Data Science and Engineering (2021) 6:294-309
https://doi.org/10.1007/541019-021-00164-2

=

Check for
updates

Achieving Approximate Global Optimization of Truth Inference
for Crowdsourcing Microtasks

Lizhen Cui'?® . Jing Chen' - Wei He' - Hui Li"? - Wei Guo'? - Zhiyuan Su®

Received: 20 January 2021 / Revised: 12 April 2021 / Accepted: 21 April 2021 / Published online: 12 May 2021
© The Author(s) 2021

Abstract

Microtask crowdsourcing is a form of crowdsourcing in which work is decomposed into a set of small, self-contained tasks,
which each can typically be completed in a matter of minutes. Due to the various capabilities and knowledge background of
the voluntary participants on the Internet, the answers collected from the crowd are ambiguous and the final answer aggrega-
tion is challenging. In this process, the choice of quality control strategies is important for ensuring the quality of the crowd-
sourcing results. Previous work on answer estimation mainly used expectation—maximization (EM) approach. Unfortunately,
EM provides local optimal solutions and the estimated results will be affected by the initial value. In this paper, we extend
the local optimal result of EM and propose an approximate global optimal algorithm for answer aggregation of crowdsourc-
ing microtasks with binary answers. Our algorithm is expected to improve the accuracy of real answer estimation through
further likelihood maximization. First, three worker quality evaluation models are presented based on static and dynamic
methods, respectively, and the local optimal results are obtained based on the maximum likelihood estimation method. Then,
a dominance ordering model (DOM) is proposed according to the known worker responses and worker categories for the
specified crowdsourcing task to reduce the space of potential task-response sequence while retaining the dominant sequence.
Subsequently, a Cut-point neighbor detection algorithm is designed to iteratively search for the approximate global optimal
estimation in a reduced space, which works on the proposed dominance ordering model (DOM). We conduct extensive
experiments on both simulated and real-world datasets, and the experimental results illustrate that the proposed approach
can obtain better estimation results and has higher performance than regular EM-based algorithms.
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[2]. Currently, there are many successful crowdsourc-
ing platforms, such as Upwork, Crowdflow, and Amazon
Mechanical Turk (AMT). In the crowdsourcing platforms,
requesters can publish tasks, which are accepted and
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performed by workers. Crowdsourcing tasks are classi-
fied from multiple dimensions in some current studies.
Bhatti et al. [3] classify tasks as micro-, complex, crea-
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short amounts of time by individual workers. Complex
tasks require skills, knowledge, and computational efforts
to solve a problem and usually can be decomposed into
smaller sub-tasks. Creative tasks are related to idea gen-
eration, creative design, or co-creation. Finally, macro-
tasks are non-decomposable tasks and cannot be divided
into smaller subproblems, require expert knowledge, skills
and often involve collaboration among workers. In this
paper, we focus on microtasks, which are independent and
can be completed by a single worker in short amounts of
time. These tasks have fine granularity and do not require
workers to have specific expertise. There are many exam-
ples of microtask crowdsourcing, for example, translat-
ing text fragments, reading verification codes, rating, and
ranking. Microtasks are simple for humans but difficult
for computers. In the actual microtask crowdsourcing
system, workers are not completely reliable, they may
make mistakes or deliberately submit wrong answers. To
obtain a more valid answer, tasks are usually assigned to
more than one worker, each of whom performs the task
independently (called a redundancy-based strategy). The
answers given by different workers are then aggregated to
infer the correct answer (called truth) of each task. This
is a fundamental problem called Truth Inference that has
been extensively studied in existing crowdsourcing which
determines how to effectively infer the truth of each task.
Specifically, we focus on truth inference for binary tasks
in microtasks, that is, each task only has yes/on choices,
which have important application value in crowdsourcing.
For example, in a query such as “Do the two videos belong
to the same theme?”, the expected answers of the form
“yes/no” where yes is denoted by 1 and no is denoted by O.

Truth inference is significant for controlling the quality
of crowdsourcing and is a crucial issue for crowdsourcing
platforms to get the correct answers. The truth inference
algorithms proposed in existing works can be divided into
two main categories, direct computation, and optimiza-
tion methods. The direct computation estimates task truth
directly based on worker answers without modeling work-
ers or tasks. The optimization methods model the worker
or task in advance then defines an optimization function to
express the relationship between the worker responses and
the task truth, and finally derive an iterative method to com-
pute parameters collectively. In the optimization methods,
the task truth and other parameters are mainly calculated
iteratively until convergence using the EM algorithm, which
is a classical and effective method for estimating the truth
values of unknown variables. However, two limitations of
EM hinder its effectiveness in this application scenario:
EM-based algorithms are highly dependent on initialization
parameters; using EM to estimate the maximum likelihood
can only get the local optimal results, which often get stuck
in undesirable local optima [4].

Global optimization is the most ideal result, but there
are difficulties in its implementation. The most intuitive
method to obtain the globally optimal result is to find the
global maximum likelihood values of all possible mappings
from tasks to answers, to find the most likely true answers.
Consider a simple example, if we have 50 binary tasks, then
the full number of task-answer sequences for these tasks
is 2°°, an exceedingly large number. However, considering
the large-scale operation in the context of crowdsourcing,
the number of calculations required increases exponentially
with the increase of tasks and workers. Therefore, it is often
intractable to obtain these global optimal quality manage-
ment technologies.

