
Vol.:(0123456789)1 3

Data Science and Engineering (2021) 6:163–179
https://doi.org/10.1007/s41019-021-00156-2

A Workload‑Adaptive Streaming Partitioner for Distributed Graph
Stores

Ali Davoudian1 · Liu Chen2 · Hongwei Tu2 · Mengchi Liu3 

Received: 27 October 2020 / Revised: 4 February 2021 / Accepted: 25 March 2021 / Published online: 15 April 2021
© The Author(s) 2021

Abstract
Streaming graph partitioning methods have recently gained attention due to their ability to scale to very large graphs with
limited resources. However, many such methods do not consider workload and graph characteristics. This may degrade the
performance of queries by increasing inter-node communication and computational load imbalance. Moreover, existing
workload-aware methods cannot consistently provide good performance as they do not consider dynamic workloads that
keep emerging in graph applications. We address these issues by proposing a novel workload-adaptive streaming partitioner
named WASP, that aims to achieve low-latency and high-throughput online graph queries. As each workload typically con-
tains frequent query patterns, WASP exploits the existing workload to capture active vertices and edges which are frequently
visited and traversed, respectively. This information is used to heuristically improve the quality of partitions either by avoiding
the concentration of active vertices in a few partitions proportional to their visit frequencies or by reducing the probability
of the cut of active edges proportional to their traversal frequencies. In order to assess the impact of WASP on a graph store
and to show how easily the approach can be plugged on top of the system, we exploit it in a distributed graph-based RDF
store. Our experiments over three synthetic and real-world graph datasets and the corresponding static and dynamic query
workloads show that WASP achieves a better query performance against state-of-the-art graph partitioners, especially in
dynamic query workloads.

Keywords  Graph partitioning · Streaming · Workload-adaptive · Topology-aware · Dynamic workloads

 *	 Mengchi Liu
	 liumengchi@scnu.edu.cn

1	 School of Computer Science, Carleton University, Ottawa,
Canada

2	 School of Computer Science, Wuhan University, Wuhan,
China

3	 Guangzhou Key Laboratory of Big Data and Intelligent
Education, School of Computer Science, South China
Normal University, Guangzhou, China

1  According to [8] contemporary database systems are referred to as
“data stores” where more flexible data models are used and DBMS
functionalities may not be fully provided.
2  http://​orien​tdb.​com/.
3  https://​think​aurel​ius.​github.​io/​titan/.
4  It is a de-facto standard in many data stores due to creating bal-
anced partitions and its decentralized nature.

1  Introduction

Modern real-world graphs such as social networks and web
graphs are typically big, constantly changing and simultane-
ously queried by many clients. Hence, it is no longer feasible
for a single database server to provide computing resources
for managing such graphs and still be capable to provide
quality services to their client applications [13]. A tradi-
tional solution is resorting to the vertical scaling of servers
and full replication, which is costly or even unattainable.
This leads to the cost-effective design of distributed graph

stores1 that rely on the horizontal partitioning or sharding
and parallel processing of graph data over large clusters of
cheap commodity servers.

Existing graph partitioning strategies are mostly designed
for static graphs. When they are used for dynamic graphs,
whose vertices and edges are continuously changing (e.g.,
the semantic Web and social networks), it requires the heav-
yweight repartitioning of graphs after a batch of changes,
which may take hours in big graphs [41, 48, 54]. For this
reason, some graph stores such as OrientDB,2 Titan3 and
Microsoft Trinity [43] use naive partitioning methods such
as the random hash-based partitioning,4 whereby each ver-
tex along with its incident edges are assigned to a server

http://orcid.org/0000-0002-8245-2355
http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-021-00156-2&domain=pdf
http://orientdb.com/
https://thinkaurelius.github.io/titan/

164	 A. Davoudian et al.

1 3

in the hash bucket [11]. However, these methods can lead
to costly inter-partition traversals which greatly impact the
performance of queries. Thus, some graph stores such as
Neo4j [53], HypergraphDB [24] and DEX [31] avoid the
partitioning of graph datasets.

