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Abstract
Microtask crowdsourcing is a form of crowdsourcing in which work is decomposed into a set of small, self-contained tasks, 
which each can typically be completed in a matter of minutes. Due to the various capabilities and knowledge background of 
the voluntary participants on the Internet, the answers collected from the crowd are ambiguous and the final answer aggrega-
tion is challenging. In this process, the choice of quality control strategies is important for ensuring the quality of the crowd-
sourcing results. Previous work on answer estimation mainly used expectation–maximization (EM) approach. Unfortunately, 
EM provides local optimal solutions and the estimated results will be affected by the initial value. In this paper, we extend 
the local optimal result of EM and propose an approximate global optimal algorithm for answer aggregation of crowdsourc-
ing microtasks with binary answers. Our algorithm is expected to improve the accuracy of real answer estimation through 
further likelihood maximization. First, three worker quality evaluation models are presented based on static and dynamic 
methods, respectively, and the local optimal results are obtained based on the maximum likelihood estimation method. Then, 
a dominance ordering model (DOM) is proposed according to the known worker responses and worker categories for the 
specified crowdsourcing task to reduce the space of potential task-response sequence while retaining the dominant sequence. 
Subsequently, a Cut-point neighbor detection algorithm is designed to iteratively search for the approximate global optimal 
estimation in a reduced space, which works on the proposed dominance ordering model (DOM). We conduct extensive 
experiments on both simulated and real-world datasets, and the experimental results illustrate that the proposed approach 
can obtain better estimation results and has higher performance than regular EM-based algorithms.

Keywords Microtask crowdsourcing · Quality management · Optimization strategy · Maximum likelihood estimation

1 Introduction

In recent years, crowdsourcing has attracted extensive 
attention from both the industry and academia. It can help 
solve tasks that are intrinsically easier for humans than 
for computers by leveraging the intelligence of a large 
group of people [1]. Such tasks are usually intelligent and 
computer-hard, which cannot be effectively addressed by 
existing machine-based approaches, such as entity reso-
lution, sentiment analysis, image recognition, and so on 
[2]. Currently, there are many successful crowdsourc-
ing platforms, such as Upwork, Crowdflow, and Amazon 
Mechanical Turk (AMT). In the crowdsourcing platforms, 
requesters can publish tasks, which are accepted and 
performed by workers. Crowdsourcing tasks are classi-
fied from multiple dimensions in some current studies. 
Bhatti et al. [3] classify tasks as micro-, complex, crea-
tive, and macro-tasks. Microtasks can be performed in 
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short amounts of time by individual workers. Complex 
tasks require skills, knowledge, and computational efforts 
to solve a problem and usually can be decomposed into 
smaller sub-tasks. Creative tasks are related to idea gen-
eration, creative design, or co-creation. Finally, macro-
tasks are non-decomposable tasks and cannot be divided 
into smaller subproblems, require expert knowledge, skills 
and often involve collaboration among workers. In this 
paper, we focus on microtasks, which are independent and 
can be completed by a single worker in short amounts of 
time. These tasks have fine granularity and do not require 
workers to have specific expertise. There are many exam-
ples of microtask crowdsourcing, for example, translat-
ing text fragments, reading verification codes, rating, and 
ranking. Microtasks are simple for humans but difficult 
for computers. In the actual microtask crowdsourcing 
system, workers are not completely reliable, they may 
make mistakes or deliberately submit wrong answers. To 
obtain a more valid answer, tasks are usually assigned to 
more than one worker, each of whom performs the task 
independently (called a redundancy-based strategy). The 
answers given by different workers are then aggregated to 
infer the correct answer (called truth) of each task. This 
is a fundamental problem called Truth Inference that has 
been extensively studied in existing crowdsourcing which 
determines how to effectively infer the truth of each task. 
Specifically, we focus on truth inference for binary tasks 
in microtasks, that is, each task only has yes/on choices, 
which have important application value in crowdsourcing. 
For example, in a query such as “Do the two videos belong 
to the same theme?”, the expected answers of the form 
“yes/no” where yes is denoted by 1 and no is denoted by 0.

Truth inference is significant for controlling the quality 
of crowdsourcing and is a crucial issue for crowdsourcing 
platforms to get the correct answers. The truth inference 
algorithms proposed in existing works can be divided into 
two main categories, direct computation, and optimiza-
tion methods. The direct computation estimates task truth 
directly based on worker answers without modeling work-
ers or tasks. The optimization methods model the worker 
or task in advance then defines an optimization function to 
express the relationship between the worker responses and 
the task truth, and finally derive an iterative method to com-
pute parameters collectively. In the optimization methods, 
the task truth and other parameters are mainly calculated 
iteratively until convergence using the EM algorithm, which 
is a classical and effective method for estimating the truth 
values of unknown variables. However, two limitations of 
EM hinder its effectiveness in this application scenario: 
EM-based algorithms are highly dependent on initialization 
parameters; using EM to estimate the maximum likelihood 
can only get the local optimal results, which often get stuck 
in undesirable local optima [4].

Global optimization is the most ideal result, but there 
are difficulties in its implementation. The most intuitive 
method to obtain the globally optimal result is to find the 
global maximum likelihood values of all possible mappings 
from tasks to answers, to find the most likely true answers. 
Consider a simple example, if we have 50 binary tasks, then 
the full number of task-answer sequences for these tasks 
is 250 , an exceedingly large number. However, considering 
the large-scale operation in the context of crowdsourcing, 
the number of calculations required increases exponentially 
with the increase of tasks and workers. Therefore, it is often 
intractable to obtain these global optimal quality manage-
ment technologies.