In this paper, global optimization cannot be achieved but
we are not satisfied with the local optimal results derived by
traditional optimization methods. We compromise between
the inaccessible global optimization and the local optimum,
and further truth discovery on the local optimum results
derived from optimization-based methods, and propose
an iterative optimization method to obtain an approximate
global optimum solution. By modeling the worker quality, a
likelihood function is constructed to capture the relationship
between worker quality and task truth. We then prune the
local optimum which is derived by iteratively converging the
likelihood optimization function using the EM framework
to construct the dominance ordering model (DOM). As a
result, we narrow the search scope and reduce the mapping
space. Then, a Cut-point neighbor detection algorithm is
designed to iteratively search the response with the maxi-
mum likelihood-based on our model until convergence [5],
approaching the optimal solution without increasing large-
scale computation.

To sum up, the main contributions of this paper include
the following four points:

1. We present three different worker quality evaluation
models to obtain local optimal results using maximum
likelihood estimation, namely worker quality confusion
matrix model, worker quality probability parameter
model, and dynamic worker quality evaluation model;

2. We construct a pruning strategy-based dominance order-
ing model (DOM) based on the local optimal results,
which is composed of worker responses and worker cat-
egories (i.e., task-response sequence), and reduces the
space of potential task-response sequence while retain-
ing the dominant sequence;

3. We propose a Cut-point neighbor detection algorithm
on the constructed DOM model to find the task-response
sequence with the maximum likelihood within the domi-
nance ordering model (DOM) by iterative search;

4. We perform extensive experiments to compare the
results obtained by our algorithm with the local opti-
mum results obtained by the EM algorithm on a variety
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of metrics. The experimental results show that our algo-
rithm significantly outperforms EM-based algorithms in
both simulated data and real-world data.

The remaining of this paper is organized as follows. Sec-
tion 2 discusses the related works. Section 3 describes our
concept definitions and illustrates some symbols with an
example. Section 4 describes the estimation model of worker
quality based on static and dynamic. We describe the itera-
tive optimization method in Sect. 5 and present our experi-
mental results in Sect. 6. Finally, we conclude our work in
Sect. 7.

2 Related Work

In existing crowdsourcing, it is common for multiple work-
ers to be assigned the same task and the answers given by
different workers are aggregated to infer the truth for each
task. Since the crowd (called workers) may produce low-
quality or even noisy answers, the problem of truth inference
has been widely studied in existing crowdsourcing to tolerate
low-quality workers and to infer high-quality results from
noisy answers [6].

To solve this problem, a simple and straightforward idea
is majority voting (MV), which treats the truth of each task
as the answer given by the majority of employees [7—12].
But the MV strategy presupposes that every worker has an
equal vote, which is not possible in real life, where there
are differences among workers. Some are ordinary work-
ers, some are experts, some choose answers randomly, and
even malicious employees give wrong answers. Therefore,
it is necessary to capture the quality of each worker, and it
is wiser to trust the answers given by highly qualified work-
ers. Some jobs require workers to complete a small number
of tasks with ground truth (called golden tasks) before they
can answer the task, known as “qualification test” [13]. This
method is used to assess a worker’s ability in advance. This
can detect and eliminate some cheaters or malicious workers
before the worker answers the task. Test questions can also
be randomly mixed into common tasks to test the quality
of the worker, which gives a more realistic picture of the
worker’s actual ability and is known as “hidden test” [14,
15]. Liu et al. [16] obtained the accuracy of the worker’s
answers to the tasks by adding test questions and then used
Bayesian theory to obtain the true answers to the tasks based
on the quality of the worker and the answers to obtain the
true answers to the final task. However, both methods have
some limitations, for example: in qualification tests, many
workers do not want to complete “extra” tasks without com-
pensation, and in hidden tests, even adding test questions
may not improve the quality of workers.
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Based on the above problems, existing works [15, 17-21]
propose optimization methods to solve them. The basic idea
of the optimization method is to use a custom optimization
function to capture the relationship between the worker qual-
ity and the true value of the task. Then, an iterative approach
is used until convergence finally inferring the true answer
of worker quality and task. Most of the works use the EM
framework to iteratively compute the unknown parameters.
The difference between these works is that they model task
difficulty and worker quality differently and construct dif-
ferent optimization functions to express the relationship
between the two sets of parameters. Some works model the
quality of each worker as a single probability value using a
real number ¢q,, € [0, 1][14, 15]. The higher g,, is, the worker
w has higher ability to correctly answer tasks, which is con-
sistent with the Worker Quality Probability Parameter Model
we describe in Section 4.2. Li et al. [18] extend a wider
range of worker quality probability with g,, € (—o0, +0). In
addition, worker quality can be characterized by confusion
matrices [19, 20]. The approach proposed by Dawid et al.
[22] first used confusion matrices to model worker qual-
ity. Venanzi et al. [21] extended the DS model by assuming
a fixed number of worker clusters and that workers in the
same cluster have similar confusion matrices, rather than
modeling individual confusion matrix modeling. Imamura
et al. [17] proposed a broader class of crowdsourcing mod-
els including the DS model as a special case that enables it
to handle worker clusters, which is more practical than the
DS model in a real crowdsourcing setting. A minimax error
rate under more practical setting is also derived, and the
correctness of the theoretical error analysis is verified by
numerical calculations. Similarly, we mainly use the confu-
sion matrix to express the worker quality in this paper, with
the difference that we simplify the representation of the con-
fusion matrix for computational convenience, as described
in Sect. 4.1.

Besides, some works [23-27] use probabilistic models for
truth-value inference of crowdsourcing tasks. Li et al. [23]
proposed a Bayesian model (BWA) with conjugate before
solving the classification problem of crowdsourcing labels,
extending from discrete binary classification tasks to multi-
class classification tasks, and a direct inference is performed
using expectation—maximization (EM). Kurup et al. [24]
proposed an iterative probabilistic model-based approach
for crowdsourcing task aggregation. The quality of workers
was estimated using a predictive model with the expertness,
reliability, and task easiness of the workers as parameters,
which used true answers as latent variables. Expecta-
tion—maximization (EM) is used to estimate the parameters
and hidden variables that provide maximum likelihood. Li
et al. [25] similarly focus on probabilistic truth discovery
models and reconstruct them as a geometric optimization
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problem. Based on sampling techniques and a few other
ideas, the first (1+ ¢)-approximation solution is achieved.

