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Abstract
Now, with the prevalence of social media, such as Facebook, Weibo, how to maximize influence of individuals, products, 
actions in new media is of practical significance. Generally, maximizing influence first needs to identify the most influential 
individuals since they can spread their influence to most of others in the social media. Many studies on influence maximiza-
tion aimed to select a subset of nodes in static graphs once. Actually, real graphs are evolving. So, influential individuals 
are also changing. In these scenarios, people tend to select influential individuals multiple times instead of once. Namely, 
selections are raised sequentially, forming a sequence (query sequence). It raises several new challenges due to changing 
influential individuals. In this paper, we explore the problem of Influence Maximization over Streaming Graph (SGIM). Then, 
we design a compact solution for storing and indexing streaming graphs and influential nodes that eliminates the redundant 
computation. The solution includes Influence-Increment-Index along with two sketch-centralized indices called Influence-
Index and Reverse-Influence-Index. Computing influence set of nodes will incur a large number of redundant computations. 
So, these indices are designed to keep track of the nodes’ influence in sketches. Finally, with the indexing scheme, we present 
the algorithm to answer SGIM queries. Extensive experiments on several real-world datasets demonstrate that our method 
is competitive in terms of both efficiency and effectiveness owing to the design of index.

Keywords  Influence maximization · Network diffusion · Dynamic · Sketch · Index

1  Introduction

With the prevalence of social networks, more and more 
people are engaged in online activities where they interact 
with each other and produce an unprecedented amount of 
content. By making better use of these data, we can improve 
our comprehension of information diffusion which plays a 
significant role in a variety of practical applications includ-
ing rumor control [1, 2], social recommendation [3], and 

business performance optimization [4]. One of the most 
extensively studied problems of social networks is Influence 
Maximization (IM) [5] which originates from viral market-
ing [6]. It aims to select a subset of individuals to adopt a 
new product and trigger a large cascade of further adoptions. 
This problem has attracted researchers from different fields 
ever since its formulation. Many effective approaches have 
been proposed over the last decade.

Most of them are under the assumption of static networks. 
However, the social networks, rapidly evolving in the real 
world [7], are innately dynamic. The fact that the classical 
IM fails to capture the dynamics of these networks motivates 
many researchers to pursue the answers in dynamic scenar-
ios from different perspectives. Some extend the original 
problem from static scenarios to dynamic ones [8–10]. They 
try to reuse some intermediate data to avoid recomputing 
from scratch, so that the target set can be calculated effi-
ciently when the network changes. And some others pro-
pose new models in consideration of different factors like 
data recency [11] and user distinction [12]. While research-
ers have explored the dynamic aspect of network to some 
extent, most of them ignore the fact that not only the graph 
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is evolving but also the requirement of user selections (que-
ries) are raised sequentially which form a query sequence. 
From a more practical standpoint, queries are prevalent in 
real life. There are many rounds of promotions to adver-
tise the products rather than merely one round. Every time 
when promoters launch viral marketing campaigns for pro-
motion purpose, a set of users are selected. Previous works 
regard different queries as isolated events. In this way, when 
analysis is carried out in a static angle, the users who were 
selected previously are highly likely to be chosen repetitively 
due to their centrality. As a result, selections that have large 
“overlaps” will be generated. This will definitely dampen 
the cascade effect of further adoptions, since users who have 
been influenced might experience a period that is similar to 
refractory period in physiology. During refractory period, 
a body organ or cell is incapable of repeating a particular 
action or reacting to a repetitive stimulation. The effect of 
each selection can be viewed as a stimulate to evoke users’ 
desire to shop. Like the viscera, influenced users tend to be 
hard to be influenced again, since they are still “activated” or 
they show a dwindling appetite for similar stimulus in short 
terms. Therefore, selections with large overlapping cannot 
guarantee the effectiveness among several queries.

As mentioned before, regarding each query as inde-
pendent one will be disadvantageous to further adoptions. 
Therefore, we investigate a new problem called Influence 
Maximization over Streaming Graphs (SGIM) which 
aims to find the seed set that has the maximum influence 
when considering previous query sequence. One of the 
major challenges of the problem formulation is its inborn 
uncertainty. Due to complex relationships among nodes, 
the possibility with which a node influence another node 
cannot be deduced from the uncertain graph and whether 
an individual is truly influenced cannot be observed. Thus, 
it is infeasible to directly remove the influenced individu-
als from selection candidates. To address this issue, we use 
sketch-based methods to transform an uncertain graph to 
many deterministic sketches which can be viewed as many 
possible worlds. Then, the results in each possible world are 
aggregated to estimate the expectation of influenced users 
that have not been influenced before. Additionally, users who 
have been activated will experience “refractory period” and 
they can recover from this state and become capable of being 
influenced again after some time. Consequently, we adopt 
the sliding window model [13] to manage the nodes in the 
“refractory period”.

To solve the SGIM problem, the difficulty lies in the 
dynamic features of the problem. In real world, social net-
works are highly dynamic, evolving rapidly. When network 
evolves, the obtained answer soon becomes outdated. In the 
meantime, queries are raised successively and form a query 
sequence. These two evolving factors both raise the ques-
tion of how to efficiently identify the users with maximum 

expectation of newly influenced users at any time. We find 
that directly extending the existing algorithms in static sce-
narios to this new problem will incur inefficiency in terms 
of time and space. And the cause is redundant computation 
among different sketches and queries. For each sketch, the 
search algorithm will be performed to acquire the average 
of node influence. We construct Influence-Increment-Index 
to avoid running from scratch when answering queries along 
with two sketch-centralized indices called Influence-Index 
and Reverse-Influence-Index to aid in the maintenance of 
Influence-Increment-Index. We also design update algo-
rithms and its optimized version to prune unnecessary opera-
tions during index maintenance. Besides, we maintain the 
results of query sequence with sliding window model. Two 
extra indices are designed to facilitate the update process. 
With the aid of these components, SGIM problem can be 
solved expeditiously in a steaming manner.

In summary, our main contributions are as follows:

•	 Motivated by practical factors, we formalize a new 
problem called Influence Maximization over Streaming 
Graphs (SGIM) which takes the influence of the most 
recent � queries into consideration.

•	 We construct Influence-Increment-Index along with 
Influence-Index and Reverse-Influence-Index to save 
the intermediate results and devise corresponding update 
algorithms. We introduce prune technique to speed up the 
update process.

•	 We maintain the results of evolving query sequence with 
sliding window and design two extra indices to expedite 
its update.

•	 We experimentally demonstrate the efficiency and effec-
tiveness of our method on several real-world graphs.

2 � Related Work

2.1 � Influence Maximization in Static Networks

The last decades have witnessed the booming of influence 
maximization approaches which can be classified into three 
categories: the simulation-based algorithms [5, 14–16], the 
heuristic-based algorithms [17, 18] and the sketch-based 
algorithms [19–24].