In this paper, global optimization cannot be achieved but 
we are not satisfied with the local optimal results derived by 
traditional optimization methods. We compromise between 
the inaccessible global optimization and the local optimum, 
and further truth discovery on the local optimum results 
derived from optimization-based methods, and propose 
an iterative optimization method to obtain an approximate 
global optimum solution. By modeling the worker quality, a 
likelihood function is constructed to capture the relationship 
between worker quality and task truth. We then prune the 
local optimum which is derived by iteratively converging the 
likelihood optimization function using the EM framework 
to construct the dominance ordering model (DOM). As a 
result, we narrow the search scope and reduce the mapping 
space. Then, a Cut-point neighbor detection algorithm is 
designed to iteratively search the response with the maxi-
mum likelihood-based on our model until convergence [5], 
approaching the optimal solution without increasing large-
scale computation.

To sum up, the main contributions of this paper include 
the following four points: 

1. We present three different worker quality evaluation 
models to obtain local optimal results using maximum 
likelihood estimation, namely worker quality confusion 
matrix model, worker quality probability parameter 
model, and dynamic worker quality evaluation model;

2. We construct a pruning strategy-based dominance order-
ing model (DOM) based on the local optimal results, 
which is composed of worker responses and worker cat-
egories (i.e., task-response sequence), and reduces the 
space of potential task-response sequence while retain-
ing the dominant sequence;

3. We propose a Cut-point neighbor detection algorithm 
on the constructed DOM model to find the task-response 
sequence with the maximum likelihood within the domi-
nance ordering model (DOM) by iterative search;

4. We perform extensive experiments to compare the 
results obtained by our algorithm with the local opti-
mum results obtained by the EM algorithm on a variety 
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of metrics. The experimental results show that our algo-
rithm significantly outperforms EM-based algorithms in 
both simulated data and real-world data.

The remaining of this paper is organized as follows. Sec-
tion 2 discusses the related works. Section 3 describes our 
concept definitions and illustrates some symbols with an 
example. Section 4 describes the estimation model of worker 
quality based on static and dynamic. We describe the itera-
tive optimization method in Sect. 5 and present our experi-
mental results in Sect. 6. Finally, we conclude our work in 
Sect. 7.

2  Related Work

In existing crowdsourcing, it is common for multiple work-
ers to be assigned the same task and the answers given by 
different workers are aggregated to infer the truth for each 
task. Since the crowd (called workers) may produce low-
quality or even noisy answers, the problem of truth inference 
has been widely studied in existing crowdsourcing to tolerate 
low-quality workers and to infer high-quality results from 
noisy answers [6].

To solve this problem, a simple and straightforward idea 
is majority voting (MV), which treats the truth of each task 
as the answer given by the majority of employees [7–12]. 
But the MV strategy presupposes that every worker has an 
equal vote, which is not possible in real life, where there 
are differences among workers. Some are ordinary work-
ers, some are experts, some choose answers randomly, and 
even malicious employees give wrong answers. Therefore, 
it is necessary to capture the quality of each worker, and it 
is wiser to trust the answers given by highly qualified work-
ers. Some jobs require workers to complete a small number 
of tasks with ground truth (called golden tasks) before they 
can answer the task, known as “qualification test” [13]. This 
method is used to assess a worker’s ability in advance. This 
can detect and eliminate some cheaters or malicious workers 
before the worker answers the task. Test questions can also 
be randomly mixed into common tasks to test the quality 
of the worker, which gives a more realistic picture of the 
worker’s actual ability and is known as “hidden test” [14, 
15]. Liu et al. [16] obtained the accuracy of the worker’s 
answers to the tasks by adding test questions and then used 
Bayesian theory to obtain the true answers to the tasks based 
on the quality of the worker and the answers to obtain the 
true answers to the final task. However, both methods have 
some limitations, for example: in qualification tests, many 
workers do not want to complete “extra” tasks without com-
pensation, and in hidden tests, even adding test questions 
may not improve the quality of workers.

Based on the above problems, existing works [15, 17–21] 
propose optimization methods to solve them. The basic idea 
of the optimization method is to use a custom optimization 
function to capture the relationship between the worker qual-
ity and the true value of the task. Then, an iterative approach 
is used until convergence finally inferring the true answer 
of worker quality and task. Most of the works use the EM 
framework to iteratively compute the unknown parameters. 
The difference between these works is that they model task 
difficulty and worker quality differently and construct dif-
ferent optimization functions to express the relationship 
between the two sets of parameters. Some works model the 
quality of each worker as a single probability value using a 
real number qw ∈ [0, 1] [14, 15]. The higher qw is, the worker 
w has higher ability to correctly answer tasks, which is con-
sistent with the Worker Quality Probability Parameter Model 
we describe in Section 4.2. Li et al. [18] extend a wider 
range of worker quality probability with qw ∈ (−∞,+∞) . In 
addition, worker quality can be characterized by confusion 
matrices [19, 20]. The approach proposed by Dawid et al. 
[22] first used confusion matrices to model worker qual-
ity. Venanzi et al. [21] extended the DS model by assuming 
a fixed number of worker clusters and that workers in the 
same cluster have similar confusion matrices, rather than 
modeling individual confusion matrix modeling. Imamura 
et al. [17] proposed a broader class of crowdsourcing mod-
els including the DS model as a special case that enables it 
to handle worker clusters, which is more practical than the 
DS model in a real crowdsourcing setting. A minimax error 
rate under more practical setting is also derived, and the 
correctness of the theoretical error analysis is verified by 
numerical calculations. Similarly, we mainly use the confu-
sion matrix to express the worker quality in this paper, with 
the difference that we simplify the representation of the con-
fusion matrix for computational convenience, as described 
in Sect. 4.1.

Besides, some works [23–27] use probabilistic models for 
truth-value inference of crowdsourcing tasks. Li et al. [23] 
proposed a Bayesian model (BWA) with conjugate before 
solving the classification problem of crowdsourcing labels, 
extending from discrete binary classification tasks to multi-
class classification tasks, and a direct inference is performed 
using expectation–maximization (EM). Kurup et al. [24] 
proposed an iterative probabilistic model-based approach 
for crowdsourcing task aggregation. The quality of workers 
was estimated using a predictive model with the expertness, 
reliability, and task easiness of the workers as parameters, 
which used true answers as latent variables. Expecta-
tion–maximization (EM) is used to estimate the parameters 
and hidden variables that provide maximum likelihood. Li 
et al. [25] similarly focus on probabilistic truth discovery 
models and reconstruct them as a geometric optimization 
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problem. Based on sampling techniques and a few other 
ideas, the first (1+ �)-approximation solution is achieved.