Some works focused on theoretical guarantees. Das
Sarma et al. [4] proposed a technique for global optimal
quality management, finding the maximum likelihood
item ratings and worker quality estimates. They made two
limiting assumptions: (1) all workers have the same qual-
ity; (2) the number of workers answering each question
is fixed. These assumptions are too restrictive in reality.
Our approach obtains results by modeling worker quality
from different perspectives (Sect. 4) and using the most
commonly used EM framework to iteratively maximize
the likelihood function. We do not provide theoretical
guarantees, but we find an approximate global maximum
likelihood mapping on the locally optimal results further
using our proposed iterative algorithm under more rela-
tive assumptions (i.e., workers can have different values
of quality and each task can get a different number of
answers).

3 Problem Description
3.1 Framework Overview

The overall procedure of the proposed optimization
method is illustrated in Fig. 1. To begin with, request-
ers publish microtasks on the crowdsourcing platform
and microtasks are assigned to workers. Workers then
accept and answer the tasks, and submit answers back
to the platform. Based on the collected worker answers
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Fig. 1 Overall procedure of the proposed approach
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to the tasks, we estimate the true answers for the tasks
and worker quality using EM with different prior models.
Local optimal results of task answers and worker qual-
ity are obtained. Then, workers are ranked into different
quality categories based on the local optimal results of
worker quality. After that, a dominance ordering model
(DOM) based on known worker classification and worker
response (i.e., task-response sequence) is constructed. The
vertices of the model with lower probability are pruned,
which narrows the search scope and reduces the mapping
space. Then, a Cut-point neighbor detection algorithm
is designed to iteratively search for the task-response
sequence with the maximum likelihood in our model
until convergence. Finally, the approximate global optimal
results are obtained.

3.2 Problem Definition

We start with the introduction of some symbols in Table 1
and then combined it with an example of image annotation
to make a specific description of some symbols.

3.2.1 Task Question and Option

Consider a group of tasks {#}" with a total number of n.
These tasks are completed by a group of workers {w}”
with a total number of m. Work w completes task ¢ with k
options {1,2,3,...,k}. Each worker can answer multiple
different tasks, and each task can be accomplished by mul-
tiple different workers. Each task has a correct answer z,
(that is, one of the k options is the true answer).
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Table 1 Notation table

Symbol  Explanation

t Task

w Worker

ry Responses from worker w to task ¢

Z The true answer of task

p Worker response probability matrix

Pij The probability of the worker choosing i when the answer
to the task is j

Ny The number of times worker w responds to task ¢

q, Worker quality

L Overall likelihood

DOM Dominance ordering model

DOG Dominance ordering graph

d Distance between the nth class worker and the best worker

nk

3.2.2 Task Response

rY as the response of worker w to task z. For the binary
problem studied in this paper, each r}* has a value of 0 or 1.

3.2.3 Worker Response Probability Matrix

For the binary problem studied in this paper, a worker
Pu P2

P2 P
p1; and p,,, respectively, represent the probability that

rY =0and r}” = 1 when the real answer of the task is 0. p,
and p,, respectively represent the probability that r}" =0
and r}” = 1 when the real answer of the task is 1. The whole
matrix is described by a pair of values (¢ey,e,), in which e
is worker false positive (FP) rates (i.e., p,; value) and e, is
false negative (FN) rates (i.e., p,, value).

response probability matrix of p = is considered.

3.2.4 Overall Likelihood

Assuming that each worker answers the question inde-
pendently. The likelihood value of ¢, is the product of the
probability that the worker who answers the task ¢; makes
the correct response. L is the overall likelihood value of
a set of tasks. It is the product of the likelihood value
of each task in the task set. Its calculation formula is
L = L(#)) X L(t,) X ... X L(t,).

3.2.5 Task-response Sequence
The task-response sequence is constructed by combin-

ing workers response and workers category. A worker’s
response to a binary task is 1, denoted by Y; similarly, a
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response to a binary task is 0, denoted by N, which is not
related to the task truth value and whether the worker’s
response to the task is correct or not.

3.2.6 Distance

We calculate the distance between workers in plane rec-
tangular coordinate system. The quality of workers is rep-
resented by his/her error rate (e, e;), which is a point in
the coordinate system. The distance between workers is
expressed by the Euclidean distance between two points in
a two-dimensional plane. The best worker quality is (0, 0),
which is the origin.

3.2.7 Maximum Likelihood Problem

For a pool of workers {w}", there are a sequence of tasks
{r}" where n is the number of tasks, and each task is associ-
ated with a latent true answer z, which is picked from / dif-
ferent options. Tasks {¢}" will receive responses {r}," from
workers {w}". Here, we call a function f that assigns options
to tasks a mapping. So there are 2" mappings for the filter-
ing problem. Assuming independence of worker responses.
We calculate the probability of the task-option mapping as
allover likelihood L. We maximize the allover likelihood L
to evaluate true answers {z}’ for tasks and the performance
of each worker.