The quality of partitions in real-world graphs may
degrade due to continuous changes in query workloads
and graph topologies. An adaptive graph partitioner can
deal with this problem by exploiting streaming approaches
[35] along with the incremental adaptation of the obtained
partitions to the above changes. This usually incurs online
monitoring of changes in the existing query workload and
graph topology followed by the probable movement of some
vertices between partitions. This adaptation may impose an
overhead on the system and may reduce the efficiency and
throughput of online querying. Therefore, adaptive strate-
gies should be “lightweight” in terms of time and memory
requirements. So far, there have been several research efforts
on workload-driven partitioning strategies to achieve online
low-latency graph querying [12, 5, 13–17, 21, 33, 37, 56].
However, there are still several significant shortcomings.

1.	 The existing strategies are mostly workload-agnostic
(e.g., [10, 22]), as they presume the same probability
of traversing edges or visiting vertices, which does not
always hold with different query workloads. In other
words, they do not consider frequent query patterns and
locality of access to graph elements, which may degrade
system performance. For example, Fig. 1 depicts a sim-
ple property graph and query workload. After running a
vertex-centric partitioner, we get an optimal partitioning
{P1, P2}. However, it is not optimal for the workload.
Each query may require an expensive inter-partition tra-
versal because of the cutting edge “?x authors ?y”.

2.	 The existing strategies are mostly graph topology-agnos-
tic, as they do not differentiate between high-degree and
low-degree vertices which may result in load imbalance.
In a hybrid-cut model, the vertex-centric partitioning is
exploited for low-degree vertices while incident edges of
high-degree vertices are partitioned via the edge-centric
partitioning. There are only two graph analytics engines
[9, 29] that exploit the hybrid-cut model. However, no

workload-driven partitioning strategy has yet exploited
this model.

3.	 Many existing workload-aware strategies are unable
to adapt to dynamic workloads where the frequency of
query patterns fluctuate. For example, WARP [21], Par-
tout [17] and the Peng et al. method [37] exploit a given
query log to extract frequent query patterns whereby
the associated triple patterns are partitioned to increase
access locality. However, such strategies suffer from two
drawbacks: (1) Over time, the popularity of frequent
query patterns may change. Accordingly, we have done
some research on the British Museum (BM) query log
[40]. It spans from April 12, 2014 to October 16, 2014
and records over 1.2 million query requests. The daily
arrival rate of the top four frequent query patterns is
demonstrated by Fig. 2. We have added the frequencies
of the four patterns together as they follow a similar
arrival trend. As we can see, despite being frequent (over
150 times a day) during a short period from August 4,
2014, to August 22, 2014, these patterns are infrequent
most of the time. Therefore, a partitioning plan based
on frequent query patterns with temporary spike results
in inefficient queries most of the time. (2) Over time,
the existing frequent query patterns may be outdated. In
other words, queries in the future can rarely be reflected
by query logs in the past.

To address the above issues, we present a workload-

adaptive streaming graph partitioner, named WASP, that
is also topology aware. Being workload-adaptive, WASP
incrementally adjusts partitions (initially obtained by the
random hashing of graph vertices) regarding the frequently

Fig. 1   A balanced min-cut example

Fig. 2   The arrival rate of the top four query patterns in the BM query
log

165A Workload‑Adaptive Streaming Partitioner for Distributed Graph Stores﻿	

1 3

traversed active edges of the existing query workload and the
frequently explored endpoint active vertices of the edges. In
this sense, our partitioner distributes active vertices across
partitions proportional to their frequency of visits. This leads
to balance in the existing computational load, which in turn
increases the throughput. On the other hand, it reduces the
probability of the cut of active edges proportional to their
frequency of traversals. As such, active vertices belonging
to the same query are likely to be collocated into the same
partition, which in turn decreases the query response time.
WASP monitors active edges and vertices by tracking their
activity weights where larger activity weights mean more
activities. In order to adapt to the existing workload and
diminish the effect of old active edges and vertices, WASP
exploits a set of active edge logs, each of which is stored
in a computing node. By inserting new active edges (of
the existing workload) to an edge log, old active edges (of
previous workloads) are gradually removed from the log.
This removal turns the old active edges and their associated
old active endpoint vertices to the passive ones, which are
no longer considered in adjusting graph partitions. Being
topology-aware, WASP utilizes a hybrid-cut model whereby
the exploration of high-degree vertices is distributed across
multiple nodes, which in turn increases the throughput. Our
contributions are summarized as follows.