Some works focused on theoretical guarantees. Das 
Sarma et al. [4] proposed a technique for global optimal 
quality management, finding the maximum likelihood 
item ratings and worker quality estimates. They made two 
limiting assumptions: (1) all workers have the same qual-
ity; (2) the number of workers answering each question 
is fixed. These assumptions are too restrictive in reality. 
Our approach obtains results by modeling worker quality 
from different perspectives (Sect. 4) and using the most 
commonly used EM framework to iteratively maximize 
the likelihood function. We do not provide theoretical 
guarantees, but we find an approximate global maximum 
likelihood mapping on the locally optimal results further 
using our proposed iterative algorithm under more rela-
tive assumptions (i.e., workers can have different values 
of quality and each task can get a different number of 
answers).

3  Problem Description

3.1  Framework Overview

The overall procedure of the proposed optimization 
method is illustrated in Fig. 1. To begin with, request-
ers publish microtasks on the crowdsourcing platform 
and microtasks are assigned to workers. Workers then 
accept and answer the tasks, and submit answers back 
to the platform. Based on the collected worker answers 

to the tasks, we estimate the true answers for the tasks 
and worker quality using EM with different prior models. 
Local optimal results of task answers and worker qual-
ity are obtained. Then, workers are ranked into different 
quality categories based on the local optimal results of 
worker quality. After that, a dominance ordering model 
(DOM) based on known worker classification and worker 
response (i.e., task-response sequence) is constructed. The 
vertices of the model with lower probability are pruned, 
which narrows the search scope and reduces the mapping 
space. Then, a Cut-point neighbor detection algorithm 
is designed to iteratively search for the task-response 
sequence with the maximum likelihood in our model 
until convergence. Finally, the approximate global optimal 
results are obtained.

3.2  Problem Definition

We start with the introduction of some symbols in Table 1 
and then combined it with an example of image annotation 
to make a specific description of some symbols.

3.2.1  Task Question and Option

Consider a group of tasks {t}n with a total number of n. 
These tasks are completed by a group of workers {w}m 
with a total number of m. Work w completes task t with k 
options {1, 2, 3,… , k} . Each worker can answer multiple 
different tasks, and each task can be accomplished by mul-
tiple different workers. Each task has a correct answer zt 
(that is, one of the k options is the true answer).

Fig. 1  Overall procedure of the proposed approach
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3.2.2  Task Response

rw
t

 as the response of worker w to task t. For the binary 
problem studied in this paper, each rw

t
 has a value of 0 or 1.

3.2.3  Worker Response Probability Matrix

For the binary problem studied in this paper, a worker 

response probability matrix of p =

[
p11 p12
p21 p22

]
 is considered. 

p11 and p21 , respectively, represent the probability that 
rw
t
= 0 and rw

t
= 1 when the real answer of the task is 0. p12 

and p22 respectively represent the probability that rw
t
= 0 

and rw
t
= 1 when the real answer of the task is 1. The whole 

matrix is described by a pair of values ( e0,e1 ), in which e0 
is worker false positive (FP) rates (i.e., p21 value) and e1 is 
false negative (FN) rates (i.e., p12 value).

3.2.4  Overall Likelihood

Assuming that each worker answers the question inde-
pendently. The likelihood value of t1 is the product of the 
probability that the worker who answers the task t1 makes 
the correct response. L is the overall likelihood value of 
a set of tasks. It is the product of the likelihood value 
of each task in the task set. Its calculation formula is 
L = L(t1) × L(t2) ×… × L(tn).

3.2.5  Task‑response Sequence

The task-response sequence is constructed by combin-
ing workers response and workers category. A worker’s 
response to a binary task is 1, denoted by Y; similarly, a 

response to a binary task is 0, denoted by N, which is not 
related to the task truth value and whether the worker’s 
response to the task is correct or not.

3.2.6  Distance

We calculate the distance between workers in plane rec-
tangular coordinate system. The quality of workers is rep-
resented by his/her error rate ( e0 , e1 ), which is a point in 
the coordinate system. The distance between workers is 
expressed by the Euclidean distance between two points in 
a two-dimensional plane. The best worker quality is (0, 0), 
which is the origin.

3.2.7  Maximum Likelihood Problem

For a pool of workers {w}m , there are a sequence of tasks 
{t}n where n is the number of tasks, and each task is associ-
ated with a latent true answer zt which is picked from I dif-
ferent options. Tasks {t}n will receive responses {r}w

t
 from 

workers {w}m . Here, we call a function f that assigns options 
to tasks a mapping. So there are 2n mappings for the filter-
ing problem. Assuming independence of worker responses. 
We calculate the probability of the task-option mapping as 
allover likelihood L. We maximize the allover likelihood L 
to evaluate true answers {z}t for tasks and the performance 
of each worker.