The simulation-based methods repeatedly simulate the 
diffusion process to obtain an approximation of influence 
spread. Some optimization approaches have been proposed 
to alleviate the pain of expensive computation caused by 
Monte Carlo (MC) simulation [5]. They either decrease the 
number of simulations [14, 15] or reduce the complexity of 
MC simulation [16].

The heuristic-based methods estimate the influence of a 
node according to some metrics (such as using degree [17] 
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or using local arborescence structures of each node [18]) 
rather than running heavy MC simulations. These methods 
are more scalable and efficient than the simulation-based 
methods, but they often lack theoretical guarantee, thus gen-
erating poor quality seeds in some datasets.

The sketch-based methods provide efficient solutions with 
a good guarantee. They rely on sampling-based exploration 
and estimate the influence with the aid of generated sketches, 
such as forward influence sketch [19–21] and reverse reach-
able sketch [22–24]. Rather than repeatedly running simula-
tions, they generate sketches that capture the diffusion pro-
cess through simulations. As the names suggest, the forward 
influence sketch method generates sketches by conducting 
forward simulations while reverse reachable sketch method 
builds sketches by performing reverse simulations.

These methods are proposed in static scenarios and 
directly applying them to dynamic scenarios is computa-
tionally expensive.

Recently, there is another type of work called adaptive 
IM [25–29], which has attracted many researchers’ atten-
tion. These works assume that the feedback in the real-world 
is available. In this way, k seeds can be selected in batches 
rather than at once since researchers could use the feedback 
to choose more high-quality seeds in the following selec-
tions. Han et. al. [25] extends the reverse reachable sketch 
work to select the most influential nodes in a batch and then 
rule out the influenced nodes with the observation of real-
world data. In the next batch, the selection is based on the 
new graph that the influenced nodes have been removed. 
This process continues until all seeds are selected. This line 
of work emphasizes that different batches of selections are 
not independent with previous ones. However, the actual 
feedback sometimes cannot be observed in real life. Without 
the observation of feedback, it will be hard to extend these 
works to dynamic scenarios.

2.2 � Influence Maximization in Dynamic Networks

There are several recent studies of IM problem in dynamic 
networks [8–10, 30–32]. The majority of the literature 
focus on solving the problem extended directly from static 
networks which aim to acquire seeds efficiently when the 
networks change. Song et al. [8] devised an Upper Bound 
Interchange Greedy (UBI) approach which started from 
previously found seed set with node replacement instead 
of constructing the set from scratch. Ohsaka et al. [9] and 
Yang et al. [10] extended the sketch-based method [22]. 
They maintained a sample of random RR sets and devised 
incremental algorithms for updating the sets when networks 
change. The problem they tried to solve is a special case of 
our proposed problem.

There are also some variants of IM in dynamic networks 
considering specific conditions. Zhao et al. [11] is concerned 

about data recency which means that older user interactions 
are less significant than more recent ones when evaluating 
influence. Thus, they proposed a general time-decaying 
dynamic interaction network (TDN) model to smoothly dis-
card outdated data and designed three efficient algorithms 
based on this model. Huang et al. [12] modeled evolving 
network as a sequence of snapshots and proposed a new 
problem called DIM which aims to find a fixed seed set of 
k target users to maximize the influence spread over dis-
tinct users in an evolving social network. They integrated 
all the snapshots for one selection and devised two different 
strategies (HCS and VCS) to solve the DIM problem. They 
think influencing a large number of different people is more 
important. This motivates us to pay attention to the value of 
user distinction, but instead of focusing on one query, we are 
more concerned about the query sequence.

3 � Preliminaries and Problem Formulation

In this section, we extends classical IM problem in static 
scenarios to dynamic ones. Several notations are listed in 
Table 1.

3.1 � Preliminaries

A static graph is composed of fixed nodes and edges. While 
in dynamic scenarios, a graph is always evolving, which can 
be defined as a sequence of streaming edges.

Definition 1  (Streaming Graph) A streaming graph con-
sists of an infinite stream of edges that arrive chronologi-
cally. Each edge in the stream is a 5-tuple (u, v, + , p, t) 
where u is the source node, v is the destination node, +∕− 
is the notation which indicates whether the edge is inserted 
or removed, p is the probability with which u can influence 
v, and t is the timestamp when the edge arrives.

In this paper, we only consider the edge insertions. But 
edge deletions can also be integrated into the solution in a 
similar way. Edge insertions and deletions are both frequent 
actions in the social networks. For example, the “retweet” 

Table 1   Notations

Notation Description

SG
i

The i-th sketch of graph G
IS

SG
i
(S) The influenced node set of S in the i-th sketch

�(S) The influence spread of node set S
BS

i
The blocked nodes maintained in the sliding window in 

the i-th sketch
INC

G
(S) The influence spread increment of node set S in graph G
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actions on Twitter, the “reply” actions on Stackoverflow, 
and the “comment” actions on Facebook are all common 
activities in the real world. These actions insert edges when 
they are created, and the edge is deleted when that action is 
canceled.

Definition 2  (Snapshot) A snapshot at a specific timestamp 
t is a graph that consists of nodes and edges appearing before 
timestamp t.

To capture the state of streaming graph at timestamp t, a 
snapshot can be constructed. For each snapshot, influence 
of nodes and node sets can be evaluated as influence spread. 
Our problem is based on a widely adopted information diffu-
sion model called Independent Cascading model (IC model) 
[5]. In this model, each edge e = (u, v) has a weight puv rep-
resenting the probability with which u can activate v. Given 
an initial activated set (seeds), the independent cascading 
process unfolds as follows. The active nodes will activate 
their dormant neighbors with corresponding probabilities. 
This process is iterated recursively until no more activation 
happens.

The influence spread of seeds S, denoted by �(S) , is the 
expected number of activated nodes after the cascading pro-
cess. Since �(S) cannot be derived analytically sometimes, 
simulation-based methods [33] can be applied to simulate 
the activation process for many times. Due to the heavy com-
putational cost of simulation process, sketch-based methods 
[33] are proposed to approximate the expectation, which 
have already been exploited in many previous researches 
[19, 20]. One of the sketch-based methods is called forward 
influence sketch approach. This approach transforms a prob-
abilistic graph to scores of deterministic sketches with coin 
flip technique and performs reachability test on each of these 
sketches to estimate influence spread.

Definition 3  (Sketch) A sketch is an instance induced by 
the diffusion process. Given a graph (snapshot) G, a sketch 
(denoted by SGi ) is constructed by removing each edge 
e = (u, v) with probability 1 − puv from G.

Definition 4  (Influence Set) The Influence Set of a seed set 
S in a sketch SGi (denoted by ISSGi

(S)) is the set of nodes 
reachable from S in sketch SGi.

Given R sketches SG1, SG2,… , SGR and a set S, �(S) is 
estimated by averaging the number of nodes that are reach-
able from S on different sketches.

