
Vol.:(0123456789)1 3

Data Science and Engineering (2021) 6:339–357
https://doi.org/10.1007/s41019-021-00158-0

Maximizing Influence Over Streaming Graphs with Query Sequence

Yuying Zhao1 · Yunfei Hu1 · Pingpeng Yuan1 · Hai Jin1

Received: 6 January 2021 / Revised: 24 March 2021 / Accepted: 17 April 2021 / Published online: 29 May 2021
© The Author(s) 2021

Abstract
Now, with the prevalence of social media, such as Facebook, Weibo, how to maximize influence of individuals, products,
actions in new media is of practical significance. Generally, maximizing influence first needs to identify the most influential
individuals since they can spread their influence to most of others in the social media. Many studies on influence maximiza-
tion aimed to select a subset of nodes in static graphs once. Actually, real graphs are evolving. So, influential individuals
are also changing. In these scenarios, people tend to select influential individuals multiple times instead of once. Namely,
selections are raised sequentially, forming a sequence (query sequence). It raises several new challenges due to changing
influential individuals. In this paper, we explore the problem of Influence Maximization over Streaming Graph (SGIM). Then,
we design a compact solution for storing and indexing streaming graphs and influential nodes that eliminates the redundant
computation. The solution includes Influence-Increment-Index along with two sketch-centralized indices called Influence-
Index and Reverse-Influence-Index. Computing influence set of nodes will incur a large number of redundant computations.
So, these indices are designed to keep track of the nodes’ influence in sketches. Finally, with the indexing scheme, we present
the algorithm to answer SGIM queries. Extensive experiments on several real-world datasets demonstrate that our method
is competitive in terms of both efficiency and effectiveness owing to the design of index.

Keywords Influence maximization · Network diffusion · Dynamic · Sketch · Index

1 Introduction

With the prevalence of social networks, more and more
people are engaged in online activities where they interact
with each other and produce an unprecedented amount of
content. By making better use of these data, we can improve
our comprehension of information diffusion which plays a
significant role in a variety of practical applications includ-
ing rumor control [1, 2], social recommendation [3], and

business performance optimization [4]. One of the most
extensively studied problems of social networks is Influence
Maximization (IM) [5] which originates from viral market-
ing [6]. It aims to select a subset of individuals to adopt a
new product and trigger a large cascade of further adoptions.
This problem has attracted researchers from different fields
ever since its formulation. Many effective approaches have
been proposed over the last decade.

Most of them are under the assumption of static networks.
However, the social networks, rapidly evolving in the real
world [7], are innately dynamic. The fact that the classical
IM fails to capture the dynamics of these networks motivates
many researchers to pursue the answers in dynamic scenar-
ios from different perspectives. Some extend the original
problem from static scenarios to dynamic ones [8–10]. They
try to reuse some intermediate data to avoid recomputing
from scratch, so that the target set can be calculated effi-
ciently when the network changes. And some others pro-
pose new models in consideration of different factors like
data recency [11] and user distinction [12]. While research-
ers have explored the dynamic aspect of network to some
extent, most of them ignore the fact that not only the graph

 * Pingpeng Yuan
 ppyuan@hust.edu.cn

 Yuying Zhao
 yyzhao@hust.edu.cn

 Yunfei Hu
 yunfeihu@hust.edu.cn

 Hai Jin
 hjin@hust.edu.cn

1 National Engineering Research Center for Big Data
Technology and System, Cluster and Grid Computing Lab,
Services Computing Technology and System Lab, School
of Computer Science and Technology, Huazhong University
of Science and Technology, Wuhan 430074, China

http://orcid.org/0000-0002-1656-5634
http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-021-00158-0&domain=pdf

340 Y. Zhao et al.

1 3

is evolving but also the requirement of user selections (que-
ries) are raised sequentially which form a query sequence.
From a more practical standpoint, queries are prevalent in
real life. There are many rounds of promotions to adver-
tise the products rather than merely one round. Every time
when promoters launch viral marketing campaigns for pro-
motion purpose, a set of users are selected. Previous works
regard different queries as isolated events. In this way, when
analysis is carried out in a static angle, the users who were
selected previously are highly likely to be chosen repetitively
due to their centrality. As a result, selections that have large
“overlaps” will be generated. This will definitely dampen
the cascade effect of further adoptions, since users who have
been influenced might experience a period that is similar to
refractory period in physiology. During refractory period,
a body organ or cell is incapable of repeating a particular
action or reacting to a repetitive stimulation. The effect of
each selection can be viewed as a stimulate to evoke users’
desire to shop. Like the viscera, influenced users tend to be
hard to be influenced again, since they are still “activated” or
they show a dwindling appetite for similar stimulus in short
terms. Therefore, selections with large overlapping cannot
guarantee the effectiveness among several queries.

As mentioned before, regarding each query as inde-
pendent one will be disadvantageous to further adoptions.
Therefore, we investigate a new problem called Influence
Maximization over Streaming Graphs (SGIM) which
aims to find the seed set that has the maximum influence
when considering previous query sequence. One of the
major challenges of the problem formulation is its inborn
uncertainty. Due to complex relationships among nodes,
the possibility with which a node influence another node
cannot be deduced from the uncertain graph and whether
an individual is truly influenced cannot be observed. Thus,
it is infeasible to directly remove the influenced individu-
als from selection candidates. To address this issue, we use
sketch-based methods to transform an uncertain graph to
many deterministic sketches which can be viewed as many
possible worlds. Then, the results in each possible world are
aggregated to estimate the expectation of influenced users
that have not been influenced before. Additionally, users who
have been activated will experience “refractory period” and
they can recover from this state and become capable of being
influenced again after some time. Consequently, we adopt
the sliding window model [13] to manage the nodes in the
“refractory period”.

To solve the SGIM problem, the difficulty lies in the
dynamic features of the problem. In real world, social net-
works are highly dynamic, evolving rapidly. When network
evolves, the obtained answer soon becomes outdated. In the
meantime, queries are raised successively and form a query
sequence. These two evolving factors both raise the ques-
tion of how to efficiently identify the users with maximum

expectation of newly influenced users at any time. We find
that directly extending the existing algorithms in static sce-
narios to this new problem will incur inefficiency in terms
of time and space. And the cause is redundant computation
among different sketches and queries. For each sketch, the
search algorithm will be performed to acquire the average
of node influence. We construct Influence-Increment-Index
to avoid running from scratch when answering queries along
with two sketch-centralized indices called Influence-Index
and Reverse-Influence-Index to aid in the maintenance of
Influence-Increment-Index. We also design update algo-
rithms and its optimized version to prune unnecessary opera-
tions during index maintenance. Besides, we maintain the
results of query sequence with sliding window model. Two
extra indices are designed to facilitate the update process.
With the aid of these components, SGIM problem can be
solved expeditiously in a steaming manner.

In summary, our main contributions are as follows:

• Motivated by practical factors, we formalize a new
problem called Influence Maximization over Streaming
Graphs (SGIM) which takes the influence of the most
recent � queries into consideration.

• We construct Influence-Increment-Index along with
Influence-Index and Reverse-Influence-Index to save
the intermediate results and devise corresponding update
algorithms. We introduce prune technique to speed up the
update process.

• We maintain the results of evolving query sequence with
sliding window and design two extra indices to expedite
its update.

• We experimentally demonstrate the efficiency and effec-
tiveness of our method on several real-world graphs.

2 Related Work

2.1 Influence Maximization in Static Networks

The last decades have witnessed the booming of influence
maximization approaches which can be classified into three
categories: the simulation-based algorithms [5, 14–16], the
heuristic-based algorithms [17, 18] and the sketch-based
algorithms [19–24].

The simulation-based methods repeatedly simulate the
diffusion process to obtain an approximation of influence
spread. Some optimization approaches have been proposed
to alleviate the pain of expensive computation caused by
Monte Carlo (MC) simulation [5]. They either decrease the
number of simulations [14, 15] or reduce the complexity of
MC simulation [16].

