
Vol.:(0123456789)1 3

Data Science and Engineering (2022) 7:175–191
https://doi.org/10.1007/s41019-022-00182-8

RESEARCH PAPERS

FLAG: Towards Graph Query Autocompletion for Large Graphs

Peipei Yi1,2 · Jianping Li2 · Byron Choi2 · Sourav S. Bhowmick3 · Jianliang Xu2

Received: 26 April 2021 / Revised: 29 January 2022 / Accepted: 12 February 2022 / Published online: 16 April 2022
© The Author(s) 2022

Abstract
Graph query autocompletion (GQAC) takes a user’s graph query as input and generates top-k query suggestions as output, to
help alleviate the verbose and error-prone graph query formulation process in a visual interface. To compose a target query
with GQAC, the user may iteratively adopt suggestions or manually add edges to augment the existing query. The current
state-of-the-art of GQAC, however, focuses on a large collection of small- or medium-sized graphs only. The subgraph fea-
tures exploited by existing GQAC are either too small or too scarce in large graphs. In this paper, we present Flexible graph
query autocompletion for LArge Graphs, called FLAG. We are the first to propose wildcard labels in the context of GQAC,
which summarizes query structures that have different labels. FLAG allows augmenting users’ queries with subgraph incre-
ments with wildcard labels to form suggestions. To support wildcard-enabled suggestions, a new suggestion ranking function
is proposed. We propose an efficient ranking algorithm and extend an index to further optimize the online suggestion ranking.
We have conducted a user study and a set of large-scale simulations to verify both the effectiveness and efficiency of FLAG.
The results show that the query suggestions saved roughly 50% of mouse clicks and FLAG returns suggestions in few seconds.

Keywords Subgraph query · Query autocompletion · Large graphs · Database usability

1 Introduction

Researchers and practitioners perform different types of
queries on large graphs [30]. Formulating subgraph match-
ing query, among others, requires significant users’ effort. A
popular approach to provide query formulation aids for users
is to build visual query interfaces (a.k.a Guis) that facilitate

the drawing of query graphs in an easy and intuitive manner.
Real-world visual query interfaces (e.g., PubChem1, Chem-
SPider2, and SCAFFoLd hunter 3) have already been offered.
However, composing graph queries in a visual environment
may still be cumbersome. To alleviate the burden of visual
graph formulation, graph query autocompletion (GQAC)
[36, 37] has been proposed. Consider a scenario that a user
formulates a target query graph qt iteratively via the Gui.

Given an existing partially formulated query graph q, GQAC
aims to suggest a subgraph increment Δq to q to form a query
suggestion, such that the suggestion is closer to the target query qt.

Since users’ intention is hard to predict, GQAC typically
returns k suggestions on a visual interface for users to choose
from. An example of Gui, the user’s current query, and sug-
gestions of GQAC are shown in Fig. 1. We mimicked the
example figure style of a related work [37] for presentation
consistency.

Existing studies only consider the GQAC problem for large
collections of small graphs, e.g., chemical databases4, and

 * Peipei Yi
 pyi@lenovo.com

 * Byron Choi
 bchoi@comp.hkbu.edu.hk

 Jianping Li
 csjpli@comp.hkbu.edu.hk

 Sourav S. Bhowmick
 assourav@ntu.edu.sg

 Jianliang Xu
 xujl@comp.hkbu.edu.hk

1 Machine Intelligence Center, Lenovo, Hong Kong,
Hong Kong

2 Department of Computer Science, Hong Kong Baptist
University, Kowloon Tong, Hong Kong

3 School of Computer Science and Engineering, Nanyang
Technological University, Singapore, Singapore

1 https:// pubch em. ncbi. nlm. nih. gov/ search/.

2 http:// www. chems pider. com/.
3 http:// scaff oldhu nter. sourc eforge. net/.

4 http:// autog. comp. hkbu. edu. hk: 8000/ autog/ http:// autog. comp. hkbu.
edu. hk: 8000/ gfocus/.

http://orcid.org/0000-0002-5515-1012
http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-022-00182-8&domain=pdf
https://pubchem.ncbi.nlm.nih.gov/search/
http://www.chemspider.com/
http://scaffoldhunter.sourceforge.net/
http://autog.comp.hkbu.edu.hk:8000/autog/
http://autog.comp.hkbu.edu.hk:8000/gfocus/
http://autog.comp.hkbu.edu.hk:8000/gfocus/

176 P. Yi et al.

1 3

cannot be directly applied to large graphs. In particular, pre-
vious studies construct query suggestions based on some
popular substructures (a.k.a features) of the graph data.5
This assumes users want to construct queries to retrieve
some graphs. For instance, we may set the minimum sup-
port of frequent substructures to 10% of the dataset size for
PubChem and we obtained approximately a thousand features
for GQAC. However, in large graphs, such features are smaller
in size and more scarce in quantities. For example, such fre-
quent subgraphs are very few in CiteSeer, reported fewer than
10 frequent subgraphs for various support threshold values
[8]. This phenomenon leads to two main challenges of GQAC
for large graphs. First, there are a large number of distinct sub-
graphs and each of them has small supports from the graph.
Candidate suggestions generated from them are many but rare
in the graph data. Further, the visual interface shows only k
suggestions, not to mention humans may interpret a small
set of suggestions in practice. Such k suggestions may not be
useful. We illustrate the second challenge with Example 1.

Example 1 Suppose the current query is q. The first sugges-
tion in Fig. 1 (q + Δq1) increments q by one edge, which
may not save effort from query formulation. Then, consider
the last three suggestions increment q by two edges. They
have however become overly specific, each of which appears
only few times in the data graph. The three suggestions
occupied relatively much area of the GUI. It is desirable to
efficiently summarize the specific suggestions and rank the
generalized one high and leave room for others.

To address the aforementioned challenges, we propose
Flexible graph query autocompletion for LArge Graphs
(FLAG). To tackle the first challenge, we propose wildcard
label to GQAC. A wildcard label represents any label of
the data graph. It is suitable for GQAC for a large graph for

two reasons. First, FLAG can then provide suggestions that
contain wildcard labels. An example is shown as q′

2
 of Fig. 2.

q′
2
 summarizes suggestions q + Δq2 , q + Δq3 , and q + Δq4

of Fig. 1. It is evident that q′
2
 summarizes (or generalizes)

the three suggestions, each of which has only few support
from the graph data, and spare some space of the top-k sug-
gestions for others. Second, wildcards can be naturally used
when users are not sure about the labels of the nodes/edges
of the query graph, but FLAG still suggests new edges. To
avoid having wildcards appearing in arbitrary places of
query suggestions, we propose well-formed suggestions.

To address the second challenge, we introduce query
generalization and query specialization of suggestions for
GQAC. Query specialization is an operator for augmenting
an existing query to one that is closer to the target query. It
also quantifies how much a suggestion augments the exist-
ing query. In each specialization, the user either i) add a
wildcard edge or ii) change a wildcard label to an exact
label. The introduction of wildcard label does not alter the
asymptotic complexity of the query process (e.g., subgraph
matching) or graph autocompletion (e.g., suggestions rank-
ing). Next, we propose query generalization which is the
opposite of query specialization. Recall from Fig. 2, three
suggestions are generalized into one so that the support
of the generalized suggestion becomes higher. q′

2
 is more

specific than q + Δq1 but more generalized than q + Δq2 ,
q + Δq3 and q + Δq4.

Wildcard-enabled GQAC may generate numerous can-
didate suggestions and their ranking can be inefficient. We
propose a novel linear submodular ranking function that
involves not only query suggestion’s specialization to the
current query but also the summarization of the possible
candidate suggestions. Specifically, we propose speciali-
zation value (��) to quantify how much a suggestion aug-
ments the existing query; and summarization value (��)
to quantify how many candidate suggestions a suggestion
summarizes. The approximation of the ranking function is
differentiable. Hence, we can adopt a stochastic gradient
descent algorithm to learn the parameters of the ranking
function. It is also not surprising that the ranking prob-
lem is nP-hArd. Since the ranking function is submodular,
we propose an efficient greedy algorithm for computing
the top-k suggestions. To further optimize efficiency, we
extend an existing index with the support of wildcards for
ranking.

q

Reset Rollback Submit Query

Edge

Node
· · ·

Query editor

Suggestions

Label panel

· · ·

1 2 3 4

q +∆q1 q +∆q2 q +∆q3 q +∆q4

AG AI DB IR ML

1 2 3e3

e2

e1 DB

DM

IR

DB

DB

DB

DM

DB

IR

DBDB

DM

IR

DB

DM

IR

DB

DM

IR

DB

DM

IR

Fig. 1 A typical GUI and query suggestions of GQAC

q q′1 q′2 q′3 q′4

query suggestions

cialization

useful
suggestions

query spe-

* wildcard
e3

e2

e1 DB

DM

IR

DB DB IR

*

IR
DMDB

DM

IR

DB

DM

IR

DB

DM

IR

DB

DM

IR

Fig. 2 Example of query and the suggestions with wildcards

5 When query logs (which are also graphs) are available, GQAC may
generate suggestions from them also.

177FLAG: Towards Graph Query Autocompletion for Large Graphs

1 3

In conclusion, this paper makes the following
contributions.

