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Abstract
Cross-modal similarity query has become a highlighted research topic for managing multimodal datasets such as images 
and texts. Existing researches generally focus on query accuracy by designing complex deep neural network models and 
hardly consider query efficiency and interpretability simultaneously, which are vital properties of cross-modal semantic 
query processing system on large-scale datasets. In this work, we investigate multi-grained common semantic embedding 
representations of images and texts and integrate interpretable query index into the deep neural network by developing a novel 
Multi-grained Cross-modal Query with Interpretability (MCQI) framework. The main contributions are as follows: (1) By 
integrating coarse-grained and fine-grained semantic learning models, a multi-grained cross-modal query processing archi-
tecture is proposed to ensure the adaptability and generality of query processing. (2) In order to capture the latent semantic 
relation between images and texts, the framework combines LSTM and attention mode, which enhances query accuracy for 
the cross-modal query and constructs the foundation for interpretable query processing. (3) Index structure and correspond-
ing nearest neighbor query algorithm are proposed to boost the efficiency of interpretable queries. (4) A distributed query 
algorithm is proposed to improve the scalability of our framework. Comparing with state-of-the-art methods on widely used 
cross-modal datasets, the experimental results show the effectiveness of our MCQI approach.

Keywords  Cross-modal · Interpretability · Multi-grained · Similarity query ·Scalability

1  Introduction

With rapid development of computer science and technol-
ogy, multimedia data including images and texts have been 
emerging on the Internet, which have become the main form 
of humans knowing the world. Consequently, cross-modal 
similarity query has been an essential technique with wide 
applications, such as search engine and multimedia data 

management. Cross-modal similarity query [1] is such an 
effective query paradigm that users can get the results of one 
type by submitting a query of the other type. In this work, 
we mainly focus on queries between images and texts. For 
instance, when one user submits a piece of textual descrip-
tion of one football game, most relevant images in datasets 
can be fetched and vice versa. Cross-modal similarity query 
should discover latent semantic relationships among differ-
ent types, it has attracted great interests from researchers.

Due to the significant advantage of deep neural networks 
(DNN) in feature extraction, DNN models are utilized for 
cross-modal similarity query [2]. The complex structure 
and high-dimensional feature maps equip the deep neural 
networks with considerable power of learning nonlinear 
relationships; however, at the same time, complex models 
introduce some drawbacks. First, numerous parameters of 
deep neural networks make query process and results diffi-
cult to be explained. That is, those models have weak inter-
pretability, which is an important property for general and 
reliable cross-modal query system. Second, in order to find 
the most similar data objects, typically the cosine similarity 
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between the high-dimensional feature vector of query object 
and that of each object in the whole dataset should be com-
puted. Hence, for a large-scale dataset, the computation cost 
is so high that the query response time will be obnoxious. 
Existing researches tend to focus on designing complicated 
composite models to enhance query accuracy and hardly 
take account of query interpretability, efficiency and scal-
ability at the same time.

Query interpretability of the query framework can 
improve the credibility of query result. Query efficiency can 
ensure the accuracy of query result. And query scalability 
can enhance the adaptability of query methods, especially 
when faced with large-scale data. Hence, to develop a cross-
modal similarity query framework with interpretability, effi-
ciency and scalability is necessary. There are two challenges 
to achieve this goal. First it is how to bridge the semantic gap 
among different modality, which need a sophisticated model 
to capture the common semantic in terms of coarse grain and 
fine grain. The second challenge is how to enhance interpret-
ability of the query framework with complex structure and 
millions of parameters. The third challenge is how to inte-
grate the query model with scalability, in case of processing 
large-scale data, which are ubiquitous nowadays.

Our core insight is that we can leverage deep neural net-
work model to capture multi-grained cross-modal common 
semantics and build an efficient hybrid index with inter-
pretability and scalability. Hence, in this work, we propose 
a novel efficient and effective Multi-grained Cross-modal 
Query framework with Interpretability (MCQI). In order 
to ensure the adaptability and generality of our framework, 
during training common feature vectors for different types 
we first capture coarse-grained and fine-grained semantic 
information by designing different networks and then com-
bine them. And in order to discover the latent semantic 
relations between images and texts, we integrated LSTM 
model and attention model, besides, the data foundation of 
cross-modal correlative information is constructed in this 
way. In addition, for the sake of query efficiency, we built an 
index supporting interpretable query. And further, in order to 
enhance the scalability of our framework, a distributed query 
algorithm is proposed based on our framework. At last, to 
confirm the efficiency and effectiveness of our approach, we 
systematically evaluate the performances of the approach by 
comparing with 8 state-of-the-art methods on five widely 
used multimodal datasets. Concretely, our contributions are 
shown as follows:

•	 By integrating coarse-grained and fine-grained seman-
tic learning models, a multi-grained cross-modal query 
processing architecture is proposed to ensure the adapt-
ability and generality of query processing.

•	 In order to capture the latent semantic relation between 
images and texts, the framework combines LSTM and 

attention mode, which enhances query accuracy for the 
cross-modal query and constructs the foundation for 
interpretable query processing.

•	 Index structure and corresponding nearest neighbor 
query algorithm are proposed to boost the efficiency of 
interpretable queries.

•	 A distributed query algorithm is proposed to improve the 
scalability of our framework.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly reviews related work. In Sect. 3, we introduce 
definitions of problems and then describe in detail our MCQI 
framework and a kNN query algorithm in Sect. 4. Section 5 
gives a distributed query algorithm to enhance scalability of 
our framework. Section 6 provides experimental results and 
analysis on five datasets, and we conclude in Sect. 7.