The heuristic-based methods estimate the influence of a
node according to some metrics (such as using degree [17]

341Maximizing Influence Over Streaming Graphs with Query Sequence

1 3

or using local arborescence structures of each node [18])
rather than running heavy MC simulations. These methods
are more scalable and efficient than the simulation-based
methods, but they often lack theoretical guarantee, thus gen-
erating poor quality seeds in some datasets.

The sketch-based methods provide efficient solutions with
a good guarantee. They rely on sampling-based exploration
and estimate the influence with the aid of generated sketches,
such as forward influence sketch [19–21] and reverse reach-
able sketch [22–24]. Rather than repeatedly running simula-
tions, they generate sketches that capture the diffusion pro-
cess through simulations. As the names suggest, the forward
influence sketch method generates sketches by conducting
forward simulations while reverse reachable sketch method
builds sketches by performing reverse simulations.

These methods are proposed in static scenarios and
directly applying them to dynamic scenarios is computa-
tionally expensive.

Recently, there is another type of work called adaptive
IM [25–29], which has attracted many researchers’ atten-
tion. These works assume that the feedback in the real-world
is available. In this way, k seeds can be selected in batches
rather than at once since researchers could use the feedback
to choose more high-quality seeds in the following selec-
tions. Han et. al. [25] extends the reverse reachable sketch
work to select the most influential nodes in a batch and then
rule out the influenced nodes with the observation of real-
world data. In the next batch, the selection is based on the
new graph that the influenced nodes have been removed.
This process continues until all seeds are selected. This line
of work emphasizes that different batches of selections are
not independent with previous ones. However, the actual
feedback sometimes cannot be observed in real life. Without
the observation of feedback, it will be hard to extend these
works to dynamic scenarios.

2.2 Influence Maximization in Dynamic Networks

There are several recent studies of IM problem in dynamic
networks [8–10, 30–32]. The majority of the literature
focus on solving the problem extended directly from static
networks which aim to acquire seeds efficiently when the
networks change. Song et al. [8] devised an Upper Bound
Interchange Greedy (UBI) approach which started from
previously found seed set with node replacement instead
of constructing the set from scratch. Ohsaka et al. [9] and
Yang et al. [10] extended the sketch-based method [22].
They maintained a sample of random RR sets and devised
incremental algorithms for updating the sets when networks
change. The problem they tried to solve is a special case of
our proposed problem.

There are also some variants of IM in dynamic networks
considering specific conditions. Zhao et al. [11] is concerned

about data recency which means that older user interactions
are less significant than more recent ones when evaluating
influence. Thus, they proposed a general time-decaying
dynamic interaction network (TDN) model to smoothly dis-
card outdated data and designed three efficient algorithms
based on this model. Huang et al. [12] modeled evolving
network as a sequence of snapshots and proposed a new
problem called DIM which aims to find a fixed seed set of
k target users to maximize the influence spread over dis-
tinct users in an evolving social network. They integrated
all the snapshots for one selection and devised two different
strategies (HCS and VCS) to solve the DIM problem. They
think influencing a large number of different people is more
important. This motivates us to pay attention to the value of
user distinction, but instead of focusing on one query, we are
more concerned about the query sequence.

3 Preliminaries and Problem Formulation

In this section, we extends classical IM problem in static
scenarios to dynamic ones. Several notations are listed in
Table 1.

3.1 Preliminaries

A static graph is composed of fixed nodes and edges. While
in dynamic scenarios, a graph is always evolving, which can
be defined as a sequence of streaming edges.

Definition 1 (Streaming Graph) A streaming graph con-
sists of an infinite stream of edges that arrive chronologi-
cally. Each edge in the stream is a 5-tuple (u, v, + , p, t)
where u is the source node, v is the destination node, +∕−
is the notation which indicates whether the edge is inserted
or removed, p is the probability with which u can influence
v, and t is the timestamp when the edge arrives.

In this paper, we only consider the edge insertions. But
edge deletions can also be integrated into the solution in a
similar way. Edge insertions and deletions are both frequent
actions in the social networks. For example, the “retweet”

Table 1 Notations

Notation Description

SG
i

The i-th sketch of graph G
IS

SG
i
(S) The influenced node set of S in the i-th sketch

�(S) The influence spread of node set S
BS

i
The blocked nodes maintained in the sliding window in

the i-th sketch
INC

G
(S) The influence spread increment of node set S in graph G

342 Y. Zhao et al.

1 3

actions on Twitter, the “reply” actions on Stackoverflow,
and the “comment” actions on Facebook are all common
activities in the real world. These actions insert edges when
they are created, and the edge is deleted when that action is
canceled.

Definition 2 (Snapshot) A snapshot at a specific timestamp
t is a graph that consists of nodes and edges appearing before
timestamp t.

To capture the state of streaming graph at timestamp t, a
snapshot can be constructed. For each snapshot, influence
of nodes and node sets can be evaluated as influence spread.
Our problem is based on a widely adopted information diffu-
sion model called Independent Cascading model (IC model)
[5]. In this model, each edge e = (u, v) has a weight puv rep-
resenting the probability with which u can activate v. Given
an initial activated set (seeds), the independent cascading
process unfolds as follows. The active nodes will activate
their dormant neighbors with corresponding probabilities.
This process is iterated recursively until no more activation
happens.

The influence spread of seeds S, denoted by �(S) , is the
expected number of activated nodes after the cascading pro-
cess. Since �(S) cannot be derived analytically sometimes,
simulation-based methods [33] can be applied to simulate
the activation process for many times. Due to the heavy com-
putational cost of simulation process, sketch-based methods
[33] are proposed to approximate the expectation, which
have already been exploited in many previous researches
[19, 20]. One of the sketch-based methods is called forward
influence sketch approach. This approach transforms a prob-
abilistic graph to scores of deterministic sketches with coin
flip technique and performs reachability test on each of these
sketches to estimate influence spread.

Definition 3 (Sketch) A sketch is an instance induced by
the diffusion process. Given a graph (snapshot) G, a sketch
(denoted by SGi) is constructed by removing each edge
e = (u, v) with probability 1 − puv from G.

Definition 4 (Influence Set) The Influence Set of a seed set
S in a sketch SGi (denoted by ISSGi

(S)) is the set of nodes
reachable from S in sketch SGi.

Given R sketches SG1, SG2,… , SGR and a set S, �(S) is
estimated by averaging the number of nodes that are reach-
able from S on different sketches.

(1)�(S) =

∑R

i=1

���ISSGi
(S)

���
R

The influence maximization problem (IM) is to find a seed
set S∗ of k nodes that satisfies:

Although Kempe et al. [5] proved that this problem is NP-
hard, owing to the property of monotonity and submodular-
ity of function �(S) , a greedy hill-climbing strategy (Algo-
rithm 1) can achieve an approximation ratio of (1 − 1∕e) to
the optimum solution. This greedy strategy iteratively adds
the node v with a largest marginal gain (�(S ∪ {v} − �(S))
until k nodes have been selected.

Algorithm 1: greedy hill-climbing
1 S = {} ;
2 for i = 1 to k do
3 vi = argmaxv∈V \Sσ(S ∪ {v})− σ(S);
4 S = S ∪ {vi};
5 end
6 return S;

3.2 Influence Maximization over Streaming Graphs
(SGIM)

3.2.1 Problem Formulation

Due to the observation that graph evolves and large-over-
lapping selections will reduce the effectiveness, we propose
a new problem. We focus on dynamic graph rather than a
static one. Besides, we take into account mutual interaction
of different queries. As shown in Fig. 1, the graph evolves
with the arrival of new edges. When a query is raised, the
corresponding snapshot at that time can be obtained to cap-
ture the latest state of streaming graph. There are two points
about mutual interaction when answering a query. On one
hand, the results of previous queries will definitely have a
strong impact on the effectiveness of current selection. On
the other hand, the effect of past selections is not permanent.
A user who has been influenced in the past will still have
the chance to be influenced again after some time. There-
fore, the query is then answered by considering both the
current snapshot and certain number of previous selections.
Specifically, we adopt the sliding window model [13] and
utilize the active window to control the range of the effect.
Given an infinite stream of queries, let current query be Qt ,
the influence results of query Qt−� , Qt−�+1 , ..., Qt are in the
active window of sliding window where � is the window
length. And the length of active window means how many
number of rounds that needs to be considered. By focusing
on the freshest data in the active window and ignoring the
oldest data, nodes that have been recently influenced can
be ruled out and blocked nodes can be activated again after

(2)S∗ = argmaxS⊆V and |S|=k𝜎(S)

343Maximizing Influence Over Streaming Graphs with Query Sequence

1 3

some time. Each data element in the active window records
the influence of that round of selection and expires exactly
after � rounds of queries, which means the influenced/acti-
vated nodes in the active window are blocked for following
� rounds and they can be influenced again after the release.