•	 We propose a dedicated cost model to manage vertex
reassignment according to frequent query patterns and
graph topology. The model decides which vertex should
be moved and where to move in order to maximize the
reassignment gain. Simultaneously, the load-balance on
each computing node is preserved.

•	 We propose incremental lightweight metadata manage-
ment, where data structures are mainly weight counters.
As such, time-consuming computations such as calculat-
ing the degree of interest of active vertices to be hosted
on different nodes are replaced by a continuous update of
weights. We exploit Redis [7] for the quick in-memory
storage and access of various weights in each node in the
form of key-value pairs.

•	 We carry out an extensive evaluation using both real-
world and synthetic graph datasets. Results show that our
method is much faster than state-of-the-art graph stores,
regarding dynamic workloads and increases the parallel-
ism for accessing high-degree vertices of the graph.

The rest of this paper is organized as follows. Sections 2
and 3 introduce the background and related work for the
proposed algorithms, respectively. Our WASP framework
architecture is described in detail in Sect. 4, which mainly
includes the details of our workload-adaptive and topology-
aware graph partitioning strategy. Section 5 reports the
evaluation results. Finally, we conclude the paper in Sect. 6.

2 � Background

Balanced k-way graph partitioning divides the graph into k
disjoint and balanced partitions and minimizes the cut size.
This is a well-known NP-hard problem, where computa-
tional load balance, in order to maximize parallelism, and
data access locality, in order to minimize inter-node commu-
nication, are two conflicting issues [18]. This results in lots
of heuristic partitioning methods for graph datasets, which
can be classified as two orthogonal categories: vertex-cen-
tric/edge-centric and offline/online.

Vertex-centric partitioners assign each source vertex
along with its incident edges into the same partition, which
in turn increases locality. However, the corresponding desti-
nation vertices may be assigned to different partitions which
results in cutting their in-between edges or edge-cuts. These
partitioners aim at performing a balanced distribution of
vertices across nodes, as well as minimizing the number
of edge-cuts. Although vertex-centric partitioners promote
locality, they may severely impact the computational load
balance for power-law graphs.5 In other words, by grouping
all edges of high-degree vertices together, a subset of nodes
are overloaded. On the other hand, edge-centric methods
tend to assign the edges incident to a particular vertex into
different partitions. However, the endpoint vertices of an
edge are replicated in the same node as the edge places.
These partitioners aim at performing a balanced distribution
of edges across nodes, as well as minimizing the number
of replicas. Although edge-centric partitioners alleviate the
computational load imbalance of high-degree vertices, they
often incur higher communication and synchronization cost
through the poor locality [19].

Offline or non-streaming partitioners, such as METIS
[25], require accessing to the whole graph dataset in order to
perform preprocessing prior to partitioning. However, they
scale poorly against very large graphs due to their heavy
usage of memory and high computational cost, which in
turn impacts the performance of online (non-analytical)
query processing. This partitioning approach has been later
improved through parallelization techniques, such as ParME-
TIS [26]. These parallel strategies yet suffer from the need
for a global view of the graph that reduces their scalability.