2 � Related Work

In this section, we briefly review the related researches for 
cross-modal query, including cross-modal retrieval, latent 
semantic alignment and cross-modal hashing.

2.1 � Cross‑modal Retrieval

Traditional methods mainly learn linear projections for dif-
ferent data types. Canonical correlation analysis (CCA) [3] 
is proposed to learn cross-modal common representation 
by maximizing the pairwise correlation, which is a classi-
cal baseline method for cross-modal measurement. Beyond 
pairwise correlation, joint representation learning (JRL) 
[4] is proposed to make use of semi-supervised regulari-
zation and semantic information, which can jointly learn 
common representation projections for up to five data types. 
S2UPG [5] further improves JRL by constructing a unified 
hypergraph to learn the common space by utilizing the fine-
grained information. Recent years, DNN-based cross-modal 
retrieval has become an active research topic. Deep canoni-
cal correlation analysis (DCCA) is proposed by [6] with two 
subnetworks, which combines DNN with CCA to maximize 
the correlation on the top of two subnetworks. UCAL [7] 
is an unsupervised cross-modal retrieval method based on 
adversarial learning, which takes a modality classifier as a 
discriminator to distinguish the modality of learned features. 
DADN [8] approach is proposed for addressing the problem 
of zero-shot cross-media retrieval, which learns common 
embeddings with category semantic information. These 
methods mainly focus on query accuracy rather than query 
efficiency and interpretability.
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2.2 � Latent Semantic Alignment

Latent semantic alignment is the foundation for interpretable 
query. [9] embeds patches of images and dependency tree 
relations of sentences in a common embedding space and 
explicitly reasons about their latent, intermodal correspond-
ences. Adding generation step, [10] proposes a model which 
learns to score sentence and image similarity as a function of 
R-CNN object detections with outputs of a bidirectional RNN. 
By incorporating attention into neural networks for vision 
related tasks, [11, 12] investigate models that can attend to 
salient part of an image while generating its caption. These 
methods inspire ideas of achieving interpretable cross-modal 
query, but neglect issues of query granularity and efficiency.

2.3 � Cross‑modal Hashing

Deep cross-modal hashing (DCMH) [13] combines hashing 
learning and deep feature learning by preserving the seman-
tic similarity between modalities. Correlation auto-encoder 
hashing (CAH) [14] embeds the maximum cross-modal 
similarity into hash codes using nonlinear deep autoencod-
ers. Correlation hashing network (CHN) [15] jointly learns 
image and text representations tailored to hash coding and 
formally controls the quantization error. Pairwise relation-
ship guided deep hashing (PRDH) [16] jointly uses two 
types of pairwise constraints from intra-modality and inter-
modality to preserve the semantic similarity of the learned 
hash codes. [17] proposes a generative adversarial network 
to model cross-modal hashing in an unsupervised fashion 
and a correlation graph-based learning approach to capture 
the underlying manifold structure across different modali-
ties. For large high-dimensional data, hashing is a common 
tool, which can achieve sublinear time complexity for data 
retrieval. However, after constructing a hash index on ham-
ming space, it is difficult to obtain flexible query granularity 
and reasonable interpretability.

2.4 � Distributed Similarity Query

Existing methods for distributed similarity queries in met-
ric spaces can be partitioned into two categories [18]. The 
first category utilizes basic metric partitioning principles to 
distribute the data over the underlying network. [19] pro-
poses a distributed index, GHT* index, which can exploit 
parallelism in a dynamic network of computers by putting a 
part of the index structure in every network node. [20] pro-
poses a mapping mechanism that enables to actually store 
the data in well-established structures such as the B-tree. 
The second category utilizes the index integrating technique 
to distribute the data. Paper [21] integrates R-tree and CAN 
overlay to process multi-dimensional data in a cloud system. 
Paper [22] combines B-tree and BATON overlay to provide 

a distributed index which has high scalability but incurs low 
maintenance. They both choose a part of local index nodes to 
build global index node by computing the cost model. [23] 
integrates quadtree index with Chord overlay to enable more 
powerful accesses to data in P2P networks. In this paper, we 
adopt the pivot-mapping-based method due to two reasons 
below. These methods are not enough due to two reasons 
below. First, they are query sensitive; that is, they cannot 
adjust distribution of data for different query load and then 
cannot keep load balance, which is also important for dis-
tributed environment.

3 � Problem Description

For cross-modal similarity query, given a query object of 
one type, most similar objects of the other type in the dataset 
should be returned. The formal definition is shown below.

The multimodal dataset consists of two modalities with 
m images and n texts, which is denoted as D = {Dt, Di}. The 
texts are encoded as a one hot code originally and in the set 
D the data of text modality are denoted as Dt =

{
xt
k

}m

k=1
 , 

where the kth text object is defined as xt
k
∈ Rlk∗c with the 

sentence length lk and the vocabulary size c. The data of 
image modality are denoted as Di =

{
xi
k

}n

k=1
 , where the kth 

image instance is defined as xi
k
∈ Rw∗h∗c� with image resolu-

tion w*h and color channel number c’. Besides, the pairwise 
correspondence is denoted as ( xt

k
,xi

k
 ), which means that the 

two instances of different types are strongly semantically 
relevant. Cross-modal similarity query means that given one 
query object it is to find similar objects of the other modal-
ity which share relevant semantics with the given one, kNN 
query is a classical type of similarity query and the defini-
tion is given as follows.

