
Vol.:(0123456789)1 3

Data Science and Engineering (2021) 6:411–433
https://doi.org/10.1007/s41019-021-00173-1

Efficient Indexing of Top‑k Entities in Systems of Engagement
with Extensions for Geo‑tagged Entities

Anirban Mondal1 · Ayaan Kakkar2 · Nilesh Padhariya2 · Mukesh Mohania2

Received: 3 June 2021 / Revised: 3 September 2021 / Accepted: 23 September 2021 / Published online: 11 October 2021
© The Author(s) 2021

Abstract
Next-generation enterprise management systems are beginning to be developed based on the Systems of Engagement (SOE)
model. We visualize an SOE as a set of entities. Each entity is modeled by a single parent document with dynamic embedded
links (i.e., child documents) that contain multi-modal information about the entity from various networks. Since entities in
an SOE are generally queried using keywords, our goal is to efficiently retrieve the top-k entities related to a given keyword-
based query by considering the relevance scores of both their parent and child documents. Furthermore, we extend the
afore-mentioned problem to incorporate the case where the entities are geo-tagged. The main contributions of this work are
three-fold. First, it proposes an efficient bitmap-based approach for quickly identifying the candidate set of entities, whose
parent documents contain all queried keywords. A variant of this approach is also proposed to reduce memory consumption
by exploiting skews in keyword popularity. Second, it proposes the two-tier HI-tree index, which uses both hashing and
inverted indexes, for efficient document relevance score lookups. Third, it proposes an R-tree-based approach to extend the
afore-mentioned approaches for the case where the entities are geo-tagged. Fourth, it performs comprehensive experiments
with both real and synthetic datasets to demonstrate that our proposed schemes are indeed effective in providing good top-k
result recall performance within acceptable query response times.

Keywords Indexing · Top-k entity retrieval · Systems of engagement · Geo-tagged entities · R-tree

1 Introduction

Nowadays, enterprises have fully realized the value of data
that they have about their customers in Customer Relation-
ship Management (CRM) systems and transactional systems.
To gain competitive advantage by knowing more about
their customers, enterprises try to incorporate the social
data of their customers. This has led to the emergence of

next-generation CRM systems that are built upon the para-
digm of “Systems of Engagement” (SOEs). Thus, we are
witnessing a paradigm shift from the traditional “Systems
of Records” (SORs) toward the SOEs [3].

While SORs typically allow only passive one-way trans-
actional communication between the enterprise manage-
ment system and the stakeholders, SOEs enable two-way
communication, thereby allowing stakeholders to engage
and collaborate with each other [2]. SOEs also incorporate
social orientation by combining multi-modal information
from different kinds of networks (e.g., social networks and
business community networks), thereby establishing a bet-
ter context for delivering greater agility and flexibility [1].
Interestingly, the shift toward a model of engagement, as
exemplified by SOEs, is also consistent with the increas-
ingly important role that social networks, such as Facebook
and Twitter, play in our lives today. Moreover, the work in
[29] has motivated the fact that the strategies of companies
need to be reviewed in light of this age of information tech-
nology and digital transformation. It further made the case
that building systems of engagement is very important for

 * Anirban Mondal
 anirban.mondal@ashoka.edu.in

 Ayaan Kakkar
 ayaan18028@iiitd.ac.in

 Nilesh Padhariya
 nilesh.iitd@gmail.com

 Mukesh Mohania
 mukesh@iiitd.ac.in

1 Ashoka University, Plot No. 2, Rajiv Gandhi Education City,
National Capital Region P.O.Rai, Sonepat, Haryana 131029,
India

2 IIIT Delhi, Delhi, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-021-00173-1&domain=pdf

412 A. Mondal et al.

1 3

different industries to achieve service innovation capabili-
ties. Furthermore, the work in [18] studied how management
consultants can be facilitated toward navigating competing
systems of engagement w.r.t. their daily routine operations
and their consultancy services for clients.

Although we have motivated SOEs using CRM applica-
tions, SOEs also have significant commercial applications
in important areas such as human resource management and
supply chain management.

1.1 Problem Statement with an Example

We visualize an SOE as comprising a set of entities e.g.,
customers. Each entity is modeled by a single parent docu-
ment and possibly multiple child documents. Here, the links
embedded in a given parent document constitute its child
documents. These links refer to the interactions of the entity
on various systems.

Each parent document contains both structured data as
well as unstructured data about the entity. Examples of struc-
tured data include information associated with a customer
such as name, date of birth, city of residence, nationality,
customer status (e.g., platinum, gold or silver), customer’s
annual income range, email address and phone number.
The unstructured data pertaining to a customer can include
unstructured information about the customer such as prod-
ucts purchased by the customer, her hobbies and prefer-
ences and so on. With regard to the problem context, sup-
pose that the parent document pertaining to a user Alice
contains structured data such as her date of birth, location,
phone number and address. Suppose the unstructured data
(in the parent document) contain information about the list
of items that she has purchased. Let the queried keyword(s)
be related to chargers for phones. These queried keywords
would essentially occur in the unstructured data (in the par-
ent document) i.e., in the list of products purchased by Alice.
Since entities in an SOE are generally queried by means of
keywords, we index both the structured and the unstructured
data as a set of keywords.

Our goal is to efficiently retrieve the top-k entities pertain-
ing to a given keyword-based query [7, 11, 19, 20, 22, 24]
by considering the relevance scores of both their parent and
child documents. Notably, the parent documents of a given
entity remain relatively static, while the child documents
may be dynamic (e.g., a new blog comment by the entity).
Hence, we need to consider the dynamically changing rele-
vance scores of the child documents as part of computing the
top-k entities. For the sake of convenience, let us henceforth
refer to the set of parent documents in which all the queried
keywords occur together as the candidate set. (Thus, our
query model uses ‘AND’ semantics.)

Figure 1 illustrates an SOE-oriented CRM application,
where the entities are customers such as Alice, Bob and

Chuck. Observe how the child documents of Alice com-
prise her interactions on the email system, phone-call sys-
tem, social network pages and product review pages. SOE
can encompass different types of data models (e.g., emails,
phone-calls, social-pages, etc.) for each entity, which can be
integrated by adopting data integration approaches [6]. We
consider multi-modal data (e.g., speech data of phone-calls)
that can be transcribed into text.

Figure 2 depicts an illustrative example for parent and
child documents for an SOE-oriented CRM application.
Suppose Alice has recently purchased a Samsung Gal-
axy note 2 phone and made comments on various systems
about her phone charger problem. The company may wish
to find its top-k customers who complained about phone
charger problems. Here, top-k can be defined based on the
frequency of occurrence of the keywords associated with
the charger problem across various interaction networks of
the customers.

Furthermore, observe that until this point, we have dis-
cussed the case where the entities are not geo-tagged i.e.,
the entities are not associated with any specific point in
space. However, in certain scenarios, the entities could be
geo-tagged. In particular, the parent document of a given
entity could be associated with a geographical location i.e.,
a point in space, while the child documents need not nec-
essarily be geo-tagged. For example, the parent document
of an entity could have a location attribute at any specific
spatial granularity e.g., home address, city, state or country.
On the other hand, the child documents essentially constitute
user interactions across different networks, hence the loca-
tion of any child document (even if the child document was
geo-tagged) does not provide any particularly useful infor-
mation from the perspective of our application scenario of
identifying the top-k customers encountering mobile phone
charger problems.

Referring to the afore-mentioned application scenario,
the company may wish to find its top-k customers, who
complained about phone charger problems, from North
America. Observe how the same query for identifying the
top-k customers could concern any spatial granularity such
as country, state, city and so on. Notice how the ability to
perform such analysis about customer complaints at different
spatial granularities facilitates the company toward effective
business decision-making by providing them with a better
understanding of the problems faced by their customers in
a given geographic region. In case of many multi-national
companies, customers face different types of problems in
different regions of the world. In practice, this can happen
typically due to supply chain issues. For example, suppose
the mobile phone chargers for the region of North America
are being manufactured in factory X, while the chargers for
the Asian region are being manufactured in factory Y. If
there are a significant number of customer complaints from

413Efficient Indexing of Top‑k Entities in Systems of Engagement with Extensions for Geo‑tagged…

1 3

the North American region, but little or no customer com-
plaints from the Asian region, it may indicate that factory X
has a faulty manufacturing process. Observe how this can
also play an important role in identifying the source of the
problems associated with customer complaints.

1.2 Related Work and Differentiation

The problem addressed in this paper (i.e., retrieval of the
top-k entities in an SOE) fundamentally differs from those of
existing works as follows. First, while keyword search [7, 11,
19, 20, 22, 24] has been studied for relational databases, and
graph-based approaches for keyword search over relational
databases have also been proposed [7, 11, 20], the semantics
of their definition of an entity differ considerably from that

of SOEs. All these works consider every individual docu-
ment in the corpus as a separate entity. In contrast, in an
SOE, each document is not considered as a separate entity
i.e., there is an implicit semantic nested structure in the
document corpus such that each entity comprises a parent
document and a set of child documents (embedded links in
the parent document). Thus, existing works cannot be used
to perform efficient keyword search in an SOE since they
fail to capture the semantic nested structure of SOE entities.
Similarly, works on keyword search in text cube models for
multidimensional text database analysis [13, 30, 31] also
cannot be used for top-k entity retrieval in an SOE.