Example 1 In this example, there are a group of image anno-
tation tasks {#,,,, ..., t,}. All of which are binary task prob-
lems with two options {0, 1}. We take #,,#, as an example
to illustrate, we assume that z, =1, z, = 0. A group of 10
workers{w, wy, w3, ..., w;o} respond to these tasks and the
error rates of ten workers is (0.1, 0.3), (0.2, 0.2), (0.3, 0.2),
(0.3, 0.6), (0.4, 0.4), (0.5, 0.5), (0.6, 0.4), (0.7, 0.7), (0.8,
0.6), (0.9, 0.5). We determine the category to which each
worker belongs based on the distance between the worker
and the origin. In this example, we classify workers into
three categories, which are characterized by numbers 1, 2,
and 3, respectively. The workers who have a high-quality
rank in the front. We divide the distance between the worst
worker [that is, the error rate (1, 1)] and the origin on aver-
age into three intervals. The distance between the first class
workers and the origin is within [0,\/5/3] (that is d}, €
[0,7/2/3]). Similarly, d,, € [V/2/321/2/3] and d;, € [2V/2/3
,1]. According to the calculation, we determine the cate-
gory to which each worker belongs. Workers choose tasks
to answer, and different tasks will receive different numbers
of answers. Here ¢, and ¢, receive 2 responses. Table 2 shows
several workers’ responses received by ¢,,t,.

We take the task-response sequence of ¢; as Y1N1 and task-
response sequence of t, as Y2N2, for example, to calculate
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Table 2 Example of workers Task Task responses Task-
responses to ¢, and #, answer
First class workers Second class workers Third class workers sequence
n n=1r =1 - - YIYl
r;‘:’z =1 r:'z = - Y1Y1
rzvlvl =1 — r:‘% =1 Y1Y3
_ r:-5 -1 r:‘]’o =1 Y2Y3
3 :6 -1 r:“’ =0 Y2N3
- - r;‘l’s =1, r:'w = Y3Y3
rZ‘ = l,rtwl'z =0 - - YIN1
A - =17 =0 - Y2N2
r[v‘z’x -0 r;:s =1 - Y2N1
_ r;zé -0 Z«J =1 Y3N2
_ - =0, =0 N3N3
B =0 r,“;‘“ =0 N2N3
=0 - A=0 NIN3
rvrz — =0 - NIN2

I

the likelihood value. From Table 2, w, and w, answer t,,
their error rate is (0.1, 0.3) and (0.2, 0.2), respectively, so
their probability of answering the ¢, correctly is 0.7 and 0.8,
respectively. So we can get L(t;) = 0.7 X 0.8 = 5.6 x 107!,
Similarly, we can get L(t,) = 0.7 X 0.4 =28 x 107" Ifn = 2
in task set, only ¢, and ¢, are included, then the overall likeli-
hood of L = L(t,) X L(t,) = 1.568 x 107\,

4 Worker Quality Evaluation Model

Due to the different abilities and knowledge background
of workers, the quality of employees varies greatly. To get
a more valid estimation answer, an accurate worker qual-
ity evaluation model is very important. In this section,
the quality of employees is modeled, and then the true
answer of the task is inferred based on the quality of the
workers and the answers of the workers. In this section,
we model the quality of workers using static and dynamic
methods, respectively. Three different models are used to
model worker quality, including the worker quality confu-
sion matrix model, worker quality probability parameter
model, and dynamic worker quality evaluation model. The
worker quality confusion matrix model and worker qual-
ity probability parameter model assess the quality of the
workers based on the static method, which refers to the
use of a fixed value to express the quality of workers. To
describe the quality characteristics of workers more accu-
rately, a dynamic worker quality evaluation model is also
proposed. The dynamic worker quality evaluation model

uses a function distribution to express the relationship
between worker quality and task difficulty.

4.1 Worker Quality Confusion Matrix Model

Consider a worker response probability matrix p, of the size
I + I (I is the number of task options). Thus, p(i, j) is the
probability that a worker rates a question with true value j as
having option i. Given responses r}” of worker w to the tasks
and the tasks’ true answers z,, we can get the worker qual-
ity matrix. For binary tasks, we can use (e, ;) to represent
the quality of workers. N} represents the number of times
worker w responds to task . We can calculate the worker
error rates e, and e; as follows:

w_ Zi:thw(rthl/\Zz:O)
Z§:1Ntw(zt = 0)

ey

€

v Y N (P =0Az=1)
Z§=1Ntw(zt = 1)

Binary tasks ask workers to select “T” or “F”” for each claim,
0.8 0.2

0.3 0.7(
where g, | = 0.3 means that if the truth of a task is “F,” the
probability that the worker answers the task as “7” is 0.3.
Similarly, 41, = 0.2 means that if the truth of a task is “7,”
the probability that the worker answers the task as “F” is 0.2.

€

@

then an example confusion matrix for w is p =

Example 2 Suppose we are given 6 binary tasks T = {¢,, 1,,
13, Uy, ts, g } With true answers A = {zy, 25, 23, 24, 255 2} = {1,
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1,1, 0,0, 0}, the responses of worker w are R = {1, 1, 0, 0,
1, 1}, then we can evaluate false positive and false negative
rates for worker w : e;=2/3;e,=1/3.

Given data about tasks {¢}", workers{w}" and responses
{r}". We calculate the likelihood L based on the probability
error rate, i.e., (e, €;) of each worker. In the confusion
matrix model, we focus on binary tasks (with fixed two
choices) and model each worker as a confusion matrix g,
with size 2 X 2. From Egs. 1 and 2, the worker w’s answer
!
ey l—eg
optimize the likelihood function L, where

t w
I = H H( eOW)N,W(r;”tl/\z,:O) a- EOW)N;V(ry:OAz,:O)

=1 w=1

(E]W)le(r;”=0/\z,=l)(1 _ 61W)le(r;4’=1/\z,=l) (3)

follows the probability p = [1 } The target is to

and it applies the EM algorithm to devise two iterative steps.