Since scaling offline approaches for large graphs are dif-
ficult, online or streaming approaches have been introduced
which continually update the partitioning as new changes
are streamed into the system. More precisely, they parti-
tion the incoming vertices (for vertex-centric partitioning)
or edges (for edge-centric partitioning) one at a time based
on the local knowledge of the input graph such as the current

5  A small fraction of vertices have extremely high degrees in propor-
tion to others [14].

166	 A. Davoudian et al.

1 3

properties of streamed elements and the information of pre-
viously partitioned ones. These streaming approaches are
one-pass since after assigning a vertex or edge to a par-
tition, no reassignment is performed. Due to the online
nature of these approaches, lightweight heuristics, such as
Fennel [49], are used to decide where to assign incoming
elements. However, as graph elements are assigned once,
new streamed elements of a graph may deteriorate its previ-
ous partitioning. Hence, there are several extensions [34,
50] of the streaming approach, where graphs are partitioned
in several passes or iterations. But the quality of partitions
is still dependent on the ordering of streamed elements as
there may not be enough local knowledge of the input graph.

3 � Related Work

In recent years, several online partitioning strategies have
been proposed for supporting low-latency query execution
of large-scale dynamic graphs. They aim at increasing the
performance of either offline graph analytics as in [27, 30,
39, 42, 51, 52, 55, 12, 13], or online graph queries as in [10,
13–17, 21, 22, 32, 33, 37, 38, 56] whose workload-driven
ones are more relevant to our work in this study. As we only
review a subset of graph partitioning methods, the interested
readers are referred to the recent surveys on graph partition-
ing [6, 20, 35].

Hermes [33] is a workload-driven partitioning method,
where each vertex knows the number of its neighbors in
each partition, the weight of each partition and the aggregate
weight of partitions. Nodes are balanced based on the weight
of their hosted vertices, where the weight of a vertex indi-
cates the frequency of queries toward it. Vertex reassignment
is triggered when the weights of vertices change. The gain
of reassigning a vertex from its source to a target partition is
how many more neighbors it has in the target than the source
partition. Peng et al. [36, 37] propose a workload-driven
partitioning method that mines frequent query patterns from
a representative query workload. Then it puts matches of the
same frequent pattern into the same fragment to improve the
workload throughout.

WARP [21] is a workload-driven replication method,
whereby RDF triples are initially partitioned using METIS,
regarding their subjects. It then uses a representative query
workload to replicate frequently accessed triples across the
cluster using the n-hop guarantee method [23]. Given a user
query, WARP determines its center vertex and radius. If the
query is within the n-hop guarantee, WARP sends the query
to all servers, which evaluate the query in parallel. Other-
wise, the query is decomposed into subqueries for which a
distributed query evaluation plan is created. Subqueries are
evaluated in parallel by all servers, and the results are sent
to the master which combines them. Partout [17] is also

workload-driven by extracting frequent query patterns from
a representative query workload and using them to partition
the data into fragments.

Loom [15] is a streaming partitioning strategy that
assumes a given query workload of graph patterns and
their relative frequencies. During the workload, it discovers
common patterns of edge traversals. It then compares the
sub-graph pattern matching queries against these common
patterns and attempts to reduce inter-partition traversals of
frequently traversed sub-graphs by allocating each match to
a single partition. Taper [16] takes any given initial parti-
tioning as a starting point, and iteratively enhances it by esti-
mating traversal probabilities for a given path queries work-
load. These are then used to swap chosen vertices across
partitions, and reducing the probability of inter-partition
traversals.

Table 1 summarizes the state-of-the-art workload-driven
partitioning strategies for supporting online graph queries.
Loom, Partout, WARP and the Peng et al. method are based
on knowing a priori query workload. Also, Taper assumes
a given frequency of patterns in the existing path query
workload. By exploiting this prior knowledge, the parts
of the dataset that are targeted together by future queries
can be highlighted. However, not only it might be prac-
tically difficult to have such knowledge in advance, but
such strategies do not (properly) adapt to changes. This
results in degrading the quality of partitions by evolving
the workload while there is no repartitioning. Hermes takes
into account a uniform frequency of edge traversals despite
the non-uniform edge weights of real-world graphs. On
the other hand, WARP extensively exploits the replication
of graph vertices for improving their locality of access.
However, maintaining replicas means additional metadata
management, which in turn increases the system overhead.