Second, keyword search approaches using link analysis
(e.g., the PageRank method [25] and the hubs & authority
approach [21]) exploit the link structure of the document

Fig. 1 Sample SOE for a CRM
application

414 A. Mondal et al.

1 3

corpus for ranking the documents [12, 15, 23]. For example,
given a graph of a set of linked documents (e.g., webpages),
they would examine the number and quality of links to each
document to determine its relevance score before ranking
the documents. However, they cannot be used for retrieving
the top-k entities in an SOE because they do not address
keyword indexing for a document corpus, where each parent
document can have multiple dynamic embedded links. In
essence, they too fail to address the semantic nested struc-
ture of SOE entities. Thus, intuitively, they would return
results that differ significantly from those of our proposed
schemes. Furthermore, for computing the top-k result, all
keyword-search approaches compute a relevance score for
each document in the corpus and then rank them. In contrast,
our proposed schemes efficiently prune the search space by
first determining the candidate set of entities (parent docu-
ments); then relevance scores are computed only for parent
documents in the candidate set, thereby significantly reduc-
ing computation costs.

Incidentally, inverted lists [9] focus on retrieving all the
documents in which a single given keyword occurs. An
intuitive brute-force approach for top-k query processing
in an SOE could be to use an inverted list for identifying
the list of parent documents in which each queried keyword
occurs. Thus, for m queried keywords, there would be m
such document lists. Hence, for identifying the candidate
set, we would need to exhaustively intersect between these
m document lists (as in multi-way join processing). Then
we would need to sort the candidate set based on relevance
scores to derive the top-k result. However, this approach is
prohibitively expensive and non-scalable.

Regarding spatial indexing, the R-tree [16] is one of the
popular multi-dimensional indexes. Variants of the R-tree

include the R+-tree [28] and the R*-tree [10]. R-tree-based
spatio-temporal indexes include the time-parameterized
R-tree (TPR-tree) [27], the Multi-version 3D R-tree (MV3R-
tree) [33] as well as the Spatio-Temporal R-tree (STR-tree)
and the Trajectory-Bundle tree (TB-tree) [26]. The work in
[34] has proposed an R-tree-based spatial index with support
for keyword search queries. Moreover, the work in [8] pro-
posed a class of R*-tree indexes to facilitate spatial-visual
search of street images that are geo-tagged. In particular, this
new class of R*-tree indexes aim at organizing images based
on both spatial as well as visual properties. Furthermore, the
work in [32] discussed an R-tree-based scheme for trajectory
data protection in order to address privacy issues in location-
based services. A good survey on spatial (and spatio-tem-
poral) indexing can be found in [5]. However, none of these
works consider the use of R-tree-based approaches toward
efficiently identifying top-k geo-tagged entities in SOEs at
different spatial granularities.

1.3 Our Contributions

To address the above limitations, this work proposes two
top-k query processing schemes. Both of these schemes use
the following three steps. (a) Determine the candidate set (b)
Lookup the relevance scores of the documents in the can-
didate set w.r.t. the queried keywords (c) Sort the candidate
set based on document relevance scores to obtain the top-k
result. The two schemes are similar in that both of them
use bitmaps for efficiently determining the candidate set.
They differ in that while one scheme uses a two-dimensional
array-based approach for document relevance score lookups
(the two dimensions being document identifiers and keyword
relevance scores, as discussed later in Sect. 3.3), the other

Fig. 2 Illustrative example for
parent and child documents in
an SOE-oriented CRM applica-
tion

415Efficient Indexing of Top‑k Entities in Systems of Engagement with Extensions for Geo‑tagged…

1 3

scheme uses our proposed index (designated as the HI-tree).
Thus, we shall henceforth designate them as Bitmap-based
Scheme with Array (BSA) and Bitmap-based Scheme
with HI-tree index (BSH), respectively.

BSA is a viable option for environments with large
memory space e.g., Cloud environments. In contrast, BSH
is more suitable for environments, where space constraints
necessitate a more space-efficient approach toward docu-
ment relevance score lookups. To reduce the memory con-
sumption of BSA, we propose a variant, which keeps both
the bitmap arrays (i.e., the candidate set identification bit-
map and the document relevance score lookup array) of only
the popular keywords in memory, while storing the bitmap
arrays of the relatively less popular keywords in the disk. We
designate this variant as the Bitmap-based Scheme with
Array with reduction in Memory (BSAM).

Furthermore, we propose an R-tree-based extension of
our proposed schemes for geo-tagged entities, as we shall
see in Sect. 5. In essence, we assume that each entity is
associated with a single location L in space, and L is the
location of the parent document of the entity. We use an
R-tree to index the location of the parent document of each
entity in space. In the R-tree-based extension scheme for
geo-tagged entities, we first obtain the candidate set CS1
of parent documents (along with their relevance scores) by
using our proposed BSA, BSAM and BSH schemes. Then,
given a spatial query window, we can quickly retrieve the
parent documents that exist within the query window; let us
denote this retrieved set of parent documents as CS2. Finally,
we perform an intersection of the sets CS1 and CS2, and then
sort in descending order on the basis of the relevance scores
of the parent documents for finding the top-k parent docu-
ments (entities) that are relevant to the spatial window query.

The main contributions of this work are four-fold:

1. It proposes an efficient bitmap-based approach for
quickly identifying the candidate set of entities, whose
parent documents contain all queried keywords. A vari-
ant of this approach is also proposed to reduce memory
consumption by exploiting skews in keyword popularity.

2. It proposes the two-tier HI-tree index, which uses both
hashing and inverted indexes, for efficient document rel-
evance score lookups.

3. It proposes an R-tree-based approach to extend the afore-
mentioned approaches for the case where the entities are
geo-tagged.

4. It performs detailed experiments with both real and
synthetic datasets to show that our proposed schemes
are indeed effective in providing good top-k result recall
performance within acceptable query response times.

Ontologies and concept hierarchies [17] can also be used in
conjunction with this work for query expansion purposes.

Notably, a preliminary version of our paper has appeared
in [4]. In this paper, we extend our work in [4] in the fol-
lowing ways. First, in contrast with our work in [4], in this
work, we additionally consider the case of geo-tagged
entities. Moreover, we use an R-tree-based approach for
efficiently determining the top-k entities in an SOE for a
given queried spatial window (region). Second, we have
conducted a detailed performance evaluation for the case
of geo-tagged entities, and the performance results are pre-
sented in Section 6.2.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the context of the problem, while Sect. 3
discusses the bitmap-based top-k query processing schemes.
Section 4 presents the HI-tree index. Section 5 discusses
an R-tree-based extension of our proposed approaches for
geo-tagged entities. Section 6 reports the performance study.
Finally, we conclude in Sect. 7.

2 Context of the Problem

This section discusses the context of the problem. Recall
that each entity has a single parent document with possi-
bly multiple child documents. Let D denote the corpus of
N parent documents {D1, D2, ...,DN} (one parent docu-
ment per entity) such that each document Di contains pi
embedded links { L1, L2, … , Lpi }. Each link points to a
single document. Thus, each embedded link is a child docu-
ment. Observe that the parent documents remain relatively
static over time e.g., a customer’s date of birth or email
address generally remains the same over time. However,
the child documents may be dynamic in that new text (e.g.,
a new review comment, a new blog or a new email) may
be inserted. The number of child documents corresponding
to different parent documents may vary. Furthermore, the
number of child documents corresponding to a given parent
document can vary over time due to the addition or deletion
of links.

Top-k queries are of the form { Qid, k, (a1, a2 , … , an
)}, where Qid is the unique identifier of a given query, k is
the number of (top-k) entities that need to be retrieved, and
{ a1, a2, ... , an } are queried keywords. Given a top-k query
Q, a parent document is considered to be in the candidate
set if it contains at least one instance of each of the queried
keywords in Q. (Note that if instances of any of the queried
keywords occur in the child documents without occurring
in the parent document, the parent document would not be
in the candidate set.) Thus, the query model uses ‘AND’
semantics. However, the proposed schemes can be cost-
effectively extended to apply to queries with ‘OR’ semantics
as well by replacing the bitwise-AND operation with the
bitwise-OR operation.

416 A. Mondal et al.

1 3

The relevance score SDi(aj) of a given parent document
Di w.r.t. keyword aj is computed as the weighted average of
two components (a) the frequency fDi(aj) of aj in Di and (b)
the frequency fCw(aj) of aj in Di’s child documents. Notably,
SDi(aj) = 0 if aj does not occur in the parent document (i.e.,
when fDi(aj) = 0), regardless of aj ’s frequency in child docu-
ments. To clarify this point, let us refer to the application
scenario discussed previously. Suppose, the parent docu-
ment pertaining to a user Alice contains details such as her
date of birth, location, phone number, address and the list of
items that she has purchased. Let the queried keyword(s) be
related to chargers for phones. Now if she has not purchased
any phone (as indicated from the information in the parent
document), she would most likely not be complaining about
charging issues for her phone. Hence, the queried keywords
must appear in the parent document to be considered as part
of the candidate set. Thus, Eq. 1 below for computing SDi(aj)
is only applicable when the parent document has at least one
occurrence of aj.

where w1 and w2 are weight coefficients such that w1 + w2
= 1. Here, pi is the number of child documents of Di. Thus,
the relevance score of Di w.r.t. a set of queried keywords is
computed as

∑n

j=1
SDi(aj) , where n is the number of queried

keywords. Although this work has defined document rel-
evance scores based on keyword frequencies, other methods
of determining document relevance scores [19, 22, 24] can
also be used in conjunction with our proposed schemes.

The following two special cases may arise in Eq. 1:

• w1 = 0 : It implies that only the child documents contrib-
ute to the document relevance scores. In this work, since
the effect of the parent documents must be considered,
w1 must always be greater than 0.

• w2 = 0 : It implies that the child documents are not con-
sidered toward the relevance score computation. To our
knowledge, this is the case for existing approaches.