4.2 Worker Quality Probability Parameter Model

Here, we model the quality of workers only by a binary
parameter. Each worker’s quality is modeled as worker prob-
ability g,, € [0, 1]. Then

Z;:l Ny () = z)
Zz{:l Nl‘w

which means that the probability worker w correctly answers
a task is ¢,,, and worker w incorrectly answers a task is
1-gq,.

Given the data of tasks {}", workers {w}™ and responses
{r}}". We calculate the likelihood L based on the reliability
of each worker.

L= H H[l’(‘lw = reliable)]V "=
tow

p(g,, = reliable) = 4)

&)
(7 #2,)

[1 — p(q,, = reliable)]™
we apply the EM framework and iteratively updates g,, and
rY to approximate its optimal value.

Base on the responses {r}:“ of a set of workers {w}" to a
set of tasks {¢}", a EM algorithm is utilized to maximize the
likelihood function. To estimate the parameters of the two
static worker quality models, and infer the true answer to the
task. The core process of the EM algorithm has one E-step
and one M-step step.

E-step Estimate the probability of the correct answer
to the task based on the value of the worker quality model
parameters obtained by M-step.

m
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M-step Maximize the expectation of the likelihood func-
tion and re-estimate the value of the worker model param-
eters based on the estimated value of the task answer derived
from the E-step.

4.3 Dynamic Worker Quality Evaluation Model

The dynamic model extends the above two models in task
model. Rather than assuming that each task is the same,
it models each task #’s difficulty g, € [0, 1] (the higher, the
more difficult). Here f, = 0 means the task is very simple
that almost all workers could provide a correct response to
it. f, = 1 means the task if so confusing that even the most
reliable worker cannot give the response for sure. We model
the quality of a worker using a,, where «a,, € [0, 1]. Here
a,, = 1 means the worker is always correct in responding
and a,, = 0 means the worker is always incorrect. Then, it
models the worker’s answer as

p(r =2 ]ay.p) = ———— ©)

Tl 4 e@-B)"
We calculate the likelihood L based on the quality of the
worker and the difficulty of the task.

L=HHP(’"¥V|Zﬂaw’ﬁI). )

We use maximum likelihood estimation to estimate the
parameters of the worker model and the true answers to the
task. We assume that all workers’ responses are independ-
ent, then the target is to maximize the likelihood function.

5 Optimization Strategy

In general, the technique for global optimal quality manage-
ment is to find the task-response sequence with the maxi-
mum likelihood from all possible mappings from tasks to
results. However, this technique is intractable due to the
large-scale operation involved in a typical crowdsourcing
setting. To address this problem, we first estimate the true
answers for the tasks and worker quality using EM with
different prior models. We can rank workers into different
quality categories according to the estimates of their qual-
ity. After that, we propose a dominance ordering model
(DOM) based on known task-response sequences. A Cut-
point neighbor detection algorithm is designed to search for
the task-response sequence with the maximum likelihood
in our model and the task-response sequences with lower
probability are pruned. The results of our search algorithm
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are then used as a new input to update worker categoriza-
tions and the dominance ordering model until convergence.

5.1 Classifying Workers

We classify workers into ¢ categories according to their
quality, with workers having high quality ranked in the front.
In the case of a small number of workers, each worker may
be classified into one category. Here, we classify workers
to simplify our model, and the quality of each worker still
varies in our final result. We calculate the distance between
a worker and the best worker, then classify them according
to this distance value. To show the difference between work-
ers more accurately, we set the distance between any two

adjacent categories to be equal. Figure 2 shows an example
of classifying workers.

Example 3 In this example, we classify workers into ten
categories. We use the confusion matrix to model worker
quality, and the entire matrix can be described with just two
values [e, e;]. The error rates of worker 1 and worker 2 is
[0.3, 0.45] and [0.25, 0.2], respectively. We can calculate
the distance between these two workers and the best worker
with error rates [0, 0] in this example. Then, we set the dif-
ference between two adjacent worker categories as \/5 /10.

So worker 1 is in the fourth class and worker 2 is in the third
class.

Workers may have different levels of expertise and the
results collected from the crowd are inherently noisy and

worker classes
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Fig.2 Example of ten worker categories

ambiguous. In order to find the correct task-answer map-
ping with the maximum likelihood, we propose a dominance
ordering model.

After worker classification, we can construct the domi-
nance ordering model. In this paper, we focus on the filtering
problem. Workers’ responses are in the form of “Y/N”. In
this way, “Y1” denotes that a worker in the first category
answered “yes” to a task, and “N1” denotes that a worker in
the first category answered “no” to the task. Each task may
be accomplished by multiple workers and each worker may
answer multiple different tasks. For example, task ¢ received
three responses (1, 1, 0) from different workers. The first
worker belongs to the first category of workers; the second
worker belongs to the fourth category of workers, and the
third worker belongs to the seventh category of workers.
Then, the response set for task ¢ is denoted as Y, Y,N;.

We observe that response sets are in an inherent ordering.
For the tasks with a same number of responses, we sort the
response sets by the level of expertise of workers. For exam-
ple, there are two tasks ¢, and t,, each with three responses of
yes. Responses of ¢, are from workers belonging to the first,
third, and fourth categories, whereas responses of ¢, are from
workers belonging to the first, third, and fifth categories.
Then, the response set of ¢, is ordered higher than that of
t,, Y1Y3Y4 dominates Y1Y3Y5 (i.e., Y1Y3Y4— > Y1Y3Y5).

In this model, the probability of answer Y is smaller and
smaller from top to bottom.