Table 1   Workload-driven partitioning methods supporting online
graph queries

Full support (✓), Limited support (✤), No support (✗)

Method Cut model Initial parti-
tioning

Workload-
adaptive

Topology-
aware

Hermes [33] Vertex-centric Simple
hashing

✤ ✗

Peng et al.
[36]

Vertex-centric Existing
workload

✤ ✗

Partout [17] Vertex-centric Existing
workload

✤ ✗

WARP [33] Vertex-centric METIS ✗ ✗
Loom [15] Vertex-centric Existing

workload
✤ ✗

Taper [16] Vertex-centric METIS ✤ ✗
WASP Hybrid-cut Simple

hashing
 ✓ ✓

167A Workload‑Adaptive Streaming Partitioner for Distributed Graph Stores﻿	

1 3

Replicas also become useless by changing the workload,
which in turn increases the storage overhead. On the con-
trary, WASP can take any given initial partitioning and
assumes nothing about the workload upfront. Moreover,
it avoids additional storage overheads by using no replica-
tion. WASP also exploits the hyper-cut model to alleviate
the load imbalance of high-degree vertices and improve
parallelism.

4 � WASP Framework

In this section, we describe the design of WASP in more
detail.

4.1 � Data and Query Model

In this paper, data are represented by the property graph
model, as it has gained wide acceptance and is used in
many graph database systems such as Neo4j and Titan. It is
defined as follows.

Definition 1  A property graph is a tuple G = (VG , EG ,
LG , �G , �G ), where VG is a finite set of vertices; EG ⊆
VG ×VG is a finite set of directed edges; LG is a finite
set of labels; �G ∶ VG ∪ EG → LG is a total function
that maps a (vertex or edge) identifier to a label; and
�G ∶ (VG ∪ EG) × ProG → ValG is a partial function that
maps a (vertex or edge) identifier and a property (or attrib-
ute) to a value, assuming that ProG and ValG are a final set
of properties and a set of values, respectively.

Intuitively, G is a directed, labeled and attributed mul-
tigraph, where each vertex represents an entity and has a
label or type as well as a (possibly empty) set of properties
associated with this entity, and each edge represents a binary
relationship between entities and has a label and some prop-
erties as well.

Online graph queries can be classified into two
major types, namely path queries and pattern match-
ing queries [11]. Hence, we assume a query workload
W = {<Q1, f1>,<Q2, f2>,… ,<Qn, fn>} as a set of either
path queries or pattern matching queries [2, 3] and their fre-
quencies, processed by an exploration-based query proces-
sor [44, 57]. A pattern matching query Q follows the same
structure as the property graph, but instead of allowing its
vertices VQ , edges EQ , labels LQ and property values ValQ to
contain only constants, it permits variables as well. A path
query, which determines the existence of a path connecting
two vertices of a property graph, can be considered as a
subset of pattern matching queries.

4.2 � Workload Characteristics

As query workloads are usually dynamic (via changing the
frequency of associated queries), the quality of graph parti-
tions may degrade over time. Hence, WASP encodes work-
load characteristics into vertex and edge weights, according
to the following definitions.

Definition 2  Given a property graph G, for each directional
edge <u, v> ∈ EG , where u and v are in VG and hosted on
nodes N and M, respectively, there is a traversal weight
𝜔(<u, v>) denoting the amount of data passed by traversing
the edge.

In more detail, during the processing of a query Q, a tra-
versal from the source vertex u to the target vertex v sends
both Q and u from N to M where Q’s processing continues,
followed by receiving back the exploration result required by
u. This weight starts from a default minimum value of 0 indi-
cating that its corresponding passive edge has not yet been
traversed. By traversing an edge during the existing query
workload, the edge weight is gradually increased along with
decreasing the probability of cutting the edge.

Definition 3  Given a property graph G, for each vertex v ∈
VG , where v is hosted on node N, there is an activity weight
�(v) that is equal to the total weight of v’s incident edges.

In more detail, as any traversal toward or from v requires
the exploration of its neighborhood, �(v) denotes the com-
puting load imposed on N by accessing the corresponding
local indices (see Sect. 4.4). Accordingly, by visiting an
active vertex during the existing query workload, its activ-
ity weight becomes greater than 0. As an illustration, Fig. 3a
shows the vertex/edge weights of a sample property graph.
In this figure, the thicker the edges graphically indicate the
ones with more frequent traversal.