(1)�(S) =

∑R

i=1

���ISSGi
(S)

���
R

The influence maximization problem (IM) is to find a seed 
set S∗ of k nodes that satisfies:

Although Kempe et al. [5] proved that this problem is NP-
hard, owing to the property of monotonity and submodular-
ity of function �(S) , a greedy hill-climbing strategy (Algo-
rithm 1) can achieve an approximation ratio of (1 − 1∕e) to 
the optimum solution. This greedy strategy iteratively adds 
the node v with a largest marginal gain ( �(S ∪ {v} − �(S) ) 
until k nodes have been selected.

Algorithm 1: greedy hill-climbing
1 S = {} ;
2 for i = 1 to k do
3 vi = argmaxv∈V \Sσ(S ∪ {v})− σ(S);
4 S = S ∪ {vi};
5 end
6 return S;

3.2 � Influence Maximization over Streaming Graphs 
(SGIM)

3.2.1 � Problem Formulation

Due to the observation that graph evolves and large-over-
lapping selections will reduce the effectiveness, we propose 
a new problem. We focus on dynamic graph rather than a 
static one. Besides, we take into account mutual interaction 
of different queries. As shown in Fig. 1, the graph evolves 
with the arrival of new edges. When a query is raised, the 
corresponding snapshot at that time can be obtained to cap-
ture the latest state of streaming graph. There are two points 
about mutual interaction when answering a query. On one 
hand, the results of previous queries will definitely have a 
strong impact on the effectiveness of current selection. On 
the other hand, the effect of past selections is not permanent. 
A user who has been influenced in the past will still have 
the chance to be influenced again after some time. There-
fore, the query is then answered by considering both the 
current snapshot and certain number of previous selections. 
Specifically, we adopt the sliding window model [13] and 
utilize the active window to control the range of the effect. 
Given an infinite stream of queries, let current query be Qt , 
the influence results of query Qt−� , Qt−�+1 , ..., Qt are in the 
active window of sliding window where � is the window 
length. And the length of active window means how many 
number of rounds that needs to be considered. By focusing 
on the freshest data in the active window and ignoring the 
oldest data, nodes that have been recently influenced can 
be ruled out and blocked nodes can be activated again after 

(2)S∗ = argmaxS⊆V and |S|=k𝜎(S)



343Maximizing Influence Over Streaming Graphs with Query Sequence﻿	

1 3

some time. Each data element in the active window records 
the influence of that round of selection and expires exactly 
after � rounds of queries, which means the influenced/acti-
vated nodes in the active window are blocked for following 
� rounds and they can be influenced again after the release.

We generate several sketches for a snapshot to estimate 
the expectation of newly activated nodes. When a query is 
raised, those nodes that have been influenced in previous 
� rounds of queries are correspondingly ruled out in each 
sketch. We denote the blocked nodes in the active window in 
the i-th generated sketch ( SGi ) as Blocked Set BSi . And then 
the expectation of newly activated nodes can be estimated 
by influence spread increment.

Definition 5  (Influence Spread Increment) Given R 
sketches SG1 , SG2 , ..., SGR of snapshot G, the result of 

previous � rounds of queries BS1,BS2,… ,BSR , and a set 
S, influence spread INCrement of S equals the average of 
the number of the nodes which are activated in the most 
recent round of selection in each sketch. Therefore, influence 
spread increment of snapshot G is defined as

For example, in Fig. 1, when query Qi+2 is raised, nodes 
v1 , v3 , v4, and v5 are blocked in the first sketch, and node 
v1 , v4 , and v5 are blocked in the second sketch. Therefore, 
node v7 can newly influence node v7 , v2 , and v8 in the first 
sketch while influencing node v7 in the second sketch. Con-
sequently, the influence spread increment of node v7 equals 
2. Since our goal is to find the maximum influence spread 

(3)INCG(S) =

∑R

i=1

���ISSGi
(S)⧵BSi

���
R

Fig. 1   SGIM model ( �=2, number of sketches=2). Current query 
Q

i+2 takes into the account of the results of Q
i
 and Q

i+1 when obtain-
ing the influence spread increment for each node. After the query 

process completes, new nodes are blocked (shaded circle). Therefore, 
the window slides and the blocked nodes in the active window change 
correspondingly
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increment instead of influence spread, we formulate SGIM 
problem as follows.

SGIM problem Given positive integer k, SGIM problem 
is to find the seed set S∗ of k nodes in the latest snapshot of 
streaming graph G when a query happens that satisfies:

Since the classical IM problem is NP-hard and is a special 
case of SGIM problem when setting � to 0, SGIM problem 
is also NP-hard.

3.2.2 � Property

Now, we prove that the objective function INCG(S) is mono-
tonic and submodular under the IC model.

Proof 1  (Monotonicity) For each sketch, BSi is fixed and add-
ing a node v to set S guarantees ISSGi

(S) ⊆ ISSGi
(S ∪ {v}) , 

s o  |ISSGi
(S)⧵BSi| w i l l  n o t  d e c r e a s e .  T h u s , 

INCG(S ∪ {v}) ≥ INCG(S) is always satisfied. 	�  ◻

Proof 2  (Submodularity) A function F is submodular if 
F(S1 ∪ {v}) − F(S1) ≥ F(S2 ∪ {v}) − F(S2) holds for ∀ v, ∀ 
(S1, S2) where S1 ⊆ S2.

Recap that INCG(S) =

∑R

i=1

���ISSGi
(S)⧵BSi

���
R

 , we only need to 
prove that for each i, function |||ISSGi

(S)⧵BSi
||| is submodular, 

as the non-negative linear combination of submodular func-
tion is also submodular. Given SGi and BSi , let

we only need to prove that for any S1 ⊆ S2 , H(S1) ≥ H(S2) . 
Instead of providing a theoretical analysis, we turn to a 
more intuitive way to show the property of submodularity  
(Fig. 2). As the equation illustrates, H(S) equals the number 
of elements that are in ISSGi

({v}) while not in ISGi
(S) or 

BSi ( |ISSGi
({v})⧵(ISGi

(S) ∪ BSi)| ). Therefore, H(S1) equals 
the number of elements in black area which is uncovered by 
grey circle and white circle, and H(S2) equals to the number 

(4)S∗ = argmaxS⊆V∧|S|=kINCG(S)

H(S) =
|||ISSGi

(S ∪ {v})⧵BSi
||| −

|||ISSGi
(S)⧵BSi

|||,

of elements in black area which is uncovered by shaded cir-
cle and white circle. Since S1 ⊆ S2 , ISSGi

(S1) ⊆ ISSGi
(S2) , 

which means that the area of the shaded circle is larger or 
equal to the grey circle. Conclusion can be drawn according 
to the uncovered area that H(S1) ≥ H(S2) . 	�  ◻

3.2.3 � Extension of IM Solutions to Solve SGIM Problem

Since our objective function satisfies monotonicity and 
submodularity at the same time, we can use greedy algo-
rithm to approximate the optimum to within a factor of 
(1 − 1∕e)(where e is the base of natural logarithm) [5]. The 
algorithm goes as follows. When a new query arrives, the 
blocked nodes can be ruled out in each sketch based on 
the memory of the most recent results. Then, the influence 
spread increment of a node v can be obtained by averaging 
the number of nodes that are reachable from node v while 
not in the blocked set in each sketch. The node with the 
maximum marginal gain is selected successively until the 
query finishes.