Example 1 In this example, there are a group of image anno-
tation tasks {t1, t2,… , tn} . All of which are binary task prob-
lems with two options {0, 1} . We take t1, t2 as an example 
to illustrate, we assume that zt1 = 1 , zt2 = 0 . A group of 10 
workers{w1,w2,w3,… ,w10} respond to these tasks and the 
error rates of ten workers is (0.1, 0.3), (0.2, 0.2), (0.3, 0.2), 
(0.3, 0.6), (0.4, 0.4), (0.5, 0.5), (0.6, 0.4), (0.7, 0.7), (0.8, 
0.6), (0.9, 0.5). We determine the category to which each 
worker belongs based on the distance between the worker 
and the origin. In this example, we classify workers into 
three categories, which are characterized by numbers 1, 2, 
and 3, respectively. The workers who have a high-quality 
rank in the front. We divide the distance between the worst 
worker [that is, the error rate (1, 1)] and the origin on aver-
age into three intervals. The distance between the first class 
workers and the origin is within [0,

√
2∕3 ] (that is d1∗ ∈ 

[0,
√
2∕3]). Similarly, d2∗ ∈ [ 

√
2∕3,2

√
2∕3 ] and d3∗ ∈ [ 2

√
2∕3

,1]. According to the calculation, we determine the cate-
gory to which each worker belongs. Workers choose tasks 
to answer, and different tasks will receive different numbers 
of answers. Here t1 and t2 receive 2 responses. Table 2 shows 
several workers’ responses received by t1,t2.

We take the task-response sequence of t1 as Y1N1 and task-
response sequence of t2 as Y2N2, for example, to calculate 

Table 1  Notation table

Symbol Explanation

t Task
w Worker
rw
t

Responses from worker w to task t
zt The true answer of task
p Worker response probability matrix
pi,j The probability of the worker choosing i when the answer 

to the task is j
Nw
t

The number of times worker w responds to task t
qw Worker quality
L Overall likelihood
DOM Dominance ordering model
DOG Dominance ordering graph
dn∗ Distance between the nth class worker and the best worker
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the likelihood value. From Table 2, w1 and w2 answer t1 , 
their error rate is (0.1, 0.3) and (0.2, 0.2), respectively, so 
their probability of answering the t1 correctly is 0.7 and 0.8, 
respectively. So we can get L(t1) = 0.7 × 0.8 = 5.6 × 10−1 . 
Similarly, we can get L(t2) = 0.7 × 0.4 = 2.8 × 10−1 . If n = 2 
in task set, only t1 and t2 are included, then the overall likeli-
hood of L = L(t1) × L(t2) = 1.568 × 10−1.

4  Worker Quality Evaluation Model

Due to the different abilities and knowledge background 
of workers, the quality of employees varies greatly. To get 
a more valid estimation answer, an accurate worker qual-
ity evaluation model is very important. In this section, 
the quality of employees is modeled, and then the true 
answer of the task is inferred based on the quality of the 
workers and the answers of the workers. In this section, 
we model the quality of workers using static and dynamic 
methods, respectively. Three different models are used to 
model worker quality, including the worker quality confu-
sion matrix model, worker quality probability parameter 
model, and dynamic worker quality evaluation model. The 
worker quality confusion matrix model and worker qual-
ity probability parameter model assess the quality of the 
workers based on the static method, which refers to the 
use of a fixed value to express the quality of workers. To 
describe the quality characteristics of workers more accu-
rately, a dynamic worker quality evaluation model is also 
proposed. The dynamic worker quality evaluation model 

uses a function distribution to express the relationship 
between worker quality and task difficulty.

4.1  Worker Quality Confusion Matrix Model

Consider a worker response probability matrix p, of the size 
I ∗ I (I is the number of task options). Thus, p(i, j) is the 
probability that a worker rates a question with true value j as 
having option i. Given responses rw

t
 of worker w to the tasks 

and the tasks’ true answers zt , we can get the worker qual-
ity matrix. For binary tasks, we can use ( e0 , e1 ) to represent 
the quality of workers. Nw

t
 represents the number of times 

worker w responds to task t. We can calculate the worker 
error rates e0 and e1 as follows:

Binary tasks ask workers to select “T” or “F” for each claim, 

then an example confusion matrix for w is p =

[
0.8 0.2

0.3 0.7

]
 , 

where q2,1 = 0.3 means that if the truth of a task is “F,” the 
probability that the worker answers the task as “T” is 0.3. 
Similarly, q1,2 = 0.2 means that if the truth of a task is “T,” 
the probability that the worker answers the task as “F” is 0.2.

Example 2 Suppose we are given 6 binary tasks T = { t1 , t2 , 
t3 , t4 , t5 , t6 } with true answers A = { z1 , z2 , z3 , z4 , z5 , z6 } = {1, 

(1)e0
w =

∑t

t=1
Nw
t

�
rw
t
= 1 ∧ zt = 0

�

∑t

t=1
Nw
t

�
zt = 0

�

(2)e1
w =

∑t

t=1
Nw
t

�
rw
t
= 0 ∧ zt = 1

�

∑t

t=1
Nw
t

�
zt = 1

�

Table 2  Example of workers 
responses to t1 and t2

Task Task responses Task-
answer 
sequenceFirst class workers Second class workers Third class workers

t1 r
w1

t1
= 1, r

w3

t1
= 1 – – Y1Y1

r
w2

t1
= 1 r

w2

t1
= 1 – Y1Y1

r
w1

t1
= 1 – r

w8

t1
= 1 Y1Y3

– r
w5

t1
= 1 r

w9

t1
= 1 Y2Y3

– r
w6

t1
= 1 r

w10

t1
= 0 Y2N3

– – r
w8

t1
= 1, r

w10

t1
= 1 Y3Y3

r
w1

t1
= 1, r

w2

t1
= 0 – – Y1N1

t2 – r
w4

t2
= 1, r

w7

t2
= 0 – Y2N2

r
w3

t2
= 0 r

w5

t2
= 1 – Y2N1

– r
w6

t2
= 0 r

w9

t2
= 1 Y3N2

– – r
w8

t2
= 0, r

w9

t2
= 0 N3N3

– r
w7

t2
= 0 r

w10

t2
= 0 N2N3

r
w1

t2
= 0 – r

w8

t2
= 0 N1N3

r
w2

t2
= 0 r

w4

t2
= 0 – N1N2
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1, 1, 0, 0, 0}, the responses of worker w are R = {1, 1, 0, 0, 
1, 1}, then we can evaluate false positive and false negative 
rates for worker w : e0=2/3;e1=1/3.