The values of both w1 and w2 must be set greater than
0 because this work considers the effect of both par-
ent and child documents on the relevance score. Thus,
0 < w1,w2 < 1 . Notably, the values of w1 and w2 depend
upon the relative weights that should be allocated to the
parent and child documents based on the application. Thus,
there can be different ways of computing them. We leave the
determination of appropriate values for w1 and w2 for vari-
ous application scenarios to future work. As such, this work
focuses on efficient top-k query processing, given the values
of w1 and w2 . In this work, we set w1 = w2 = 0.5 (determined
experimentally).

(1)SDi(aj) = [w1 × fDi(aj)] + [w2 ×

pi∑

w=1

fCw(aj)]

2.1 Example for Relevance Score Computation

Figure 3 depicts an illustrative example for the computation
of the relevance scores of parent documents. In Fig. 3a, the
parent and the child documents are D1 to D4 and C1 to C6,
respectively. The child documents corresponding to D1, D2,
D3 and D4 are {C1, C2, C3}, {C3, C5}, {C1, C5} and {C1,
C2, C4, C6}, respectively. Consider a top-k query with two
keywords a1 and a2 . Figure 3b presents the computation of
relevance scores for D1 to D4 w.r.t. a1 and a2 in two ways
i.e., with and without considering the effect of occurrences
of the queried keywords in the child documents.

When the effect of keyword occurrences in the child
documents is not considered, the relevance score SDi(aj) is
computed as the frequency f (aj) of Di. For example, SD1(a1)
equals 6 because f (a1) =6 for D1. Similarly, SD1(a2) equals
10. Hence, the relevance score of D1 w.r.t. keywords a1
and a2 is (10+6)=16. On the other hand, when the effect of
keyword occurrences in the child documents is taken into
account, suppose w1=w2=0.5, then SD1(a1)=[0.5×6]+ [0.5×
(5+7+4)] (i.e., 11.0) because f (a1) =6 for D1, and f (a1) =
{5, 7, 4} for D1’s child documents {C1, C2, C3}, respec-
tively. Similarly, we compute SD1(a2) as 14.5. Hence, the rel-
evance score of D1 w.r.t. keywords a1 and a2 is (11 + 14.5) =
25.5. Based on the relevance scores of the parent documents
(see Fig. 3b), observe how the top-k parent document result
may differ when document relevance scores are computed
with and without considering the effect of child documents.

Recall that as discussed in Sect. 1, we also address the
case where the entities (more specifically, the parent docu-
ment corresponding to each entity) are geo-tagged. We defer
the discussion of the problem statement (as well as the solu-
tion) for the case of geo-tagged entities to Sect. 5.

The next section discusses the efficient determination of
the candidate set by considering the effect of both parent and
child documents on the relevance score.

3 Top‑k Query Processing Schemes

This section discusses the BSA and BSH top-k query pro-
cessing schemes. Both of these schemes use bitmaps for effi-
ciently determining the candidate set. For relevance score
lookups, BSA uses an array-based approach, while BSH uses
the HI-tree index, which we present in Sect. 4. Now let us
discuss a variant of the brute-force approach to obtain some
insights concerning top-k query processing.

3.1 A Variant of the Brute‑Force Approach

Recall that a major drawback of the brute-force approach
(see Sect. 1.2) is that it incurs prohibitively high pro-
cessing cost in performing the exhaustive multi-way join

417Efficient Indexing of Top‑k Entities in Systems of Engagement with Extensions for Geo‑tagged…

1 3

processing step for determining the candidate set. Thus,
it would not scale well when the number of documents is
large. For example, consider a corpus of 1 million docu-
ments and a top-k query with four keywords. Suppose each
queried keyword occurs in any 10% of the documents in
the corpus, but all the queried keywords need not necessar-
ily occur together in the same documents. Here, the brute-
force approach would need to intersect four document lists
each containing 100,000 documents for determining the
candidate set, thereby making the processing prohibitively
expensive.

To address the scalability issue, we adapt a variant of
Fagin’s algorithm [14] as follows: (a) Sort each keyword’s
document list in descending order of keyword frequencies.
(b) Consider only upto a fixed percentage of each sorted
document list for the multi-way join processing step,
thereby reducing the processing cost. Since the number of
documents would generally vary across the document lists,
this becomes effectively equivalent to making a ‘zig-zag
cut’ across the document lists. Hence, we designate this
variant approach as the Zig-zag Cut Scheme (ZCS). In
ZCS, the number k′

j
 of documents to be considered for the

multi-way join processing step for the jth document list is
computed as PD × | Lj | , where PD is the percentage factor,

and Lj is the document list corresponding to keyword aj .
We experimentally determine PD in Sect. 6.1.1.

For keeping track of the relevance scores of documents
w.r.t. a given keyword, ZCS uses an inverted list structure,
which is essentially similar to that of Tier 2 of the HI-tree,
which we shall describe in detail in Sect. 4.2. In particular,
as we shall see later, this structure stores the keyword fre-
quencies of the parent and child documents for recomputing
the relevance scores when updates occur.

Although ZCS reduces processing costs, it may degrade
the recall performance. For example, given queried key-
words { a1, a2 }, suppose the frequencies of a1 and a2 in docu-
ment D1 are 1000 and 2, respectively. Here, ZCS may fail
to identify D1 as being in the candidate set. This is because
a2 ’s low frequency of occurrence in D1 may place D1 toward
the end of the sorted document list of a2 , thereby in effect
eliminating D1 from being considered for the multi-way join
processing step. Now, we present an example for ZCS.

3.1.1 Illustrative Example for ZCS

Figure 4 depicts an example for ZCS using a corpus of
documents D1 to D12. Consider a top-k query with the
keywords { a1 , a2 , a3 } with their corresponding document
lists { L1 , L2 , L3 }. In Fig. 4, S represents the relevance

Fig. 3 Example for relevance
score computation

(a)

(b)

418 A. Mondal et al.

1 3

score of keyword aj in document Di. For example, in list
L1 , document D2 has a relevance score of 97 w.r.t. key-
word a1.

Observe that the candidate set is {D2, D4, D10, D11}
because all the three queried keywords occur together
only in these documents. Thus, as Fig. 4 shows, the brute-
force approach correctly generates the top-k result as top-4
result as {D11, D2, D10, D4} after computing document
relevance scores w.r.t. all the queried keywords. (For sim-
plicity, we compute the relevance score of a document
w.r.t. all the queried keywords by summing up the rel-
evance scores of each keyword across these documents.)
In contrast, for ZCS, since PD=60%, only 60% of the docu-
ments in each list are considered toward the top-k query
processing. Consequently, under ZCS, only D2 appears in
the top-4 result set. Thus, in this example, ZCS has a recall
of only 25% because it could provide only one (i.e., D2)
out of the four correct results (i.e., D11, D2, D10, D4).
Observe how ZCS trades off recall performance for lower
processing costs.

Based on the discussions in this section, there is a clear
motivation for efficiently identifying the candidate set with
high recall performance without incurring high process-
ing cost. The big picture of our proposed three-step top-
k query processing approach is presented in Fig. 5. The
subsequent sections describe these steps.

3.2 Determining the Candidate Set Using Bitmaps

Each keyword is associated with a bitmap, where each
bit corresponds to a parent document in the corpus. A bit
is set to 1 if the keyword occurs in the parent document,
otherwise it is set to 0. The length of a keyword’s bitmap
is equal to the total number of parent documents in the
corpus. Hence, if there are one million parent documents
in the corpus, each keyword would be associated with
a bitmap comprising one million bits. By performing a
bitwise-AND operation on the bitmaps of the queried key-
words, we identify the candidate set as comprising those
parent documents, whose corresponding positions in the
result bitmap are 1.

Suppose there are N parent documents and M keywords
in the system. Thus, the total memory Memarr consumed by
the bitmap array equals M × N bits. When N = 1 million
and M = 40,000, Memarr = 40 Gbits or approximately 5 GB.

Figure 6 shows an example for determining the candidate
set using bitmaps. Figure 6a shows a document corpus com-
prising parent documents D1 to D12. Suppose the document
corpus has five keywords a1 to a5 . In Fig. 6a, the bitmap
for keyword a1 is 001001111010, thereby indicating that a1
occurs in documents {D3, D6, D7, D8, D9, D11}. Similarly,
the bitmap for a2 is 101011101011, which suggests that a2
exists in documents {D1, D3, D5, D6, D7, D9, D11, D12}.

Fig. 4 Illustrative example for
ZCS (Zig-zag cut at P

D
= 60%)

for top-4 query

Fig. 5 Big picture of top-k
query processing

419Efficient Indexing of Top‑k Entities in Systems of Engagement with Extensions for Geo‑tagged…

1 3

Figure 6b shows the computation of the candidate set
for different sets of queried keywords using the bitwise-
AND operation. Suppose the queried keywords are a2
and a3 . Since the bitmaps for a2 and a3 are, respectively,
101011101011 and 111101001010, the bitwise-AND result
is 101001001010. Hence, the candidate set comprises docu-
ments {D1, D3, D6, D9, D11}. Similarly, when the que-
ried keywords are a1 to a5 , the bitwise-AND result would
be 001001001010. Thus, the candidate set comprises {D3,
D6, D9, D11}. Observe how the bitmaps facilitate in quickly
determining the candidate set without incurring prohibi-
tively high costs.

Updates to the bitmaps can be reasonably expected to
occur infrequently due to two reasons. First, the bitmaps
relate only to the parent documents and are not impacted by
updates occurring in the child documents. Recall that in our
application scenarios, parent documents remain relatively
static over time. Second, updates to the bitmaps are neces-
sitated only when a given update contains a new keyword
(that did not previously exist in the parent document) or all
the occurrences of a given keyword are removed from a par-
ent document. Thus, changes in the frequencies of keywords,
which are already existing in the parent documents, do not
necessitate bitmap updates.