We generate several sketches for a snapshot to estimate
the expectation of newly activated nodes. When a query is
raised, those nodes that have been influenced in previous
� rounds of queries are correspondingly ruled out in each
sketch. We denote the blocked nodes in the active window in
the i-th generated sketch (SGi) as Blocked Set BSi . And then
the expectation of newly activated nodes can be estimated
by influence spread increment.

Definition 5 (Influence Spread Increment) Given R
sketches SG1 , SG2 , ..., SGR of snapshot G, the result of

previous � rounds of queries BS1,BS2,… ,BSR , and a set
S, influence spread INCrement of S equals the average of
the number of the nodes which are activated in the most
recent round of selection in each sketch. Therefore, influence
spread increment of snapshot G is defined as

For example, in Fig. 1, when query Qi+2 is raised, nodes
v1 , v3 , v4, and v5 are blocked in the first sketch, and node
v1 , v4 , and v5 are blocked in the second sketch. Therefore,
node v7 can newly influence node v7 , v2 , and v8 in the first
sketch while influencing node v7 in the second sketch. Con-
sequently, the influence spread increment of node v7 equals
2. Since our goal is to find the maximum influence spread

(3)INCG(S) =

∑R

i=1

���ISSGi
(S)⧵BSi

���
R

Fig. 1 SGIM model (�=2, number of sketches=2). Current query
Q

i+2 takes into the account of the results of Q
i
 and Q

i+1 when obtain-
ing the influence spread increment for each node. After the query

process completes, new nodes are blocked (shaded circle). Therefore,
the window slides and the blocked nodes in the active window change
correspondingly

344 Y. Zhao et al.

1 3

increment instead of influence spread, we formulate SGIM
problem as follows.

SGIM problem Given positive integer k, SGIM problem
is to find the seed set S∗ of k nodes in the latest snapshot of
streaming graph G when a query happens that satisfies:

Since the classical IM problem is NP-hard and is a special
case of SGIM problem when setting � to 0, SGIM problem
is also NP-hard.

3.2.2 Property

Now, we prove that the objective function INCG(S) is mono-
tonic and submodular under the IC model.

Proof 1 (Monotonicity) For each sketch, BSi is fixed and add-
ing a node v to set S guarantees ISSGi

(S) ⊆ ISSGi
(S ∪ {v}) ,

s o |ISSGi
(S)⧵BSi| w i l l n o t d e c r e a s e . T h u s ,

INCG(S ∪ {v}) ≥ INCG(S) is always satisfied. ◻

Proof 2 (Submodularity) A function F is submodular if
F(S1 ∪ {v}) − F(S1) ≥ F(S2 ∪ {v}) − F(S2) holds for ∀ v, ∀
(S1, S2) where S1 ⊆ S2.

Recap that INCG(S) =

∑R

i=1

���ISSGi
(S)⧵BSi

���
R

 , we only need to
prove that for each i, function |||ISSGi

(S)⧵BSi
||| is submodular,

as the non-negative linear combination of submodular func-
tion is also submodular. Given SGi and BSi , let

we only need to prove that for any S1 ⊆ S2 , H(S1) ≥ H(S2) .
Instead of providing a theoretical analysis, we turn to a
more intuitive way to show the property of submodularity
(Fig. 2). As the equation illustrates, H(S) equals the number
of elements that are in ISSGi

({v}) while not in ISGi
(S) or

BSi (|ISSGi
({v})⧵(ISGi

(S) ∪ BSi)|). Therefore, H(S1) equals
the number of elements in black area which is uncovered by
grey circle and white circle, and H(S2) equals to the number

(4)S∗ = argmaxS⊆V∧|S|=kINCG(S)

H(S) =
|||ISSGi

(S ∪ {v})⧵BSi
||| −

|||ISSGi
(S)⧵BSi

|||,

of elements in black area which is uncovered by shaded cir-
cle and white circle. Since S1 ⊆ S2 , ISSGi

(S1) ⊆ ISSGi
(S2) ,

which means that the area of the shaded circle is larger or
equal to the grey circle. Conclusion can be drawn according
to the uncovered area that H(S1) ≥ H(S2) . ◻

3.2.3 Extension of IM Solutions to Solve SGIM Problem

Since our objective function satisfies monotonicity and
submodularity at the same time, we can use greedy algo-
rithm to approximate the optimum to within a factor of
(1 − 1∕e)(where e is the base of natural logarithm) [5]. The
algorithm goes as follows. When a new query arrives, the
blocked nodes can be ruled out in each sketch based on
the memory of the most recent results. Then, the influence
spread increment of a node v can be obtained by averaging
the number of nodes that are reachable from node v while
not in the blocked set in each sketch. The node with the
maximum marginal gain is selected successively until the
query finishes.

However, this approach may require large storage for
sketches and induce redundant computation among queries.
We design intermediate results to facilitate the query process
with the aid of Influence-Increment-Index along with sketch-
centralized Influence-Index and Reverse-Influence-Index.

4 Influence‑Increment‑Index

When a query is raised, running from scratch will incur a
large amount of redundant computations. We analyze those
inessential operations and design Influence-Increment-Index
to facilitate generating answers efficiently. Besides, we
design two types of indices to assist in the update of Influ-
ence-Increment-Index. Since the reliance on the sketch-sep-
arated principle is one of the major reasons of inefficiency,
we carefully design them in a sketch-centralized manner.

4.1 Structure

The core to answer a query is obtaining the influence spread
increment of each node. To obtain the value, two phases are
typically required. The first phase is to get the influence set
of the node. The second phase is to count the number of
influenced nodes in each sketch that are not blocked. Specifi-
cally, for each node v, given blocked nodes BI , its influence
spread increment can be calculated by Algorithm 21 ,2.

Fig. 2 Submodularity. The black circle denotes the influence set of
node v in sketch SG

i
 . The white circle denotes the blocked nodes in

sketch SG
i
 . The grey and shaded circle correspondingly denotes the

influence set of node set S1 and S2 in sketch SG
i

1 count operation of a bitset returns the number of ones in the bitset.
2 flip operation of a bitset converts zeros into ones and ones into
zeros.

345Maximizing Influence Over Streaming Graphs with Query Sequence

1 3

Algorithm 2: Influence Spread Increment
Data: v, BI

1 increment = 0;
2 T = get influence set of v in each sketch by performing a search;
3 for (vi, bi) in T do
4 if vi not in BI then
5 increment += bi.count

[1];
6 end
7 else
8 increment += (bi&BI[vi].f lip[2]).count;
9 end

10 end

Since the influence set of nodes and blocked nodes change
gradually in the dynamic scenarios, influence spread increment is
also evolving correspondingly. Consequently, we can incremen-
tally update influence spread increment rather than running from
scratch. We maintain the value of influence spread increment in
Influence-InCrement-Index (CI) so that it can be directly used to
efficiently generate seed set as the answer. Each node v can obtain
its influence spread increment by getting the value of CI[v].

During the graph evolution, if the subgraph that contains
a certain node has not changed, then the node’s reachability
would not change, either. In this case, there is no need to
compute from scratch. On other occasions where its reach-
ability has changed, in order to get the latest reachability,
one way is to recompute. This will guarantee the accuracy
of reachability, but it neglects the unchanged calculation
that can be utilized to expedite the process of retrieving
the influence set, resulting in computational overhead. So
maintaining the intermediate results of the influence set
would avoid repeating the same process when answering
different queries. Furthermore, during the query process,
the maintained results can also assist in answering SGIM
queries since less update operations are needed when a node
is selected. Therefore, we maintain the influence set of each
node in Influence-Index. Motivated by work [12], we also
use bitset to represent the reachability in different sketches.