Given data about tasks {t}n , workers{w}m and responses 
{r}w

t
 . We calculate the likelihood L based on the probability 

error rate, i.e., ( e0 , e1 ) of each worker. In the confusion 
matrix model, we focus on binary tasks (with fixed two 
choices) and model each worker as a confusion matrix qw 
with size 2 × 2. From Eqs. 1 and 2, the worker w’s answer 

follows the probability p =

[
1 − e1 e1
e0 1 − e0

]
 . The target is to 

optimize the likelihood function L, where

and it applies the EM algorithm to devise two iterative steps.

4.2  Worker Quality Probability Parameter Model

Here, we model the quality of workers only by a binary 
parameter. Each worker’s quality is modeled as worker prob-
ability qw ∈ [0, 1] . Then

which means that the probability worker w correctly answers 
a task is qw , and worker w incorrectly answers a task is 
1 − qw.

Given the data of tasks {t}n , workers {w}m and responses 
{r}w

t
 . We calculate the likelihood L based on the reliability 

of each worker.

we apply the EM framework and iteratively updates qw and 
rw
t
 to approximate its optimal value.
Base on the responses {r}w

t
 of a set of workers {w}m to a 

set of tasks {t}n , a EM algorithm is utilized to maximize the 
likelihood function. To estimate the parameters of the two 
static worker quality models, and infer the true answer to the 
task. The core process of the EM algorithm has one E-step 
and one M-step step.

E-step Estimate the probability of the correct answer 
to the task based on the value of the worker quality model 
parameters obtained by M-step.

(3)

L =

t∏

t=1

w∏

w=1

(e0
w)N

w
t (r

w
t
=1∧zt=0)(1 − e0

w)N
w
t (r

w
t
=0∧zt=0)

(e1
w)N

w
t (r

w
t
=0∧zt=1)(1 − e1

w)N
w
t (r

w
t
=1∧zt=1)

(4)p(qw = reliable) =

∑t

t=1
Nw
t
(rw

t
= zt)

∑t

t=1
Nw
t

(5)
L =

∏

t

∏

w

[p(qw = reliable)]N
t
w
(rw

t
=zt)

[1 − p(qw = reliable)]N
t
w
(rw

t
≠zt)

M-step Maximize the expectation of the likelihood func-
tion and re-estimate the value of the worker model param-
eters based on the estimated value of the task answer derived 
from the E-step.

4.3  Dynamic Worker Quality Evaluation Model

The dynamic model extends the above two models in task 
model. Rather than assuming that each task is the same, 
it models each task t’s difficulty �t ∈ [0, 1] (the higher, the 
more difficult). Here �t = 0 means the task is very simple 
that almost all workers could provide a correct response to 
it. �t = 1 means the task if so confusing that even the most 
reliable worker cannot give the response for sure. We model 
the quality of a worker using �w where �w ∈ [0, 1] . Here 
�w = 1 means the worker is always correct in responding 
and �w = 0 means the worker is always incorrect. Then, it 
models the worker’s answer as

We calculate the likelihood L based on the quality of the 
worker and the difficulty of the task.

We use maximum likelihood estimation to estimate the 
parameters of the worker model and the true answers to the 
task. We assume that all workers’ responses are independ-
ent, then the target is to maximize the likelihood function.

5  Optimization Strategy

In general, the technique for global optimal quality manage-
ment is to find the task-response sequence with the maxi-
mum likelihood from all possible mappings from tasks to 
results. However, this technique is intractable due to the 
large-scale operation involved in a typical crowdsourcing 
setting. To address this problem, we first estimate the true 
answers for the tasks and worker quality using EM with 
different prior models. We can rank workers into different 
quality categories according to the estimates of their qual-
ity. After that, we propose a dominance ordering model 
(DOM) based on known task-response sequences. A Cut-
point neighbor detection algorithm is designed to search for 
the task-response sequence with the maximum likelihood 
in our model and the task-response sequences with lower 
probability are pruned. The results of our search algorithm 

(6)p
(
rw
t
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||�w, �t
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.
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are then used as a new input to update worker categoriza-
tions and the dominance ordering model until convergence.

5.1  Classifying Workers

We classify workers into c categories according to their 
quality, with workers having high quality ranked in the front. 
In the case of a small number of workers, each worker may 
be classified into one category. Here, we classify workers 
to simplify our model, and the quality of each worker still 
varies in our final result. We calculate the distance between 
a worker and the best worker, then classify them according 
to this distance value. To show the difference between work-
ers more accurately, we set the distance between any two 
adjacent categories to be equal. Figure 2 shows an example 
of classifying workers.

Example 3 In this example, we classify workers into ten 
categories. We use the confusion matrix to model worker 
quality, and the entire matrix can be described with just two 
values [e0 , e1] . The error rates of worker 1 and worker 2 is 
[0.3, 0.45] and [0.25, 0.2], respectively. We can calculate 
the distance between these two workers and the best worker 
with error rates [0, 0] in this example. Then, we set the dif-
ference between two adjacent worker categories as 

√
2∕10 . 

So worker 1 is in the fourth class and worker 2 is in the third 
class.

Workers may have different levels of expertise and the 
results collected from the crowd are inherently noisy and 

ambiguous. In order to find the correct task-answer map-
ping with the maximum likelihood, we propose a dominance 
ordering model.

After worker classification, we can construct the domi-
nance ordering model. In this paper, we focus on the filtering 
problem. Workers’ responses are in the form of “Y/N”. In 
this way, “Y1” denotes that a worker in the first category 
answered “yes” to a task, and “N1” denotes that a worker in 
the first category answered “no” to the task. Each task may 
be accomplished by multiple workers and each worker may 
answer multiple different tasks. For example, task t received 
three responses (1, 1, 0) from different workers. The first 
worker belongs to the first category of workers; the second 
worker belongs to the fourth category of workers, and the 
third worker belongs to the seventh category of workers. 
Then, the response set for task t is denoted as Y1Y4N7.