In case of any updates to the parent documents, the bit-
maps are modified as follows. If the update contains a key-
word, which the parent document did not previously contain,
the corresponding position in the bitmap is updated from 0
to 1. In Fig. 6, if a text update to document D5 contains the
keyword a1 , the bit corresponding to D5 in the bitmap of a1
would be updated to 1. Conversely, if an update results in
the deletion of all the occurrences of a given keyword from
a parent document, the corresponding position in the bitmap
is updated from 1 to 0. In Fig. 6, if all the occurrences of a1

were to be removed from document D3, the bit correspond-
ing to D3 in the bitmap of a1 would become 0.

Having determined the candidate set, we now need to
look up the relevance scores for each document in the can-
didate set. Next, we describe how BSA performs this lookup.

3.3 BSA: A Bitmap Array‑Based Technique
for Looking Up Document Relevance Scores

Now we shall discuss the BSA scheme. For performing
efficient lookups of document relevance scores, BSA uses
a two-dimensional array structure, designated as Arr. An
array entry Arr(i,j) indicates the relevance score of a given
parent document Di w.r.t. keyword aj . This relevance score
is computed using Eq. 1 (see Sect. 2) by using the weighted
keyword frequencies in both document Di and its child docu-
ments. In case of updates to the child documents, keyword
frequencies may change, thereby necessitating periodic rec-
omputation of the relevance score entries in Arr(i,j). Thus,
the relevance scores are updated in Arr periodically (i.e., not
in real-time when the updates actually occur).

For recomputing a given relevance score, we store the
keyword frequencies of the parent document and the total
keyword frequencies of all its child documents in an aux-
iliary array data structure. Notably, the individual keyword
frequencies for the child documents need not be stored
because when child documents get updated, we can incre-
mentally add or subtract from the total keyword frequency
for the child documents. Such relevance score computations
are lightweight even if the child documents get updated fre-
quently, thereby implying that Arr is an update-efficient
structure.

Observe how BSA enables efficient relevance score
lookups in O(1) time for each document in the candidate
set w.r.t. each queried keyword. Then for each candidate set
document, it sums up the corresponding relevance scores
for all the queried keywords to compute the document’s rel-
evance score. Finally, it sorts the documents in descending
order of their relevance scores to obtain the top-k result.

Figure 7 depicts an illustrative example of BSA for the
scenario presented in Fig. 6. In Fig. 7, the relevance score
of a given parent document w.r.t. a given keyword aj is indi-
cated as S(aj) . Suppose the queried keywords are a1 to a5 .
Hence, based on Fig. 6b, the candidate set is {D3, D6, D9,
D11}. Figure 7 illustrates how the relevance scores of each
keyword for each of these four documents are summarized
before being summed up to obtain the document relevance
scores. For example, the retrieved relevance scores of a1 to
a5 for D3 are {24, 16, 27, 39, 25}, respectively. Summing
up these relevance scores, the relevance score of D3 w.r.t.
the keywords a1 to a5 is 131. Finally, after sorting the docu-
ments, the top-3 documents are {D6, D11, D3}.

(a)

(b)

Fig. 6 Computation of candidate set using bitwise-AND operation

420 A. Mondal et al.

1 3

Observe that although BSA enables quick keyword fre-
quency lookups, it suffers from the drawback of consum-
ing large amounts of memory space. In practice, a small
percentage of popular keywords typically occur in a rela-
tively large number of documents (i.e., high skew). Thus, the
two-dimensional array used by BSA is likely to be sparse,
thereby resulting in inefficient use of main memory space.
Given N parent documents and M keywords, BSA consumes
MN bits for storing the bitmap array. Additionally, it con-
sumes 4MN bytes for storing the document score lookup
array. Hence, its total memory consumption is 4.125MN
(i.e., (1∕8)MN + 4MN) bytes. For example, when M = 1
million and N = 40000, its total memory consumption equals
165 GB. Thus, although BSA can be suitable for Cloud envi-
ronments, which have large memory, we need to reduce its
memory consumption for space-constrained environments.

This motivates us to propose the BSAM approach, which
is a memory-efficient variant of the BSA approach. BSAM
keeps both the bitmap arrays (i.e., the candidate set identi-
fication bitmap and the document relevance score lookup
array) of only the popular query keywords in memory, while
storing both the bitmap arrays of the relatively less popular
keywords in the disk. When queries involve a mix of popu-
lar and unpopular keywords, BSAM would be able to do
the processing of the popular keywords in memory, and it
would need to access the disk for the less popular keywords.
However, given that the vast majority of queries generally

pertain to popular keywords, we do not expect BSAM to
perform significantly worse than BSA.

Given a dictionary of 40000 keywords, suppose there
are 2000 popular keywords. Given 1 million parent docu-
ments, the memory consumption of BSAM would be
(4.125 × 2000 × 106) = 8.25 GB. Observe the significant
reduction in memory consumption caused by BSAM as com-
pared to that of BSA. Thus, when huge amounts of memory
are not available, we recommend the use of BSAM. The next
section presents another approach for memory-constrained
environments, and this approach uses our proposed HI-tree
index.

4 HI‑tree: A Dynamic Index for Computing
Relevance Scores

This section discusses the dynamic HI-tree index, which
enables the efficient lookup of document relevance scores
for facilitating top-k query processing. The HI-tree is a two-
tier index, which uses a combination of hashing and inverted
indexes. In Tier 1 of the HI-tree, dictionary keywords are
mapped into hash buckets, and the hash buckets are organ-
ized in the form of a B +-tree to facilitate speedy access to
any given hash bucket. Tier 2 comprises inverted indexes
for facilitating keyword search within these hash buckets.

Notably, the HI-tree indexes only the parent documents
because the top-k result set, which is returned by our pro-
posed schemes, comprises only the parent documents.
However, as we shall see shortly, the HI-tree keeps track of
keyword frequencies in the child documents to enable it to
efficiently recompute document relevance scores in case of
updates to the child documents.

4.1 Tier 1: Hash Buckets

In Tier 1 of the HI-tree, hashing is performed based on the
notion of pivots on any given keyword aj for mapping dic-
tionary keywords a1 to aN into hash buckets B1 to Bm with the
condition m ⋘ N . The number P of pivots determines the
number of hash buckets. When P = 0, only the first and the
last characters in the keyword are considered for creating the
hash buckets. When P = 1, the middle character is addition-
ally considered1. In effect, the middle character partitions the
keyword into two parts. When P = 3, the middle characters
of these two partitions are additionally considered. Thus, a
keyword is recursively partitioned depending upon the num-
ber P of pivots to determine the hash buckets.

Fig. 7 Illustrative example for BSA

1 For keywords comprising an even number of characters, we con-
sider the left character among the two middle characters.

421Efficient Indexing of Top‑k Entities in Systems of Engagement with Extensions for Geo‑tagged…

1 3

Figure 8 depicts Tier 1 of the HI-tree with an illustra-
tive example. When P = 0, the keywords ‘procrastinate’
and ‘ameliorate’ get mapped to the hash buckets ‘pe’ and
‘ae’, respectively, because only the first and last characters
of each keyword are considered. However, when P = 1,
the same keywords get mapped to hash buckets ‘pse’ and
‘aie’, respectively, because the middle characters in these
keywords are ‘s’ and ‘i’, respectively. (For the even-length
keyword ‘ameliorate’, we select the left character among
the two middle characters ‘i’ and ‘o’.) Thus, these two key-
words are now partitioned around ‘s’ and ‘i’, respectively.
When P = 3, the same keywords get mapped to hash buck-
ets ‘posne’ and ‘amiae’, respectively, because the middle
characters {‘o’, ‘n’} (for ‘procrastinate’) and {‘m’,‘a’} (for
‘ameliorate’) in the resulting recursive partitions addition-
ally get considered.

Observe that different keywords may be mapped to the
same hash bucket. In our example, when P = 0, the key-
words ‘procrastinate’ and ‘penultimate’ both map to the
same hash bucket ‘pe’ because their first and last characters
are the same. Furthermore, a given keyword may be mapped
to the same hash bucket for different values of P e.g., ‘net’
gets mapped to the same hash bucket ‘net’ for P = 1 and P
= 3 due to its short keyword-length.

Incidentally, the number NB of hash buckets increases
dramatically as the value of P increases. For example, when
P = 0, NB = (26×26) = 676. However, when P = 1, NB
= (26×26×26) = 17576. Similarly, for P = 3 and P = 5,
NB = 265 and 269 , respectively. The trade-off here is that
lower values of P result in a lower number of hash buckets,
hence the relevant bucket can be found relatively quickly.
But the search for a keyword within the relevant hash bucket
consumes more time due to the relatively larger number of
keywords in the bucket. On the other hand, higher values
of P result in a much larger number of hash buckets, hence
finding the relevant hash bucket incurs more time. How-
ever, since most of the resulting buckets would be sparsely

populated by keywords, the keyword-search time within a
hash bucket is likely to decrease significantly.

Our preliminary experiments showed that P = 1 is a rea-
sonable value to effectively balance the search for a hash
bucket and the search for a keyword within that hash bucket.

Figure 9 illustrates how search is conducted for finding
a given bucket. For quickly locating the hash bucket, which
is relevant to a given keyword-search query, the hash buck-
ets are organized in the form of a B +-tree. The ordering of
the hash buckets in the B +-tree is based on the dictionary
order of the words, which we had assigned (as identifiers)
to these buckets. For example, the bucket ‘aie’ occurs to the
left of the bucket ‘eny’ in the B +-tree because the word ‘aie’
appears before the word ‘eny’ in dictionary order.