However, this approach may require large storage for 
sketches and induce redundant computation among queries. 
We design intermediate results to facilitate the query process 
with the aid of Influence-Increment-Index along with sketch-
centralized Influence-Index and Reverse-Influence-Index.

4 � Influence‑Increment‑Index

When a query is raised, running from scratch will incur a 
large amount of redundant computations. We analyze those 
inessential operations and design Influence-Increment-Index 
to facilitate generating answers efficiently. Besides, we 
design two types of indices to assist in the update of Influ-
ence-Increment-Index. Since the reliance on the sketch-sep-
arated principle is one of the major reasons of inefficiency, 
we carefully design them in a sketch-centralized manner.

4.1 � Structure

The core to answer a query is obtaining the influence spread 
increment of each node. To obtain the value, two phases are 
typically required. The first phase is to get the influence set 
of the node. The second phase is to count the number of 
influenced nodes in each sketch that are not blocked. Specifi-
cally, for each node v, given blocked nodes BI  , its influence 
spread increment can be calculated by Algorithm 21 ,2.

Fig. 2   Submodularity. The black circle denotes the influence set of 
node v in sketch SG

i
 . The white circle denotes the blocked nodes in 

sketch SG
i
 . The grey and shaded circle correspondingly denotes the 

influence set of node set S1 and S2 in sketch SG
i

1  count operation of a bitset returns the number of ones in the bitset.
2  flip operation of a bitset converts zeros into ones and ones into 
zeros.



345Maximizing Influence Over Streaming Graphs with Query Sequence﻿	

1 3

Algorithm 2: Influence Spread Increment
Data: v, BI

1 increment = 0;
2 T = get influence set of v in each sketch by performing a search;
3 for (vi, bi) in T do
4 if vi not in BI then
5 increment += bi.count

[1];
6 end
7 else
8 increment += (bi&BI[vi].f lip[2]).count;
9 end

10 end

Since the influence set of nodes and blocked nodes change 
gradually in the dynamic scenarios, influence spread increment is 
also evolving correspondingly. Consequently, we can incremen-
tally update influence spread increment rather than running from 
scratch. We maintain the value of influence spread increment in 
Influence-InCrement-Index ( CI ) so that it can be directly used to 
efficiently generate seed set as the answer. Each node v can obtain 
its influence spread increment by getting the value of CI[v].

During the graph evolution, if the subgraph that contains 
a certain node has not changed, then the node’s reachability 
would not change, either. In this case, there is no need to 
compute from scratch. On other occasions where its reach-
ability has changed, in order to get the latest reachability, 
one way is to recompute. This will guarantee the accuracy 
of reachability, but it neglects the unchanged calculation 
that can be utilized to expedite the process of retrieving 
the influence set, resulting in computational overhead. So 
maintaining the intermediate results of the influence set 
would avoid repeating the same process when answering 
different queries. Furthermore, during the query process, 
the maintained results can also assist in answering SGIM 
queries since less update operations are needed when a node 
is selected. Therefore, we maintain the influence set of each 
node in Influence-Index. Motivated by work [12], we also 
use bitset to represent the reachability in different sketches.

Influence-Index of a node v (denoted by v.II  ) records its 
influence in different sketches. v.II  is composed of a series 
of tuples {(v0, bR0 ), (v1, b

R
1
),… , (vi, b

R
i
),…} which contains 

a node id vi and a corresponding bitset bR
i
 , while R stands 

for the number of generated sketches. Tuple ( vi, bRi  ) in v.II  
means node v can reach vi in at least one of the R sketches, 
and bR

i
 , which aggregates the reachability between these two 

nodes in R sketches, can be viewed as the weight of a virtual 
edge between v and vi . If the i-th number in bR

i
 equals one, it 

means node v can influence node vi in the i-th sketch.
Equipped with Influence-Indices, we can compute the 

latest influence spared increment for any node v when its 
influence set or the blocked nodes have changed. How-
ever, the maintenance of Influence-Indices itself can also 
be time-consuming if only the information of influence 
is stored. Therefore, we also maintain the information of 

reverse influence in Reverse-Influence-Indices to facilitate 
the update of Influence-Index when an edge is inserted.

Reverse-Influence-Index of a node v (denoted by v.RI  ) 
records its reverse influence in different sketches. v.RI , which 
has a similar structure with v.II , is composed of a series of tuples. 
Each tuple ( vi, bRi  ) in v.RI means node vi can reach v in at least 
one of the R sketches, and bR

i
 aggregates the reachability between 

these two nodes in R sketches. If the i-th number in bR
i
 equals one, 

it means node vi can influence node v in the i-th sketch.

4.2 � Update Indices

When an edge is inserted, a part of nodes’ reachable nodes will 
change, raising the requirement of updating maintained indi-
ces. Specifically speaking, when edge (u, v, + , p, t) is inserted 
to the graph, the Influence-Index of u and its ancestors in the 
graph along with the Reverse-Influence-Index of node u and its 
children will change. Consequently, the influence spread incre-
ment of node u and its ancestors become different. As shown 
in Fig. 3, when edge ( v3 , v5 , + , 0.5, t) is inserted, Influence-
Index of node v3 and its ancestors v1 and v7 are different after 
the edge insertion. Reverse-Influence of node v3 and its child 
v8 also changes. Naturally, Influence-Increment-Index changes 
along with Influence-Index. We can use a reverse search from 
node u to visit the ancestors and update their maintained indi-
ces. Since the way reachable nodes transmits along the path 
matches Depth-First Search (DFS)’s nature of going in depth, 
DFS is more suitable than Breadth-First Search (BFS) in this 
scenario. Therefore, the algorithm of update indices goes as 
follows. When edge (u, v, + , p, t) arrives, bitset uv is generated 
according to probability p where each bit represents whether 
the edge (u, v) is inserted to each sketch. After inserting the 
generated bitset to compressed graph,3 the indices are updated 
during the reverse DFS process. A naive update algorithm is 
first introduced and then an improved version with pruning 
technique is illustrated afterward.

Algorithm 3: naive-UpdateOneNode
Data: u, uvEdge, updateIndex

1 for (vt, bt) in updateIndex do
2 old value = u.II[vt];
3 new value = u.II[vt] | (uvEdge & bt);
4 if old value ∧ new value �= 0 then
5 u.II[vt] = new value;
6 vt.RI[u] = new value;
7 CI[u] += (new value & QInf [vt].flip).count-(old value & QInf [vt].flip).count;
8 end
9 end

4.2.1 � Naive Algorithm for Intermediate Results Update

The reachability between nodes in a compressed graph 
is represented by a bitset rather than a bool value. If the 

3  We adopt the same graph structure as [12] in which the edge in the 
graph is a bitset.
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reachability from u to v in R sketches is buv and from v to 
t is bvt , then it equals buv&bvt from u to t. This property is 
used when updating the indices. In Algorithm 3, vt denotes 
the nodes that could be reached from v. Given a bitset bt 
which contains the reachability between v and vt , the latest 
reachability Ruvt

 between u and vt can be calculated as shown 
in 3th line. Subsequently, node u’s Influence-Index ( u.II  ), 
node vt ’s Reverse-Influence-Index ( vt.RI  ) and u’s influence 
spread increment ( CI[u] ) are updated with Ruvt

.