1. We propose wildcard labels for query graph and query
suggestions. We propose a notion of well-formed wild-
card graph for GQAC.

2. We propose specialization value (��) and summariza-
tion value (��) to measure how much a suggestion spe-
cializes an existing query and summarizes other candi-
date suggestions.

3. We propose a ranking function based on �� and ��.
4. To optimize the efficiency of online ranking of query

suggestions, we present the techniques that are needed
to extend an existing index for the wildcard-enabled
GQAC.

5. We use a stochastic gradient descent algorithm to
learn the parameters of the ranking functions in
experiments. We investigate the usefulness and effi-
ciency of FLAG via a user study and extensive simu-
lations. The results show that FLAG saves about 50%
of mouse clicks in query formulations and the sug-
gestions are returned in several seconds under a large
variety of settings.

The rest of the paper is organized as follows. Section 2 pro-
vides the background of GQAC. Section 3 proposes wild-
card labels for GQAC. Section 4 proposes specialization
value (��) and summarization value (��) for query sugges-
tions. Section 5 provides details of the efficient online sug-
gestion ranking. We present a performance study in Sect. 6.
We discuss the related work in Sect. 7. Section 8 concludes
the paper and presents some future work.

2 Preliminaries

This section provides the preliminaries of graph query auto-
completion (GQAC) and presents the problem being studied.
Some frequently used notations are listed in Table 1.

2.1 Background on Graph Query Autocompletion
(GQAC)

2.1.1 Graph Data

We consider a single large graph G = (V ,E, l) , consists of
a set of nodes V, a set of edges E and a labeling function l
that assigns labels to nodes and edges. The size of a graph
is defined by |E|. ��� is a function that returns the degree
of a vertex. For example, Fig. 1 shows the CiteSeer graph.
Node labels represent the area of the publication (e.g., DB,
DM, IR) and edge labels represent the distance between the
pair of publications. This dataset will be used for subsequent
examples. For presentation simplicity, all examples illustrate
undirected graphs with a single label for each node and edge.

2.1.2 Query Formalism

This paper adopts subgraph isomorphism, a popular and fun-
damental query formalism, for the technical discussions. The
subgraph isomorphism is recalled below.

Definition 1 (Subgraph isomorphism) Given two graphs
g = (V ,E, l) and g� = (V �,E�, l�) , g is a subgraph of g′ ,
denoted as g ⊆𝜆 g

′ , iff there is an injective function (or
embedding6) � ∶ V ↦ V � such that

1. ∀u ∈ V , �(u) ∈ V � such that ����� (l(u) , l�(�(u))) = ���� ;
and

2. ∀(u, v) ∈ E , (�(u),�(v)) ∈ E′ such that ����� (l(u, v), l�(
�(u) , �(v))) = ����,

where �����(l1 , l2) = ���� iff l1 = l2
Multiple subgraph isomorphic embeddings of g may exist

in g′ , denoted as �0
g,g′

 , �1
g,g′

 , … , �m
g,g′

 . For succinct presenta-
tion, we refer to each �i

g,g′
 as an embedding � , when the sub-

scripts and superscripts are clear from or irrelevant to the
context.

Definition 2 (Subgraph query) Given a single large graph
G and a query graph q, the answer (or result set) of q is
Gq = {𝜆 | q ⊆𝜆 G}.

2.1.3 Visual Graph Query Construction

Graphs and their query graphs can be intuitively displayed
and drawn in a visual environment (e.g., a Gui Fig. 1). In the
process of visual query construction, the user draws the cur-
rent query q on the query editor and has the target query qt in

Table 1 Frequently used notations

Symbol Meaning

q The current query or existing query
q′ A query suggestion or simply suggestion
Δq Query increment (adding Δq to q yields q′)
Q′ Query suggestions
q ⊆𝜆 q′ q is a subgraph of q′ and � is the embedding of q in q′

f A (proper) connected subgraph of the query q

6 Note that this is different from the embedding that maps a graph
into a d-dimensional space, in the context of machine learning.

178 P. Yi et al.

1 3

mind; and he/she performs an action (e.g., adding an edge or
subgraph to q) to make the current query closer to the target.
Performing this process manually can be error-prone.

2.1.4 Graph Query Autocompletion (GQAC)

A visual environment often provides visual aids for query
construction, in addition to the basic constructs (e.g., as
shown node and edge labels in the label panel of Fig. 1).
Recently, Yi et al. [36] propose GQAC that aims at alleviat-
ing users from the cumbersome actions by providing useful
subgraph suggestions. The process of GQAC is sketched in
Fig. 3. Here, we present its major steps. The details related
to FLAG are postponed to later sections.

1. GQAC takes the user’s current query q and the user pref-
erence of suggestions as input. Voluminous candidate
query suggestions are generated and ranked. A query
suggestion is a graph that augments the current query
with structure and/or labels. Note that the increments
to the query can be subgraphs. A small set of ranked
query suggestions are efficiently generated for the user’s
review.

2. The user may compose the query by either adopting a
suggestion or manually adding other edges.

3. The above steps are repeated until the target query is
constructed.

2.1.5 Formalizing GQAC

Recall that query suggestions are formed by incrementing
the current query with a subgraph. The current state-of-the-
art of GQAC [36] exploits the concepts of graph features (or
simply features). Graph features are generally understood as
subgraphs that carry important characteristics of graph data.
Features have also been considered the tokens of GQAC. For
example, an existing work of GQAC[36] decomposes the
current query into a set of features and augments the cur-
rent query with another feature to form a query suggestion.
The intuition is that users may want to specify some charac-
teristics of the graph in their target queries. While existing
work uses c-prime features as the features for GQAC, other

features can be plugged into GQAC, depending on the users’
applications.7

The composition of two subgraphs (incrementing a
subgraph with another) can be intuitively understood as a
one-step construction of a query suggestion, which can be
formally defined as a ������� function. We recall some rel-
evant definitions below.

Definition 3 (Common subgraph (��)) Given two graphs
g1 and g2 , a common subgraph of g1 and g2 is a connected
subgraph containing at least one edge and it is a subgraph
of g1 and g2 (denoted as ��(g1, g2) , or simply �� when g1 and
g2 are clear from the context), i.e., �� ⊆𝜆1

g1 and �� ⊆𝜆2
g2 ,

for some �1 and �2.

Definition 4 (������� for query composition) ������� [36]
is a function that takes two graphs, g1 and g2 , and the corre-
sponding embeddings (�1 and �2) of a common subgraph ��
as input, and returns the graph g that is composed by g1 and
g2 via �1 and �2 of �� , respectively, denoted by g = �������

(g1 , g2 , �� , �1 , �2).

Example 2 An example of query composition is shown in
Fig. 4. Assume that f10 is the current query and f13 is the
graph feature used to increment f10 . Then, g is the query
graph formed by adding f13 to f10 via the common subgraph
f4 , i.e., g = �������(f10 , f13 , f4 , �1 , �2). The increment is
highlighted in blue with the gray background. The embed-
dings �1 and �2 specify the locations of f4 in f10 and f13 ,
respectively.

Definition 5 (Useful suggestion) Given a target query qt and
existing (or current) query q, a query suggestion q′ is useful
if and only if q ⊂𝜆1

 q′ and q′ ⊆𝜆2
 qt , for some �1 and �2.

Fig. 3 FLAG: graph query autocompletion for large graphs

f10 f13 f4 g

compose(f10, f13, f4, λ1, λ2) = g

+ via =

1

2

0

2

10 0 1

λ1 = {0 �→ 1, 1 �→ 0}

λ2 = {0 �→ 0, 1 �→ 1}

DBDB
1

IR

22

DBDB
1

IR

2

DBDB
1

2

DBDB
1

fδ

DB DB

Fig. 4 An illustration of query composition—forming a large query
graph from small graphs

7 We remark that existing GQAC systems do not rank infrequent
items of a database high, if at all. In the context of web search, some
infrequent phrases are also not suggested. A possible reason is that
users can simply run those queries without further constructing them
and manually examine the few results to obtain their desired informa-
tion.

179FLAG: Towards Graph Query Autocompletion for Large Graphs

1 3

As motivated, users’ target queries are hard to predict.
Recently, GQAC systems have proposed various ranking
mechanisms (according to users’ preferences and a ranking
function ����) to efficiently compute a small list of sugges-
tions with the hope that they are useful. Some ranking fac-
tors include the result counts of the suggested queries and
the structural diversity of the suggestions. It is not surprising
that the suggestion ranking problems are generally intrac-
table and hence, greedy algorithms have been proposed to
efficiently rank the useful query suggestions.

2.1.6 Problem Statement

Given a large graph G, an existing query q, a ranking func-
tion ���� , a user preference � and a parameter k, the paper
investigates to return query suggestions Q�

k
∶ {q�

1
, q�

2
,… , q�

k
}

s.t. for i ∈ [1, k] , q′
i
 is composed by adding an increment to

q and Q′
k
 is the top-k suggestions w.r.t. the ranking function

���� and the user preference �.
To the best of our knowledge, this paper is the first work

that computes query suggestions for querying a single large
graph and wildcards for GQAC have not been proposed
before.