We observe that response sets are in an inherent ordering. 
For the tasks with a same number of responses, we sort the 
response sets by the level of expertise of workers. For exam-
ple, there are two tasks t1 and t2 , each with three responses of 
yes. Responses of t1 are from workers belonging to the first, 
third, and fourth categories, whereas responses of t2 are from 
workers belonging to the first, third, and fifth categories. 
Then, the response set of t1 is ordered higher than that of 
t2 , Y1Y3Y4 dominates Y1Y3Y5 (i.e., Y1Y3Y4− > Y1Y3Y5 ). 
In this model, the probability of answer Y is smaller and 
smaller from top to bottom.

Definition 1 (Dominance Ordering) The response set 
for each vertex contains one or several elements from 
{ Y1…Yc,Nc…N1 }. Vertex v1 dominates vertex v2 if and 
only if one of the following conditions is satisfied: 

1. v1 and v2 contain the same number of “1” and “0” 
responses in total, and at least one response of “1” in 
v1 is answered by a worker with higher quality than any 
worker answering “1” in v2 , or at least one response of 
“0” in v1 is answered by a worker with lower quality than 
any worker answering “0” in v2.

2. v1 contains more “1” responses and fewer “0” responses 
than v2.

5.2  The Dominance Ordering Model (DOM)

For tasks receiving the same number of responses, their 
responses are constructed in the same dominance ordering 
graph (DAG). In addition, the DAG that receive different 
numbers of responses are integrated in order to handle the 
problem that tasks receive different numbers of responses 
at the same time. For the DAG where tasks receive an even 
number of responses, we set up a central layer where the 
response sets of vertices are characterized by the same Fig. 2  Example of ten worker categories
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number and worker classes to responses yes and no (e.g., 
Y1Y2N1N2). However, for the DAG where tasks receive an 
odd number of responses, we set a virtual center layer, which 
is composed of the edges equal to the starting point and the 
end point. We integrate each DAG into our model through 
the central layer and the vertices with the same distance from 
the central layer have similar dominance. Figure 3 shows an 
example of DOM.

Example 4 In this example, the workers sets are divided into 
three categories, and each task receives up to three responses 
from workers. DAG (a), (b), and (c) in Fig. 3 represent tasks 
with 1, 2, and 3 responses, respectively. As shown in Fig. 3, 

the central layer exists in DAG (b), while (a) and (c) only 
contain a synthetic central layer.

5.3  Cut‑point Neighbor Detection Algorithm

In this section, we describe the process of Cut-point neigh-
bor detection as illustrated in Algorithm 1.

Definition 2 (Cut-point) In our model, the probability that 
the answer to a question is 1 (Yes) decreases from top to bot-
tom. Here, we define the Cut-point as a mapping that divides 
the vertices in our model into two partitions. The vertices 
above the Cut-point are mapped to 1, and those below the 
Cut-point are mapped to 0.

Fig. 3  Example of our model with a maximum of three workers
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After constructing the dominance ordering model 
(DOM), we search for the maximum likelihood mapping. 
The search begins from the starting Cut-point which is gen-
erated by the EM algorithm. We will constantly adjust the 
position of the Cut-point to find a sequence with maximum 
likelihood. First, we find the vertices closest to the Cut-point 
and put them into a vertex-set. We then replace the answers 
of the vertices in this set (that is, vertices whose answers 
are 1 will be changed to 0 and vice versa). In the first round 
of replacement, we replace the answers of the vertices one 
by one. Then, recalculate the overall likelihood of the task-
response sequence. If the likelihood increases, the changes 
are retained, and these vertices are removed from the vertex-
set. Otherwise, restore the answers of vertices to before the 
replacement operation. In the second round of replacement, 
we replace answers of any two vertices in the vertex set. In 
round s, any vertices in the vertex set are replaced. Here, 
we set a stop value � for the rounds s to control the number 
of computations. This process is illustrated by the example 
in Fig. 4.

5.3.1  Iteration of Cut‑point Neighbor Detection

Our Cut-point neighbor detection algorithm eventually pro-
duces a new task-response sequence and the quality of the 
workers. We utilize the results as input to update the work-
ers’ classification and the position of the tasks in our model. 
Then, a further search is performed until convergence (i.e., 
the difference of the final likelihood value of two iterations is 
0 or below a predefined threshold). This process is illustrated 
in Algorithm 2. In each iteration, we increase the number 
of worker categories to make tasks at the same vertex more 
similar. In this way, we can find a task-response sequence 
with a higher likelihood effectively.

5.4  Discussion of Cut‑point Neighbor Detection

In this section, we describe our algorithm for finding the 
sequence with approximate global maximum. A naive global 
optimal algorithm could be to scan all workers’ responses, 
calculating for each task-response sequence and the likeli-
hood L. However, the number of all task-response sequence 

Fig. 4  Example of the proposed Cut-point neighbor detection
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is exponential. Given a set of tasks {t}n , we can assign a 
value of 0 or 1 to any of them, resulting in 2n different task-
response sequences. This makes the naive algorithm pro-
hibitively expensive.

The complexity introduced by worker classes is gov-
erned by the number of worker classes. Fewer worker cat-
egories imply fewer task-response sequence and hence, a 
lower complexity, while fine worker classification imply a 
higher complexity. For instance, in the limiting case where 
we assume every worker belongs to the same category, we 
do not classify workers, and the dominance ordering graph 
(DAG) correspondingly has no edges. Therefore, the com-
plexity of our algorithm, which scales linearly with the 
number of mappings, is O(2k) , where k is the number of 
worker responses per task. Note that although this is expo-
nential in the maximum number of worker responses per 
task, typical values of k are a very small constant for most 
practical applications. At the other extreme, when the dif-
ferent worker classes are highly constrained, the dominance 
ordering graph (DAG) can be reduced to a single chain. In 

this extreme, the resulting complexity of our algorithm is 
O((k+1

k
)).