Algorithm 4: naive-UpdateNodes
Data: u, uvEdge, updateIndex

1 if (visited[u].flip & uvEdge) == 0 then
2 return;
3 end
4 visited [u] |= uvEdge;
5 naive-UpdateOneNode(u, uvEdge, updateIndex);
6 for va in u’s ingoing neighbors do
7 evau = get edge from va to u(a bitset);
8 naive-UpdateNodes(va, uvEdge&evau, updateIndex);
9 end

This operation of intermediate results update of one 
node is then applied to u and its ancestors during reverse 
DFS (Algorithm 4). We also use a bitset rather than a bool 

value to record the visit information of nodes, denoted as 
visited[v] in the compressed graph.

4.2.2 � Pruned Algorithm for Intermediate Results Update

There are certain conditions when naive update algorithm 
will cause inefficiency. If node u can already reach v before 
the edge insertion, the intermediate results of node u and its 
ancestors do not need to be updated, because the insertion of 
this edge will not affect their reachability. As shown in Fig. 4, 
since the reachability from node v1 to node v5 has not changed, 
there is no need to update the indices of node v1 and v7.

Based on this observation, we propose pruned algorithm 
to filter out the invalid update operations in the naive algo-
rithm. Specifically, the pruning rule is described as follows. 
In each sketch, if node vt can reach node v before this edge 
insertion, then the intermediate results of vt and its ancestors 
do not need to be updated, which is implemented by skip-
ping node vt of performing the reverse DFS process. This 
rule will not reduce the accuracy.

Having been armed with the pruning rule, an improved 
algorithm on compressed graph is illustrated in Algorithm 5 
and 6. Rather than using the same piece of information 
( v.II  ) to update all the ancestors in Algorithm 3, the pruned 

Fig. 3   Influence-Index, Reverse-Influence-Index, and Influence-Increment-Index change when an edge is inserted
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update algorithm uses different information for different 
ancestors. For each ancestor va , only necessary information 
that will influence va ’s reachability will be used. During 
the process of reverse DFS, the size of updateIndex will 
continue to decrease by screening off the unchanged nodes. 
Besides, when the updateIndex becomes empty for a node vt , 
the algorithm stops updating the reachability of vt ’s ances-
tors. Since the reachability of node vt has not changed, its 
ancestor’s reachability will not change, either. In a nutshell, 
the pruning technique can both prune the number of times 
that an ancestor is visited and the number of times that the 
node in node v’s reachability set is visited while warranting 
the accuracy.

Algorithm 5: pruned-UpdateOneNode
Data: u, v, updateIndex

1 uvEdge=get edge from u to v(a bitset)
2 for (vt, bt) in updateIndex do
3 old value = u.II[vt];
4 new value = u.II[vt] | (uvEdge & bt);
5 if old value ∧ new value �= 0 then
6 u.II[vt] = new value;
7 vt.RI[u] = new value;
8 CI[u] += (new value &
9 QInf [vt].flip).count-(old value & QInf [vt].flip).count;

10 updateIndex[vt] = old value ∧ new value;
11 end
12 else
13 remove tuple (vt, bt) from updateIndex;
14 end
15 end

Algorithm 6: pruned-UpdateNodes
Data: u, uvEdge, updateIndex

1 if (visited[u].flip & uvEdge) == 0 then
2 return;
3 end
4 visited [u] |= uvEdge;
5 pruned-UpdateOneNode(u, v, updateIndex);
6 if updateIndex is not empty then
7 for va in u’s ingoing neighbors do
8 evau = get edge from va to u(a bitset);
9 pruned-UpdateNodes(va, uvEdge&evau, updateIndex);

10 end
11 end

5 � Solution

SGIM problem needs to consider the result of last � rounds 
of queries. In this section, we will first introduce how to 
maintain the results of query sequence and then how to 
answer SGIM queries.

5.1 � Maintaining the Results of Query Sequence

We use sliding window model to manage the results of 
queries. Its active window (denoted as Blocked Window) 
records the results of last � rounds of queries and current 
query. Along with Blocked Window, we also save two extra 
indices to facilitate the query process. These three struc-
tures as shown in Fig. 5 store the results of previous query 
sequence in a more compact way.

Fig. 4   When a new edge 
(v3, v5,+, 0.5, t) arrives, v1 can 
reach v5 before this insertion, 
so the reverse DFS from v1 can 
be halted
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5.1.1 � Blocked Window (BW)

Blocked Window is the active window of sliding window 
model. It contains � + 1 data elements (denoted as BI� , BI�−1 , 
..., BI0 ), and each one chronologically represents the result 
of each query from left to right, while the rightest blank in 
Fig. 5 corresponds to the result of current query, which is 
initially empty. To be more specific, each data element is a 
tuple sequence and each tuple (v, bR

i
) means node v has been 

influenced in that round of query and thus is blocked for fol-
lowing � rounds of selections. The bitset bR

i
 is the detailed 

information in different sketch where value one means node 
has been influenced in that sketch.

When a new data element arrives, the oldest element is 
discarded and is no longer in the active window. For exam-
ple, as illustrated in Fig. 5, Blocked Window of Qi+2 main-
tains the query result of Qi , Qi+1 , and Qi+2 . When new query 
Qi+3 arrives, Blocked Window slides one step. Therefore, 
current Blocked Window of Qi+4 stores the query result of 
Qi+1 , Qi+2 , and Qi+3 . The sliding window model guarantees 
that the last � rounds of query sequences will be considered 
and the blocked nodes will have the chance to be activated 
again after � rounds.

5.1.2 � Query Sequence Influence and Count (QInf and QC)

Blocked Window maintains the results of previous query 
sequence; however, it is not convenient to directly use it to 
answer a query since the blocked nodes in each data ele-
ment need to be ruled out successively. This will make some 
common nodes in different sketches be processed more than 
once, resulting in extra computation. Therefore, we further 
maintain two aggregation indices—Query Sequence Influ-
ence (QInf) and Query Sequence Count (QC).

Query Sequence Influence (QInf) represents whether a 
node is influenced in each sketch during any of the selections 
(including the current one). In this way, the blocked nodes 

in different query is aggregated together and each blocked 
node will be merely processed once instead of several times 
when being ruled out. To be more specific, QInf is a tuple 
sequence and each tuple ( vi, bRi  ) means that node vi has been 
influenced and if the bit in bR

i
 equals one, then node vi has 

been influenced in that particular sketch. Its relationship 
with Blocked Window can be written as Eq. 5. The union 
operation compresses all indices into one by merging all 
bitsets for each node v ∈ ∪k

i=1
Ii.V

4 with OR operations.