Influence-Index of a node v (denoted by v.II) records its
influence in different sketches. v.II is composed of a series
of tuples {(v0, bR0), (v1, b

R
1
),… , (vi, b

R
i
),…} which contains

a node id vi and a corresponding bitset bR
i
 , while R stands

for the number of generated sketches. Tuple (vi, bRi) in v.II
means node v can reach vi in at least one of the R sketches,
and bR

i
 , which aggregates the reachability between these two

nodes in R sketches, can be viewed as the weight of a virtual
edge between v and vi . If the i-th number in bR

i
 equals one, it

means node v can influence node vi in the i-th sketch.
Equipped with Influence-Indices, we can compute the

latest influence spared increment for any node v when its
influence set or the blocked nodes have changed. How-
ever, the maintenance of Influence-Indices itself can also
be time-consuming if only the information of influence
is stored. Therefore, we also maintain the information of

reverse influence in Reverse-Influence-Indices to facilitate
the update of Influence-Index when an edge is inserted.

Reverse-Influence-Index of a node v (denoted by v.RI)
records its reverse influence in different sketches. v.RI , which
has a similar structure with v.II , is composed of a series of tuples.
Each tuple (vi, bRi) in v.RI means node vi can reach v in at least
one of the R sketches, and bR

i
 aggregates the reachability between

these two nodes in R sketches. If the i-th number in bR
i
 equals one,

it means node vi can influence node v in the i-th sketch.

4.2 Update Indices

When an edge is inserted, a part of nodes’ reachable nodes will
change, raising the requirement of updating maintained indi-
ces. Specifically speaking, when edge (u, v, + , p, t) is inserted
to the graph, the Influence-Index of u and its ancestors in the
graph along with the Reverse-Influence-Index of node u and its
children will change. Consequently, the influence spread incre-
ment of node u and its ancestors become different. As shown
in Fig. 3, when edge (v3 , v5 , + , 0.5, t) is inserted, Influence-
Index of node v3 and its ancestors v1 and v7 are different after
the edge insertion. Reverse-Influence of node v3 and its child
v8 also changes. Naturally, Influence-Increment-Index changes
along with Influence-Index. We can use a reverse search from
node u to visit the ancestors and update their maintained indi-
ces. Since the way reachable nodes transmits along the path
matches Depth-First Search (DFS)’s nature of going in depth,
DFS is more suitable than Breadth-First Search (BFS) in this
scenario. Therefore, the algorithm of update indices goes as
follows. When edge (u, v, + , p, t) arrives, bitset uv is generated
according to probability p where each bit represents whether
the edge (u, v) is inserted to each sketch. After inserting the
generated bitset to compressed graph,3 the indices are updated
during the reverse DFS process. A naive update algorithm is
first introduced and then an improved version with pruning
technique is illustrated afterward.

Algorithm 3: naive-UpdateOneNode
Data: u, uvEdge, updateIndex

1 for (vt, bt) in updateIndex do
2 old value = u.II[vt];
3 new value = u.II[vt] | (uvEdge & bt);
4 if old value ∧ new value �= 0 then
5 u.II[vt] = new value;
6 vt.RI[u] = new value;
7 CI[u] += (new value & QInf [vt].flip).count-(old value & QInf [vt].flip).count;
8 end
9 end

4.2.1 Naive Algorithm for Intermediate Results Update

The reachability between nodes in a compressed graph
is represented by a bitset rather than a bool value. If the

3 We adopt the same graph structure as [12] in which the edge in the
graph is a bitset.

346 Y. Zhao et al.

1 3

reachability from u to v in R sketches is buv and from v to
t is bvt , then it equals buv&bvt from u to t. This property is
used when updating the indices. In Algorithm 3, vt denotes
the nodes that could be reached from v. Given a bitset bt
which contains the reachability between v and vt , the latest
reachability Ruvt

 between u and vt can be calculated as shown
in 3th line. Subsequently, node u’s Influence-Index (u.II),
node vt ’s Reverse-Influence-Index (vt.RI) and u’s influence
spread increment (CI[u]) are updated with Ruvt

.

Algorithm 4: naive-UpdateNodes
Data: u, uvEdge, updateIndex

1 if (visited[u].flip & uvEdge) == 0 then
2 return;
3 end
4 visited [u] |= uvEdge;
5 naive-UpdateOneNode(u, uvEdge, updateIndex);
6 for va in u’s ingoing neighbors do
7 evau = get edge from va to u(a bitset);
8 naive-UpdateNodes(va, uvEdge&evau, updateIndex);
9 end

This operation of intermediate results update of one
node is then applied to u and its ancestors during reverse
DFS (Algorithm 4). We also use a bitset rather than a bool

value to record the visit information of nodes, denoted as
visited[v] in the compressed graph.

4.2.2 Pruned Algorithm for Intermediate Results Update

There are certain conditions when naive update algorithm
will cause inefficiency. If node u can already reach v before
the edge insertion, the intermediate results of node u and its
ancestors do not need to be updated, because the insertion of
this edge will not affect their reachability. As shown in Fig. 4,
since the reachability from node v1 to node v5 has not changed,
there is no need to update the indices of node v1 and v7.

Based on this observation, we propose pruned algorithm
to filter out the invalid update operations in the naive algo-
rithm. Specifically, the pruning rule is described as follows.
In each sketch, if node vt can reach node v before this edge
insertion, then the intermediate results of vt and its ancestors
do not need to be updated, which is implemented by skip-
ping node vt of performing the reverse DFS process. This
rule will not reduce the accuracy.

Having been armed with the pruning rule, an improved
algorithm on compressed graph is illustrated in Algorithm 5
and 6. Rather than using the same piece of information
(v.II) to update all the ancestors in Algorithm 3, the pruned

Fig. 3 Influence-Index, Reverse-Influence-Index, and Influence-Increment-Index change when an edge is inserted

347Maximizing Influence Over Streaming Graphs with Query Sequence

1 3

update algorithm uses different information for different
ancestors. For each ancestor va , only necessary information
that will influence va ’s reachability will be used. During
the process of reverse DFS, the size of updateIndex will
continue to decrease by screening off the unchanged nodes.
Besides, when the updateIndex becomes empty for a node vt ,
the algorithm stops updating the reachability of vt ’s ances-
tors. Since the reachability of node vt has not changed, its
ancestor’s reachability will not change, either. In a nutshell,
the pruning technique can both prune the number of times
that an ancestor is visited and the number of times that the
node in node v’s reachability set is visited while warranting
the accuracy.

Algorithm 5: pruned-UpdateOneNode
Data: u, v, updateIndex

1 uvEdge=get edge from u to v(a bitset)
2 for (vt, bt) in updateIndex do
3 old value = u.II[vt];
4 new value = u.II[vt] | (uvEdge & bt);
5 if old value ∧ new value �= 0 then
6 u.II[vt] = new value;
7 vt.RI[u] = new value;
8 CI[u] += (new value &
9 QInf [vt].flip).count-(old value & QInf [vt].flip).count;

10 updateIndex[vt] = old value ∧ new value;
11 end
12 else
13 remove tuple (vt, bt) from updateIndex;
14 end
15 end

Algorithm 6: pruned-UpdateNodes
Data: u, uvEdge, updateIndex

1 if (visited[u].flip & uvEdge) == 0 then
2 return;
3 end
4 visited [u] |= uvEdge;
5 pruned-UpdateOneNode(u, v, updateIndex);
6 if updateIndex is not empty then
7 for va in u’s ingoing neighbors do
8 evau = get edge from va to u(a bitset);
9 pruned-UpdateNodes(va, uvEdge&evau, updateIndex);

10 end
11 end

5 Solution

SGIM problem needs to consider the result of last � rounds
of queries. In this section, we will first introduce how to
maintain the results of query sequence and then how to
answer SGIM queries.