In this paper we infer task truth and worker quality by 
maximizing the likelihood function. Maximum likelihood 
estimation is an optimization method that evaluates task 
truth and model implied parameters given the set of worker 
responses to the task. Standard techniques for solving this 
estimation problem typically involve the use of expecta-
tion–maximization (EM). The EM algorithm is only guar-
anteed to obtain a local maximum by iterating an expectation 
step and a maximization step several times until conver-
gence. To our knowledge, however, current applications 
and researches based on EM provide no theoretical guaran-
tees. Since our work continues on local optimization results 
derived based on EM methods, it is also difficult to provide 
theoretical guarantees. Instead, we can provide experiment-
based probabilistic guarantees on the estimated true value 
of the tasks and demonstrate the effectiveness of our method 
through experimental results.

Algorithm 1 Cut-point Neighbour Detection
Input: data; f ;
Output: new L(new likelihood); new f(mapping corresponding to new L); new q(Worker quality

corresponding to new f);
1: Construct V ;E = Dominance Ordering Model(DOM);
2: function MAIN(f , data)
3: s ← 1;
4: while (s < γ) do
5: new L ← V ertexSelection(s,DOM,L);
6: if new L > L then
7: f ← new f ;
8: L ← new L;
9: s ← 1;
10: else
11: s++;
12: end if
13: end while
14: return new L;new f ;new q;
15: function VertexSelection(s,DOM,L)
16: if (s = 0) then
17: calculate new L:
18: return new L;
19: else
20: for vertex in vertexset do
21: change answer of tasks in vertex;
22: if (answer = 1) then
23: answer ← 0;
24: else
25: answer ← 1;
26: end if
27: new L ← VertexSelection(s− 1, DOM,L)
28: if new L > L then
29: return new L;
30: end if
31: end for
32: end if
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Algorithm 2 Iteration of Cut-point Neighbour Detection
Input: data, f (from EM Algorithm)
Output: L∗(maximum of likelihood); f∗(mappings corresponding to likelihood*); q∗(Worker quality
corresponding to f*);
1: while not converged do
2: update c,DOM ;
3: (new L, new f, new q) ← MAIN(f, data)
4: end while
5: return L∗; f∗; q∗

 

(a) (b) (c)

Fig. 5  Synthetic Data Experiment. Overall likelihood: a Setting 1; b Setting 2; and  c Setting 3

 
6  Experiments

In this section, we evaluate the performance of our iterative 
optimization strategy (labeled as IOS_EM) on synthetic and 
real rating data and compare it against the EM algorithm 
(labeled as BAS_EM). We report our performance in terms 
of overall likelihood and other parameters of interest. Here, 
we discuss two experiments, one based on simulative data 
and another based on real-world data, and analyze the results 
to draw conclusions.

Note that here we assume that worker identity is unknown 
and each worker is an independent individual. Arbitrary 
workers could answer different tasks - our goal is to char-
acterize the behavior of the worker population as a whole. 
We expect the overall likelihood value to be larger and our 
assumptions on worker independence to be closer to the 
truth.

6.1  Experiment 1: Synthetic Data Experiments

In this section, we describe our experiments based on syn-
thetic data. Here, we choose the estimation prior model 
of worker quality modeled by a confusion matrix. For the 
binary task we study, the number pair ( e0 , e1 ) is used to 
simplify the representation of worker quality confusion 
matrix model. We generate the data based on this model 

and compare our method against the EM algorithm in terms 
of (a) overall likelihood, (b) accuracy of answer predictions, 
and (c) accuracy of worker quality predictions.

6.1.1  Dataset

To generate the ground truth answers for a set of tasks, given 
a fixed selectivity u, we assign a ground truth value of 1 with 
a probability of u and 0 with a probability of (1-u) for each 
task. Then, we generate a distinct worker response prob-
ability matrix for each worker, with the only constraint that 
most of the workers (more than 90% ) are better than random 
(workers’ error rate e0 and e1 are < 0.5 ). We then generate 
worker responses based on these matrices.

6.1.2  Judgment Indicators

Overall likelihood As mentioned in Sect. 3, the overall like-
lihood is the product of each task’s likelihood values in a 
task set.

Accuracy of answer predictions It is actually error rate 
(ER). It is the ratio of the number of mislabeled tasks to the 
total number of tasks.

Accuracy of worker quality predictions The Average 
Euclidean Distance (AED) between the estimated worker 
quality and the actual worker quality is used to measure 
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the accuracy of worker quality predictions. The smaller the 
value, the more accurate our assessment of worker quality.

6.1.3  Experimental Process and Result

We compare our algorithm with the EM algorithm which is 
also settling the maximum likelihood problem. BAS_EM 
takes an initial estimate or guesses for worker error rates as 
a parameter. Here, we experiment with the initialization of e0 
and e1 = 0.5. We set task number m = 500, and we vary the 
selectivity u, and the number of worker responses per task k.

We perform experiments under three data settings: Set-
ting 1, each task receives k responses and m = k (m is the 
total number of workers); Setting 2, each task receives k 
responses and m > k ; Setting 3, each task receives a different 
number of responses and m > k.

Overall likelihood. Figure 5 shows the likelihoods of task-
response sequence returned by our algorithm and BAS_EM 
instances on a varied number of workers, for three data set-
tings. The y-axis is in log scale, with a higher value being 
more desirable. In Fig. 5a, there are 3–10 workers in each 
data and each worker has completed all tasks (500 tasks), 
and in Fig. 5b, there are 10 workers in each data and each 

task receives a different number of responses (x-axis), so 
each worker completed 150–500 tasks. Contrast this to 
Fig. 5c, here, each task receives different responses (less 
than workers) and the total number of workers (x-axis) is 
varying in each data. We observe that our strategy has a 
significant improvement in likelihood values when the infor-
mation given to BAS_EM is sparser.