3 Wildcard Labels for GQAC

In this section, we propose wildcard labels to generalize
similar substructures into a summary structure. We further
discuss how to introduce wildcard labels to the process of
GQAC (e.g., graph features and query compositions).

3.1 Wildcard Labels and Graphs

A wildcard label (or simply wildcard) represents any pos-
sible labels of nodes/edges and is assigned to new unlabeled
nodes and edges by default, meaning that the labels are not
yet specified. Figure 5 shows an ordinary feature (f13) and
features having a wildcard label of an edge (f8 and f9). The
query formalism of subgraph isomorphism can be readily
extended with wildcards by simply replacing the matching
function ����� of Def. 1 with �����∗ , where �����∗(l1,l2
)=���� iff l1=“*” or l1=l2.

Definition 6 (Wildcard graph) A graph with wildcard labels
“*”, denoted as G∗,8 is defined as a 3-ary tuple (V,E,�∗),
where V and E are node and edge sets and the label function
�
∗ that assigns ordinary labels or “*” to a node or edges.

A wildcard can be introduced to query graphs manually
by users or suggested by GQAC. When introducing the wild-
cards to GQAC, the features to be added to an existing query
must allow wildcards. However, this leads to an exponential
blowup in the number of features used in existing GQAC for
constructing query suggestions. Having too many wildcards
in queries or suggestions is not only computationally costly
to generate and rank but also confuses the users. Further-
more, the suggestions having wildcards can be neither too
generic nor too specific with respect to the closest ordinary
suggestion. To this end, we restrict the wildcards only occur
at the leaf nodes/edges only (see Def. 7). Hence, users may
often expand their query graphs at the boundaries.

Definition 7 (Well-formed wildcard graph) A graph G∗ is a
well-formed wildcard graph if it is a wildcard graph and all
wildcard labels are on one leaf edge and the incident leaf
node.

3.2 Wildcard Features for GQAC

While wildcards may still significantly increase the number
of features, and hence, query suggestions, not every wildcard
feature is useful. Consider an extreme case, where two fre-
quent features f and f ∗ of the same size have the same result
set, i.e., f ∗ ⊆𝜆 f , |f ∗| = |f | and Df ∗ = Df , it is not neces-
sary to consider f ∗ in GQAC. Among wildcard features and
ordinary features with the same result set, it is sufficient to
increment the existing query with the ordinary feature. Thus,
such f ∗ can be omitted from GQAC. Recall that GQAC gen-
erates query suggestions by adding a feature from a feature
set to the existing query. We propose independent wildcard
features such that the features retrieve different results from
data.

Definition 8 (Independent Wildcard Feature (IWF)) A wild-
card feature f ∗ is independent w.r.t a feature set F if

1. There exists F1 ⊆ F and for f1 ∈ F1 such that f1 ⊆𝜆 f
∗

and |f ∗| = |f1| + 1;
2. There exists F2 ⊆ F and for f2 ∈ F2 such that f ∗ ⊆𝜆 f2

and |f ∗| = |f2| ; and

DBDB
1

f8
2

*

0 1

2

Add wildcard labels

f4f6

DBDB
1

DBDB
1

f9 DBf13

DBDB
1

DB

2

*
**

DBDB
1

0 1

2

0 1

2

0 1

2

0 1

Fig. 5 Adding wildcard labels to features

8 We use G∗ to denote a graph having wildcards but may omit “*”
when they are not relevant to the discussion.

180 P. Yi et al.

1 3

3.
Df1

Df∗
≥ � and Df∗

Df2

≥ � for ∀f1 ∈ F1 and f2 ∈ F2 , where �

is a constant called independent ratio.

The independent ratio has the following properties: i)
� ≥ 1 ; and ii) the larger value of � , the more difference in
the feature result sets and intuitively, more independent the
wildcard features with respect to their closest ordinary fea-
tures F1 and F2 . A feature f ∗ is introduced to GQAC if it is
dependent enough from F.

The detailed process of generating independent well-
formed wildcard features for graph query autocompletion
is presented in Algo. 1. We adopt existing studies of feature
mining [35] to obtain a set of features F = {f1, f2,… , fn} .
Then, we add wildcard labels one by one to f to obtain wild-
card features F∗ , that are both independent and well-formed.
Applying the concepts introduced in Def. 8 and 7, we itera-
tively generate all wildcard features by substituting labels
on one leaf edge with wildcards. Meanwhile, we eliminate
the wildcard features that are dependent to existing ordinary
features.

Example 3 We illustrate the process of adding wildcard
labels to features with Fig. 5. Given an ordinary feature f13 ,
and edge DB-DB connects leaf node DB. We replace the
labels on edge DB-DB with wildcard labels to obtain wild-
card features f9 , f8 , and f6 , which can be regarded as gener-
alizing the labels on the edge DB-DB with wildcard labels.

3.3 Composition of Well‑Formed Wildcard Features

The features discussed earlier can be the tokens for query
autocompletion. Suggestions with wildcards are constructed
by adding a feature to an existing query graph. The query
composition (a one-step query suggestion construction
Def. 4) can be readily extended. Given a query composi-
tion �������(g1 , g2 , �� , �1 , �2), g1 and g2 could be wildcard

features and ������� is restricted to return a well-formed
suggestion.

Example 4 Recall the query composition in Example 2 with
�������(f10 , f13 , f4 , �1 , �2). We add wildcard labels into f13
in Example 3 and obtain wildcard features { f9 , f8 , f6 }. A
wildcard composition can be obtained by simply substitut-
ing f13 of the composition with any of the wildcard features.
One of the wildcard compositions, i.e., �������(f10 , f8 , f4 ,
�1 , �2), is illustrated in Fig. 6.

4 Query Specialization and Query
Summarization

The previous sections presented the features and their com-
position. In this section, we formalize query specialization
for modeling the whole query suggestion construction pro-
cess. We propose the specialization value (��) to quantify
how a query graph is specialized from an empty graph, and
summarization value (��) to quantify how one wildcard
query suggestion summarizes other suggestions.

4.1 Query Specialization

4.1.1 Specialization Order (≺)

Specialization order is a partial order defined between two
query graphs. The intuition is that a more specialized query
is closer to the target query. It also models one query is con-
structed from the other. We formally define the specializa-
tion operators and specialization order as follows.

The specialization operators are the following two:

1. ���(q, e:(u, v)): add a new edge e, where �(e) is a “*”
label, if u and v are existing nodes; and �(v) is a “*”
label, if v is a new node.

2. �������(q, e): replace a “*” label with a specific label of
the edge or node of e.

f10 f8 f4 g

compose(f10, f8, f4, λ1, λ2) = g

+ via =

1

2

0

2

10 0 1

λ1 = {0 �→ 1, 1 �→ 0}

λ2 = {0 �→ 0, 1 �→ 1}

DBDB
1

IR

22

*

DBDB
1

IR

2

DBDB
1

2

*

DBDB
1

fδ

Fig. 6 An illustration of wildcard composition

181FLAG: Towards Graph Query Autocompletion for Large Graphs

1 3

Definition 9 (Specialization order (≺)) Given two query
graphs q = (V ,E, l) and q� = (V �,E�, l�) , q′ specializes q,
denoted as q ≺ q′ iff there is an injective (or embedding)
function � ∶ V → V � such that q ⊆𝜆 q

′.

4.1.2 Specialization Value (��)

To further measure the different degree of specialization
of query graphs, we propose specialization value based on
the specialization operators, in Def. 10. In addition, given a
suggestion to an existing query, the difference of their spe-
cialization values captures how much does the suggestion
augment the query. For simplicity, Def. 10 assumes that all
operators are equal.

Definition 10 (Specialization value (��)) The specialization
value of a query graph q is the number of specialization
operators needed to formulate q from an empty graph q∅ ,
denoted as ��(q).

Example 5 We illustrate specialization order and specializa-
tion value with Fig. 7. The specialization order of the query
graphs is q ≺ q′ ≺ q′′ ≺ q′′′ . The existing query is q (left-
most) with a wildcard. The specialization value of q is 13,
indicated in bold at the center of q. After specializing the
wildcard of q into the label DB, the user obtains q′ with a
specialization value increased by 1. Then, the user adopts
a suggestion with a wildcard to get q′′ , with specialization
value increased by 7. At last, the user specializes the wild-
card to a specific label and obtains the target query q′′′.

4.2 Query Summarization

4.2.1 Summarization Set (��)

To model how likely a query q is useful to the user, we
compute how many suggestions can be specialized from q.
We formally define the summarization set to denote such
suggestions.

Definition 11 (Summarization set (��)) The summarization
set of a query q, denoted as ��(q) , contains all query graphs
that specialize q.

where Gq′ is the subgraph query results set of q′ . In other
words, q summarizes all the query graphs that specialize q.
The summarization of a set of graphs Q is as follows.

Example 6 Continuing with Fig. 7, given four query
graphs, the specialization order of the query graphs is
q ≺ q′ ≺ q′′ ≺ q′′′ . Then, ��(q) = {q, q�, q��, q���} , and
��(q�) = {q�, q��, q���}.