5.1 Maintaining the Results of Query Sequence

We use sliding window model to manage the results of
queries. Its active window (denoted as Blocked Window)
records the results of last � rounds of queries and current
query. Along with Blocked Window, we also save two extra
indices to facilitate the query process. These three struc-
tures as shown in Fig. 5 store the results of previous query
sequence in a more compact way.

Fig. 4 When a new edge
(v3, v5,+, 0.5, t) arrives, v1 can
reach v5 before this insertion,
so the reverse DFS from v1 can
be halted

348 Y. Zhao et al.

1 3

5.1.1 Blocked Window (BW)

Blocked Window is the active window of sliding window
model. It contains � + 1 data elements (denoted as BI� , BI�−1 ,
..., BI0), and each one chronologically represents the result
of each query from left to right, while the rightest blank in
Fig. 5 corresponds to the result of current query, which is
initially empty. To be more specific, each data element is a
tuple sequence and each tuple (v, bR

i
) means node v has been

influenced in that round of query and thus is blocked for fol-
lowing � rounds of selections. The bitset bR

i
 is the detailed

information in different sketch where value one means node
has been influenced in that sketch.

When a new data element arrives, the oldest element is
discarded and is no longer in the active window. For exam-
ple, as illustrated in Fig. 5, Blocked Window of Qi+2 main-
tains the query result of Qi , Qi+1 , and Qi+2 . When new query
Qi+3 arrives, Blocked Window slides one step. Therefore,
current Blocked Window of Qi+4 stores the query result of
Qi+1 , Qi+2 , and Qi+3 . The sliding window model guarantees
that the last � rounds of query sequences will be considered
and the blocked nodes will have the chance to be activated
again after � rounds.

5.1.2 Query Sequence Influence and Count (QInf and QC)

Blocked Window maintains the results of previous query
sequence; however, it is not convenient to directly use it to
answer a query since the blocked nodes in each data ele-
ment need to be ruled out successively. This will make some
common nodes in different sketches be processed more than
once, resulting in extra computation. Therefore, we further
maintain two aggregation indices—Query Sequence Influ-
ence (QInf) and Query Sequence Count (QC).

Query Sequence Influence (QInf) represents whether a
node is influenced in each sketch during any of the selections
(including the current one). In this way, the blocked nodes

in different query is aggregated together and each blocked
node will be merely processed once instead of several times
when being ruled out. To be more specific, QInf is a tuple
sequence and each tuple (vi, bRi) means that node vi has been
influenced and if the bit in bR

i
 equals one, then node vi has

been influenced in that particular sketch. Its relationship
with Blocked Window can be written as Eq. 5. The union
operation compresses all indices into one by merging all
bitsets for each node v ∈ ∪k

i=1
Ii.V

4 with OR operations.

Every time when the window slides, QInf is updated simul-
taneously. An naive way to fulfill this aim is to recalculate
Eq. 5. However, part of the redundant computation can
be spared since the information from BI�−1 to BI1 remains
the same after one step. Based on this observation, Query
Sequence Count (QC) is designed. It records the number of
times of a node being influenced in each sketch across all
past selections. Similarly, each tuple (vi, bRi) in QC repre-
sents the detailed information in each sketch. It means that
node vi has been influenced and it has been influenced bR

i
[i]

times in the i-th sketch. It can be formulated as Eq. 6. The
sum operation transforms bitsets for each node v ∈ ∪k

i=1
Ii.V

into integer lists which are then added together. This opera-
tion aggregates scattered information of the blocked nodes
so that these nodes can be processed unitedly when solving
the SGIM problem.

We adopt lazy update strategy, resulting in the difference
that QInf integrates BI0 , while QC does not. Since the query
process is dependent on QInf, whenever a node is picked as
seed, its influence set needs to be updated to QInf imme-
diately for subsequent selections. However, QC serves to

(5)QInf = union(BI� ,BI�−1,… ,BI0)

(6)QC = sum(BI� ,BI�−1,… ,BI1)

Fig. 5 Sketch-centralized results
of query sequence (� = 2)

4 I.V denotes the set of all node ids in the index I.

349Maximizing Influence Over Streaming Graphs with Query Sequence

1 3

simplify computation during window slide movement exclu-
sively, so it can be updated after the selection of k seeds
completes when the slide movement is ready and necessary
to be performed.

5.1.3 Update

During the query process, BI0 changes due to the selection of
seed. After the query process completes, the sliding window
slides one step. The outdated data are moved out, while new
data element is moved in. Two corresponding algorithms
(moveIn and moveOut) are illustrated in Algorithm 7 and 85.

Algorithm 7: moveIn
Data: data

1 union(BI0, data);
2 union(QInf, data);

Algorithm 8: moveOut
1 change = an empty index;
2 for [id, count]: BIθ do
3 old inf = QInf [id];
4 for i = 1 to R do
5 QC[id][i] += BI0[id][i]− count[i];
6 end
7 QInf [id] = toBitset[5](QC[id]);
8 if (old inf ∧QInf [id]).count ! = 0 then
9 change[id] = old inf ∧QInf [id];

10 end
11 if QInf [id].count == 0 then
12 remove id from QC and QInf ;
13 end
14 end
15 BW.remove(QS[0]);
16 BW.insert(empty data element);
17 return change;

moveIn(data) moves current blocked node into BI0 and
updates QInf by performing union operations. This opera-
tion integrates the information of the blocked nodes in cur-
rent selection. According to our problem setting, the size of
sliding window is fixed. Therefore, when a new data ele-
ment arrives, the Blocked Window slides one step. moveOut
operation moves out BI� and moves in an empty data ele-
ment. It simultaneously updates QC and QInf. We bring in
two operations called addCount and minusCount to update
QC. They are supplementary to sum operation mentioned
above. They aim to precisely modify the output of sum by
integrating or disintegrating an index. Along with these two
operations, Eq. 6 can be transformed to Eq. 7. In this way,

instead of calculating the aggregation of Blocked Window
from scratch, only incremental computation is needed.

QInf is updated by transforming each integer list in QC to
a bitset. For each tuple in QInf, the XOR result of the bitset
before and after the update is calculated and stored. This
information is returned and will be further used to update
intermediate result CI .

5.2 Answering SGIM Queries

The solution (Algorithm 9) consists of five phases which
will be introduced sequentially. Firstly, the node vi with
the maximum influence spread increment is added to the
seed set. Secondly, the result of query sequence is updated
by performing moveIn operation according to the selected
seed. This step blocks the nodes that are influenced by the
newly selected seed vi , which guarantees the effectiveness
of following selections. Thirdly, the intermediate result CI
is updated due to the insertion of the blocked nodes. After
these three phases are repeated until all k seeds are selected,
moveOut operation is performed to discard outdated data.
Lastly, the intermediate result CI is updated correspondingly
due to the release of blocked nodes.

Algorithm 9: query
Data: k

1 S = {} ;
2 for i = 1 to k do
3 vi = argmaxv∈V \SCI[v];
4 S = S ∪ {vi};
5 moveIn(vi.II);
6 updateCI (vi.II, true);
7 end
8 changedData = moveOut();
9 updateCI (changedData, false);

10 return S;

The insertion and the release of blocked nodes both con-
tribute to the change of the intermediate result CI . We pre-
sume that vi is a node which is removed due to the release
of blocked nodes and bi aggregates detailed information
in different sketches. If i-th bit in bi equals one, it means
that node vi was blocked before this removal and has been
released after the movement in the i-th sketch. We suppose
node vj can reach node vi in some sketches. Since node vj can
only influence node vi in sketches where vi is not blocked,
the release of vi in some sketches where it was blocked will
enable vj influence vi in those sketches, leading to an increase
in CI[vj] . A detailed illustration when sketch number equals
2 is presented in Fig. 6. The incremental contribution to
the influence spread increment made by node v2 to node v7
in all sketches can be calculated as the number of ones in

(7)QC = minusCount(addCount(QC,BI0),BI�)

5 toBitset operation transforms a list to a bitset by converting zero to
bit zero and other value to one.