Definition 1  (kNN Query). Given an object q, an integer 
k > 1, dataset D and similarity function SIM, the k nearest 
neighbors query kNN computes a size-k subset S ⊆ D, s.t. 
∀oi ∈ S, oj ∈ D − S ∶ SIM

(
q, oi

)
≥ SIM

(
q, oj

)
. In this work, 

we set cosine similarity as similarity function.

Table 1 lists the used notations throughout this paper. The 
list mainly consists of the notations which are mentioned far 
from their definitions.

4 � Proposed Model

In this section, we describe the proposed MCQI framework 
in detail. As shown in Fig. 1, MCQI framework consists of 
two stages. The first stage is the learning stage, which models 
common embedding representation of multimodal data by fus-
ing coarse-grained and fine-grained semantic information. The 
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second stage is the index construction stage, in which M-tree 
index and inverted index are integrated to process efficient and 
interpretable queries. In the following paragraphs, we intro-
duce it in the aspects of embedding representations of multi-
modal data and interpretable query processing.

4.1 � Embedding Representations of Multimodal 
Data

In the first stage, MCQI learns the embedding representa-
tion of multimodal data by fusing coarse-grained and fine-
grained semantic information.

4.2 � Fine‑grained Embedding Learning with Local 
Semantics

Different methods are used to extract local semantic fea-
tures for texts and images. For texts, EmbedRank [24] is 
utilized to extract keyphrases. Then, a pretrained model 
Sent2vec[25] is chosen for computing the embedding of 
each keyphrase. Then, by three-layer fully connected neural 
network, we map each keyphrase into the common embed-
ding space with dimension d_l, denoted as tspq, which means 
the embedding representation of the qth keyphrase of the pth 
text description.

For images, Region Convolutional Neural Network 
(RCNN) [26] is utilized to detect objects in images. We use 
top detected locations of the entire image as local semantic 
features and then compute the common embedding vec-
tors based on the visual matrix in each bounding box by a 
pretrained convolutional neural network and by transition 
matrix transform the vector to common space with dimen-
sion d_l; lastly, we get isuv, which means the embedding 
representation of the vth bounding box of the uth image.

Typically, for a pair of matched text and image, at least 
one of keyphrases in the text is semantically relevant with 
a certain bounding box in the image instance; that is, at 
least one common embedding vector of the text instance is 
close to a certain common embedding vector of the image 
instance. Base on this intuitiveness, according to hinge rank 
loss function, we set the original objective of fine-grained 
embedding learning as follows:

(1)Cb

(
tspq, isuv

)
=
∑
q

∑
v

(
Pnum

Anum
)I(p≠u)(1−

Pnum

Anum
)I(p = u)max(0, M - (−1)I(p≠u)

tspq ⋅ isuv

|tspq| ⋅ |isuv| )

Table 1   Used notations

Notation Description

SIM similarity function
(xt

k
,xi

k
) the kth matched pair of images and texts

d_l dimension of local common embedding space
d_g dimension of global common embedding space
TU the set of patch relation tuples between images and texts
Insi the ith data instance in the dataset
CFVFi the ith common fine-grained semantic feature
CFVCi the ith common coarse-grained semantic feature
� weight factor to balance fine-grained and coarse-grained 

features
C number of computing nodes
σ probability of weight factor can be omitted

Fig. 1   The framework of MCQI
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Here, Pnum is the number of matched pairs in the training 
sample set and Anum is the training sample capability. (
�
Pnum

Anum

)I(p=u)(
1 − �

Pnum

Anum

)I(p≠u)

 is utilized to balance positive 
and negative samples. tspq⋅isuv

|tspq|⋅|isuv| is the cosine similarity of 

two embedding vectors. M is the margin constant, which 
defines the tolerance of true positive and true negative. The 
more M is close to 1, the stricter it is about semantically 
recognizing true positive and true negative.

Cb cost is computed over all pairs of local features 
between text instances and image instances. However, in 
many cases, for two semantically relevant instances only few 
parts of local features are matched and similar pairs are diffi-
cult to be acquired by computation over all pairs. To address 
this problem, according to MILE [9], we make a multiple 
instance learning extension of formula (1) as shown in for-
mula (2). For each text instance, local features of matched 
image are put into a positive bag, while local features in 
other image are treated as negative samples.

Here, Bq is the positive bag of the qth feature vector, kqv 
is the correlation index which indicates whether the cor-
responding text instance and image instance are matched. 
It is worth notice that each feature vector isuv and the cor-
responding bounding box are stored in the storage system 
for processing interpretable queries.

4.3 � Coarse‑grained Embedding Learning 
with Global Semantics

Coarse-grained embedding network tries to capture global 
common semantics between texts and images. For texts, Uni-
versal Sentence Encoder [27] is utilized to extract feature 
vectors of texts and by fully connected layers the feature 
vectors are transformed into the global common embedding 
space with dimension d_g.

For images, inspired by [11] that pretrained LSTM with 
soft attention model is integrated to translate images into 
sequential representation. For an image, feature maps before 
classification in a pretrained R-CNN network and the whole 
image’s feature maps before fully connected layers in pre-
trained CNN network are combined into feature vectors, 
denoted as a =

{
ai
}LV

i=1
 and LV is the number of the feature 

vectors.