When the user formulates the query graph, both the num-
ber of query results and the possible suggestions are decreas-
ing. This property (see Prop. 1) can be used to reduce the
number of candidate suggestions for efficient GQAC. In par-
ticular, if g is an answer for query q′ , then g is an answer for
every query q that summarizes q′ . On the other hand, if g is
not an answer for q, then g is not an answer for every query
q′ that specializes q. This is formally described as follows.

Proposition 1 Given two query graphs q and q′ , where q′
specializes q (i.e., q ≺ q′) via a series of specialization
operators. Then, q ≺ q′ ⇒ ∀ g� ∈ Gq� , ∃ g ∈ Gq s.t. g ⊆𝜆 g

′.

5 Autocompletion Framework for Large
Graphs

The overall query autocompletion is presented in Algo 3
and illustrated with Fig. 3. FLAG assumes 1 the user sub-
mits a query and an intent, and 2 the query is decomposed
into a set of embeddings of wildcard features of the data
graph. FLAG then supports wildcards in two main steps of
GQAC. First, in the candidate generation step, 3 we deter-
mine possible candidate suggestions, i.e., the well-formed
wildcard features to attach to the current query to form sug-
gestions that may yield non-empty answers. In Sect. 5.1, we
propose pruning techniques for large graphs and sampling
techniques. Second, in Sect. 5.2, 4 we present a new rank-
ing function that combines the specialization value and sum-
marization set size.

5.1 Candidate Suggestions Generation

5.1.1 Query decomposition

During the online autocomplete, the query decomposition
procedure (Algo. 1 from AutoG[36]) is adopted. The query
graph q is decomposed into a feature set F∗

q
 , along with the

��(q) = {q�|q ≺ q�,Gq� ≠ �},

��(Q) =
⋃

q∈Q

��(q).

visual graph specialization (SP)

+1 SP

q q′ q′′ q′′′

13 14 21 22

+7 SP +1 SP
DBDB

1

IR

22

*

DBDB
1

DBIR

22

DBDB
1

DBIR

22

DB

1

2
*

DBDB
1

DBIR

22

DB

1

2
DB

Fig. 7 An illustration of specialization orders and values

182 P. Yi et al.

1 3

embeddings of the features in the query. The detailed process
is presented in Algo. 2.

To generate well-form query suggestions, where the wild-
cards appear in the leaf nodes/edges, the non-leaf wildcards
(if any) in F∗

q
 need to be specialized before generating can-

didate suggestions (Lines 3-9).

5.1.2 Non‑empty candidate suggestions

Candidate suggestions can specialize the existing query in
multiple ways. First, suggestions can replace wildcards in
the query with specific labels. Second, candidates can incre-
ment the query with (wildcard) features. Specifically, given
a set of features, the number of possible candidates is, in the
worst case, exponential to the query and feature sizes. How-
ever, many of the composed queries may not make sense,
when the composed queries do not retrieve any results from
the underlying data graph. Such queries are known as empty
queries. Furthermore, the problem of deciding the emptiness
of a subgraph matching query is NP-hard.

Existing work [36] has proposed a necessary condition
for compositions of non-empty query candidates. It has been
reported that the condition reduced 13% and 45% of query
compositions for AidS and PubChem, which consist of a large
collection of modest-sized graphs. When directly applied,
[36] prunes only 0.1% of the possible compositions of the
CiteSeer dataset. Therefore, in Prop 2, we propose a neces-
sary condition for non-empty query compositions based on
the large graph and sampling techniques.

We illustrate how to efficiently prune empty compositions
using the embedding information. The queries that are not
pruned are considered candidate suggestions.

Consider a large graph G, a set of sampled graphs D
obtained from G using existing graph sampling techniques
(Sect. 6), and the set of frequent features F extracted from
D using existing frequent subgraph mining techniques

offline. The embeddings Mf of the features in the sampled
graphs are and the embeddings Mg of sampled graphs in
the large graph can be computed offline. For a composition
�������(f1, f2, ��, �1, �2) , the embeddings of f1 and f2 in the
large graph �f1,G , �f2,G are obtained using Mf and Mg.

Proposition 2 A query q is a non-empty query of the sam-
pled graphs only if for each query composition �������(
f1 , f2 , �� , �1 , �2) of q satisfied that ∃�f1,G, �f2,G , such that
�f1,G[�1] = �f2,G[�2]

Proposition 2 verifies whether each composition of the
query can find at least one instance in the large graph from
the sampled portion. There could be false negatives sim-
ply because the sampled graphs may not cover all possible
compositions of the large graph, even one may increase the
sampling size for higher accuracy. Prop. 2 is used in both
online candidate generation and indexing of query composi-
tions offline.

5.2 Suggestion Ranking

From our preliminary experiments, we observed that the
number of candidate suggestions can be thousands. Consid-
ering the users may only be able to interpret a small subset
of them, FLAG returns top-k suggestions w.r.t. a ranking
function and a user preference. Suggestion ranking crite-
ria of existing studies [36] are either infeasible to obtain
from large graphs for efficient online autocomplete (e.g.,
���) or indistinguishable among the candidate suggestions
(e.g., ����) because the increment parts share no common
subgraphs (i.e., ����) and yield the same ���� value. As the
first attempt on GQAC for large graphs, we present a rank-
ing function prefers query suggestions that i) augments the
existing query more and ii) summarizes more candidate sug-
gestions. The first preference simply reflects the user’s intent
to adopt larger useful increments, whereas the second one
recognizes the importance of summarizing more suggestions
that can be useful to the user. These two preferences can
be quantified as specialization power and summarization
power. We then combine these two criteria to measure the
utility of a set of query suggestions.

Definition 12 (Specialization power (�������)) Given a set
of candidate suggestions U to an existing query q, the spe-
cialization power of a suggestion q′ ∈ U w.r.t. q is defined as

The specialization power of a suggestion q′ is defined
as the increment of the specialization value �� if the user

�������(q�, q) =
��(q�) − ��(q)

max({��(q��) − ��(q)|q�� ∈ U})
.

183FLAG: Towards Graph Query Autocompletion for Large Graphs

1 3

adopts the suggestion, and normalized by the maximum
specialization value increment of all candidate suggestions.

Definition 13 (Summarization power (�������)) Given a
set of candidate suggestions U to an existing query q, the
summarization power of a subset of candidate suggestions
Q′ ⊆ U w.r.t. U is defined as

The summarization power of a set of suggestions is
defined as the number of candidate suggestions summarized
by them, and normalized by the total number of candidate
suggestions.

Example 7 We illustrate specialization power (�������) and
summarization power (�������) using Fig. 8. The user
manually adds a wildcard edge (with a wildcard node) to
query q12 and obtains q14 . There are 7 candidate sugges-
tions for the current query q14 , i.e., q′

1
 , q′

2
 , ..., q′

7
 . According

to Def. 12, �������(q�
1
, q14) = 0.5 and �������(q�

5
, q14) = 1 .

According to Definition 11 and 13, ��(q�
1
) = {q�

1
, q�

5
} and

��(q�
3
) = {q�

3
, q�

5
, q�

6
, q�

7
} . Then, �������({q�

1
, q�

3
}) is 5

7
.

Definition 14 (Utility of query suggestions) Given a set of
query suggestions Q� ∶ {q�

1
, q�

2
,… , q�

k
} , the specialization

power of each suggestion with respect to the existing query
q, the summarization power of Q′ with respect to all candi-
date suggestions, a user preference component � ∈ [0, 1] ,
and scaling factors � and � , the utility of Q′ is defined as
follows:

The bi-criteria ranking function combines the speciali-
zation power and summarization power of the query sug-
gestions. � is a parameter to set the preference between
the two criteria, and the constant denominator k is for

�������(Q�) =
|��(Q�)|

|U|
.

����(Q�) =
�

k

∑

q�∈Q�

�������(q�, q)� + (1 − �)�������(Q�)�

normalization. Since the values of the two criteria can be
of very different ranges in practice, which makes � sensi-
tive and difficult to tune, we introduce the scaling factors.
The parameters � , � and � are data-specific. In order to
tune the parameters, we adopt a machine learning method.
However, this requires all the functions involved to be dif-
ferentiable. However, the maximum function in Def. 12 is
not continuous and differentiable. We adopt a differentia-
ble approximation to the maximum function [4]. Hence, in
the experiments, we can use a stochastic gradient descent
algorithm to learn the parameters.

Example 8 Continuing with Fig. 8, we illustrate the utility
of query suggestions defined in Def. 14. � and � are set to 1.
There are 7 candidate suggestions to the existing query q14 ,
i.e., q′

1
 , q′

2
 , ..., q′

7
 . When GQAC only considers how much

the suggestions specialize the existing query (i.e., � = 1), q′
5

and q′
6
 would be the top-2 suggestions. When GQAC only

considers how much the suggestions summarize other can-
didate suggestions (i.e., � = 0), then q′

1
 and q′

3
 would be the

top-2 suggestions. When � is set to 0.5, then q′
1
 and q′

5
 would

be the top-2 suggestions.