Every time when the window slides, QInf is updated simul-
taneously. An naive way to fulfill this aim is to recalculate 
Eq. 5. However, part of the redundant computation can 
be spared since the information from BI�−1 to BI1 remains 
the same after one step. Based on this observation, Query 
Sequence Count (QC) is designed. It records the number of 
times of a node being influenced in each sketch across all 
past selections. Similarly, each tuple ( vi, bRi  ) in QC repre-
sents the detailed information in each sketch. It means that 
node vi has been influenced and it has been influenced bR

i
[i] 

times in the i-th sketch. It can be formulated as Eq. 6. The 
sum operation transforms bitsets for each node v ∈ ∪k

i=1
Ii.V  

into integer lists which are then added together. This opera-
tion aggregates scattered information of the blocked nodes 
so that these nodes can be processed unitedly when solving 
the SGIM problem.

We adopt lazy update strategy, resulting in the difference 
that QInf integrates BI0 , while QC does not. Since the query 
process is dependent on QInf, whenever a node is picked as 
seed, its influence set needs to be updated to QInf imme-
diately for subsequent selections. However, QC serves to 

(5)QInf = union(BI� ,BI�−1,… ,BI0)

(6)QC = sum(BI� ,BI�−1,… ,BI1)

Fig. 5   Sketch-centralized results 
of query sequence ( � = 2)

4  I.V denotes the set of all node ids in the index I.
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simplify computation during window slide movement exclu-
sively, so it can be updated after the selection of k seeds 
completes when the slide movement is ready and necessary 
to be performed.

5.1.3 � Update

During the query process, BI0 changes due to the selection of 
seed. After the query process completes, the sliding window 
slides one step. The outdated data are moved out, while new 
data element is moved in. Two corresponding algorithms 
(moveIn and moveOut) are illustrated in Algorithm 7 and 85.

Algorithm 7: moveIn
Data: data

1 union(BI0, data);
2 union(QInf, data);

Algorithm 8: moveOut
1 change = an empty index;
2 for [id, count]: BIθ do
3 old inf = QInf [id];
4 for i = 1 to R do
5 QC[id][i] += BI0[id][i]− count[i];
6 end
7 QInf [id] = toBitset[5](QC[id]);
8 if (old inf ∧QInf [id]).count ! = 0 then
9 change[id] = old inf ∧QInf [id];

10 end
11 if QInf [id].count == 0 then
12 remove id from QC and QInf ;
13 end
14 end
15 BW.remove(QS[0]);
16 BW.insert(empty data element);
17 return change;

moveIn(data) moves current blocked node into BI0 and 
updates QInf by performing union operations. This opera-
tion integrates the information of the blocked nodes in cur-
rent selection. According to our problem setting, the size of 
sliding window is fixed. Therefore, when a new data ele-
ment arrives, the Blocked Window slides one step. moveOut 
operation moves out BI� and moves in an empty data ele-
ment. It simultaneously updates QC and QInf. We bring in 
two operations called addCount and minusCount to update 
QC. They are supplementary to sum operation mentioned 
above. They aim to precisely modify the output of sum by 
integrating or disintegrating an index. Along with these two 
operations, Eq. 6 can be transformed to Eq. 7. In this way, 

instead of calculating the aggregation of Blocked Window 
from scratch, only incremental computation is needed.

QInf is updated by transforming each integer list in QC to 
a bitset. For each tuple in QInf, the XOR result of the bitset 
before and after the update is calculated and stored. This 
information is returned and will be further used to update 
intermediate result CI .

5.2 � Answering SGIM Queries

The solution (Algorithm 9) consists of five phases which 
will be introduced sequentially. Firstly, the node vi with 
the maximum influence spread increment is added to the 
seed set. Secondly, the result of query sequence is updated 
by performing moveIn operation according to the selected 
seed. This step blocks the nodes that are influenced by the 
newly selected seed vi , which guarantees the effectiveness 
of following selections. Thirdly, the intermediate result CI  
is updated due to the insertion of the blocked nodes. After 
these three phases are repeated until all k seeds are selected, 
moveOut operation is performed to discard outdated data. 
Lastly, the intermediate result CI  is updated correspondingly 
due to the release of blocked nodes.

Algorithm 9: query
Data: k

1 S = {} ;
2 for i = 1 to k do
3 vi = argmaxv∈V \SCI[v];
4 S = S ∪ {vi};
5 moveIn(vi.II);
6 updateCI (vi.II, true);
7 end
8 changedData = moveOut();
9 updateCI (changedData, false);

10 return S;

The insertion and the release of blocked nodes both con-
tribute to the change of the intermediate result CI  . We pre-
sume that vi is a node which is removed due to the release 
of blocked nodes and bi aggregates detailed information 
in different sketches. If i-th bit in bi equals one, it means 
that node vi was blocked before this removal and has been 
released after the movement in the i-th sketch. We suppose 
node vj can reach node vi in some sketches. Since node vj can 
only influence node vi in sketches where vi is not blocked, 
the release of vi in some sketches where it was blocked will 
enable vj influence vi in those sketches, leading to an increase 
in CI[vj] . A detailed illustration when sketch number equals 
2 is presented in Fig. 6. The incremental contribution to 
the influence spread increment made by node v2 to node v7 
in all sketches can be calculated as the number of ones in 

(7)QC = minusCount(addCount(QC,BI0),BI�)

5  toBitset operation transforms a list to a bitset by converting zero to 
bit zero and other value to one.
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the AND results. The update operation due to the insertion 
of blocked nodes goes similarly. The whole algorithm for 
update the intermediate result is presented in Algorithm 10. 
For each node that has been released in some of the sketches, 
its ancestors’ values in CI  are updated according to their 
reachability and condition of whether the update operation 
is due to a removal movement or an insertion one.

Algorithm 10: updateCI
Data: data, flag

1 for (vi, bi) in data do
2 for (vj , Rji) in vi.RI do
3 if flag then
4 CI[vj ] -= (bi&Rji).count;
5 end
6 else
7 CI[vj ] += (bi&Rji).count;
8 end
9 end

10 end

5.3 � Analysis

In this section, we analyze the time complexity of our pro-
posed solution and also show the comparison with other 
methods. Additionally, we further provide the theoretical 
guarantee on the number of sketches.