(2)
CP = min

kqv

�
q

�
v

�
Pnum

Anum

�I(p≠u)�
1 −

Pnum

Anum

�I(p=u)

max

⎛
⎜⎜⎝
0,M − kqv

tspq ⋅ isuv

���tspq
��� ⋅ ��isuv��

⎞⎟⎟⎠

s.t.
�
v∈Bq

�
kqv+1

�
≥ 2∀v, kqv =

�
1, p = u

−1, p ≠ u

Our implementation of LSTM with soft attention is 
based on [11]. ai is the input, y and �ti are outputs, y is the 
generated sequential text and �ti represents importance of 
feature vector ai when generating the tth word. please note 
that each word yt has an attention weight �ti for each feature 
vector ai and each tuple tut =  < yt, imageID, �ti , xloci, xloc1i, 
xloc2i, yloc1i, yloc2i > is stored for answering future que-
ries, where imageID is the image’s unique identifier, xloci, 
xloc1i, xloc2i, yloc1i, yloc2iare the corresponding coordi-
nate position of ai in the image. We collect all tuples as set 
TU = {tut}.

For generated sequential text y , Universal Sentence 
Encoder is utilized to generate the coarse-grained represent-
ative vector of y , denoted as GIV, while the coarse-grained 
representative vector of original paired training text by Uni-
versal Sentence Encoder is denoted as OTV.

Intuitively, global training objective function is shown 
as follows.

4.4 � Multi‑grained Objective Function

We are now ready to formulate the multi-grained objective 
function. The objective function is designed by two criteria. 
First, it is likely that matched pairs of images and texts have 
similar patches, which applies to CP. Second, matched pairs 
of image and text probably have similar global semantics, 
which applies to CG. By integrating CP and CG, the objective 
function is defined as follows.

where θ is a shorthand for parameters of our model and 
�, �, � are hyperparameters which are computed by cross-
validation. |�|2

2
 is the regularization.

4.5 � Optimization

The proposed model consists of two branches, which are 
designed for common fine-grained semantic and coarse-
grained semantic, respectively. Naturally, the training 

(3)CG = GIVOTV

(4)C(�) = �CP(�) + �CG(�) + �|�|2
2
,
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process is divided into two stages, i.e., branch training and 
joint training. Both training processes are based on stochas-
tic gradient descent (SGD) with a batch size of 32, a momen-
tum of 0.9 and a weight decay of 0.00005.

Stage 1: In this stage, branches for common fine-grained 
semantic and coarse-grained semantic are trained in turn, 
taking formula (2) and formula (3) as loss functions, respec-
tively. In the fine-grained branch, pretrained Sent2Vec model 
and RCNN model are utilized, while in the coarse-grained 
branch, pretrained several pretrained Universal Sentence 
Encoder model and LSTM model are utilized. The default 
parameters in those pretrained models are utilized, and its 
parameters are kept fixed at this stage. The other parameters 
of our model, including the attentional mechanism, are auto-
matically initialized with the Xavier algorithm [28].

Stage 2: After all branch networks are trained, we jointly 
fine-tune the entire model parameters by combining the loss 
terms over all granularities in formula (4).

4.6 � Interpretable Query Processing

In MCQI framework, images and texts can be represented by 
high-dimensional feature vectors, which include fine-grained 
and coarse-grained semantic features. Denote IFVi as fea-
ture vectors of the ith instance Insi, then IFVi = {CFVFi, 
CFVCi}, where CFVFi and CFVCi mean the correspond-
ing common fine-grained semantic feature and the coarse-
grained semantic feature of Insi, respectively. Given a query 
instance, i.e., an image or text instance, in order to find the 
matched cross-modal instance, i.e., the most relevant text 
or image instance, the similarity between two cross-modal 
instances can be computed by cosine similarity shown in 
formula (5) as follows.

Here, Insi and Insj are two cross-modal instances, � is the 
weight factor, Cosine is the cosine similarity function.

A naive method to obtain the matched cross-modal 
instances is pairwise computation; however, this method 
is inefficient. Particularly when the dataset is large and the 
dimension of vectors is high, the computation is nontrivial. 
To address this, an inverted index and an M-tree index are 
integrated into MCQI model. The M-tree index increases 
the efficiency of queries and the inverted index enhances 
the interpretability of queries. Index construction and query 
processing method based on the indices are discussed sepa-
rately as follows.

(5)

SIM
(
Insi, Insj

)
= �

CFVFi ⋅ CFVFj,

||CFVFi
|| ∗ |||CFVFj

|||
+ (1 − �)

CFVCi ⋅ CFVCj,

||CFVCi
|| ∗ |||CFVCj

|||
= �Cosine

(
CFVFi,CFVFj

)
+ (1 − �)Cosine

(
CFVCi,CFVCj

)

4.7 � Index Construction

It is shown in formula (5) the similarity between two 
instances mainly is calculated by the cosine similarity of two 
types of feature vectors. By assuming that variables obey 
uniform distribution, we get Observation 1 in the follow-
ing. Observation 1 shows that cosine similarity between the 
whole feature vectors of Insi and Insj is close to SIM(Insi, 
Insj).