Accuracy of answer predictions. In Fig. 6, we plot the 
error rate(ER) of task ground truth estimations each of the 
algorithms estimate task answer incorrectly (a lower score 
is better). Here, again, our strategy estimates true values of 
tasks with higher accuracy than BAS_EM.

Accuracy of worker quality predictions. To evaluate the 
estimated worker quality against the actual one, we plot the 
Average Euclidean Distance (AED) between our estimated 
matrix and the actual one (a lower score is better) in Fig. 7. 
We observe that our strategy’s estimations are closer to the 
actual probability matrix than all the BAS_EM, and when 
the likelihood value improves larger, the estimation result 
is better.

(a) (b) (c)

Fig. 6  Synthetic Data Experiment. Accuracy of answer predictions:  a Setting 1;  b Setting 2; and  c Setting 3

(a) (b) (c)

Fig. 7  Synthetic Data Experiment. Accuracy of worker quality predictions:  a Setting 1;  b Setting 2; and  c Setting 3
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6.1.4  Summary

For all metrics, our strategy outperforms BAS_EM. It should 
be noted that our algorithm has more obvious advantages 
in the third case and is closer to the actual situation. The 
third setup (i.e., each task receives a different number of 
responses) is common in real crowdsourcing markets.

6.2  Experiment 2: Real‑world Data Experiments

In this section, we describe our results on a real-world data-
set. We evaluate our method with three different estimation 
prior models: (A) workers’ quality represented by a confu-
sion matrix, (B) workers’ quality represented by a binary 
parameter, and (C) workers’ quality and task difficulty, and 
compare our method versus the BAS_EM in terms of overall 
likelihood and ground truth of task estimations.

6.2.1  Dataset

Our dataset is a sentiment analysis dataset, which corre-
sponds to a collection of more than ten thousand sentences 
extracted from the movie review website RottenTomatoes. 
It contains a set of 5000 tasks responded by 203 workers. 
From this collection, a random subset of 5000 sentences 
was selected and published on Amazon Mechanical Turk 
for annotation. Given the sentences, the workers were asked 
to provide the sentiment polarity (positive or negative). We 

have ground truth yes/no answers for each task, but we do 
not know the real worker quality.

6.2.2  Judgment Indicators

Overall likelihood It is the product of each task’s likelihood 
values in a task set. Its effectiveness is shown by a line graph 
in Fig. 8.

Accuracy of answer predictions It refers to the error rate 
(ER), and a lower score is better. Its experimental results are 
represented in a bar chart in Fig. 8.

6.2.3  Experimental Process and Result

To evaluate the performance of our strategy based on 
EM(IOS_EM), we vary the size of data by randomly select-
ing a fixed number of labels from all the data and compare 
the estimates of the answer (the yes/no answers) with the 
given ground truth.

Overall likelihood Figure 8 shows the likelihoods of 
task-response sequence returned by IOS_EM and different 
BAS_EM on a varied number of labels. The y-axis is on a 
log scale, with a higher value being more desirable. And 
Table 3 shows the difference between our method and differ-
ent BAS_EM in terms of likelihood and error rate of ground 
truth estimations. In Fig. 8, we observe that our method can 
significantly improve the likelihood value with the three dif-
ferent estimations prior model.

(a) (b) (c)

Fig. 8  Real Data Experiment. Likelihood and error rate of answer estimation for (a), (b) and (c)

Table 3  Difference of 
likelihood and error rate for (a) 
and (b)

Label number D-likelihood (a) D-ER (a) ( %) D-likelihood (b) D-ER (b) ( %)

10000 + 138.168 − 0.679 + 233.171 − 1.116
12000 + 281.449 − 1.200 + 247.675 − 1.095
15000 + 269.892 − 1.099 + 207.998 − 0.753
17000 + 289.584 − 0.987 + 231.146 − 0.826
20000 + 297.262 − 0.901 + 407.979 − 1.022
22000 + 308.145 − 0.880 + 205.360 − 0.500
25000 + 57.137 − 0.140 + 9.194 − 0.040
27000 + 235.244 − 0.600 + 59.636 − 0.160



308 L. Cui et al.

1 3

Accuracy of answer predictions In Fig. 8, we also com-
pare the error rate(ER) of label estimations with BAS_EM. 
We plot the error rate of task true answer estimations of 
each algorithm. Here, again, our method improves the 
accuracy of the answer estimations while improving the 
likelihood value.

7  Conclusion

Truth inference has a strong impact in crowdsourcing and 
it is a fundamental issue of current research. Most of the 
work has used a custom optimization function to capture 
the relationship between worker’s quality and ground 
truth and then executed an iterative algorithm until con-
vergence to infer the true answer to the task and other 
implicit variables finally. The EM framework is commonly 
employed to derive the implied parameters in the likeli-
hood function in most of the works, but the EM algorithm 
only provides a locally optimal solution and highly lim-
ited by initial parameters. In this paper, we first model the 
worker quality from three different views and construct 
likelihood functions and then go further truth discovery 
based on the local optimum results obtained using the EM 
algorithm rather than stopping. We construct a dominance 
ordering model (DOM) based on the local optimum results 
and design a Cut-point neighbor detection algorithm to 
improve the estimation of task truth by increasing the 
overall likelihood value. The DOM constructed based 
on the pruning strategy not only serves as a platform for 
the iterative search algorithm but also greatly reduces the 
space of potential mappings to be considered. The experi-
mental results show that the approximate global optimal 
results we obtain based on pruning search are better than 
the local optimal results obtained by simply executing the 
EM algorithm.

This paper focuses on the binary problems in micro-
tasks. Now there are more and more multiple problems and 
open-ended crowdsourcing problems. In future research, 
we hope that the ideas described in this paper can be 
extended to solve more general types of tasks, such as 
multiple choice tasks, numeric tasks, and others, and are 
not limited to truth inference for binary tasks.
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