to those in Sect. 7.5 and
can be explained similarly. The I/O cost and the number of
dominance checking are depicted in Fig. 15(b and c), respec-
tively. The pruning ratio in TSI is illustrated in Fig. 15d.
The variation in these figures can be explained similarly as
in Sect. 7.5.

7.8 � Experiment 6: the Comparison with SOBA
and SIDS

In this part, we evaluate the performance of TSI against BA,
SOBA and SIDS on a relatively small data set with relatively
small skyline criteria size. Given n = 10 × 106 , p = 0.3 and
c = 0 , in order to acquire a better performance for SOBA
and SIDS, we set the value of m to be from 6 to 10, and the
value of M equal to that of m. This can reduce the length of
each tuple and also lower the cost of bucket partitioning for
SOBA and SIDS.

As illustrated in Fig. 16a, SIDS is the slowest among the
four algorithms while TSI is the faster in various skyline
criteria size, and the execution time of SOBA increases sig-
nificantly with the number of m. When m = 10 , SOBA runs
10.96 times slower than BA, the baseline algorithm in this
paper, and runs 200.91 times slower than TSI. As for SIDS,
it runs 21.11 times slower than BA and runs 386.84 times
slower than TSI. On disk resident data, SOBA and SIDS
cannot process incomplete skyline efficiently. The bucket

119Efficient Skyline Computation on Massive Incomplete Data﻿	

1 3

partitioning of SOBA involves two passes of table scan, not
to mention the maintenance cost of the large number of par-
titions in the disk if the number of m is not small. Then, the
computation of local skyline involves another pass of tuple
retrieval. On the relatively large value of m, the number of
local skyline is great also. As depicted in Fig. 16b, the local
skyline makes up 11.7% of the total tuples at m = 10 . The
I/O cost of SIDS is much larger than others, SIDS and BA
are much close in I/O cost. The growth trend of the execu-
tion time of SIDS is fast with respect to skyline criteria size.
The performance of TSI is efficient not only for the in-mem-
ory data set with small size of skyline criteria, but also for
the disk-resident data with not small size of skyline criteria.

8 � Conclusion

This paper considers the problem of incomplete skyline
computation on massive data. It is analyzed that the existing
algorithms cannot process the problem efficiently. A table-
scan-based algorithm TSI is devised in this paper to deal
with the problem efficiently. Its execution consists of two
stages. In stage 1, TSI maintains the candidates by a sequen-
tial scan. And in stage 2, TSI performs another sequential
scan to refine the candidate and acquire the final results.
In order to reduce the cost in stage 1, which dominates the
overall cost of TSI, a pruning operation is utilized to skip the
unnecessary tuples in stage 1. The experimental results show
that TSI outperforms the existing algorithms significantly.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Bharuka R, Sreenivasa Kumar P (2013) Finding skylines for
incomplete data. In: Proceedings of the 24th australasian database
conference - Vol 137, pp 109–117

	 2.	 Börzsönyi S, Kossmann D, Stocker K (2001) The skyline opera-
tor. In: Proceedings of the 17th international conference on data
engineering, pp 421–430

	 3.	 Chomicki J, Godfrey P, Gryz J, Liang D (2003) Skyline with pre-
sorting. In: Proceedings of the 19th international conference on
data engineering, pp 717–719

	 4.	 Godfrey P (2004) Skyline cardinality for relational processing. In:
foundations of information and knowledge systems, Third Inter-
national Symposium, FoIKS 2004:78–97

	 5.	 Godfrey Parke, Shipley Ryan, Gryz Jarek (2007) Algorithms and
analyses for maximal vector computation. VLDB J 16(1):5–28

	 6.	 Xixian H, Jianzhong L, Donghua Y, Jinbao W (2013) Efficient
skyline computation on big data. IEEE Trans Knowl Data Eng
25(11):2521–2535

	 7.	 Khalefa ME, Mokbel MF, Levandoski JJ (2008) Skyline query
processing for incomplete data. In: Proceedings of the 24th inter-
national conference on data engineering, pp 556–565

	 8.	 Kossmann D, Ramsak F, Rost S (2002) Shooting stars in the
sky: an online algorithm for skyline queries. In: Proceedings of
the 28th international conference on very large data bases, pp
275–286