O b s e r v a t i o n  1   F o r  R a n d o m  V a r i a b l e 
� ∈ [0.2, 0.8],∃�, � ∈ [0, 1],  s . t . 
P

(|||||

(
𝛿

CFVFi⋅CFVFj ,

|CFVFi|∗|||CFVFj|||
+ (1 − 𝛿)

CFVCi⋅CFVCj ,

|CFVCi|∗|||CFVCj
|||

)
−

IFVi⋅IFVj ,

|IFVi|∗|||IFVj|||
|||||
<𝜀

)
>𝜎, 

i.e., P
(|||SIM

(
Insi, Insj

)
− Cosine

(
Insi, Insj

)|||<𝜀
)
>𝜎.

This Observation is obtained by statistical hypotheses 
testing method, which will be illustrated in the experiments. 
By setting DIF = |||SIM(Insi, Insj) − Cosine(Insi, Insj)

||| , we get 
P(DIF < �)) > � . In experiments, when set � = 0.05, we have 
� = 0.9 and when set � = 0.1, we have � = 0.98.

It is known that the M-tree is an efficient structure for NN 
queries in metric spaces. In order to use M-tree index, cosine 
distance should be transformed to angular similarity (AS) 
which is metric. The angular similarity between Insi and Insj 
is defined in formula (6) in the following.

Lemma 1.  For any instance q, the nearest neighbor of q 
by angular similarity is also the nearest neighbor of q by 
cosine similarity.

Lemma 1 can be easily proved by contradiction, which is 
omitted for simplicity.

Based on Lemma 1 and formula (6), an M-tree is con-
structed on the data set of feature vectors. And then M-tree 
is augmented with an inverted index of semantic relationship 
tuple set TU, which is mentioned in Sect. 4.1.

4.8 � Interpretable kNN Query

For processing similarity queries efficiently, we adopt a fil-
ter-and-fine model. Our method first obtains candidates of 
matched objects by M-tree and then verifies the candidates 
and identifies the final answers.

The M-tree inherently supports range query, denoted 
as Range (Insi, r), where Insi is the query instance and r 
is the query range. In our algorithm the kNN candidates 
can be efficiently obtained by two range queries on M-tree. 
To verify the candidates, formula (5) is utilized and for the 

(6)AS
(
Insi, Insj

)
= 2

arccos(Cosine(Insi, Insj))

π
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verified objects, Inverted index is accessed to give reasons 
why the objects are relevant to the query. The detailed query 
processing is shown in algorithm 1 as follows. Specifically, 
at first we use range query Range (Insi, 0) to find the clos-
est index node and read all the objects in the node(line 2). 
If the number of objects is less than k, we read its sibling 
nodes through its parent node, recursively, until we obtain k 
objects (line 3). And then we use the kth farthest distance r 
from the query instance to issue the second range query by 
setting range as r and get the candidates. Finally, we utilized 
formula (5) to verify the candidates and each matched pair 
is augmented with the relationship interpretation through 
inverted index (line 6–8).

5 � Distributed Algorithm

When the data set is relatively large, the computational com-
plexity of the algorithm will be relatively high as shown in 
formula 7. Therefore, in order to effectively process large-
scale data sets, this section will extend the framework to 
a distributed environment and propose a distributed kNN 
algorithm.

The distributed algorithm is based on the idea of divide 
and conquer. Each computing node in a P2P distributed 

Algorithm 1：：kNN Query Processing 

Input: NN(Insi, k) 

Output: Result set R
1 R = ∅
2 cn= Range(Insi, 0) 

3 Get at least k objects from in or siblings or parents recursively 

4 Set r to the farthest distance 

5 S= Range(Insi, 2*r) 
6 Verify S by formula (5) 

7 Set R to top k similar instances of verified objects 

8 Augmented R with interpretation by inverted index 

9 Return R

As for complexity, considering the first range query with 
range zero, the cost of processing a query is O(H), where H 
is the height of the M-tree. As for the second range query 
the selectivity of a range query is se, the cost of each level 
of index nodes can be approximated as a geometric sequence 
with common ratio, cr*se, where cr is the capacity of index 
node. Hence, the average cost is:

As for query accuracy, by Observation 1 and Lemma 1, 
we can get Observation 2 as follows.

Observation 2.  Algorithm 1 can obtain kNN instances of the 
query instances with probability more than �.

Proof.  We assume o* is the actual the kth NN query result 
but is not returned. Denote dis is the distance between the 
returned kth NN query result and the query. and by Lemma 
1, we can get that the distance between o* and the query is 
less than dis + DIF. And set � = dis, according to Observa-
tion 1, by probability � or more, DIF is less than dis. So, by 
algorithm 1, we can get the query result o*

, which is a con-
tradiction for assumption. Then the Observation 2 is proved.

(7)cr*se*(1 - (cr*se)H)

1 - cr*se

system is independent and autonomous. Let C be the num-
ber of computing nodes, PV is the pivot set of the data set, 
PV = {pvi}, where 1 ≤ i ≤ pn and pn is the number of pivot 
points. PV is stored on each computing node as global 
information. Each computing node is responsible for one or 
more pivot points. Data are divided into computing nodes 
according to the distance between the data object and the 
pivot point. Then, each computing node builds M-tree and 
inverted index locally. When a computing node receives a 
similarity query q with query range R, the computing node 
will act as the coordinator and calculate the relevant pivot 
point by formula 8.

where maxdi is the largest distance among the data objects 
maintained by pvi. Then, the coordinator will forward the 
query to the computing node where the relevant pivot point 
is located and each computing node will calculate the query 
result through the local indices and return it to the coordina-
tor. Finally, the coordinator collects the intermediate query 
results and returns the final result to the user. Obviously, 
the selection of pivot points and query algorithms are the 
key points of query performance and these two parts will be 
discussed in detail as follows.