4.2 Tier 2: Searching for a Keyword Within a Given
Hash Bucket

In Tier 2 of the HI-tree, the keywords within a given hash
bucket are organized in the form of a B +-tree structure,
whose nodes are augmented with linked lists. The keyword
ordering in the B +-tree is based on the dictionary word order.
Each node of the Tier 2 index contains entries of the form
(kword, LL), where kword is a given dictionary keyword, and
LL is a linked list. Each node of LL contains entries of the
form (doc_id, S, fD , fc), where doc_id refers to the unique

Fig. 8 Mapping keywords into
hash buckets

Fig. 9 Ex: hash tree to find relevant bucket

422 A. Mondal et al.

1 3

identifier of the document containing kword, and S is the
relevance score of the document w.r.t. kword. Here, fD and fc
represent the frequencies of kword for the parent document
and its child documents, respectively.

The values of fD and fc are required for recomputing the
value of the relevance score S from Eq. 1 (Sect. 2), when
updates to the child documents occur. We do not store the
individual keyword frequencies for the child documents
because when child documents get updated, we can incre-
mentally add or subtract from the total keyword frequency
for the child documents. Thus, the HI-tree is update-efficient
as relevance score recomputations are lightweight even when
the child documents get frequently updated.

Figure 10 shows an illustrative example of how the data
are organized within a given bucket at Tier 2 of the HI-
tree index. Here, W1 to W18 represent the keywords, while
L1 to L18 are the respective document lists corresponding to
these keywords. For simplicity, we do not show fD and fC in
Fig. 10. Observe that W1 would occur before W7 in dictionary
order because the keyword ordering in the B +-tree is based
on the dictionary order.

Updates to the child documents are periodically incorpo-
rated into the HI-tree as follows. In case of new text being
inserted into any child document of a given parent document
Di, the frequency of each keyword of the new text is first
recorded. Then, for each keyword aj , the HI-tree is searched.
If aj exists in the HI-tree, the search proceeds through the
linked list attached to aj . In case Di occurs in this linked list,
the value of fC in that linked list node is updated by adding
the frequency of aj in the new text to the existing value of fC .
Otherwise, no action needs to be taken because the update
did not impact any parent document. Recall our discussion
on our application scenario concerning phone chargers
as well as the discussion on the computation of relevance
scores. Based on these discussions, a parent document needs

to have at least one occurrence of the queried keyword to
be considered for the top-k query result, irrespective of the
frequency of the keyword in the child documents. Similarly,
in case aj does not exist in the HI-tree, no action needs to be
taken because there is no impact on any parent document.

Recall that in our application scenarios, parent documents
remain relatively static over time. However, in case new text
is added to any parent document, the above update procedure
for child documents is applicable with some modifications.
Suppose new text is inserted into a parent document Di. If Di
does not exist in the linked list corresponding to a given key-
word aj (which occurs in the new text), an additional node is
added to the linked list and populated with the values of fD
and fC from which the relevance score S is computed for Di.
(For determining the value of fC , all the child documents of
Di need to be parsed to obtain the frequency of aj in the child
documents.) Furthermore, if aj does not exist in the HI-tree,
it is inserted in the HI-tree based on dictionary word order,
and its corresponding linked list is populated as discussed
above. Due to space constraints, we do not discuss how text
deletions are handled by the HI-tree. However, deletions
follow similar intuition as that of insertions in the HI-tree.

5 R‑tree‑Based Extension of Our Proposed
Approaches for Geo‑Tagged Entities

In this section, we shall discuss an R-tree-based extension
of our proposed schemes to address the case for geo-tagged
entities.

5.1 Context and Problem Statement

Recall our application scenario in which a given company
may wish to find its top-k customers, who complained about

Fig. 10 Ex: search within a
given bucket Bj

423Efficient Indexing of Top‑k Entities in Systems of Engagement with Extensions for Geo‑tagged…

1 3

phone charger problems, from North America. Moreover,
recall that we model each entity by a single parent document
and possibly multiple child documents, which are essentially
embedded links in the given parent document. As discussed
previously in Sect. 1, in case of geo-tagged entities, we
assume that the parent document of a given entity is associ-
ated with a geographical location i.e., a point in space, while
the child documents need not necessarily be geo-tagged. In
particular, the location attribute of the parent document of
an entity could be at any specific spatial granularity e.g.,
home address, city, state or country. Moreover, a given par-
ent document is associated with only a single point in space.
Observe that it is possible for multiple parent documents
to be geo-tagged to the same point in space. As we shall
see shortly, our proposed R-tree-based scheme works effec-
tively in such cases as well. Notably, even if some of the
child documents are geo-tagged, this work does not exploit
the geo-tagging of the child documents. This is because the
location information of the child documents does not add
any significant value to our application scenarios, as dis-
cussed previously in Sect. 1.

Given the above context, we extend our problem state-
ment of Sect. 2 as follows. Consider D as the corpus of N
parent documents {D1, D2, ...,DN} (one parent document
per entity) such that each document Di contains pi embedded
links { L1, L2, … , Lpi }. Each link points to a single docu-
ment (child document). Given a spatial query window and a
set of query keywords, our problem is to efficiently retrieve
the top-k entities (parent documents) that occur within the
spatial query window. Here, the notion of top-k is based on
the frequency of occurrence of the queried keywords, as
discussed earlier in the paper. Similar to the discussions in
Sect. 2, our query model for geo-tagged entities also uses
‘AND’ semantics.

5.2 R‑tree‑Based Approach for Geo‑Tagged Entities

Given the location in space (i.e., the (x, y) coordinates) of
the parent document of each entity, we use an R-tree [16]
to index the location of the parent document of each entity
in space. Notably, we use the standard R-tree creation algo-
rithm in [16] to build the R-tree. The non-leaf nodes of the
R-tree are of the form (ptr, mbr), where ptr is a pointer to
the child node in the R-tree, and mbr is the MBR (Minimum
Bounding Rectangle), which covers all of the MBRs in that
child node. The leaf nodes of the R-tree contain pointers
to the database of the actual parent documents that occur
within the MBR of that leaf node.

Figure 11 depicts an illustrative example of the respec-
tive locations of the parent documents in space. Each dot/
point in Fig. 11 represents the location of a parent document.
Figure 12 depicts the structure of the R-tree corresponding
to the distribution of parent documents in space shown in

Fig. 11. Observe how the universal space is divided into
three MBRs, namely R1, R2 and R3. Observe how R1 is
further sub-divided into MBRs A, B and C; R2 is further
sub-divided into D, E and F, and R3 is further sub-divided
into G, H and I.

In our R-tree-based extension scheme for geo-tagged
entities, we first obtain the candidate set CS1 of parent
documents (along with their relevance scores) by using our
proposed BSA, BSAM and BSH schemes. Then, given a
spatial query window, we can quickly retrieve the parent
documents that exist within the query window; let us denote
this retrieved set of parent documents as CS2. (We shall
discuss the details of how the set CS2 is obtained in the
subsequent paragraph.) Finally, we perform an intersection
of the sets CS1 and CS2 to obtain set CS3. Then we sort the
parent documents in CS3 in descending order on the basis
of the relevance scores of the parent documents for finding
the top-k parent documents (entities) that are relevant to the
spatial window query. Figure 13 depicts a schematic diagram
of the process for obtaining the top-k geo-tagged entities.

Now let us discuss the details of how the set CS2 is
obtained. Once the R-tree has been built, we use the R-tree
search algorithm [16] to retrieve the parent documents

Fig. 11 An illustrative example for the distribution of parent docu-
ments in space

Fig. 12 Illustrative example for the R-tree index structure

424 A. Mondal et al.

1 3

that occur within the input spatial query window. Observe
that the input spatial query window S can be at any spatial
granularity, and the query window (rectangle) can be of any
size (area). Given S, the R-tree search algorithm follows a
top-down traversal of the nodes starting at the root node of
the R-tree. In particular, the R-tree search algorithm works
by using the following recursive approach. If a node is not
a leaf node, it checks if S intersects with the corresponding
MBR of the node. If so, then for every node element, whose
MBR intersects S, we recursively call the search function for
the sub-tree that is rooted in that node element. On the other
hand, if the node is a leaf node, then for each node element,
which is contained within S, we follow the pointers to the
database of the actual parent documents, and then we add the
corresponding parent documents to the set CS2.

Notably, we shall henceforth refer to the R-tree-based
spatial extensions of our proposed BSH, BSA and BSAM
schemes as S_ BSH, S_BSA and S_BSAM, respectively.

6 Performance Evaluation

This section reports the performance evaluation using both
real and synthetic datasets. We divide our performance study
into two parts: (a) the case where the entities are not geo-
tagged and (b) the case where the entities are geo-tagged.

6.1 Performance Study for the Case
of Non‑Geo‑Tagged Entities

The synthetic dataset had 1 million parent documents. For
each parent document, the number of child documents was
randomly selected to be between 8 and 12. The experiments
use a set of 40,000 unique dictionary-keywords (maximum
length of 25 characters). Each of parent and child documents
have 1000 unique keywords, their frequencies randomly
varying from 5 to 40.

In practice, a few popular keywords receive a large per-
centage of the queries. Hence, we classify the 40,000 key-
words into 2000 popular keywords, the rest being regarded
as unpopular keywords. Thus, for BSAM, the bitmap arrays
of only these 2000 popular keywords were kept in memory,
while the rest were stored on the disk. Here, we consider
2000 popular keywords as an example, although the actual

number of popular keywords could be significantly less
depending upon the application.