350 Y. Zhao et al.

1 3

the AND results. The update operation due to the insertion
of blocked nodes goes similarly. The whole algorithm for
update the intermediate result is presented in Algorithm 10.
For each node that has been released in some of the sketches,
its ancestors’ values in CI are updated according to their
reachability and condition of whether the update operation
is due to a removal movement or an insertion one.

Algorithm 10: updateCI
Data: data, flag

1 for (vi, bi) in data do
2 for (vj , Rji) in vi.RI do
3 if flag then
4 CI[vj] -= (bi&Rji).count;
5 end
6 else
7 CI[vj] += (bi&Rji).count;
8 end
9 end

10 end

5.3 Analysis

In this section, we analyze the time complexity of our pro-
posed solution and also show the comparison with other
methods. Additionally, we further provide the theoretical
guarantee on the number of sketches.

5.3.1 Time Complexity Analysis

In algorithm 9, line 3 and line 4 take O(1) time. The moveIn
operation in line 5 can be regarded as two union operations
of indices. Suppose that each bitwise operation takes O(c)
time and the number of nodes and edges in the current graph
is denoted as n and m. Merging two indices can be imple-
mented in O(cn) time. The updateCI operation takes O(cn2)
time to traverse the nodes and perform bitwise operations.
The moveOut operation takes O(nR) time for modifying the
frequency value in each sketch. Therefore, the complex-
ity for algorithm 9 is O(ckn2 + nR) . The complexities of
algorithms that are extended from previous researches to
answer this query are as follows. The typical Monte Carlo
simulation method (MC method) would run R rounds of
simulations while excluding the already influenced nodes.
The cost to compute the nodes that have been influenced/
blocked in each round of previous queries is O(�nR) for each
node. The total complexity is O(�Rkn2 + mnRk) . Since [20]
provides several techniques to speed up the MC method
but does not substantially improve the complexity, its com-
plexity stays the same as O(�Rkn2 + mnRk) . While using

the same strategy with our method to maintain the query
sequence in the extended version of [12], its complexity is
O(cmnRk + mR + nR) . Owing to the strategy that we exploit
to maintain the results of query sequence, the parameter � is
moved out from the time complexity equation. Furthermore,
since real-life graphs usually have more edges than nodes,
our method has better complexity than the method extended
from [12]. As analyzed above, the bottleneck of our method
is the update process. It will take a long time when the num-
ber of influenced nodes is large. However, it is unavoidable
if we would like to keep track of the exact number of incre-
ments in each sketch. In the future, maybe heuristic methods
with good guarantees can be proposed to seek an estimated
value instead of an exact one.

5.3.2 Theoretical Guarantee on the Number of Sketches

We follow similar steps in [20] and theoretically analyze the
error ratio of estimated influence spread increment. Firstly,
we introduce Hoeffding’s inequality.

Theorem 1 (Hoeffding’s inequality) Let X1,X2,… ,Xn be
independent random variables in [0, 1]. Let X̄ =

1

n

∑n

i=1
Xi .

Then, Pr[|X̄ − X| > t] ≤ 2e−2nt
2.

Lemma 1 Let G be a graph and S be a family of node
sets. Let R = O(

1

�2
log

2|S|
�
) . Then, with probability at least

1 − � , |INCG(S) − EG(S)| ≤ �n for every set S ∈ S , where

INCG(S) =

∑R

i=1

���ISSGi
(S)⧵BSi

���
R

 and EG(S) denotes the expecta-
tion of the number of newly activated nodes.

Proof 3 For brevity, we denote |||ISSGi
(S)⧵BSi

||| as fSGi
(S) .

Since each sketch is generated independently and
fSGi

(S) ∈ [0, n] , for any set S ∈ S , by applying Hoeffding’s
inequality on 1

n
fSG1

(S) , 1
n
fSG2

(S) , ..., 1
n
fSGR

(S) , we can acquire

the relationship Pr[|INCG(S) − EG(S)| > 𝛼n] ≤ 2e−2𝛼
2R .

Then, we apply the union bound over all sets in S , the prob-
ability that the condition |INCG(S) − EG(S)| ≤ �n is satisfied
for every S ∈ S is at least 1 − 2|S|e−2�2R . We have the
desired bound when we choose R = O(

1

�2
log

2|S|
�
) . ◻

Given a positive integer k, the number of node sets whose
length equals k satisfies |S| ≤ kn . Thus, we have the above
guarantee when we choose R = O(

1

�2
log

2kn

�
).

Lemma 2 Let � =
�OPT

2nk
 , the greedy algorithm returns

a (1 − 1

e
− �)-approximate solution with at least 1 − �

probability.

351Maximizing Influence Over Streaming Graphs with Query Sequence

1 3

6 Experiments

In this section, we evaluate the effectiveness and efficiency
of our proposed approach for SGIM problem on various real-
world datasets.

6.1 Setup

6.1.1 Datasets

Our method is exhaustively tested on 5 real-world datasets.
The summary of these datasets is listed in Table 2.

6.1.2 Environments

We conduct experiments on a Linux server with intel CPU
(2.40GHz). All algorithms are implemented in C++ and
compiled with -O3 option, and run in single thread.

6.1.3 Compared Approaches and Parameters

We compare our method with the following algorithms
extended from state-of-the-art methods of solving IM

problem in static graphs and a baseline algorithm. The num-
ber of generated sketches is set to 200 in all sketch-based
methods.

• baseline: the naive algorithm that is directly extended
from the sketch-based method for solving IM problem in
static scenarios.

• CSO: due to the compact and streaming features, we
denote our method as a Compact Streaming Optimiza-
tion approach (abbreviated as CSO).

• VCS [12]: the algorithm extended from the VCS
approach that uses compression techniques to manage
graph.

• PMC [20]: the algorithm extended from PMC approach
that exploits the existence of a hub to accelerate BFS for
reachability tests.

6.1.4 Probabilistic Settings

We validate the performance of algorithms under a classi-
cal probabilistic model called weighted cascade model [5].
In this model , probability of each edge e = (u, v) is set to
1∕d−(v) . Since the graph is evolving, the in-degree of node

Fig. 6 Blocked nodes in BW change due to the change of data ele-
ments. Consequently, the influence spread increment of some nodes
change correspondingly. For example, before the release operation,
node v2 is blocked in the first and second sketches (its INC equals 0);
after the release operation, it has been released in these two sketches

(its INC equals 1). The incremental equals 1 − 0 = 1 , which can also
be calculated by ([10]&[11]).count = 1 , where [10] is the reachabil-
ity of edge (v7, v2) and [11] is the XOR result of the blocked bitset of
node v2 before and after the movement ([11] ∧ [00] = [11])

352 Y. Zhao et al.

1 3

is changing, too. And the probability is generated based on
the snapshot when the edge is inserted.

6.1.5 Experimental Method

For evaluating effectiveness and efficiency of different meth-
ods when solving SGIM problem, we set up experiment as
follows to model the SGIM problem. Firstly, we generate a
preprocessed file from the original dataset. This file consists
of two types of lines: edge line and query line. An edge
line is a tuple (u, v, p) where u is the source node, v is the
destination node, and p is the probability with which u will
influence v. A query line is composed of a character “Q”
and a positive integer k, which means how many nodes are
expected to be selected in this round.

We first order the temporal edges in each dataset by time
and use the first thr% of edges as the base graph. Then, the
remaining edges in the dataset are inserted chronologically
to model the streaming process. For example, there are 90
edges as base graph and 10 edges as remaining graph, a
random number r between (90, 100] is generated and the
query is inserted exactly in the r-th line. In this experiment,
thr = 90 , � = 3 , and 5 queries with k = 10 are inserted to
each dataset.

In real life, graph is dynamic and queries can happen at
any time. This can still be captured with the format of the
preprocessed file. Then, given the preprocessed file, algo-
rithms for experimental evaluation run as follows: when an
edge arrives, the edge is inserted into the graph. And when
a query is raised, the SGIM query is answered based on the
current snapshot and results of previous � rounds of queries.