(8)SIM(pvi, q) ≥ 1 − (R + maxdi),
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5.1 � Selection of Pivot Points

The main function of the pivot point is to filter irrelevant 
data objects in the query process, so the index of selecting 
the pivot point is to increase the filtering ability of the query 
as much as possible. In the metric space, the farthest pivot 
point is generally selected. Based on this heuristic method, 
we propose a pivot point selection scheme similar to [29]. 
First randomly select a data object o from the sample data 
set and then put the data object farthest from o in the sample 
data set to the pivot point set PV, then further add the data 
object with the largest average distance between the sample 
data set and the central pivot point to the PV and then repeat 
the previous step until |PV|= pn.

5.1.1 � Query‑Sensitive Load Balancing

In a distributed environment, consistent hashing is used to 
maintain and manage the pivot point, that is, the pivot point 
is divided into [0, 2max] domain, [0, 2max] is divided into mul-
tiple intervals (token) and each compute node is responsible 
for one or more intervals and the query is routed through 
the distributed hash table in the system. Through a hash 
method such as SHA1, the pivot point will be divided evenly 
on each computing node. However, the query load is not 
always evenly distributed and the distribution will change 
dynamically. Therefore, in order to achieve the load balance 
of the system, a query-aware adjustment method is needed. 
First, set the threshold t for load balance. If a computing 
node (ComputerA) exceeds t times the average load, that 
is, ComputerA becomes a query bottleneck of load, then 
ComputerA communicates with the adjacent computing 
node (ComputerB) of its responsible area, then reduce the 
area that ComputerA is responsible for while increase the 
area that ComputerB is responsible for and move the corre-
sponding pivot point from ComputerA to ComputerB. After 
the last step, if other computing nodes have a load balance 
problem, repeat this process for this computing node until 
the load balance of the system is achieved. Note that in order 
to avoid thrash, the load adjustment method should be per-
formed in the same direction.

5.1.2 � Computation of pn

The execution time of query processing can be divided into 
two parts, one part is the time gt for computing the relevant 
computing node based on the pivot point and the other part 
is the time lt for each computing node to perform a local 
query. Therefore, the computing time for query processing 
is ct = gt + lt. Obviously, the computing time gt of the rel-
evant computing node is proportional to the number of pivot 
points pn, that is, gt = α*pn, α is the coefficient ratio and α 
is related to the processing capability of computing nodes. 

The computing time of the query lt and pn is inversely pro-
portional, in the average, lt = � r(logm

N
pn )

r−1
− 1 = �

(
N

pn

)(
1

logr m

)

r−1
− 1 , 

where r is the average selection degree of the child nodes of 
the index tree by the query, m is the out degree of the index 
tree, N is the size of the data set, β is the coefficient ratio 
and β is determined by the average processing capability of 
the computing node. Therefore, the formula of computing 
ct can be obtained:

By deriving and calculating the extreme value, it is easy 
to get when

ct takes the minimum. By Formula 10, the number of 
pivot points can be obtained.

5.2 � Distributed kNN Query Algorithm

As mentioned at the beginning of this section, by Formula 8 
it is easy to handle range queries. In this section, we discuss 
distributed nearest neighbor query algorithm.

Considering a simple case, when k = 1, it is a 1NN query. 
When a computing node receives a 1NN query q, the com-
puting node as the scheduler first initiates a query object q 
and the query radius 0. Calculate the relevant pivot points, 
that is, calculate the pivot point set PS = {pni|SIM(pni, q)≥ 
1-maxdi}, where maxdi is the distance between the pivot 
node pni and the farthest data object maintained. Then, 
the scheduler forwards the query to the computing node 
(denoted as CS) responsible for the data objects in the PS 
set and each computing node calculates the local NN of the 
data object q and returns it to the scheduler. After receiv-
ing all candidate nearest neighbors, the scheduler calculates 
the data object with the smallest distance to q and let mind 
be the smallest distance. After that, the scheduler uses q as 
the query object and mind as the query range to calculate 
the relevant pivot points and forwards the NN query to the 
computing nodes responsible for these pivot points except 
for the CS set. Finally, the scheduler collects candidate data 
objects to calculate the NN and returns it to the user.

The kNN query algorithm is discussed as follows. The 
specific process is shown in Algorithm 2. First, the initial 
query distance initR is estimated according to the statistical 
histogram and the relevant computing node (line 2) is cal-
culated. For a kNN query with a query object of q, The dis-
tance between q and each pivot point is qdisti = 1-SIM(pni, 
q), let

(9)
ct = � ∗ pn + β

(
N

pn
)
(

1

logrm
)
−1

r - 1

(10)pn =

(
�N

1

logr m

�(r − 1) logr m

) logr m

logr m+1

,
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where NumHist(r, dmin, dmax) function obtain the number 
of data object in index with root r between dmin and dmax. 
Then, forward the query to the relevant computing node set 
CS1. Each computing node calculates the local kNN data 
object as a candidate set and returns it to the scheduler. The 
scheduler calculates the smallest kNN candidate data object 
distance mind from all the candidate data objects and calcu-
late the relevant computing node CS2 (lines 3–7) when the 
query range is mind, forward the request to the computing 
node set CS1- CS2 and collect the local kNN candidate data 
objects of each computing node, calculate the final kNN 
result and return (lines 8–11).