Definition 1 (Dominance Ordering) The response set
for each vertex contains one or several elements from
{Y1...Yc,Nc...N1}. Vertex v, dominates vertex v, if and
only if one of the following conditions is satisfied:

v, and v, contain the same number of “1” and “0”
responses in total, and at least one response of “1” in
v, is answered by a worker with higher quality than any
worker answering “1” in v,, or at least one response of
“0” in v, is answered by a worker with lower quality than
any worker answering “0” in v,.

v, contains more “1” responses and fewer “0” responses
than v,.

5.2 The Dominance Ordering Model (DOM)

For tasks receiving the same number of responses, their
responses are constructed in the same dominance ordering
graph (DAG). In addition, the DAG that receive different
numbers of responses are integrated in order to handle the
problem that tasks receive different numbers of responses
at the same time. For the DAG where tasks receive an even
number of responses, we set up a central layer where the
response sets of vertices are characterized by the same
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Fig. 3 Example of our model with a maximum of three workers

number and worker classes to responses yes and no (e.g.,
Y1Y2N1N2). However, for the DAG where tasks receive an
odd number of responses, we set a virtual center layer, which
is composed of the edges equal to the starting point and the
end point. We integrate each DAG into our model through
the central layer and the vertices with the same distance from
the central layer have similar dominance. Figure 3 shows an
example of DOM.

Example 4 1n this example, the workers sets are divided into
three categories, and each task receives up to three responses
from workers. DAG (a), (b), and (c) in Fig. 3 represent tasks
with 1, 2, and 3 responses, respectively. As shown in Fig. 3,

@ Springer

the central layer exists in DAG (b), while (a) and (c) only
contain a synthetic central layer.

5.3 Cut-point Neighbor Detection Algorithm

In this section, we describe the process of Cut-point neigh-
bor detection as illustrated in Algorithm 1.

Definition 2 (Cut-point) In our model, the probability that
the answer to a question is 1 (Yes) decreases from top to bot-
tom. Here, we define the Cut-point as a mapping that divides
the vertices in our model into two partitions. The vertices
above the Cut-point are mapped to 1, and those below the
Cut-point are mapped to 0.
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After constructing the dominance ordering model
(DOM), we search for the maximum likelihood mapping.
The search begins from the starting Cut-point which is gen-
erated by the EM algorithm. We will constantly adjust the
position of the Cut-point to find a sequence with maximum
likelihood. First, we find the vertices closest to the Cut-point
and put them into a vertex-set. We then replace the answers
of the vertices in this set (that is, vertices whose answers
are 1 will be changed to 0 and vice versa). In the first round
of replacement, we replace the answers of the vertices one
by one. Then, recalculate the overall likelihood of the task-
response sequence. If the likelihood increases, the changes
are retained, and these vertices are removed from the vertex-
set. Otherwise, restore the answers of vertices to before the
replacement operation. In the second round of replacement,
we replace answers of any two vertices in the vertex set. In
round s, any vertices in the vertex set are replaced. Here,
we set a stop value y for the rounds s to control the number
of computations. This process is illustrated by the example
in Fig. 4.

cut-point

Fig. 4 Example of the proposed Cut-point neighbor detection

5.3.1 Iteration of Cut-point Neighbor Detection

Our Cut-point neighbor detection algorithm eventually pro-
duces a new task-response sequence and the quality of the
workers. We utilize the results as input to update the work-
ers’ classification and the position of the tasks in our model.
Then, a further search is performed until convergence (i.e.,
the difference of the final likelihood value of two iterations is
0 or below a predefined threshold). This process is illustrated
in Algorithm 2. In each iteration, we increase the number
of worker categories to make tasks at the same vertex more
similar. In this way, we can find a task-response sequence
with a higher likelihood effectively.

5.4 Discussion of Cut-point Neighbor Detection

In this section, we describe our algorithm for finding the
sequence with approximate global maximum. A naive global
optimal algorithm could be to scan all workers’ responses,
calculating for each task-response sequence and the likeli-
hood L. However, the number of all task-response sequence
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is exponential. Given a set of tasks {7}", we can assign a
value of 0 or 1 to any of them, resulting in 2" different task-
response sequences. This makes the naive algorithm pro-
hibitively expensive.

The complexity introduced by worker classes is gov-
erned by the number of worker classes. Fewer worker cat-
egories imply fewer task-response sequence and hence, a
lower complexity, while fine worker classification imply a
higher complexity. For instance, in the limiting case where
we assume every worker belongs to the same category, we
do not classify workers, and the dominance ordering graph
(DAG) correspondingly has no edges. Therefore, the com-
plexity of our algorithm, which scales linearly with the
number of mappings, is O(2%), where k is the number of
worker responses per task. Note that although this is expo-
nential in the maximum number of worker responses per
task, typical values of k are a very small constant for most
practical applications. At the other extreme, when the dif-
ferent worker classes are highly constrained, the dominance
ordering graph (DAG) can be reduced to a single chain. In

this extreme, the resulting complexity of our algorithm is
O

In this paper we infer task truth and worker quality by
maximizing the likelihood function. Maximum likelihood
estimation is an optimization method that evaluates task
truth and model implied parameters given the set of worker
responses to the task. Standard techniques for solving this
estimation problem typically involve the use of expecta-
tion—-maximization (EM). The EM algorithm is only guar-
anteed to obtain a local maximum by iterating an expectation
step and a maximization step several times until conver-
gence. To our knowledge, however, current applications
and researches based on EM provide no theoretical guaran-
tees. Since our work continues on local optimization results
derived based on EM methods, it is also difficult to provide
theoretical guarantees. Instead, we can provide experiment-
based probabilistic guarantees on the estimated true value
of the tasks and demonstrate the effectiveness of our method
through experimental results.