Table 1 summarizes the parameters used in the perfor-
mance study.

The experiments consider 10 different keyword classes.
The number of keywords in each keyword class is deter-
mined based on a Zipf distribution with a zipf factor of 0.7
(i.e., high skew). The 40,000 unique dictionary-keywords
are randomly assigned to any one of these keyword classes.
Furthermore, 40,000 keywords are distributed across the
total number of documents with a zipf factor ZFD of 0.7
(i.e., high skew). Here, we consider 10 different document
buckets, in which the keywords are randomly assigned from
any one of the 10 keyword classes. Moreover, the number of
queries corresponding to each keyword class is determined
based on a Zipf distribution with a zipf factor ZFQ over 10
query buckets. Consistent with real-world scenarios, we set
the value of ZFQ to 0.7 (i.e., high skew) to ensure that a
relatively small percentage of keywords receive a dispro-
portionately large number of queries.

We could not obtain an SOE-related real dataset for our
motivating CRM application scenario because such SOEs
are still mostly beginning to be deployed. Hence, for our
experiments, we used real data from the virtualtourist.com
travel website for modeling parent and child documents. The
real dataset used in the experiments comprised a total of
100,000 webpages (as the parent documents) from the vir-
tualtourist.com travel website. Each of these web pages had
10 embedded links, each link pointing to the homepage of
a specific hotel. (Each such homepage contains details such
as hotel news, prices and user review comments). Thus, the
documents pointed to by each of these 10 links were down-
loaded to serve as the child documents for the real dataset.

Fig. 13 Big picture of top-k
spatial query processing for
geo-tagged entities

Table 1 Parameters of the performance study

Parameter Default Variations

Percentage of documents: P
D

60 20, 40, 80, 100
No. of documents: N

D
 (105) 10 2, 4, 6, 8

No. of queried keywords: N
QK

5 2, 3, 4, 6
k (of top-k query) 100
Zipf factor for Queries: ZF

Q
0.7

Zipf factor for Data: ZF
D

0.7 0.1, 0.3, 0.5, 0.9

425Efficient Indexing of Top‑k Entities in Systems of Engagement with Extensions for Geo‑tagged…

1 3

The performance metric is average response time
(ART) of queries. ART =

1

NQ

∑NQ

q=1
tr , where tr is the

query response time, and NQ is the total number of que-
ries. Additionally, to quantify the top-k result accuracy,
query recall percentage (REC) is used as a performance
metric. REC quantifies the percentage of correct top-k
documents that a given scheme was able to retrieve. Nota-
bly, REC is computed as the average query recall percent-
a g e o v e r a l l t h e q u e r i e s . T h u s ,
REC =

1

NQ

∑NQ

q=1
[�Tc ∩ Tr � ∕ �Tc�] , where Tc represents

the document set comprising the correct top-k query
result, while Tr is the document set comprising the top-k
query result retrieved by a given scheme. For example, if
the correct top-5 result were D1 to D5, and the top-k
result retrieved by a given scheme was {D1, D2, D3, D8,
D10}, REC would be 60% because only three out of the
five correct top-5 documents were retrieved. Furthermore,
we also show the memory consumption for each of the
proposed approaches in our experiments.

Our experiments were run on a machine with Intel
Core-2-Duo T6600 2.2GHz processor with 64-bit OS. It
had only 16 GB RAM. Recall that more than 160 GB of
RAM is needed for running BSA completely in memory
because BSA consumes huge amounts of memory due to
the bitmap array for document relevance score lookups.
Hence, we implemented BSA by keeping the relevance
score lookup array in the disk and loaded it into the mem-
ory in 8 GB chunks, thereby increasing BSA’s process-
ing time. We ran each experiment 10 times and averaged
the results. The confidence intervals for our experiments
ranged from 92–95%.

As reference, we use the ZCS scheme (see Sect. 3.1).
Recall that ZCS requires as input a percentage factor
PD , which addresses the trade-off between recall per-
formance and query response times. Now, we find PD
experimentally.

6.1.1 Determining the Percentage Factor for ZCS

Figure 14 depicts the results of our experiment for deter-
mining the percentage factor PD of documents that are
considered for the multi-way join processing step in case
of ZCS.

As PD is increased, a larger percentage of the docu-
ments in the corpus are considered for the multi-way join
processing step, thereby improving REC. However, with
increase in PD , ART also keeps increasing significantly
due to costly multi-way join computations across a larger
number of documents. The results in Fig. 14 show that
beyond PD = 80%, REC exhibits a saturation effect. This
occurs because at this point, REC is already high (i.e.,
80%) due to considering a large percentage of the docu-
ments. Hence, further increasing the number of docu-
ments to be processed does not significantly improve REC.
However, ART keeps increasing beyond PD = 80% due to
the computational costs of processing a larger number of
documents.

Observe the trade-off between REC and ART i.e.,
increased recall can be obtained at higher processing cost.
The results of this experiment suggest that at PD = 60%, a
reasonably good value of REC (i.e., 75%) can be obtained
without incurring prohibitively high ART. Hence, we set
PD = 60% for all the experiments involving ZCS.

6.1.2 Effect of Varying the Number of Documents

Figure 15a and b depict the effect of varying the number
ND of documents for the real dataset. As ND increases,
ART increases for all the schemes due to the increased
computational costs of processing a larger number of doc-
uments. However, ART increases at a much slower rate
for the proposed BSH, BSA and BSAM schemes than for

Fig. 14 Determining percentage
factor for ZCS

(a) (b)

426 A. Mondal et al.

1 3

ZCS. This occurs because these schemes compute the can-
didate set efficiently by using the bitwise-AND operation,
while ZCS uses costly multi-way join processing.

BSAM incurs lower ART than BSA because it reduces
memory space consumption by exploiting skews in keyword
popularity. Since most of the queries concern popular key-
words, BSAM is able to avoid disk accesses for most of
the queries, thereby saving on query processing times. On
the other hand, BSA incurs significant processing times due
to loading 8 GB chunks from disk into memory, thereby
increasing ART. However, BSA incurs lower ART than BSH
because its array-based structure allows it to look up docu-
ment relevance scores quicker than BSH, which requires HI-
tree index traversal for document relevance score lookups.

As ND increases, REC remains constant at its highest
possible value (i.e., 100%) for BSH, BSA and BSAM. This

occurs because the bitwise-AND operation used by these
schemes is able to efficiently generate the candidate set with
100% recall. For ZCS, REC increases due to the involve-
ment of an increased number of documents toward the top-k
processing.

The results indicate that both BSH and BSA indeed scale
well w.r.t. the number of documents. To further investigate
the scalability of our proposed schemes, we varied the num-
ber of documents with the synthetic dataset comprising 1
million documents. Figure 15c and d depict the results of
this experiment. Observe that the results for real and syn-
thetic datasets exhibit similar trend. ART varies across these
results due to differences in dataset size.

Figure 15e shows the memory consumption for each
scheme. Recall that the real dataset comprises 100,000 par-
ent documents and their corresponding child documents. In

(a) (b)

(c) (d)

(e)

Fig. 15 Effect of varying the number of documents

427Efficient Indexing of Top‑k Entities in Systems of Engagement with Extensions for Geo‑tagged…

1 3

case of the real dataset, observe that BSH and ZCS consume
significantly less memory than that of BSA. This occurs
because BSH and ZCS mostly use the disk for storage, while
BSA is an in-memory approach. BSH incurs more memory
consumption than ZCS because it finds the candidate set
using bitmaps that reside in memory. Moreover, BSAM con-
sumes less memory than BSA because it keeps only the bit-
map arrays of the 2000 most popular keywords in memory.

For the synthetic dataset, observe the dramatic increase in
memory consumption for BSH from 0.81 GB (real dataset)
to 5.22 GB (synthetic dataset). This increase occurs because
the bitmaps maintained in the memory by BSH (for candi-
date set selection) increase in size as the number of par-
ent documents in the corpus increases. The increase in the
memory consumption of BSA from 8.56 GB (real dataset)

to 13.38 GB (synthetic dataset) can be explained in a similar
manner i.e., this increase occurs because the synthetic data-
set is significantly larger than the real dataset. The increase
in memory consumption for BSAM across the real and syn-
thetic dataset can also be explained by the relative dataset
size differences between these two datasets. Finally, observe
that the memory consumption of ZCS is not significantly
impacted by increase in dataset size primarily because ZCS
primarily uses the disk for storage.

6.1.3 Effect of Varying the Number of Queried Keywords

Figure 16a and b depict the effect of varying the number NQK
of queried keywords for the real dataset.

(a) (b)

(c) (d)

(e)

Fig. 16 Effect of varying the number of queried keywords

428 A. Mondal et al.

1 3

As NQK increases, ART increases for BSH, BSA and
BSAM because the bitwise-AND operation is performed on
an increased number of bitmaps. (Recall that each keyword
corresponds to one bitmap.) REC remains constant at 100%
for these schemes due to the recall accuracy of the bitwise-
AND operation, as explained for the results in Fig. 15.

With increase in NQK , ART increases more for ZCS than
the proposed schemes because join operations need to be
performed across a larger number of document lists (one
document list/keyword). For example, when NQK = 3, it
implies a three-way join, while for NQK = 5, a more costly
five-way join is required. As NQK increases, ZCS exhibits
lower values of REC partly because performing the multi-
way join step across only 60% of the documents per docu-
ment list degrades the recall performance and partly due to
the reasons explained for the results in Fig. 15. Figure 16c
and d depict the results of this experiment for the synthetic
data. Notably, the results for real and synthetic datasets
exhibit similar trend. Figure 16e shows the memory con-
sumption for each scheme. The explanation for the results in
Fig. 16e is essentially similar to that of Fig. 15e.