The kNN query algorithm is also implemented using 
two range queries, but the main difference is that in the first 
range query, kNN uses the histogram information summa-
rized by the pivot point to predict a better query range initR. 
initR can have a good estimate of the k nearest neighbor data 
objects, thereby effectively reducing the cost of the second 
range query.

(11)

initR = argminr ⋅

i≤pn∑
i = 1

NumHist(pvi, qdisti - r, qdisti + r) ≤ k

their tags and each image along with its corresponding tags 
is viewed together as an image/text pair. MS-COCO con-
tains 123,287 images, and each image is also annotated by 
five independent sentences provided by Amazon Mechanical 
Turk. By extracting 2000 image/text pairs from each above 
dataset, we obtain a hybrid dataset, denoted as Synthetic9K. 
For each data set, 10% data are used as testing set and valida-
tion set, while the rest are training set.

We compare our approach with eight state-of-the-art 
cross-modal retrieval methods, including CCL [34], HSE 
[35], DADN [8], SCAN [36], DCMH [13], LGCFL [37], 
JRL [4], KCCA[38]. CCL learns cross-modal correlation 
by hierarchical network in two stages. First, separate rep-
resentation is learned by jointly optimizing intra-modality 
and intermodality correlation and then a multi-task learning 
is adopted to fully exploit the intrinsic relevance between 
them. HSE proposes a uniform deep model to learn the com-
mon representations for four types of media simultaneously 
by considering classification constraint, center constrain 
and ranking constraint. DADN proposes a dual adversarial 
distribution network which takes zero-shot learning and cor-
relation learning in a unified framework to generate common 
embeddings for cross-modal retrieval. SCAN considers the 

Algorithm 2 Distributed kNN Query Processing 

Input: DNN(Insi, k) 

Output: Result set R
1 R = ∅
2 Compute initR by formula (11), and then calculate related computing nodes CS1

3 Forward the query q and query radius initR to related computing nodes 

4 candity =each computing node y CS1 computes the local k nearest neighbors 

5 candit1 =collect candidate kNN result from all relevant compute nodes 

6 mind= calculate the distance between the k-th nearest neighbor in candit1 and q
7 CS2 = calculate the relevant computing nodes when the query radius is mind
8 Forward the query q to the set of computing nodes CS2 - CS1

9 candity =each computing node y CS2 computes the local k nearest neighbors 

10 candit2 =collect candidate kNN result from all relevant compute nodes 

11 Return  kNN result from candit1 and candit2

6 � Experiment

6.1 � Experiment Setup

We evaluate our cross-modal query performance on 
Flickr8K [30], Flickr30K [31], NUS-WIDE [32], MS-COCO 
[33] and a synthetic dataset Synthetic9K in our experiments. 
Flickr8K consists of 8096 images from the Flickr.com web-
site and each image is annotated by 5 sentences by Amazon 
Mechanical Turk. Flickr30K is also a cross-modal dataset 
with 31,784 images including corresponding descriptive 
sentences. NUS-WIDE dataset is a web image dataset for 
media search, which consists of about 270,000 images with 

latent alignments between image regions and text words 
to learn the image-text similarity. DCMH combines hash-
ing learning and deep feature learning by preserving the 
semantic similarity between modalities. LGCFL uses a local 
group-based priori to exploit popular block based features 
and jointly learns basis matrices for different modalities. JRL 
applies semi-supervised regularization and sparse regulari-
zation to learn the common representations. KCCA follows 
the idea of projecting the data into a higher-dimensional fea-
ture space and then performing CCA. Some compared meth-
ods rely on category information for common representation 
learning, such as CCL and HSE; however, the datasets have 
no label annotations available. So, in our experiments first 
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keywords are extracted from text descriptions by TF-IDF 
method and seen as labels for corresponding images. For dis-
tributed query processing, our algorithms are compared with 
two most related methods. One is a naive method(SimD), 
data objects are scattered randomly and when there is a 
query, objects are compared with query in pairwise way. 
The other is a state-of-the-art method [39](DistMP), which 
is a general framework based on MapReduce.

Following [34], we apply the mean average precision 
(MAP) score to evaluate the cross-modal query perfor-
mance. We first calculate average precision (AP) score for 
each query in formula (8) and then calculate their mean 
value as MAP score.

where |R| is the number of ground-truth relevant instances, 
k is from the kNN query, pi denotes the precision of the top 
i results and reli is the indicator whether the ith result is 
relevant.

We adopt TensorFlow [40] to implement our MCQI 
approach. In the first stage, we take 4096 dimensional fea-
ture extracted from the image inside a given bounding box 
from RCNN. For the nonlinear transformation model, we 
use three fully connected layers with 1,024 dimensions and 
set the dimension of common embedding space d_l and d_g 
as 1024. The Sent2vec for fine-grained semantics has 700 
dimensions, which is pretrained on Wikipedia and Univer-
sal Sentence Encoder for coarse-grained semantics has 512 
dimensions. Experiments for centralized algorithms are con-
ducted on a server with Intel E5-2650v3, 256 GB RAM, 
NVIDIA V100 and Ubuntu 16.04 OS, while experiments 
for distributed algorithms are processed on a cluster of 30 
computer nodes with Intel Core i5-10210 1.6 GHz*4CPU 
and 8 GB memory.