Algorithm 1 Cut-point Neighbour Detection

Input: data; f;

Output: new_L(new likelihood); new_f(mapping corresponding to new_L); new_q(Worker quality

corresponding to new_f);

: Construct V; E = Dominance Ordering Model(DOM);

1
2: function MAIN(f, data)

3: s+ 1;

4: while (s < v) do

5: new_L «— VertexSelection(s, DOM, L);
6: if new_L > L then

7 [ — new_f;

8 L «— new_L;

9

: s+ 1;
10: else
11: S+ +;
12: end if
13: end while

14: return new_L;new_f; new_g;
15: function VertexSelection(s, DOM, L)
16: if (s = 0) then

17: calculate new_L:

18: return new_L;

19: else

20: for vertex in vertexset do

21: change answer of tasks in vertex;
22: if (answer = 1) then

23: answer «— 0;

24. else

25: answer «— 1;

26: end if

27: new_L «— VertexSelection(s — 1, DOM, L)
28: if new_L > L then

29: return new_L;

30: end if

31: end for

32: end if
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Algorithm 2 lteration of Cut-point Neighbour Detection

Input: data, f (from EM Algorithm)

Output: L*(maximum of likelihood); f*(mappings corresponding to likelihood*); ¢*(Worker quality

corresponding to f*);
1: while not converged do
2 update ¢, DOM;
3 (new-L, new_f,new_q) — MAIN(f, data)
4: end while
5: return L*; f*; q*

6 Experiments

In this section, we evaluate the performance of our iterative
optimization strategy (labeled as IOS_EM) on synthetic and
real rating data and compare it against the EM algorithm
(labeled as BAS_EM). We report our performance in terms
of overall likelihood and other parameters of interest. Here,
we discuss two experiments, one based on simulative data
and another based on real-world data, and analyze the results
to draw conclusions.

Note that here we assume that worker identity is unknown
and each worker is an independent individual. Arbitrary
workers could answer different tasks - our goal is to char-
acterize the behavior of the worker population as a whole.
We expect the overall likelihood value to be larger and our
assumptions on worker independence to be closer to the
truth.

6.1 Experiment 1: Synthetic Data Experiments

In this section, we describe our experiments based on syn-
thetic data. Here, we choose the estimation prior model
of worker quality modeled by a confusion matrix. For the
binary task we study, the number pair (e, €,) is used to
simplify the representation of worker quality confusion
matrix model. We generate the data based on this model

and compare our method against the EM algorithm in terms
of (a) overall likelihood, (b) accuracy of answer predictions,
and (c) accuracy of worker quality predictions.

6.1.1 Dataset

To generate the ground truth answers for a set of tasks, given
a fixed selectivity u, we assign a ground truth value of 1 with
a probability of # and O with a probability of (1-u) for each
task. Then, we generate a distinct worker response prob-
ability matrix for each worker, with the only constraint that
most of the workers (more than 90%) are better than random
(workers’ error rate e and e, are < 0.5). We then generate
worker responses based on these matrices.

6.1.2 Judgment Indicators

Overall likelihood As mentioned in Sect. 3, the overall like-
lihood is the product of each task’s likelihood values in a
task set.

Accuracy of answer predictions It is actually error rate
(ER). It is the ratio of the number of mislabeled tasks to the
total number of tasks.

Accuracy of worker quality predictions The Average
Euclidean Distance (AED) between the estimated worker
quality and the actual worker quality is used to measure

—¥— BAS_EM _3004
~1501 —o— 105_EM

—2004 —400 1
~2501 ~5001

~3001 ~600

_350 ~700

likelihood(log)
likelihood(log)

—400 A —800 1
—450 4 =900 1

_5004 ~1000

—¥— BAS_EM —200

—e— 105_EM

—¥— BAS_EM

—e— 105_EM
-250

-300

-350

—400

likelihood(log)

—450

-500

3 4 5 6 7 8 9 10 3 4 5
response number(k)

(a)

response number(k)

7 8 9 10 6 8 10 12 14 16 18
worker number(m)

(b) (c)

Fig.5 Synthetic Data Experiment. Overall likelihood: a Setting 1; b Setting 2; and ¢ Setting 3

@ Springer



306 L.Cuietal.
0.10 | BAS_EM 030 BAS_EM BAS_EM
/05 _EM == (05_EM 0351 = /05 EM
025
0.08 1 0.30 4
020
0.251
@ g g
s 5015 5020
 0.04 1 ® © 0.15 1
0.10
0.10
0.024
I il dhh
0.00 -~ 0.00 0.00 ‘J‘J“ R — ‘J‘J‘J“J‘
3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10 6 7 8 9 10 11 12 13 14 15 16 17 18 19

response number(k)

(a)

response number(k)

(b)

Fig.6 Synthetic Data Experiment. Accuracy of answer predictions: a Setting 1; b Setting 2; and ¢ Setting 3

worker number(m)

(0

the accuracy of worker quality predictions. The smaller the
value, the more accurate our assessment of worker quality.

6.1.3 Experimental Process and Result

We compare our algorithm with the EM algorithm which is
also settling the maximum likelihood problem. BAS_EM
takes an initial estimate or guesses for worker error rates as
a parameter. Here, we experiment with the initialization of e,
and e; = 0.5. We set task number m = 500, and we vary the
selectivity u, and the number of worker responses per task k.

We perform experiments under three data settings: Set-
ting 1, each task receives k responses and m = k (m is the
total number of workers); Setting 2, each task receives k
responses and m > k; Setting 3, each task receives a different
number of responses and m > k.