	 9.	 Lee Jongwuk, Hwang Seung-Won (January 2014) Scalable skyline
computation using a balanced pivot selection technique. Inf Syst
39:1–21

	10.	 Lee Jongwuk, Im Hyeonseung, You Gae-won (2016) Optimizing
skyline queries over incomplete data. Inf Sci 361–362:14–28

	11.	 Lee Ken C, Lee Wang-Chien, Zheng Baihua, Li Huajing, Tian
Yuan (2010) Z-sky: an efficient skyline query processing frame-
work based on z-order. VLDB J 19(3):333–362

	12.	 Luo Cheng, Jiang Zhewei, Hou Wen-Chi, He Shan, Zhu Qiang
(2012) A sampling approach for skyline query cardinality estima-
tion. Knowl Inf Syst 32(2):281–301

	13.	 Miao X, Yunjun G, Su G, Wanqi L (2018) Incomplete data man-
agement: a survey. Front Comput Sci 12(1):4–25

	14.	 Papadias Dimitris, Tao Yufei, Greg Fu, Seeger Bernhard (2005)
Progressive skyline computation in database systems. ACM Trans
Database Syst 30(1):41–82

	15.	 Sheng C, Tao Y(2011) On finding skylines in external memory.
In: Proceedings of the 30th ACM SIGMOD-SIGACT-SIGART
symposium on principles of database systems, pp 107–116

	16.	 Tan K-L, Eng P-K, Ooi BC (2001) Efficient progressive skyline
computation. In: Proceedings of the 27th international conference
on very large data bases, pp 301–310

	17.	 Tao Yufei, Xiao Xiaokui, Pei Jian (2007) Efficient skyline
and top-k retrieval in subspaces. IEEE Trans Knowl Data Eng
19(8):1072–1088

	18.	 Zhang K, Gao H, Han X, Cai Z, Li J (2017) Probabilistic skyline
on incomplete data. In: Proceedings of the 2017 ACM on confer-
ence on information and knowledge management, pp 427–436

	19.	 Zhang Kaiqi, Gao Hong, Han Xixian, Cai Zhipeng, Li Jianzhong
(2020) Modeling and computing probabilistic skyline on incom-
plete data. IEEE Trans Knowl Data Eng 32(7):1405–1418

	20.	 Shiming Z, Nikos M, Cheung DW (2009) Scalable skyline com-
putation using object-based space partitioning. In: Proceedings
of the 2009 ACM SIGMOD international conference on manage-
ment of data, pp 483–494

	21.	 Zhenjie Z, Hua L, Beng Chin O, Tung AK (2010) Understanding
the meaning of a shifted sky: a general framework on extending
skyline query. The VLDB J 19(2):181–201

	22.	 Zhenjie Z, Yin Y, Ruichu C, Dimitris P, Anthony KHT (2009)
Kernel-based skyline cardinality estimation. In: Proceedings of
the ACM SIGMOD international conference on management of
data, pp 509–522

http://creativecommons.org/licenses/by/4.0/

	Efficient Skyline Computation on Massive Incomplete Data
	Abstract
	1 Introduction
	2 Related Work
	2.1 Replace-Based Algorithms
	2.2 Sorted-Based Algorithms
	2.3 Bucket-Based Algorithms

	3 Preliminaries
	4 The Analysis for the Existing Algorithms
	5 Baseline Algorithm
	6 TSI Algorithm
	6.1 Basic Process
	6.2 Pruning Operation
	6.2.1 Intuitive Idea
	6.2.2 Dominance Checking on Incomplete Data
	6.2.3 The Extraction of the Pruning Tuples
	6.2.4 The Execution of Pruning Operation

	7 Performance Evaluation
	7.1 Experimental Settings
	7.2 The Comparison of TSI with and Without Pruning
	7.3 Experiment 1: the Effect of Tuple Number
	7.4 Experiment 2: the Effect of Skyline Criteria Size
	7.5 Experiment 3: the Effect of Incomplete Ratio
	7.6 Experiment 4: the Effect of Correlation Coefficient
	7.7 Experiment 5: Real Data
	7.8 Experiment 6: the Comparison with SOBA and SIDS

	8 Conclusion
	References