6.1.4 Effect of Skew in Keywords Distribution

This experiment examines the effect of skew in the distri-
bution of the keywords across the documents. Recall that
higher values of ZFD imply that a small percentage of the
keywords (i.e., the ‘popular’ keywords) occur in a large per-
centage of the documents. Figure 17 depicts the results.

For this experiment, queries were also highly skewed
toward a small number of these ‘popular’ keywords (i.e.,
using the default value of ZFQ = 0.7). Hence, as ZFD
increases, ART increases for all the schemes due to increase
in the size of the document lists associated with each of
the ‘popular’ queried keywords, thereby necessitating more
documents to be processed. Moreover, as ZFD increases,
REC increases for ZCS primarily due to the involvement
of a larger number of documents toward the top-k query
processing.

6.2 Performance Study for the Case of Geo‑Tagged
Entities

The experimental setup in case of our performance study
on geo-tagged entities involved the same synthetic and
real datasets, which had been created for the performance
study in Sect. 6.1. Recall that Sect. 6.1 also provides a
detailed description concerning the generation of the
synthetic dataset. Moreover, the parameters of the per-
formance study (and their associated values) remain the
same as in the case of the performance study in Sect. 6.1.
Furthermore, we use the same performance metrics i.e.,
average response time (ART) of queries and query recall
percentage (REC), as defined in Sect. 6.1.

In this section, the key difference from the experimental
setup of Sect. 6.1 is that we assigned (x, y) coordinates
to each parent document for both the real dataset and the
synthetic dataset as follows. For assigning the (x, y) coor-
dinates to the parent documents, the universe was divided
into an 8x 8 grid. Each parent document was assigned to
a particular grid cell by using a Zipf distribution with a
skew of 0.7 (i.e., high skew). Given a parent document,
which has been assigned to a grid cell, its (x, y) coordinate
was randomly chosen to fall within the bounding region
of the grid cell.

Once the positioning of the parent documents was com-
pleted, an R-tree was built to index the locations of the par-
ent documents. In the implementation of the R-tree, each
MBR was represented using two (x, y) coordinates. We used
a branching factor of 128. We selected the disk page size to
be 16 KB, and each R-tree node is assumed to fit in a disk
page. Hence, for our experiments, one disk I/O is counted as
one disk page access or equivalently one R-tree node access.
Notably, in the performance results, we present ART (aver-
age response time) of queries as a metric; ART includes the
effect of disk I/Os and the query processing times for in-
memory processing. Due to the disk-resident nature of the
R-tree, ART is dominated by the effect of disk I/Os incurred
due to the traversal of the R-tree.

Fig. 17 Effect of skew in key-
words distribution

(a) (b)

429Efficient Indexing of Top‑k Entities in Systems of Engagement with Extensions for Geo‑tagged…

1 3

For querying in case of this approach, we introduced a
new parameter, which we designated as the query window
size (QS). This is the percentage of the overall universal
space that we wish to query. The default value of QS was
chosen to be 8%. Furthermore, the position of the query
window was selected as follows. We randomly selected a
point in the universal space and created a rectangle of size
(area) QS with that point as the centroid of the rectangle.
This rectangle is the spatial query window.

Recall that for the case of geo-spatial entities, as dis-
cussed in Sect. 5, we had designated our proposed BSH,
BSA and BSAM schemes as S_BSH, S_BSA and S_BSAM,
respectively. Furthermore, as reference, we use the ZCS
scheme (as in the case of Sect. 6.1) in conjunction with the
R-tree to find the top-k results for the geo-tagged entities. In
other words, the candidate set of parent documents is first
retrieved by the ZCS scheme. Then we intersect these set of
parent documents with the set of parent documents, which
occur within the spatial query window, to obtain the top-k
query result. We shall henceforth refer to this scheme as the
S_ZCS scheme. Recall that our reference ZCS scheme (see
Sect. 3.1) requires as input a percentage factor PD , which
addresses the trade-off between recall performance and
query response times. Now, we shall find PD experimentally
for the S_ZCS reference scheme.

6.2.1 Determining the Percentage Factor for S_ZCS

Figure 18 depicts the results of our experiment for deter-
mining the percentage factor PD of documents that are con-
sidered for the multi-way join processing step in case of
S_ZCS. The trends for the results in Fig. 18 are compara-
ble to those of Fig. 14. This occurs because the additional
processing time incurred by the R-tree introduces a similar
increase in ART for all the possible values of the percentage
factor (PD) in case of S_ZCS. The explanation for the results
in Fig. 18 essentially follow those of the results in Fig. 14.
In other words, as PD is increased, a larger percentage of the

documents in the corpus are considered for the multi-way
join processing step, thereby improving REC albeit at the
cost of increased ART.

Observe the trade-off between REC and ART i.e.,
increased recall can be obtained at higher processing cost.
The results of this experiment suggest that at PD = 60%,
a reasonably good value of REC can be obtained without
incurring prohibitively high ART. Hence, we set PD = 60%
for all the experiments involving S_ZCS.

6.2.2 Effect of Varying the Number of Documents

The results in Fig. 19 depict the effect of varying the number
ND of documents. The explanations for the results in Fig. 19
essentially follow the explanations for the results in Fig. 15.
In other words, as ND increases, ART increases for all the
schemes because a larger number of documents needs to be
processed. However, ART increases at a much slower rate
for our proposed S_BSH, S_BSA and S_BSAM schemes
than for S_ZCS. This occurs because these schemes compute
the candidate set efficiently by using the bitwise-AND opera-
tion, while S_ZCS uses expensive multi-way join process-
ing. Notably, the results for REC also follow the same trend
as the results in Fig. 15 due to the same reasons, as discussed
for the results of Fig. 15.

Observe how ART is comparable for our proposed S_
BSH, S_BSA and S_BSAM schemes at any given value of
ND . This is because R-tree is a disk-resident data structure,
and it requires a significant amount of disk I/Os for query-
ing. Therefore, the cost of querying the R-tree dominates
the cost of querying the parent documents in all of our pro-
posed schemes. This dominant effect of the R-tree results in
the graphs of the S_BSA, S_BSAM and S_BSH schemes to
coincide. However, the ART incurred by the S_ZCS scheme
is still significantly higher than the ART incurred by our
three proposed schemes. This is because of the multi-way
join operation used in case of the S_ZCS scheme.

Fig. 18 Determining Percentage
Factor for S_ZCS

(a) (b)

430 A. Mondal et al.

1 3

6.2.3 Effect of Varying the Number of Queried Keywords

The results in Fig. 20 depict the effect of varying the num-
ber NQK of queried keywords. Varying the number of que-
ried keywords has no effect on the query processing time

incurred by the R-tree. Thus, the results for ART follow the
same trend as the results of Fig. 16 due to the same reasons,
as discussed for the results of Fig. 16. However, due to the
disk-resident nature of the R-tree, the cost of querying the
R-tree has a dominating effect, thereby causing the graphs

Fig. 19 Effect of varying the
number of documents

(a) (b)

(c) (d)

Fig. 20 Effect of varying the
number of queried keywords

(a) (b)

(c) (d)

431Efficient Indexing of Top‑k Entities in Systems of Engagement with Extensions for Geo‑tagged…

1 3

obtained for the S_BSA, S_BSAM, S_BSH schemes to coin-
cide. The results for REC also follow the same trend as the
results of Fig. 16 due to the same reasons, as explained for
the results of Fig. 16.

6.2.4 Effect of Skew in Keywords Distribution

The results in Fig. 21 depict the effect of skew in the dis-
tribution of the keywords across the documents. Recall that
higher values of ZFD imply that a small percentage of the
keywords (i.e., the ‘popular’ keywords) occur in a large per-
centage of the documents. For this experiment, queries were
also highly skewed toward a small number of these ‘popular’
keywords (i.e., using the default value of ZFQ = 0.7).

Notably, the skew in the distribution of the keywords has
no effect on the spatial window query processing time of the
R-tree. This is because the query processing time incurred
by the R-tree only depends on the respective locations of the
parent documents. Therefore, the results for ART essentially
follow the same trend as the results of Fig. 17 due to the
same reasons, as discussed for the results of Fig. 17. How-
ever, due to the disk-resident nature of the R-tree, the cost
of querying the R-Tree has a dominating effect leading to
the overlap of the graphs obtained for the S_BSA, S_BSAM
and S_BSH schemes. Furthermore, observe that the results
for REC also exhibit similar trends to those of the results of
Fig. 17 due to the same reasons, as explained for the results
of Fig. 17.

Fig. 21 Effect of skew in key-
words distribution

(a) (b)

Fig. 22 Effect of varying the
spatial query window size

(a) (b)

(c) (d)

432 A. Mondal et al.

1 3

6.2.5 Effect of Varying the Spatial Query Window Size

Figure 22 depicts the effect of varying the size QS of the
spatial query window. As QS increases, the number of parent
documents occurring within the query window increases.
The implication is that a larger number of parent documents
needs to be processed. Consequently, this leads to increase
in ART with increase in QS . Notice that the graphs for our
proposed S_BSA, S_BSAM, and S_BSH schemes coincide
because the processing time incurred by the R-tree domi-
nates the query processing time.

Notably, the size of the query window does not have
any effect on REC. Hence, the performance of our three
proposed schemes as well as the reference S_ZCS scheme
remains comparable across different values of QS . The
reasons for our proposed S_BSA, S_BSAM, and S_BSH
schemes outperforming S_ZCS in terms of REC are essen-
tially the same as those of the results of Fig. 15. In other
words, REC remains constant at its highest possible value
(i.e., 100%) for S_BSH, S_BSA and S_BSAM. This occurs
because the bitwise-AND operation used by these schemes
is able to efficiently generate the candidate set with 100%
recall. However, for S_ZCS, REC is significantly lower
because a significant percentage of parent documents do not
get considered toward the top-k processing.