Overall likelihood. Figure 5 shows the likelihoods of task-
response sequence returned by our algorithm and BAS_EM
instances on a varied number of workers, for three data set-
tings. The y-axis is in log scale, with a higher value being
more desirable. In Fig. 5a, there are 3—10 workers in each
data and each worker has completed all tasks (500 tasks),
and in Fig. 5b, there are 10 workers in each data and each

task receives a different number of responses (x-axis), so
each worker completed 150-500 tasks. Contrast this to
Fig. 5c, here, each task receives different responses (less
than workers) and the total number of workers (x-axis) is
varying in each data. We observe that our strategy has a
significant improvement in likelihood values when the infor-
mation given to BAS_EM is sparser.

Accuracy of answer predictions. In Fig. 6, we plot the
error rate(ER) of task ground truth estimations each of the
algorithms estimate task answer incorrectly (a lower score
is better). Here, again, our strategy estimates true values of
tasks with higher accuracy than BAS_EM.

Accuracy of worker quality predictions. To evaluate the
estimated worker quality against the actual one, we plot the
Average Euclidean Distance (AED) between our estimated
matrix and the actual one (a lower score is better) in Fig. 7.
We observe that our strategy’s estimations are closer to the
actual probability matrix than all the BAS_EM, and when
the likelihood value improves larger, the estimation result
is better.
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Fig.7 Synthetic Data Experiment. Accuracy of worker quality predictions: a Setting 1; b Setting 2; and ¢ Setting 3
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6.1.4 Summary

For all metrics, our strategy outperforms BAS_EM. It should
be noted that our algorithm has more obvious advantages
in the third case and is closer to the actual situation. The
third setup (i.e., each task receives a different number of
responses) is common in real crowdsourcing markets.

6.2 Experiment 2: Real-world Data Experiments

In this section, we describe our results on a real-world data-
set. We evaluate our method with three different estimation
prior models: (A) workers’ quality represented by a confu-
sion matrix, (B) workers’ quality represented by a binary
parameter, and (C) workers’ quality and task difficulty, and
compare our method versus the BAS_EM in terms of overall
likelihood and ground truth of task estimations.

6.2.1 Dataset

Our dataset is a sentiment analysis dataset, which corre-
sponds to a collection of more than ten thousand sentences
extracted from the movie review website RottenTomatoes.
It contains a set of 5000 tasks responded by 203 workers.
From this collection, a random subset of 5000 sentences
was selected and published on Amazon Mechanical Turk
for annotation. Given the sentences, the workers were asked
to provide the sentiment polarity (positive or negative). We

have ground truth yes/no answers for each task, but we do
not know the real worker quality.

6.2.2 Judgment Indicators

Overall likelihood 1t is the product of each task’s likelihood
values in a task set. Its effectiveness is shown by a line graph
in Fig. 8.

Accuracy of answer predictions It refers to the error rate
(ER), and a lower score is better. Its experimental results are
represented in a bar chart in Fig. 8.

6.2.3 Experimental Process and Result

To evaluate the performance of our strategy based on
EMIOS_EM), we vary the size of data by randomly select-
ing a fixed number of labels from all the data and compare
the estimates of the answer (the yes/no answers) with the
given ground truth.

Overall likelihood Figure 8 shows the likelihoods of
task-response sequence returned by IOS_EM and different
BAS_EM on a varied number of labels. The y-axis is on a
log scale, with a higher value being more desirable. And
Table 3 shows the difference between our method and differ-
ent BAS_EM in terms of likelihood and error rate of ground
truth estimations. In Fig. 8, we observe that our method can
significantly improve the likelihood value with the three dif-
ferent estimations prior model.

Table 3 Difference of
likelihood and error rate for (a)

Label number

D-likelihood (a)

D-ER (a) (%) D-likelihood (b) D-ER (b) (%)

and (b) 10000 +138.168
12000 +281.449
15000 +269.892
17000 +289.584
20000 +297.262
22000 +308.145
25000 +57.137
27000 +235.244

- 0.679 +233.171 - 1.116
- 1.200 + 247.675 - 1.095
- 1.099 +207.998 - 0.753
—0.987 +231.146 —0.826
—0.901 +407.979 - 1.022
—0.880 + 205.360 —0.500
—0.140 +9.194 —0.040
—0.600 +59.636 —0.160
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Accuracy of answer predictions In Fig. 8, we also com-
pare the error rate(ER) of label estimations with BAS_EM.
We plot the error rate of task true answer estimations of
each algorithm. Here, again, our method improves the
accuracy of the answer estimations while improving the
likelihood value.

7 Conclusion

Truth inference has a strong impact in crowdsourcing and
it is a fundamental issue of current research. Most of the
work has used a custom optimization function to capture
the relationship between worker’s quality and ground
truth and then executed an iterative algorithm until con-
vergence to infer the true answer to the task and other
implicit variables finally. The EM framework is commonly
employed to derive the implied parameters in the likeli-
hood function in most of the works, but the EM algorithm
only provides a locally optimal solution and highly lim-
ited by initial parameters. In this paper, we first model the
worker quality from three different views and construct
likelihood functions and then go further truth discovery
based on the local optimum results obtained using the EM
algorithm rather than stopping. We construct a dominance
ordering model (DOM) based on the local optimum results
and design a Cut-point neighbor detection algorithm to
improve the estimation of task truth by increasing the
overall likelihood value. The DOM constructed based
on the pruning strategy not only serves as a platform for
the iterative search algorithm but also greatly reduces the
space of potential mappings to be considered. The experi-
mental results show that the approximate global optimal
results we obtain based on pruning search are better than
the local optimal results obtained by simply executing the
EM algorithm.

This paper focuses on the binary problems in micro-
tasks. Now there are more and more multiple problems and
open-ended crowdsourcing problems. In future research,
we hope that the ideas described in this paper can be
extended to solve more general types of tasks, such as
multiple choice tasks, numeric tasks, and others, and are
not limited to truth inference for binary tasks.
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