6.2 � Verification of Observation 1

Figures  2 and 3 show the accuracy of DIF < 0.05 and 
DIF < 0.1 respectively, with different sample size. � is ran-
domly generated from three different ranges, i.e., [0.2, 0.8], 

(12)AP =
1

|R|
∑k

i=1
pi ∗ reli

[0.3, 0.7], [0.4, 0.6] and for different varying ranges, it can 
tell that when � is closer to 0.5 the accuracy is higher. In the 
situation of DIF < 0.05, with the increasing of sample size, 
the accuracy is steadily more than 0.9. And for DIF < 0.1, 
with the increasing of sample size, the accuracy is steadily 
more than 0.99. Without loss of generality, according to sta-
tistical hypotheses testing method, in the situation of �=[0.2, 
0.8], we assume DIF < 0.05 with significant level as 0.1. In 
our experiments with sample size 100,000, the mean value 
of DIF is 0.021, sample variance is 0.00045 and because 
the standard deviation is unknown, t-distribution should be 
referred. Test statistic is -0.63. And with significant level 
0.1, the critical quantile is -1.28. because -0.63 > -1.28, the 
assumption is accepted.

6.3 � Performance of Query Accuracy

We present query accuracy of our MCQI approach as well 
as all the compared methods in this part. Table 2 shows 
the MAP scores for 30NN query. As shown in the table, 
the accuracies of DNN-based methods like DADN and 
CCL are higher than traditional methods on average. Due 
to the fusion of multi-grained semantic feature and trans-
fer learning embedding, MCQI approach steadily achieves 
the best query accuracies. The number of data categories in 

Fig. 2   Accuracy of DIF < 0.05

Fig. 3   Accuracy of DIF < 0.1

Table 2   MAP scores of MCQI and compared methods for 30NN 
query

Flickr8K Flickr30K NUS-
WIDE

MS-COCO Syn-
thetic9K

CCL 0.518 0.566 0.649 0.623 0.423
HSE 0.527 0.526 0.596 0.677 0.452
DADN 0.615 0.412 0.438 0.692 0.341
SCAN 0.223 0.191 0.218 0.254 0.136
DCMH 0.509 0.432 0.487 0.488 0.392
LGCFL 0.457 0.424 0.495 0.369 0.346
JRL 0.421 0.543 0.583 0.576 0.339
KCCA​ 0.367 0.394 0.421 0.345 0.306
MCQI 0.534 0.683 0.712 0.702 0.528



290	 M. Zhu et al.

1 3

Sythetic9K is more than other datasets, and comparatively 
learning common semantic embeddings are more dependent 
on the quantity of training data. So, under the same condi-
tion, the accuracy is impacted relatively.

6.4 � Performance of Query Time

As shown in Fig. 4, we measure the query time for our pro-
posed MCQI approach as well as two representative methods 
on 5 datasets. CCL is a DNN-based method and DCMH 
is a hash-based method. For CCL pairwise computation is 
need to get kNN result. And for DCMH, data can be trans-
formed into binary code and it is fast to obtain 1NN, while 
for kNN with varying k, query time is affected. Intuitively 
query times are proportional to the size of the datasets. As 
CCL and DCMH are not very sensitive to k of kNN queries, 
we show query time of only 30NN queries on each data-
set. From 30NN queries to 5NN queries, filtering effect of 
M-tree index enhances, consequently query times decrease. 
In all cases, MCQI is fastest among the methods. Particu-
larly for 5NN, average running times for MCQI are about 
13 times faster than that of CCL and 20 times faster than 

DCMH, i.e., our approach on average outperforms CCL and 
DCMH by an order of magnitude.

6.5 � Performance of Distributed Algorithm

In order to show the scalability of our framework. Figure 5 
present the running time of methods with varying k of kNN 
query on NUS-WIDE and MS-COCO dataset, respectively. 
In terms of running time, MCQI is nearly three times as 
fast as DistMP, which is one order of magnitude faster than 
SimD. SimD as a pairwise method causes enormous com-
munication cost in distributed environment, while DistMP 
which utilizes the metric distance to filter unrelated data 
can save computation cost. However, for DistMP the lack 
of an efficient index leads to worse query performance than 
MCQI. In essence, MCQI is composed of two rounds of NN 
query groups and it is easy to see that MCQI is significantly 
better than SimD and DistMP.

6.6 � Query Interpretability

Figure 5 shows some examples of cross-modal similarity 
query results. Because MCQI not only contains the latent 

Fig. 4   Performance of query 
time

Fig. 5   Effect of distributed 
query on NUS-WIDE. Effect of 
distributed query on MS-COCO
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semantic common embedding of two types, but also has 
explicit alignment information. As shown in Fig. 6, for kNN 
queries, MCQI can return similar objects in datasets and 
further gives a reason why those objects are semantically 
related, which is very important for serious applications.

7 � Conclusion

In this paper, we proposed a novel framework for Multi-
grained Cross-modal Similarity Query with Interpretability 
(MCQI) to effectively leverage coarse-grained and fine-
grained semantic information to achieve effective interpret-
able cross-modal queries. MCQI integrates deep neural 
network embedding and high-dimensional query index and 
also introduces an efficient kNN similarity query algorithm 
with theoretical support. Experimental results on widely 
used datasets prove the effectiveness of MCQI. In our future 
work, we will study more reinforcement learning-based 
cross-modal query approaches for reducing dependence on 
large training data of certain area.
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