7 Conclusion

This work has addressed the problem of efficiently retriev-
ing the top-k entities in an SOE for keyword-based queries.
Furthermore, we have extended the afore-mentioned prob-
lem to address the case of geo-tagged entities. In particular,
we have proposed an efficient bitmap-based approach for
quickly identifying the candidate set as well as a variant
for reducing memory consumption by exploiting skews in
keyword popularity. We have also proposed the two-tier HI-
tree index, which uses both hashing and inverted indexes,
for efficient document relevance score lookups. Addition-
ally, we have proposed an R-tree-based approach to extend
the afore-mentioned approaches to address the case of geo-
tagged entities. Our detailed performance evaluation with
both real and synthetic datasets shows that our proposed
schemes are indeed effective in providing good top-k result
recall performance within acceptable query response times
with good scalability. In the near future, we plan to extend
our work by associating temporal information with the enti-
ties in addition to spatial information. This would signifi-
cantly facilitate in answering spatio-temporal queries in the
context of our application scenarios.

Acknowledgements Not applicable.

Author Contributions AM: Envisioning the idea, defining the research
problem and contributing to the solution of the problem, and editing the
paper. AK: Contributing to the solution of the problem and doing the
implementation of the paper and editing the paper. NP: Contributing to
the solution of the problem and doing the implementation of the paper
and editing the paper. MM: Envisioning the idea, defining the research
problem and contributing to the solution of the problem. All the authors
of this paper have collaborated and worked toward developing the paper
and made significant contributions to the paper.

Funding Not applicable

Declaration

 Conflict of interest The authors declare that they have no conflict of
interest.

Data availability Yes, all related materials concerning this paper are
available with us and can be provided upon request.

 Code availability Yes, the code is available with us.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. http://blogs.hbr.org/cs/2011/10/movingfromtransactiontoeng.html
 2. h t t p : / / w w w- 0 1 . i b m . c o m / s o f t wa r e / e b u s i n e s s / j s t a r t /

systemsofengagement/
 3. http://www.bersin.com/blog/post/Systems-of-Engagement-vs-

Systems-of-Record-About-HR-software2c-design-and-Workday.
aspx

 4. Mondal A, Padhariya N, Mohania MK (2020) Towards efficient
retrieval of top-k entities in systems of engagement. In: Huang
Z, Beek W, Wang H, Zhou R, Zhang Y (eds) Web Information
Systems Engineering – WISE 2020. WISE 2020. Lecture notes
in computer science, vol 12343. Springer, Cham, pp 52–67

 5. Abraham T, Roddick JF (1999) Survey of spatio-temporal data-
bases. GeoInformatica 3(1):61–99

 6. Agrawal R, Fuxman A, Kannan A, Shafer J, Talukdar PP (2012)
Associating structured records to text documents. In: WWW, pp.
451–452

 7. Agrawal S, Chaudhuri S, Das G (2002) DBXplorer: a system for
keyword-based search over relational databases. In: ICDE, pp.
5–16

 8. Alfarrarjeh A, Kim SH, Hegde V, Shahabi C, Xie Q, Ravada S
et al (2020) A class of R*-tree indexes for spatial-visual search
of geo-tagged street images. In: 2020 IEEE 36th international
conference on data engineering (ICDE), pp. 1990–1993. IEEE

http://creativecommons.org/licenses/by/4.0/

433Efficient Indexing of Top‑k Entities in Systems of Engagement with Extensions for Geo‑tagged…

1 3

 9. Baeza-Yates RA, Ribeiro-Neto BA (1999) Modern information
retrieval. ACM Press, New York

 10. Beckmann N, Kriegel HP, Schneider R, Seeger,B (1990) The R*-
tree: an efficient and robust access method for points and rectan-
gles. In: ACM SIGMOD, pp. 322–331

 11. Bhalotia G, Hulgeri A, Nakhe C, Chakrabarti S, Sudarshan S
(2002) Keyword searching and browsing in databases using
BANKS. In: ICDE, pp. 431–440

 12. Chakrabarti S, Dom B, Indyk P (1998) Enhanced hypertext cate-
gorization using hyperlinks. ACM Sigmod Record 27(2):307–318

 13. Ding B, Zhao B, Lin C, Han J, Zhai C (2010) TopCells: key-
word-based search of top-k aggregated documents in text cube.
In: ICDE, pp. 381–384

 14. Fagin R, Lotem A, Naor M (2003) Optimal aggregation algo-
rithms for middleware. Comput Syst Sci 66(4):614–656

 15. Feldman R (2002) Link analysis: current state of the art. In: KDD
Tutorial

 16. Guttman A (1984) R-trees: a dynamic index structure for spatial
searching. In: ACM SIGMOD, pp. 47–57

 17. Han J, Fu Y (1994) Dynamic generation and refinement of con-
cept hierarchies for knowledge discovery in databases. In: KDD
Workshop, pp. 157–168

 18. Hartley J, Holti R, Carli G (2021) Management consultants navi-
gating competing systems of engagement. In: academy of manage-
ment proceedings, vol. 2021, p. 15423. Academy of Management
Briarcliff Manor, NY 10510

 19. Hristidis V, Gravano L, Papakonstantinou Y (2003) Efficient IR-
style keyword search over relational databases. In: VLDB, pp.
850–861

 20. Kimelfeld B, Sagiv Y (2006) Finding and approximating top-k
answers in keyword proximity search. In: PODS, pp. 173–182

 21. Kleinberg JM (1999) Authoritative sources in a hyperlinked envi-
ronment. J ACM 46(5):604–632

 22. Liu F, Yu C, Meng W, Chowdhury A (2006) Effective keyword
search in relational databases. In: ACM SIGMOD, pp. 563–574

 23. Lu Q, Getoor L (2003) Link-based classification. In: ICML, pp.
496–503

 24. Luo Y, Lin X, Wang W (2007) SPARK: Top-k keyword query in
relational databases. In: ACM SIGMOD, pp. 115–126

 25. Page L, Brin S, Motwani R, Winograd T (1999) The page rank
citation ranking: bringing order to the web. Technical report, Stan-
ford InfoLab

 26. Pfoser D, Jensen CS, Theodoridis Y et al (2000) Novel approaches
to the indexing of moving object trajectories. In: VLDB, pp.
395–406

 27. Šaltenis S, Jensen CS, Leutenegger ST, Lopez MA (2000) Index-
ing the positions of continuously moving objects. In: ACM SIG-
MOD, pp. 331–342

 28. Sellis T, Roussopoulos N, Faloutsos C (1987) The R+-Tree: a
dynamic index for multi dimensional objects. In: VLDB, pp.
507–518

 29. Weiß P, Warg M, Zolnowski A (2019) Building systems of
engagement to overcome the challenges of digital transformation.
In: Naples Service Forum

 30. Wu P, Sismanis Y, Reinwald B (2007) Towards keyword-driven
analytical processing. In: ACM SIGMOD, pp. 617–628

 31. Xin D, Han J, Cheng H, Li X (2006) Answering top-k queries
with multi-dimensional selections: the ranking cube approach.
In: VLDB, pp. 463–474

 32. Yuan S, Pi D, Zhao X, Xu M (2021) Differential privacy trajec-
tory data protection scheme based on R-tree. Expert Syst Appl
27:1152215

 33. Yufei T, Papadias D (2000) MV3R-tree: a spatio-temporal access
method for timestamp and interval queries. Techical report,
Citeseer

 34. Zhang D, Chee YM, Mondal A, Tung AK, Kitsuregawa, M (2009)
Keyword search in spatial databases: towards searching by docu-
ment. In: ICDE, pp. 688–699. IEEE

	Efficient Indexing of Top-k Entities in Systems of Engagement with Extensions for Geo-tagged Entities
	Abstract
	1 Introduction
	1.1 Problem Statement with an Example
	1.2 Related Work and Differentiation
	1.3 Our Contributions

	2 Context of the Problem
	2.1 Example for Relevance Score Computation

	3 Top-k Query Processing Schemes
	3.1 A Variant of the Brute-Force Approach
	3.1.1 Illustrative Example for ZCS

	3.2 Determining the Candidate Set Using Bitmaps
	3.3 BSA: A Bitmap Array-Based Technique for Looking Up Document Relevance Scores

	4 HI-tree: A Dynamic Index for Computing Relevance Scores
	4.1 Tier 1: Hash Buckets
	4.2 Tier 2: Searching for a Keyword Within a Given Hash Bucket

	5 R-tree-Based Extension of Our Proposed Approaches for Geo-Tagged Entities
	5.1 Context and Problem Statement
	5.2 R-tree-Based Approach for Geo-Tagged Entities

	6 Performance Evaluation
	6.1 Performance Study for the Case of Non-Geo-Tagged Entities
	6.1.1 Determining the Percentage Factor for ZCS
	6.1.2 Effect of Varying the Number of Documents
	6.1.3 Effect of Varying the Number of Queried Keywords
	6.1.4 Effect of Skew in Keywords Distribution

	6.2 Performance Study for the Case of Geo-Tagged Entities
	6.2.1 Determining the Percentage Factor for S_ZCS
	6.2.2 Effect of Varying the Number of Documents
	6.2.3 Effect of Varying the Number of Queried Keywords
	6.2.4 Effect of Skew in Keywords Distribution
	6.2.5 Effect of Varying the Spatial Query Window Size

	7 Conclusion
	Acknowledgements
	References