6.2 Experimental Results for the SGIM Problem

We compare different methods on these datasets in terms of
Influence Spread Increment and running time. We conduct
experiments to measure the maintenance cost of index, and
the memory cost of methods with and without compres-
sion. Besides, we compare the insertion time of our pro-
posed approach with pruning technique and the one without
pruning technique. The parameter � can also be set to other

values, and the effect of this parameter will be analyzed
afterwards.

6.2.1 Influence Spread Increment

Figure 7a shows the influence spread increments that are
calculated by different algorithms under weighted cascade
model. influence spread increment of different algorithms
are very close to each other. This means that seeds from
these algorithms have close quality.

We also compare the influence spread and influence
spread increment calculated by our proposed method. The
result is shown in Fig. 7b. The value of influence spread
increment is always smaller than influence spread, since
those nodes influenced in previous selections are not
included in the calculation. We further investigate the dif-
ference of these two concepts by a case study. In two con-
secutive rounds of queries when processing dataset higgs,
the value of influence spread is 125 and 127, respectively,
while the influence sets are highly overlapping with each
other. However, the value of influence spread increment of
these two same rounds of queries is 82 and 61, respectively,
while the influence sets are different from each other. The
result identifies that, following the greedy strategy of select-
ing nodes with maximum influence spread increment, the
seeds can trigger larger cascade among different users than
choosing nodes with maximum influence spread. Therefore,
the advantage of influence spread increment is confirmed.

The largest dataset stackoverflow-c2q has a small influ-
ence spread increment. This is due to the scenario of the
dataset. The dataset stackOverflow-c2q captures the relation-
ship of people who ask questions and who comment on the
question. Each edge (u, v) represents that user u’s question
has been commented by user v. This relationship is not as
strong as the normal relationship among friends. The inter-
actions among users who post questions and comments are
not that frequent as the ones among friends. Therefore, the
influence spread increment is relatively smaller than the
influence spread increment in other datasets despite its large
size.

6.2.2 Running Time

As depicted in Fig. 8, our proposed method CSO outper-
forms other compared methods, which shows that CSO is
competitive in algorithm efficiency. Especially when graphs
are large, the difference is much more significant, because
running from scratch will result in more redundant com-
putations in this case. Indices are designed to speed up the
process of query; however, it will simultaneously bring com-
putational overhead of maintenance. Our method greatly
reduces query time compared with other methods; thus, the
effectiveness of our index design is validated.

Table 2 Summary of datasets

aThe Higgs dataset consists of a mention network and a reply network
denoted as higgs-MT and higgs-RE, respectively.

dataset # of nodes # of edges

mathoverflow [34] 24,818 506,550
Twitter-Higgsa [35] 304,198 555,481
askubuntu [34] 159,316 964,437
superuser [34] 194,085 1,443,339
stackoverflow-c2q [34] 1,655,353 20,268,151

353Maximizing Influence Over Streaming Graphs with Query Sequence

1 3

6.2.3 Update Time of Index

Since the update operation is the most frequent operation
when processing a streaming graph, we conduct experi-
ment to measure the maintenance cost of index. The result
is as follows (Fig. 9). When a graph is dense, the cost
of update becomes higher. Since the number of related
nodes, whose influence spread increment has changed,
is larger, and the update cost for each of these nodes is
also higher.

6.2.4 Memory Consumption

As shown in Fig. 10, our proposed method CSO could
reduce the memory cost when compared with methods with-
out compression.

6.2.5 Effect of Pruning Technique

The naive version of the insertion would incur large amount
of unnecessary computations. And the prune version chips
out the excessive calculation. We compare the average num-
ber of nodes that are visited during the insertion process.
When an edge e = (u, v,+, p, t) is inserted, as explained in
the naive version, every ancestor of node u would update its
intermediate results with the information of node v’s reach-
able nodes (v.II). However, owing to the pruning technique,
the ancestors are not necessarily visited and also the num-
ber of nodes that would make a difference to the ancestors’
reachability is decreasing during the reverse DFS process.
The average number of times that ancestors are visited is
illustrated in Fig. 11a, and the average number of times that
nodes in v.II are visited is presented in Fig. 11b.

Fig. 7 Quality of seeds

354 Y. Zhao et al.

1 3

As shown by the figures, the pruning technique reduces
both the average number of times ancestor is visited and the
average number of times node in v.II is visited in all datasets.
The decrease in the average number of times node in v.II is
visited is more significant.

6.2.6 Effect of Parameter �

We evaluate the performance of CSO with different val-
ues of � , including query time, insertion time, and influ-
ence spread increment. Owing to the transformation
from equation QC = sum(QS[�],QS[� − 1],… ,QS[1]) to
QC = minusCount(addCount(QC,QS[0]),QS[�]) , the pro-
cess of aggregating information across � queries is sim-
plified to one addCount and one minusCount operation.
Thus, in Fig. 12a, the insertion time and query time are not
increasing with � . Interestingly, the query time is decreas-
ing, which seems counterintuitive at first glance. However,
this phenomenon is reasonable under further scrutiny. Under
extreme circumstances, if � is big enough, all information
of previous selections is maintained. The number of nodes
whose influence spread increment needs to be updated is
small, since nearly all nodes are blocked. Consequently, the

query time decreases. Additionally, we conduct experiment
to measure influence spread increment of different � . As
shown in Fig. 12b, the influence spread increment decreases
when � increases. This is due to the fact that when � becomes
larger, the number of blocked nodes becomes larger. There-
fore, generally, the influence spread increment becomes
small.

7 Conclusion

In this paper, we propose and study the SGIM problem in
which the graphs are modeled in a dynamic manner and the
effect of query sequence is taken into account. While directly
extending existing approach to address this issue will bring
in non-negligible computational cost due to the redundant
computation among sketches and queries, we design Influ-
ence-Increment-Index to avoid running from scratch along
with two sketch-centralized indices called Influence-Index
and Reverse-Influence-Index to facilitate the update process.
We also design structure using sliding window and update
algorithms to maintain evolving query sequence. By exploit-
ing these components, we can answer the query at the latest

Fig. 8 Query time

Fig. 9 The time of index update

355Maximizing Influence Over Streaming Graphs with Query Sequence

1 3

Fig. 10 The memory cost of
intermediate results with and
without compression

Fig. 11 Number of visited nodes

356 Y. Zhao et al.

1 3

snapshot expeditiously. Extensive experiments on several
real-world datasets have demonstrated that our method is
competitive in terms of both efficiency and effectiveness
owing to the indexing scheme.

In the future, we plan to further improve the scalability of
the method and have a better performance on larger stream-
ing graphs. One way to achieve this is to propose heuris-
tic method to reduce the cost of updating influence spread
increment. Additionally, the explore-exploit strategy, which
is a trade-off between the value of activating some peripheral
nodes versus giving the activated central nodes a second
stimulation, will be applied to our method. Another future
work is to extend reverse reachable sketch methods to solve
this problem.

Acknowledgements The research is supported by The National Key
Research and Development Program of China (No. 2018YFB1004002),
NSFC (Nos. 62072205 and 61932004).

Author Contributions YZ and YH proposed the problem model, car-
ried out the experiments, and contributed to the interpretation of the
results. YZ designed the experiments with the guidance of PY. YZ and
YH wrote the manuscript in consultation with PY and HJ. All authors

provided critical feedback and helped shape the research, analysis and
manuscript.

Availability of data and materials The datasets that are used in the
experiment of this study are openly available in Stanford Large Net-
work Dataset Collection. Mathoverflow dataset can be downloaded
at https:// snap. stanf ord. edu/ data/ sx- matho verfl ow. html. Twitter-Higgs
dataset can be downloaded at https:// snap. stanf ord. edu/ data/ higgs- twitt
er. html. Askubuntu dataset can be downloaded at https:// snap. stanf ord.
edu/ data/ sx- askub untu. html. Superuser dataset can be downloaded at
https:// snap. stanf ord. edu/ data/ sx- super user. html. Stackoverflow-c2q
dataset can be downloaded at https:// snap. stanf ord. edu/ data/ sx- stack
overfl ow. html.