The ranking task is then to find the top-k candidate sug-
gestions that have the highest ���� value. It can be noted that
the two objectives ������� and ������� of ���� can be com-
peting: in practice, the summarization power of smaller
queries are often larger as more candidate suggestions are
summarized by smaller ones, whereas smaller queries pro-
vide smaller specialization power. It is not surprising that
the problem of determining the query suggestions with the
highest ���� value is nP-hard.

Definition 15 (Ranked Subgraph Query Suggestions for
Large Graphs (rSQL)) Given a query q, a set of query sug-
gestions Q′ , the ranking function ���� , a user preference com-
ponent � , and a user-specified constraint k, the ranked sub-
graph query suggestions problem is to determine a subset
Q′′ , ����(Q′′) is maximized, i.e., Q′′ ⊆ Q′ , |Q′′| ≤ k and there
is no other Q′′′ ⊆ Q′ such that ����(Q′′′) > ����(Q′′).

Proposition 3 The Rsql problem is NP-hard.

(Proof sketch) The maximization of this utility function
is nP-hard, by a reduction from the Set Cover (SC) problem.
Given an instance of SC problem, each subset Si of ele-
ments { oi

1
,… , oi

m
 } is converted to a candidate suggestion

q′
i
 that summarizes q′

1
 , … , q′

m
 ; and k remains the same. �

and � of rSQL is set to 0 and 1, respectively. Finding the
query suggestion set is then to find the i query suggestions,
where i is smaller than or equal to k, that cover the candi-
date suggestions the most. It can be trivially mapped to the

q12 q14

+ 2 SP + 1 SP + 1 SP

DB

DM

IR2

1

1 *DB

DM

IR2

1

1 *

q′1

DB

DM

IR2

1

1 *

q′2

*

DB

DM

IR2

1

1

q′3

DB

DM

IR2

1

1

*

q′6

DB

DM

IR2

1

1

q′7

DB

DM

IR2

1

1

1 1

1

DB

DM

DM

IR

q′4

DB

DM

IR2

1

1 *
IR

q′5

DB

DM

IR2

1

1 1
DB

suggestions

Fig. 8 An example of suggestions in relation to ��

184 P. Yi et al.

1 3

solution of SC, that covers all elements with the smallest
number of subsets i. ◻

5.3 Efficient Summarization Computation

This subsection presents efficient algorithms for determin-
ing ������� , which enables efficient ranking for the online
autocompletion. We remark that the computation of �������
is straightforward, given q, and hence, is omitted.

The computation of ������� depends on �� (Defs. 12
and 13). To determine whether suggestions summarize the
others, i.e., the specialization orders between them, we need
to compute subgraph isomorphism between each pair of
online suggestions. Hence, we derive a necessary condition
for the specialization order between candidate suggestions
and index them. This can be efficiently indexed for the fol-
lowing two reasons. (i) Some query suggestions are similar
because they are composed by adding small increments on
the same existing query graph. (ii) The specialization order
between the wildcard features (i.e., the increments) is avail-
able offline.

We formalize a necessary condition for the specialization
order between candidate suggestions. We illustrate how to
efficiently i) offline compute and index all possible speciali-
zation orders and ii) online prune the false ones based on
current query graph q.

Proposition 4 Given two suggestions q′
1
 and q′

2
 to query q,

where q′
1
 is formed via �������(q, f12, ��1, �11, �12) and q′

2

is formed via �������(q, f22, ��2, �21, �22) , q′2 specializes q′
1

(i.e., q′
1
≺ q′

2
) only if

1. the increment of q′
2
 specializes that of q′

1
 , i.e., Δq�

1

≺𝜆 Δq�
2

 ;
and

2. there exists one embedding 𝜆� ∈ {𝜆|Δq�
1

≺𝜆 Δq�
2

} , s.t., the
nodes where q′

1
 increments at matches that of q′

2
 via �′.

The proposition can be established by a simple proof by
contradiction. The first condition of Prop. 4 can be computed
offline and then indexed. The second condition can be used
in the online autocompletion to prune false specialization
orders using the current query.

5.3.1 Indexing Wildcard Features

We extend Feature DAG index (FdAG) [36] with the support
of wildcards. Due to space limitations, we highlight the main

ideas of the extensions but skip the verbose index definition.
An illustration of the index is shown in Fig. 9. In particular,
we index the wildcard features (shown in the bottom) in a
DAG, where each index node represents a feature, and an edge
represents a specialization order between features. All possible
subgraph isomorphism embeddings are indexed (shown in M
of the index edge and � of the indexed content). That is, all
the possible ways that two well-formed features are composed
have been precomputed and indexed. This avoids computing
specializations of features online. The features are further
indexed by their �� values.

Example 9 We illustrate the efficient specialization order
computation with Fig. 10. Given two compositions, the spe-
cialization relation of the increments (i.e., f𝛿1 ≺ f𝛿2) has been
indexed. �0 = (0, 1) , �1 = (1, 0) can be simply retrieved. Dur-
ing online autocompletion, we check the second condition
of Prop. 4. We find that �0 = (0, 1) satisfies that the nodes
where q′

1
 increments at matches that of q′

2
 via �0 . Hence, the

suggestion q′
2
 specializes q′

1
.

Fig. 9 Index structure (partial) for CiteSeer

Fig. 10 Efficient suggestion summarization computation

185FLAG: Towards Graph Query Autocompletion for Large Graphs

1 3

5.4 Efficient Ranking Algorithm

Given that the ranking function ���� of a set of candidate sug-
gestions Q can be efficiently computed, we present a greedy
ranking algorithm in Lines 16–20 of Algo 3. Greedy algo-
rithms are typical approximation algorithm for rSQL because
���� is submodular. Recall that a function is submodular if the
marginal gain from adding an element to a set S is at least as
high as the marginal gain from adding it to a superset of S. In
particular, it satisfies: f (S ∪ {o}) − f (S) ≥ f (T ∪ {o}) − f (T) ,
for all element o and all pair of sets S ⊆ T . We can analyze
���� as follows. Firstly,

∑
������� is linear and monotone sub-

modular since it is a sum of non-negative numbers. Sec-
ondly, ������� is monotone submodular because adding
new suggestions can only summarize more candidate sug-
gestions. Hence, ���� is a non-negative linear combination of
the two scaled monotone submodular components. Thus,
���� is monotone submodular. The problem of maximizing
a monotone submodular function subject to a cardinality
constraint admits a 1 − 1∕� approximation algorithm [27].

6 Experimental Evaluation

This section presents an experimental evaluation of FLAG.
We first investigated the suggestion quality via user study
and then conducted an extensive performance evaluation via

simulation on popular real datasets. In particular, we studied
the overall performance of FLAG, the effectiveness of the
optimizations, and the effects of the parameters of FLAG.

6.1 Software and Hardware

We implemented the FLAG prototype on top of AutoG[36].
The prototype was mainly implemented in C++, using VF2
[7] for subgraph query processing and the McGregor’s algo-
rithm [21] (with minor adaptations) for determining com-
mon subgraphs. We used GSPAn [35] for frequent subgraph
mining. We conducted all the experiments on a machine
with a 2.2GHz Xeon E5-2630 processor and 256GB mem-
ory, running Linux. All the indexes were built offline and
loaded from the hard disk and were then made fully mem-
ory-resident for online query autocompletion.

6.2 Datasets

We conducted experiments on several different workload
settings by employing real graph datasets with various char-
acteristics. Table 2 reports some dataset characteristics.

1. twitter. 9 This dataset models the Twitter social net-
work. It consists of ∼11M vertices and ∼85M edges.
Each vertex represents a user and each edge represents
the friendship/followership relation between two users.
The original graph has no labels. We randomly added
labels to the vertices. The number of distinct labels was
set to 32 and the randomization follows a Gaussian dis-
tribution (�=50 and �=3).

2. wordnet. 10 This dataset models the lexical network of
words. It consists of ∼74K vertices and ∼234K edges.
Each vertex represents an English word and each edge
represents the relationships between them, such as syno-
nym, antonym, and meronym. The original graph has no
labels. We randomly added labels to the vertices, similar
to the way used in twitter.

3. CiteSeer. 11 This dataset models publications in Cit-
eSeer. It consists of ∼ 3K vertices and ∼ 4K edges. Each

Table 2 Some characteristics of the datasets

Dataset |V| |E| |l(V)| |l(E)| ̄|���(V)|

twitter 11,316,811 85,331,845 32 1 15.1
wordnet 73,753 234,024 28 1 6.3
CiteSeer 3,312 4,591 6 3 2.8

9 http:// socia lcomp uting. asu. edu/ datas ets/ Twitt er
10 https:// netwo rkrep osito ry. com/ wordn et- words. php
11 https:// linqs. soe. ucsc. edu/ data

http://socialcomputing.asu.edu/datasets/Twitter
https://networkrepository.com/wordnet-words.php
https://linqs.soe.ucsc.edu/data

186 P. Yi et al.

1 3

vertex represents a publication and each edge represents
the citation relation between two publications. Each ver-
tex is labeled with the Computer Science area (e.g., DB,
DM, IR) and each edge is labeled with the Jaccard dis-
tance between the pair of publications. The distance is
computed from the word attributes of the publications
and further evenly categorized into three types (small,
medium, large distances).