5.3.1 � Time Complexity Analysis

In algorithm 9, line 3 and line 4 take O(1) time. The moveIn 
operation in line 5 can be regarded as two union operations 
of indices. Suppose that each bitwise operation takes O(c) 
time and the number of nodes and edges in the current graph 
is denoted as n and m. Merging two indices can be imple-
mented in O(cn) time. The updateCI operation takes O(cn2) 
time to traverse the nodes and perform bitwise operations. 
The moveOut operation takes O(nR) time for modifying the 
frequency value in each sketch. Therefore, the complex-
ity for algorithm 9 is O(ckn2 + nR) . The complexities of 
algorithms that are extended from previous researches to 
answer this query are as follows. The typical Monte Carlo 
simulation method (MC method) would run R rounds of 
simulations while excluding the already influenced nodes. 
The cost to compute the nodes that have been influenced/
blocked in each round of previous queries is O(�nR) for each 
node. The total complexity is O(�Rkn2 + mnRk) . Since [20] 
provides several techniques to speed up the MC method 
but does not substantially improve the complexity, its com-
plexity stays the same as O(�Rkn2 + mnRk) . While using 

the same strategy with our method to maintain the query 
sequence in the extended version of [12], its complexity is 
O(cmnRk + mR + nR) . Owing to the strategy that we exploit 
to maintain the results of query sequence, the parameter � is 
moved out from the time complexity equation. Furthermore, 
since real-life graphs usually have more edges than nodes, 
our method has better complexity than the method extended 
from [12]. As analyzed above, the bottleneck of our method 
is the update process. It will take a long time when the num-
ber of influenced nodes is large. However, it is unavoidable 
if we would like to keep track of the exact number of incre-
ments in each sketch. In the future, maybe heuristic methods 
with good guarantees can be proposed to seek an estimated 
value instead of an exact one.

5.3.2 � Theoretical Guarantee on the Number of Sketches

We follow similar steps in [20] and theoretically analyze the 
error ratio of estimated influence spread increment. Firstly, 
we introduce Hoeffding’s inequality.

Theorem 1  (Hoeffding’s inequality) Let X1,X2,… ,Xn be 
independent random variables in [0, 1]. Let X̄ =

1

n

∑n

i=1
Xi . 

Then, Pr[|X̄ − X| > t] ≤ 2e−2nt
2.

Lemma 1  Let G be a graph and S be a family of node 
sets. Let R = O(

1

�2
log

2|S|
�
) . Then, with probability at least 

1 − � , |INCG(S) − EG(S)| ≤ �n for every set S ∈ S , where 

INCG(S) =

∑R

i=1

���ISSGi
(S)⧵BSi

���
R

 and EG(S) denotes the expecta-
tion of the number of newly activated nodes.

Proof 3  For brevity, we denote |||ISSGi
(S)⧵BSi

||| as fSGi
(S) . 

Since each sketch is generated independently and 
fSGi

(S) ∈ [0, n] , for any set S ∈ S , by applying Hoeffding’s 
inequality on 1

n
fSG1

(S) , 1
n
fSG2

(S) , ..., 1
n
fSGR

(S) , we can acquire 

the relationship Pr[|INCG(S) − EG(S)| > 𝛼n] ≤ 2e−2𝛼
2R . 

Then, we apply the union bound over all sets in S , the prob-
ability that the condition |INCG(S) − EG(S)| ≤ �n is satisfied 
for every S ∈ S is at least 1 − 2|S|e−2�2R . We have the 
desired bound when we choose R = O(

1

�2
log

2|S|
�
) . 	�  ◻

Given a positive integer k, the number of node sets whose 
length equals k satisfies |S| ≤ kn . Thus, we have the above 
guarantee when we choose R = O(

1

�2
log

2kn

�
).

Lemma 2  Let � =
�OPT

2nk
 , the greedy algorithm returns 

a ( 1 − 1

e
− �)-approximate solution with at least 1 − � 

probability.
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6 � Experiments

In this section, we evaluate the effectiveness and efficiency 
of our proposed approach for SGIM problem on various real-
world datasets.

6.1 � Setup

6.1.1 � Datasets

Our method is exhaustively tested on 5 real-world datasets. 
The summary of these datasets is listed in Table 2.

6.1.2 � Environments

We conduct experiments on a Linux server with intel CPU 
(2.40GHz). All algorithms are implemented in C++ and 
compiled with -O3 option, and run in single thread.

6.1.3 � Compared Approaches and Parameters

We compare our method with the following algorithms 
extended from state-of-the-art methods of solving IM 

problem in static graphs and a baseline algorithm. The num-
ber of generated sketches is set to 200 in all sketch-based 
methods.

•	 baseline: the naive algorithm that is directly extended 
from the sketch-based method for solving IM problem in 
static scenarios.

•	 CSO: due to the compact and streaming features, we 
denote our method as a Compact Streaming Optimiza-
tion approach (abbreviated as CSO).

•	 VCS [12]: the algorithm extended from the VCS 
approach that uses compression techniques to manage 
graph.

•	 PMC [20]: the algorithm extended from PMC approach 
that exploits the existence of a hub to accelerate BFS for 
reachability tests.

6.1.4 � Probabilistic Settings

We validate the performance of algorithms under a classi-
cal probabilistic model called weighted cascade model [5]. 
In this model , probability of each edge e = (u, v) is set to 
1∕d−(v) . Since the graph is evolving, the in-degree of node 

Fig. 6   Blocked nodes in BW change due to the change of data ele-
ments. Consequently, the influence spread increment of some nodes 
change correspondingly. For example, before the release operation, 
node v2 is blocked in the first and second sketches (its INC equals 0); 
after the release operation, it has been released in these two sketches 

(its INC equals 1). The incremental equals 1 − 0 = 1 , which can also 
be calculated by ([10]&[11]).count = 1 , where [10] is the reachabil-
ity of edge ( v7, v2 ) and [11] is the XOR result of the blocked bitset of 
node v2 before and after the movement ( [11] ∧ [00] = [11])
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is changing, too. And the probability is generated based on 
the snapshot when the edge is inserted.

6.1.5 � Experimental Method

For evaluating effectiveness and efficiency of different meth-
ods when solving SGIM problem, we set up experiment as 
follows to model the SGIM problem. Firstly, we generate a 
preprocessed file from the original dataset. This file consists 
of two types of lines: edge line and query line. An edge 
line is a tuple (u, v, p) where u is the source node, v is the 
destination node, and p is the probability with which u will 
influence v. A query line is composed of a character “Q” 
and a positive integer k, which means how many nodes are 
expected to be selected in this round.

We first order the temporal edges in each dataset by time 
and use the first thr% of edges as the base graph. Then, the 
remaining edges in the dataset are inserted chronologically 
to model the streaming process. For example, there are 90 
edges as base graph and 10 edges as remaining graph, a 
random number r between (90, 100] is generated and the 
query is inserted exactly in the r-th line. In this experiment, 
thr = 90 , � = 3 , and 5 queries with k = 10 are inserted to 
each dataset.

In real life, graph is dynamic and queries can happen at 
any time. This can still be captured with the format of the 
preprocessed file. Then, given the preprocessed file, algo-
rithms for experimental evaluation run as follows: when an 
edge arrives, the edge is inserted into the graph. And when 
a query is raised, the SGIM query is answered based on the 
current snapshot and results of previous � rounds of queries.