Declarations

Conflict of interest The authors declare that they have no competing
interests.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated

Fig. 12 Effect of �

https://snap.stanford.edu/data/sx-mathoverflow.html
https://snap.stanford.edu/data/higgs-twitter.html
https://snap.stanford.edu/data/higgs-twitter.html
https://snap.stanford.edu/data/sx-askubuntu.html
https://snap.stanford.edu/data/sx-askubuntu.html
https://snap.stanford.edu/data/sx-superuser.html
https://snap.stanford.edu/data/sx-stackoverflow.html
https://snap.stanford.edu/data/sx-stackoverflow.html

357Maximizing Influence Over Streaming Graphs with Query Sequence

1 3

otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Budak C, Agrawal D, Abbadi AE (2011) Limiting the spread of
misinformation in social networks. In: WWW, pp 665–674

 2. He X, Song G, Chen W, Jiang Q (2012) Influence blocking maxi-
mization in social networks under the competitive linear threshold
model. In: SDM, pp 463–474

 3. Ye M, Liu X, Lee W (2012) Exploring social influence for recom-
mendation: a generative model approach. In: SIGIR, pp 671–680

 4. Guille A, Hacid H, Favre C, Zighed DA (2013) Information
diffusion in online social networks: a survey. SIGMOD Rec
42(2):17–28

 5. Kempe D, Kleinberg J, Tardos É (2003) Maximizing the spread
of influence through a social network. In: KDD, pp 137–146

 6. Domingos P, Richardson M (2001) Mining the network value of
customers. In: KDD, pp 57–66

 7. Myers SA, Leskovec J (2014) The bursty dynamics of the twitter
information network. In: WWW, pp 913–924

 8. Song G, Li Y, Chen X, He X, Tang J (2017) Influential node track-
ing on dynamic social network: an interchange greedy approach.
TKDE 29(2):359–372

 9. Ohsaka N, Akiba T, Yoshida Y, Kawarabayashi KI (2016)
Dynamic influence analysis in evolving networks. VLDB
9(12):1077–1088

 10. Yang Y, Wang Z, Pei J, Chen E (2017) Tracking influential indi-
viduals in dynamic networks. TKDE 29(11):2615–2628

 11. Zhao J, Shang S, Wang P, Lui JCS, Zhang X (2019) Tracking
influential nodes in time-decaying dynamic interaction networks.
In: ICDE, pp 1106–1117

 12. Huang S, Bao Z, Culpepper JS, Zhang B (2019) Finding tempo-
ral influential users over evolving social networks. In: ICDE, pp
398–409

 13. Datar M, Gionis A, Indyk P, Motwani R (2002) Maintain-
ing stream statistics over sliding windows. SIAM J Comput
31(6):1794–1813

 14. Leskovec J, Krause A, Guestrin C, Faloutsos C, VanBriesen JM,
Glance NS (2007) Cost-effective outbreak detection in networks.
In: KDD, pp 420–429

 15. Goyal A, Lu W, Lakshmanan LVS (2011) CELF++: optimizing
the greedy algorithm for influence maximization in social net-
works. In: WWW, pp 47–48

 16. Wang Y, Cong G, Song G, Xie K (2010) Community-based greedy
algorithm for mining top-k influential nodes in mobile social net-
works. In: KDD, pp 1039–1048

 17. Chen W, Wang Y, Yang S (2009) Efficient influence maximization
in social networks. In: KDD, pp 199–208

 18. Chen W, Wang C, Wang Y (2010) Scalable influence maximiza-
tion for prevalent viral marketing in large-scale social networks.
In: KDD, pp 1029–1038

 19. Cheng S, Shen H, Huang J, Zhang G, Cheng X (2013) Static-
greedy: solving the scalability-accuracy dilemma in influence
maximization. In: CIKM, pp 509–518

 20. Ohsaka N, Akiba T, Yoshida Y, Kawarabayashi K (2014) Fast and
accurate influence maximization on large networks with pruned
monte-carlo simulations. In: AAAI, pp 138–144

 21. Cohen E, Delling D, Pajor T, Werneck RF (2014) Sketch-based
influence maximization and computation: scaling up with guar-
antees. In: CIKM, pp 629–638

 22. Borgs C, Brautbar M, Chayes JT, Lucier B (2014) Maximizing
social influence in nearly optimal time. In: SODA, pp 946–957

 23. Tang Y, Xiao X, Shi Y (2014) Influence maximization: near-opti-
mal time complexity meets practical efficiency. In: SIGMOD, pp
75–86

 24. Tang Y, Shi Y, Xiao X (2015) Influence maximization in near-
linear time: a martingale approach. In: SIGMOD, pp 1539–1554

 25. Han K, Huang K, Xiao X, Tang J, Sun A, Tang X (2018) Effi-
cient algorithms for adaptive influence maximization. Proc VLDB
Endow 11(9):1029–1040

 26. Golovin D, Krause A (2011) Adaptive submodularity: theory and
applications in active learning and stochastic optimization. J Artif
Intell Res 42:427–486

 27. Yuan J, Tang S (2017) No time to observe: adaptive influence
maximization with partial feedback. In: Proceedings of the
26th international joint conference on artificial intelligence, pp
3908–3914

 28. Tong G, Wu W, Tang S, Du D-Z (2016) Adaptive influence maxi-
mization in dynamic social networks. IEEE/ACM Trans Netw
25(1):112–125

 29. Huang K, Tang J, Han K, Xiao X, Chen W, Sun A, Tang X, Lim A
(2020) Efficient approximation algorithms for adaptive influence
maximization. VLDB J 29:1–22

 30. Wang Y, Fan Q, Li Y, Tan K (2017) Real-time influence maxi-
mization on dynamic social streams. Proc VLDB Endow
10(7):805–816

 31. Aggarwal CC, Lin S, Yu PS (2012) On influential node discovery
in dynamic social networks. In: SDM, pp 636–647

 32. Zhuang H, Sun Y, Tang J, Zhang J, Sun X (2013) Influence maxi-
mization in dynamic social networks. In: ICDE, pp 1313–1318

 33. Li Y, Fan J, Wang Y, Tan K (2018) Influence maximization on
social graphs: a survey. TKDE 30(10):1852–1872

 34. Paranjape A, Benson AR, Leskovec J (2017) Motifs in temporal
networks. In: WSDM, pp 601–610

 35. De Domenico M, Lima A, Mougel P, Musolesi M (2013) The
anatomy of a scientific rumor. Sci Rep 3:2980

http://creativecommons.org/licenses/by/4.0/

	Maximizing Influence Over Streaming Graphs with Query Sequence
	Abstract
	1 Introduction
	2 Related Work
	2.1 Influence Maximization in Static Networks
	2.2 Influence Maximization in Dynamic Networks

	3 Preliminaries and Problem Formulation
	3.1 Preliminaries
	3.2 Influence Maximization over Streaming Graphs (SGIM)
	3.2.1 Problem Formulation
	3.2.2 Property
	3.2.3 Extension of IM Solutions to Solve SGIM Problem

	4 Influence-Increment-Index
	4.1 Structure
	4.2 Update Indices
	4.2.1 Naive Algorithm for Intermediate Results Update
	4.2.2 Pruned Algorithm for Intermediate Results Update

	5 Solution
	5.1 Maintaining the Results of Query Sequence
	5.1.1 Blocked Window (BW)
	5.1.2 Query Sequence Influence and Count (QInf and QC)
	5.1.3 Update

	5.2 Answering SGIM Queries
	5.3 Analysis
	5.3.1 Time Complexity Analysis
	5.3.2 Theoretical Guarantee on the Number of Sketches

	6 Experiments
	6.1 Setup
	6.1.1 Datasets
	6.1.2 Environments
	6.1.3 Compared Approaches and Parameters
	6.1.4 Probabilistic Settings
	6.1.5 Experimental Method

	6.2 Experimental Results for the SGIM Problem
	6.2.1 Influence Spread Increment
	6.2.2 Running Time
	6.2.3 Update Time of Index
	6.2.4 Memory Consumption
	6.2.5 Effect of Pruning Technique
	6.2.6 Effect of Parameter

	7 Conclusion
	Acknowledgements
	References