6.3 Query Sets

We generated numerous sets of query graphs of different
query sizes |q| (the number of edges) and various frequencies
in the large graph. Each query set contained 100 graphs. 12 In
particular, we generated queries that yield different result set
sizes (i.e., |Gq| > |Gmin

q
| for all query graphs). These query

sets enable us to investigate the usefulness and performance
of FLAG with different user workloads. Query sets of query
sizes ranged from 2 to 9.

6.4 Graph Sampling

Instead of running expensive frequent subgraph mining
algorithms on the single large graph, we scaled down the
large graph using Random Walk sampling [16] before fre-
quent subgraph mining. We sampled min{|V(G)|, 106}
graphs of 10 edges from the large graph.13 In particular, we
randomly selected a vertex as the starting vertex and then
simulated a random walk on the graph. At each step, there
is a probability 0.15 (the value commonly used in literature)
we jumped to the starting vertex and continued the random
walk. If we cannot meet the required sample graph size after
a large number of steps (e.g., 100 ∗ |V(G|) or random walk
has exhausted the neighbors of the starting vertex, we would
select another starting vertex and restart the random walk.

6.5 Feature Mining

We followed AutoG using GSPAn[35] to obtain a sufficient
number of features (frequent subgraphs) to build the index
offline.14 In particular, we set the default minimum support
value (������) to 0.2, 0.3, and 0.5% for twitter, wordnet,
and CiteSeer, respectively. These minimum support values

are an order of magnitude smaller than those used in AutoG.
We set smaller ������ s because that frequent subgraphs are
relatively scarce in large graphs. The maximum feature size
maxL was set to 10 for all datasets. Some statistics of the
features are summarized in Table 3.

6.6 Index

With frequent features mined by GSPAn, we adopted the
AutoG procedure (i.e., Algorithm 4 of [36]) to enumerate
the possible compositions of feature pairs. We discovered
that the pruning technique proposed in AutoG for com-
position enumeration is ineffective for the employed large
graphs. Their pruning technique can prune 13 and 45% of
the empty compositions for the AidS and PubChem data-
sets. It is not surprising to find this necessary condition only
prunes 0.1% of the compositions on CiteSeer since the char-
acteristics of citation network are much different from those
of chemical and biological structures.

After applying the embedding-based necessary condition
for non-empty query compositions (introduced in Sect. 5.1),
41% of the compositions for the CiteSeer dataset are pruned.
Table 4 briefly summarizes the characteristics of construct-
ing an index and enumerating compositions, respectively.

6.7 Quality Metrics

We adopted several popular metrics to measure suggestion
qualities [25, 36]. We report the number of suggestion adop-
tions (i.e., #Auto) and the total profit metric (i.e., tPm). Spe-
cifically, the total profit metric (tPm) [25, 36] quantifies the
percentage of mouse clicks saved by adopting suggestions
during the visual query formulation.

no. of clicks saved by suggestions

no. of clicks without suggestions
× 100%.

Table 3 Some characteristics of the features of datasets

Dataset ������ |F| |���(V)| |���(E)| Time(s)

twitter 0.2% 1859 3.33 2.33 114.6
wordnet 0.3% 1745 3.30 2.33 8.7
CiteSeer 0.5% 1720 5.72 4.92 1.4

Table 4 Index construction

Dataset |V| |E| time (s) # compositions Time(s)

twitter 1,859 12,637 1.0 244,195 1,711,636
wordnet 1,745 11,862 0.9 298,369 16,333
CiteSeer 1,720 20,842 2.3 8,481,895 151,847

12 A query was generated following the Random Walk sampling
(same as graph sampling). We checked that the constructed query
q was not generated before and with a result set size |Gq| large than
|Gmin

q
|.

13 This limitation is due to the GSPAn binary executable.
14 We have investigated several existing feature mining work before
opting to apply GSPAn to graph samples.

187FLAG: Towards Graph Query Autocompletion for Large Graphs

1 3

In addition to #Auto and TPM , we report the number of
specializations from adopting suggestions (denoted as ��),
the average number of specializations from each adoption
(denoted as ���(��)) and the useful suggestion ratio U
defined as no. of useful suggestions

no. of returned suggestions
× 100% . Each reported num-

ber is the average of the 100 queries in each query set. Note
that even when the suggestions are correct, users still need
at least a mouse click to adopt them to obtain the target
query. The employed quality metrics are listed in Table 5.

6.8 Learning Scaling Factors

We used a stochastic gradient descent algorithm to learn the
default scaling factors for Definition 14. We generate 100
random simple queries from a dataset. Each initial query
contains 1 edge and its target query contains 4 edges. We
divide the queries into 10 groups. Each group is used to
learn the parameters around 33 iterations. The learning rate
is set to 0.01. The learning algorithm converges at around
300 iterations. For twitter dataset, the default � and � are
3.8 and 7.6, respectively. For CiteSeer dataset, we obtained
the defaults similarly. Their values are 3.6 and 7.2, respec-
tively. The learned � for twitter and CiteSeer are 0.58 and
0.45, respectively. � , � and � values of the wordnet dataset
are 1, 1, and 0.5, respectively.

6.9 Suggestion Qualities of FLAG

6.9.1 User Study

We first conducted a user test with 10 volunteers. Each user
was given 3 queries with high, medium, and low TPM val-
ues, respectively, from the simulation. We randomly shuffled
these 9 queries. The users were asked to formulate the target
queries via the visual aid shown in Fig. 1. They expressed
their level of agreement to the statement “FLAG is useful
when I draw the query.” via a symmetric 5-level agree–disa-
gree Likert scale, where 1 means “strongly disagree” and 5
means “strongly agree”.

Consistent with [36, 37], our result showed that the
correlation coefficient between TPMs and users’ points is

0.819 and the p-value is 0.007. Thus, TPM is a good qual-
ity indication of FLAG. The average ratings of the queries
with high, medium, and low TPM values are 3.57 (between
“strongly agree” and “agree”), 2.63 (“neither agree nor disa-
gree”) and 1.83 (between “disagree,” and “strongly disa-
gree”), respectively.

6.9.2 Large‑Scale Simulations

We investigated the suggestion qualities via simulations
under a large variety of parameter settings. � is set to 0.5 so
that both ������� and ������� contribute to ranking. For each
target query, we started with a random edge with one node
label (the other node and edge are with wildcard labels).
In each step, we called FLAG. Then, we chose the useful
suggestion with the largest number of specializations. If no
useful suggestions were returned, we specialized the query
by a random specialization operator toward the target query.
Each target query set contains 100 queries.

We studied the effects of the major parameters of FLAG
on CiteSeer, wordnet, and twitter. We report the rep-
resentative simulation results in Tables 6–17. The per-
formance characteristics presented here can be useful for
users to set their default parameter values, which could be
dataset-specific.

6.9.3 Varying the Maximum Increment Sizes (ı
max

)

Table 6 shows the quality metrics of Q5 (i.e., queries of
5 edges) with various �max on CiteSeer. The results show
the qualities decrease as �max increases. #Auto shows that
the suggestions were used in multiple iterations of the

Table 5 Quality metrics and
their meanings

Metric Meaning

#Auto The average number of suggestions accepted in the simulation
�� The total number of specializations obtained from suggestions
���(��) The average number of specializations obtained from each accepted suggestion
#Auto The useful suggestion ratio U defined as no. of useful suggestions

no. of returned suggestions
× 100%

TPM The total profit metric (TPM) adopted from [25], which quantifies the %
of specializations saved by FLAG in the visual graph query formulation:
TPM =

no. of specializations saved by FLAG

no. of specializations without FLAG

Table 6 Quality metrics by varying �max (CiteSeer)

�max #Auto �� TPM ���(��) U

4 4.9 13.1 60 2.7 14
8 5.2 12.6 54 2.6 11
12 5.2 11.7 47 2.4 10
16 4.9 11.4 48 2.4 9
20 3.9 11.8 58 4.0 9

188 P. Yi et al.

1 3

query formulation. In particular, the formulation process of
each query adopted around 5.7 suggestions on average. ��
shows that the number of specialization added by FLAG
was around 15. TPM shows that FLAG saved roughly 53%
manual specialization in query formulation. ���(��) shows
that each adoption introduced 2–3 specializations to the
existing query. U shows that FLAG generally produced use-
ful suggestions. Tables 7 and 8 show the quality metrics of
Q4 with various �max on wordnet and twitter. The results
of wordnet and twitter share the same trends as that of
CiteSeer. The values of quality metrics of wordnet and
twitter were lower than CiteSeer since the number of com-
positions of wordnet and twitter was relatively few.

6.9.4 Varying the Target Query Sizes (|q|)

Tables 9, 10 and 11 show the quality metrics of various |q|.
It is not surprising that FLAG achieved more suggestion
adoptions as |q| increased. The number of adoption (#Auto)
and adopted specializations (��) increased as |q| increased.

TPM and U of CiteSeer, wordnet, and twitter generally
retained as |q| increased.