6.2 � Experimental Results for the SGIM Problem

We compare different methods on these datasets in terms of 
Influence Spread Increment and running time. We conduct 
experiments to measure the maintenance cost of index, and 
the memory cost of methods with and without compres-
sion. Besides, we compare the insertion time of our pro-
posed approach with pruning technique and the one without 
pruning technique. The parameter � can also be set to other 

values, and the effect of this parameter will be analyzed 
afterwards.

6.2.1 � Influence Spread Increment

Figure 7a shows the influence spread increments that are 
calculated by different algorithms under weighted cascade 
model. influence spread increment of different algorithms 
are very close to each other. This means that seeds from 
these algorithms have close quality.

We also compare the influence spread and influence 
spread increment calculated by our proposed method. The 
result is shown in Fig. 7b. The value of influence spread 
increment is always smaller than influence spread, since 
those nodes influenced in previous selections are not 
included in the calculation. We further investigate the dif-
ference of these two concepts by a case study. In two con-
secutive rounds of queries when processing dataset higgs, 
the value of influence spread is 125 and 127, respectively, 
while the influence sets are highly overlapping with each 
other. However, the value of influence spread increment of 
these two same rounds of queries is 82 and 61, respectively, 
while the influence sets are different from each other. The 
result identifies that, following the greedy strategy of select-
ing nodes with maximum influence spread increment, the 
seeds can trigger larger cascade among different users than 
choosing nodes with maximum influence spread. Therefore, 
the advantage of influence spread increment is confirmed.

The largest dataset stackoverflow-c2q has a small influ-
ence spread increment. This is due to the scenario of the 
dataset. The dataset stackOverflow-c2q captures the relation-
ship of people who ask questions and who comment on the 
question. Each edge (u, v) represents that user u’s question 
has been commented by user v. This relationship is not as 
strong as the normal relationship among friends. The inter-
actions among users who post questions and comments are 
not that frequent as the ones among friends. Therefore, the 
influence spread increment is relatively smaller than the 
influence spread increment in other datasets despite its large 
size.

6.2.2 � Running Time

As depicted in Fig. 8, our proposed method CSO outper-
forms other compared methods, which shows that CSO is 
competitive in algorithm efficiency. Especially when graphs 
are large, the difference is much more significant, because 
running from scratch will result in more redundant com-
putations in this case. Indices are designed to speed up the 
process of query; however, it will simultaneously bring com-
putational overhead of maintenance. Our method greatly 
reduces query time compared with other methods; thus, the 
effectiveness of our index design is validated.

Table 2   Summary of datasets

aThe Higgs dataset consists of a mention network and a reply network 
denoted as higgs-MT and higgs-RE, respectively.

dataset # of nodes # of edges

mathoverflow [34] 24,818 506,550
Twitter-Higgsa [35] 304,198 555,481
askubuntu [34] 159,316 964,437
superuser [34] 194,085 1,443,339
stackoverflow-c2q [34] 1,655,353 20,268,151
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6.2.3 � Update Time of Index

Since the update operation is the most frequent operation 
when processing a streaming graph, we conduct experi-
ment to measure the maintenance cost of index. The result 
is as follows (Fig. 9). When a graph is dense, the cost 
of update becomes higher. Since the number of related 
nodes, whose influence spread increment has changed, 
is larger, and the update cost for each of these nodes is 
also higher.

6.2.4 � Memory Consumption

As shown in Fig.  10, our proposed method CSO could 
reduce the memory cost when compared with methods with-
out compression.

6.2.5 � Effect of Pruning Technique

The naive version of the insertion would incur large amount 
of unnecessary computations. And the prune version chips 
out the excessive calculation. We compare the average num-
ber of nodes that are visited during the insertion process. 
When an edge e = (u, v,+, p, t) is inserted, as explained in 
the naive version, every ancestor of node u would update its 
intermediate results with the information of node v’s reach-
able nodes (v.II). However, owing to the pruning technique, 
the ancestors are not necessarily visited and also the num-
ber of nodes that would make a difference to the ancestors’ 
reachability is decreasing during the reverse DFS process. 
The average number of times that ancestors are visited is 
illustrated in Fig. 11a, and the average number of times that 
nodes in v.II are visited is presented in Fig. 11b.

Fig. 7   Quality of seeds
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As shown by the figures, the pruning technique reduces 
both the average number of times ancestor is visited and the 
average number of times node in v.II is visited in all datasets. 
The decrease in the average number of times node in v.II is 
visited is more significant.

6.2.6 � Effect of Parameter �

We evaluate the performance of CSO with different val-
ues of � , including query time, insertion time, and influ-
ence spread increment. Owing to the transformation 
from equation QC = sum(QS[�],QS[� − 1],… ,QS[1]) to 
QC = minusCount(addCount(QC,QS[0]),QS[�]) , the pro-
cess of aggregating information across � queries is sim-
plified to one addCount and one minusCount operation. 
Thus, in Fig. 12a, the insertion time and query time are not 
increasing with � . Interestingly, the query time is decreas-
ing, which seems counterintuitive at first glance. However, 
this phenomenon is reasonable under further scrutiny. Under 
extreme circumstances, if � is big enough, all information 
of previous selections is maintained. The number of nodes 
whose influence spread increment needs to be updated is 
small, since nearly all nodes are blocked. Consequently, the 

query time decreases. Additionally, we conduct experiment 
to measure influence spread increment of different � . As 
shown in Fig. 12b, the influence spread increment decreases 
when � increases. This is due to the fact that when � becomes 
larger, the number of blocked nodes becomes larger. There-
fore, generally, the influence spread increment becomes 
small.

7 � Conclusion

In this paper, we propose and study the SGIM problem in 
which the graphs are modeled in a dynamic manner and the 
effect of query sequence is taken into account. While directly 
extending existing approach to address this issue will bring 
in non-negligible computational cost due to the redundant 
computation among sketches and queries, we design Influ-
ence-Increment-Index to avoid running from scratch along 
with two sketch-centralized indices called Influence-Index 
and Reverse-Influence-Index to facilitate the update process. 
We also design structure using sliding window and update 
algorithms to maintain evolving query sequence. By exploit-
ing these components, we can answer the query at the latest 

Fig. 8   Query time

Fig. 9   The time of index update
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Fig. 10   The memory cost of 
intermediate results with and 
without compression

Fig. 11   Number of visited nodes
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snapshot expeditiously. Extensive experiments on several 
real-world datasets have demonstrated that our method is 
competitive in terms of both efficiency and effectiveness 
owing to the indexing scheme.

In the future, we plan to further improve the scalability of 
the method and have a better performance on larger stream-
ing graphs. One way to achieve this is to propose heuris-
tic method to reduce the cost of updating influence spread 
increment. Additionally, the explore-exploit strategy, which 
is a trade-off between the value of activating some peripheral 
nodes versus giving the activated central nodes a second 
stimulation, will be applied to our method. Another future 
work is to extend reverse reachable sketch methods to solve 
this problem.
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