6.9.5 Varying the User‑Specified Constant k

Tables 12, 13 and 14 show the suggestion quality when we
varied k. The results show that #Auto, �� , TPM , and ���(��)
generally increased with k. It is not surprising because as
more suggestions are returned, the higher chance some of

Table 7 Quality metrics by varying �max (wordnet)

�max #Auto �� TPM ���(��) U

4 5.1 10.6 40 2.1 8
8 4.3 9.2 36 2.2 7
12 3.6 7.7 30 2.2 6
16 3.4 7.6 31 2.3 6
20 3.4 7.6 31 2.3 6

Table 8 Quality metrics by varying �max (twitter)

�max #Auto �� TPM ���(��) U

4 5.1 11.3 44 2.2 9
8 3.7 9.4 40 2.7 6
12 3.2 8.7 39 2.9 6
16 3.2 8.7 39 2.9 6
20 3.2 8.7 39 2.9 6

Table 9 Quality metrics by varying |q| (CiteSeer)

|q| #Auto �� TPM ���(��) U

2 2.6 5.3 44 2.1 8
3 3.8 8.4 46 2.3 9
4 5.2 11.7 47 2.4 10
5 5.8 14.9 52 3.0 10
6 7.0 18.5 54 2.9 10
7 8.1 21.5 54 2.9 10
8 8.8 24.3 54 3.0 10
9 10.8 27.7 52 2.8 10

Table 10 Quality metrics by varying |q| (wordnet)

|q| #Auto �� TPM ���(��) U

2 1.9 4.0 35 2.2 6
3 2.7 6.1 34 2.4 6
4 3.6 7.7 30 2.2 6
5 4.3 9.6 31 2.3 6
6 4.4 10.4 28 2.5 5
7 5.2 12.0 28 2.4 5
8 6.0 13.5 27 2.3 5
9 6.3 14.2 24 2.3 5

Table 11 Quality metrics by varying |q| (twitter)

|q| #Auto �� TPM ���(��) U

2 1.4 3.9 41 2.9 5
3 2.6 7.0 44 3.1 6
4 3.2 8.7 39 2.9 6
5 4.4 11.4 39 2.7 6
6 5.1 12.8 35 2.6 5
7 6.3 15.4 35 2.6 5
8 7.2 17.8 35 2.6 5
9 8.2 19.9 35 2.5 5

Table 12 Quality metrics by varying k (CiteSeer)

k #Auto �� TPM ���(��) U

4 4.9 10.3 40 2.3 19
6 5.0 11.0 44 2.4 14
8 5.2 11.5 46 2.4 12
10 5.2 11.7 47 2.4 10

Table 13 Quality metrics by varying k (wordnet)

k #Auto �� TPM ���(��) U

4 2.0 4.5 19 2.4 6
6 2.3 5.3 22 2.4 5
8 2.9 6.5 27 2.3 5
10 3.6 7.7 30 2.2 6

189FLAG: Towards Graph Query Autocompletion for Large Graphs

1 3

them are adopted. Importantly, the useful suggestions ratio
is higher when k is smaller mainly because the useful sug-
gestions of CiteSeer usually rank higher than wordnet and
twitter.

6.9.6 Varying ̨ of the Ranking Functions

Tables 15, 16 and 17 show the suggestion quality with vari-
ous � s. The results show that the suggestion qualities were
generally good when � was small. The optimal for CiteSeer
was 0.2, that for wordnet was around 0, and that for twit-
ter was 0.0-0.4. Then, the quality decreased as the value
of � increased. The learned � s from Sect. 6.8 produced
slightly lower TPM when compared to the optimal ones.
FLAG generally produced high-quality suggestions when
� s are smaller than 0.8 for CiteSeer, 0.2 for wordnet, and
0.8 for twitter.

6.10 Efficiency of FLAG

We conducted a detailed evaluation of the online FLAG
processing. We report the Average Response Time (Art) of

FLAG under the default setting in Fig. 11.15 For CiteSeer,
we obtained Arts around 3s. For twitter, we obtained short
Arts as the number of compositions was relatively few. Thus,
the response time of FLAG is generally very short. The rest
of this section reports the average response time when we
vary major parameters of FLAG, i.e., � , k, and |q|.

6.10.1 Varying ̨ of the Ranking Functions

We ranged � from 0 to 1. Figure 12 shows the effects of �
on Arts. The Art was always less than 3.5s. We also noticed
that the Art decreased when � approaching 1. The higher
the value of � , the GQAC process prefers suggestions with
large specialization more and small summarization, which
results in shorter time for updating the summarizations of
the candidate suggestions.

6.10.2 Varying the User‑Specified Constant k

We varied k from 10 to 50 and reported the Arts for CiteSeer
and twitter in Fig. 13. The largest value of k tested was 50,
which is large enough for common visual interfaces. The
results show that the Arts increased as k increased. FLAG
returned suggestions within 5s when k is less than 20. The

Table 14 Quality metrics by varying k (twitter)

k #Auto �� TPM ���(��) U

4 2.3 6.1 28 2.9 8
6 2.8 7.4 33 2.8 7
8 3.1 8.2 36 2.9 6
10 3.2 8.7 39 2.9 6

Table 15 Quality metrics by varying � (CiteSeer)

� #Auto �� TPM ���(��) U

0.00 5.6 13.1 55 2.5 15
0.20 5.2 12.9 56 2.8 12
0.40 5.4 12.0 49 2.4 10
0.60 4.5 11.0 48 2.6 9
0.80 2.8 10.2 54 4.4 7
1.00 0.3 3.0 20 11.5 1

Table 16 Quality metrics by varying � (wordnet)

� #Auto �� TPM ���(��) U

0.00 5.4 11.2 42 2.1 12
0.20 5.0 10.4 39 2.1 8
0.40 4.3 9.0 34 2.2 7
0.60 2.6 6.1 26 2.5 4
0.80 1.4 3.6 16 2.8 2
1.00 0.2 1.5 9 6.6 1

Table 17 Quality metrics by varying � (twitter)

� #Auto �� TPM ���(��) U

0.00 5.6 11.8 44 2.1 13
0.20 5.2 11.3 44 2.2 9
0.40 4.4 10.5 44 2.5 7
0.60 3.1 8.6 39 3.0 4
0.80 2.2 6.9 34 3.4 2
1.00 0.4 2.0 11 5.0 1

Fig. 11 Art - default

Fig. 12 Art vs �

15 We remark that query decomposition takes less than a few milli-
seconds, which are negligible, and hence, is not shown separately.

190 P. Yi et al.

1 3

GQAC process may need 8s to provide suggestions when k
is up to 50.

6.10.3 Varying the Target Query Sizes (|q|)

Figure 14 shows the Art as the query size increased. The
results show that the autocomplete process of FLAG finished
within 6s for queries with up to 8 edges. The Art increased
when the query size |q| increased. The Art increased mainly
because large queries required more time to generate more
candidate suggestions and then rank them.

7 Related Work

Query formulation aids have recently gained increasing
research attention. Firstly, recent work has proposed a
variety of innovative approaches to help query formula-
tion. For example, GeStureQuery [26] proposes to use
gestures for specifying SQL queries. SnapToQuery [15]
guides users to explore query specification via snapping
user’s likely intended queries. [3] has proposed a data-
driven approach for GUI construction. Exploratory search
has been demonstrated as useful for enhancing interac-
tions between users and search systems (e.g., [20, 22, 23]).
QubLe [11] allows users to explore regions of a graph that
contains at least a query answer. Wang et al. [32] recently
propose efficient visual exploratory search in graph data-
bases. Huang et al. [10] study canned subgraph patterns for
GUI. Seedb [31] proposes visualization recommendations
for supporting data analysis. [18] introduces Meaningful
Query Focus (mQF) of a given keyword search to generate
XQuery. While keyword search (e.g., [33]) has been pro-
posed to query graphs, this approach does not allow users
to precisely specify query structures. This paper contrib-
utes to query autocompletion for query formulation.

Secondly, there is existing work on query autocomple-
tion on various query types. For instance, there is work
on query autocompletion for keyword search (e.g., [2,

25, 34]) and structured queries (e.g., [24]). Li et al. [9]
extend keyword search autocompletion to XmL queries.
[18] associated structures to query keywords. LotusX pro-
vides position-aware autocompletion capability for XmL
[19]. An autocompletion learning editor for XmL provides
intelligence autocompletion [1]. [12] presents a conver-
sational mechanism that accepts incomplete SQL queries,
which then matches and replaces a part (user focus) of the
previously issued queries. There has been a stream of work
on extending Query By Example to construct structural
queries, e.g., [5, 6, 14]. In contrast, this paper focuses
on structural queries for graphs. Hence, we only include
related work on graphs.

Regarding GQAC, Yi et al. [36] proposed AutoG to rank
subgraph suggestions for graphs of small or modest sizes.
The recent work [28, 37] introduced user focus to GQAC.
In [22], Mottin et al. proposed graph query reformulation,
which determines a set of reformulated queries that maxi-
mally cover the results of the current query. In Pienta et al.
[29] and Li et al. [13], the authors demonstrated interac-
tive methods to produce edge or node suggestions for visual
graph query construction. In contrast, this paper considers
flexible subgraph suggestions for large graphs.

8 Conclusion

We proposed FLAG that exploits the wildcard label notion
to generate top-k query suggestions to help the query formu-
lation for large graphs. Considering that the graph features
exploited by existing GQAC studies are either absent or rare
in large graphs, we proposed to introduce wildcard labels for
query graph and query suggestions to allow more query sug-
gestion candidates. Candidate query suggestions are ranked
by a new ranking function that considers how much the sug-
gestion augments the existing query and how many other
suggestions it summarizes. We proposed efficient algorithm
for suggestion ranking. Our user study and experiments veri-
fied both the effectiveness and efficiency of FLAG.

This paper leads to a variety of interesting future work.
We are extending the study of histories of users’ activities
[38] into the ranking. We are studying the explanations of
the few cases (e.g., [17]), where GQAC returned incorrect
suggestions.

Funding Hong Kong Research Grants Council (C6030-18GF,
12201119, 12201518), Hong Kong Baptist University (IRCMS/19-20/
H01), and Prof. Byron Choi.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,

Fig. 13 Art vs k

Fig. 14 Art vs |q|

191FLAG: Towards Graph Query Autocompletion for Large Graphs

1 3

provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Abiteboul S, Amsterdamer Y, Milo T, Senellart P (2012) Auto-
completion learning for xml. In SIGMOD, pages 669–672

 2. Bast H, Weber I (2006) Type less, find more: fast autocompletion
search with a succinct index. In SIGIR, pages 364–371

 3. Bhowmick SS, Choi B, Dyreson CE (2016) Data-driven visual
graph query interface construction and maintenance: challenges
and opportunities. PVLDB 9:984–992

 4. Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge
University Press, Cambridge

 5. Braga D, Campi A, Ceri S (2005) XQBE (XQuery By Example):
a visual interface to the standard xml query language. In TODS,
pages 398–443

 6. Comai S, Damiani E, Fraternali P (2001) Computing graphical
queries over xml data. TOIS, pages 371–430

 7. Cordella LP, Foggia P, Sansone C, Vento M (2004) A (sub)graph
isomorphism algorithm for matching large graphs. PAMI, pages
1367–1372

 8. Elseidy M, Abdelhamid E, Skiadopoulos S, Kalnis P (2014)
Grami: frequent subgraph and pattern mining in a single large
graph. PVLDB 7:517–528

 9. Feng J, Li G (2012) Efficient fuzzy type-ahead search in xml data.
TKDE, pages 882–895

 10. Huang K, Chua H, Bhowmick SS, Choi B, Zhou S (2019) CATA-
PULT: data-driven selection of canned patterns for efficient visual
graph query formulation. In SIGMOD, pages 900–917

 11. Hung HH, Bhowmick SS, Truong BQ, Choi B, Zhou S (2013)
QUBLE: blending visual subgraph query formulation with query
processing on large networks. In SIGMOD, pages 1097–1100

 12. Ioannidis YE, Viglas S (2006) Conversational querying. Inf. Syst.,
pages 33–56

 13. Jayaram N, Goyal S, Li C (2015) VIIQ: Auto-suggestion enabled
visual interface for interactive graph query formulation. PVLDB,
pages 1940–1951

 14. Jayaram N, Gupta M, Khan A, Li C, Yan X, Elmasri R (2014)
GQBE: querying knowledge graphs by example entity tuples. In
ICDE, pages 1250–1253

 15. Jiang L, Nandi A (2015) Snaptoquery: providing interac-
tive feedback during exploratory query specification. PVLDB
8(11):1250–1261

 16. Leskovec J, Faloutsos C (2006) Sampling from large graphs. In
KDD

 17. Li J, Cao Y, Ma S (2017) Relaxing graph pattern matching with
explanations. In CIKM

 18. Li Y, Yu C, Jagadish HV (2008) Enabling schema-free xquery
with meaningful query focus. VLDB J., pages 355–377

 19. Lin C, Lu J, Ling TW, Cautis B (2012) LotusX: a position-aware
xml graphical search system with auto-completion. In ICDE,
pages 1265–1268

 20. Marchionini G (2006) Exploratory search: from finding to under-
standing. Commun. ACM, pages 41–46

 21. McGregor JJ (1982) Backtrack search algorithms and the maximal
common subgraph problem. Softw., Pract. Exper., pages 23–34

 22. Mottin D, Bonchi F, Gullo F (2015) Graph query reformulation
with diversity. In KDD, pages 825–834

 23. Mottin D, Müller E (2017) Graph exploration: From users to large
graphs. In SIGMOD, pages 1737–1740

 24. Nandi A, Jagadish HV (2007) Assisted querying using instant-
response interfaces. In SIGMOD, pages 1156–1158

 25. Nandi A, Jagadish HV (2007) Effective phrase prediction. In
VLDB, pages 219–230

 26. Nandi A, Jiang L, Mandel M (2013) Gestural query specification.
PVLDB 7(4):289–300

 27. Nemhauser GL, Wolsey LA, Fisher ML (1978) An analysis of
approximations for maximizing submodular set functions - i.
Math. Program., pages 265–294

 28. Ng N, Yi P, Zhang Z, Choi B, Bhowmick SS, Xu J (2019) Fgreat:
focused graph query autocompletion. In ICDE, pages 1956–1959

 29. Pienta R, Hohman F, Tamersoy A, Endert A, Navathe SB, Tong H,
Chau DH (2017) Visual graph query construction and refinement.
In SIGMOD, pages 1587–1590

 30. Sahu S, Mhedhbi A, Salihoglu S, Lin J, Özsu MT (2017) The
ubiquity of large graphs and surprising challenges of graph pro-
cessing. PVLDB 11:420–431

 31. Vartak M, Rahman S, Madden S, Parameswaran A, Polyzotis N
(2015) Seedb: efficient data-driven visualization recommenda-
tions to support visual analytics. PVLDB 8(13):2182–2193

 32. Wang C, Xie M, Bhowmick SS, Choi B, Xiao X, Zhou S (2020)
FERRARI: an efficient framework for visual exploratory subgraph
search in graph databases. VLDB J 29(5):973–998

 33. Wu Y, Yang S, Srivatsa M, Iyengar A, Yan X (2013) Summarizing
answer graphs induced by keyword queries. PVLDB 6:1774–1785

 34. Xiao C, Qin J, Wang W, Ishikawa Y, Tsuda K, Sadakane K (2013)
Efficient error-tolerant query autocompletion. PVLDB, pages
373–384

 35. Yan X, Han J (2002) gSpan: graph-based substructure pattern
mining. In ICDM, pages 721–724

 36. Yi P, Choi B, Bhowmick SS, Xu J (2017) Autog: a visual
query autocompletion framework for graph databases. VLDB J
26(3):347–372

 37. Yi P, Li J, Choi B, Bhowmick SS, Xu J (2020) Gfocus: user focus-
based graph query autocompletion. TKDE

 38. Zhang A, Goyal A, Kong W, Deng H, Dong A, Chang Y, Gunter
CA, Han J (2015) adaqac: adaptive query auto-completion via
implicit negative feedback. In SIGIR, pages 143–152

http://creativecommons.org/licenses/by/4.0/

	FLAG: Towards Graph Query Autocompletion for Large Graphs
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Background on Graph Query Autocompletion (GQAC)
	2.1.1 Graph Data
	2.1.2 Query Formalism
	2.1.3 Visual Graph Query Construction
	2.1.4 Graph Query Autocompletion (GQAC)
	2.1.5 Formalizing GQAC
	2.1.6 Problem Statement

	3 Wildcard Labels for GQAC
	3.1 Wildcard Labels and Graphs
	3.2 Wildcard Features for GQAC
	3.3 Composition of Well-Formed Wildcard Features

	4 Query Specialization and Query Summarization
	4.1 Query Specialization
	4.1.1 Specialization Order ( )
	4.1.2 Specialization Value ( )

	4.2 Query Summarization
	4.2.1 Summarization Set ( )

	5 Autocompletion Framework for Large Graphs
	5.1 Candidate Suggestions Generation
	5.1.1 Query decomposition
	5.1.2 Non-empty candidate suggestions

	5.2 Suggestion Ranking
	5.3 Efficient Summarization Computation
	5.3.1 Indexing Wildcard Features

	5.4 Efficient Ranking Algorithm

	6 Experimental Evaluation
	6.1 Software and Hardware
	6.2 Datasets
	6.3 Query Sets
	6.4 Graph Sampling
	6.5 Feature Mining
	6.6 Index
	6.7 Quality Metrics
	6.8 Learning Scaling Factors
	6.9 Suggestion Qualities of FLAG
	6.9.1 User Study
	6.9.2 Large-Scale Simulations
	6.9.3 Varying the Maximum Increment Sizes ( )
	6.9.4 Varying the Target Query Sizes (|q|)
	6.9.5 Varying the User-Specified Constant k
	6.9.6 Varying of the Ranking Functions

	6.10 Efficiency of FLAG
	6.10.1 Varying of the Ranking Functions
	6.10.2 Varying the User-Specified Constant k
	6.10.3 Varying the Target Query Sizes (|q|)

	7 Related Work
	8 Conclusion
	References