4.3 � Vertex Reassignment

The Fennel streaming heuristic [49] is used for the online
one-pass partitioning of large-scale graphs, whereby a newly
added vertex is assigned (only once) to an existing partition
with the highest number of its neighbours; while at the same
time, a large partition should be penalized to prevent it from
becoming too large with respect to the number of its hosted
vertices. This heuristic is presented in Eq. 1, where v refers
to a vertex to be assigned, N(v) refers to the set of v’s neigh-
bors, Vi indicates the set of vertices hosted on the ith node,
n refers to the number of nodes, and � and � are parameters.

(1)argmax
1≤i≤n

{
|N(v) ∩ Vi| − �

�

2
(|Vi|)�−1

}

168	 A. Davoudian et al.

1 3

Such a one-pass streaming heuristic is similar to the dynamic
partitioning of graphs whose newly streamed vertices/edges
are incrementally added to the existing partitions [45, 49].
However, one-pass partitioning falls short in four areas to
be workload-adaptive: (1) an assigned vertex is never reas-
signed, (2) the removal of vertices/edges is not considered,
(3) a uniform frequency of edge traversals is considered, and
(4) partitions may not be balanced based on the aggregate
activity weight of their hosted vertices. These drawbacks
motivate us to use a workload-adaptive selective reassign-
ment that continuously revisits active vertices and reassigns
them when appropriate. This necessitates maintaining some
workload-based metadata in the main memory of comput-
ing nodes. This amount of information is not comparable to
the huge amount of the given graph dataset. In more detail,
according to the existing workload, assume v ∈ Si , where Si
is the set of active vertices hosted on the ith node. The fol-
lowing metadata need to be maintained in the main memory
of the ith node:

•	 v’s degree of interest to be hosted on each node, where
each degree is initialized from a default minimum value
zero. In more detail, v’s degree of interest toward the
jth node ( j ∈ [1..n] ) is called Dj(v) , which indicates the
total weight of v’s incident edges to/from vertices hosted
on the jth node. During a query traversal, Dj(v) is incre-
mented by sending a request from v to a vertex on the
jth node or vice versa. Accordingly, �(v) can be simply
calculated by summing up v’s degrees of interest toward
all nodes. Note that degrees with a default value of zero
are not stored in the memory. They are not also shown in
Fig. 3.

•	 The activity weight of the ith node, that is called �(Si) .
It indicates the aggregate activity weight of all active
vertices hosted on the node.

•	 An edge log hosted on the ith node, that is called �i . The
log stores all active edges and corresponding weights,
that are incident to the active vertices hosted on the ith
node. In more detail, during the existing workload, the
most recently traversed edge incident to an active vertex
hosted on the ith node is inserted on top of �i . As a result,
an edge e that is not traversed any more (i.e., belonging to
the previous workload) is gradually shifted to the bottom
of the log and finally moved out of it. This turns e into
a passive edge and its weight is set to 0, which in turn
changes the degrees of locality of e’s endpoint vertices.
More precisely, assuming e’s weight is w and its endpoint
vertices are u hosted on the jth node, and v hosted on the
ith node, then w is subtracted from both Di(u) and Dj(v) .
w is also subtracted from �(Si) and �(Sj).

	  Each edge log has a configurable size Δ , which is uni-
formly set for all nodes as their logs contain almost the
same number of active edges. This is because of alleviat-
ing the load skew at query time through the edge-centric
partitioning of high-degree vertices (see Sect. 4.3.3).
When Δ is too small, each log stores a subset of active
edges traversed in the existing workload. This means
moving out some frequently traversed edges belonging
to the workload and mistakenly making them passive. On
the other hand, when Δ is too large, each log stores active
edges that were traversed during the previous workloads,
not the existing one. In both cases, the quality of parti-
tioning may be impacted due to imprecise vertex reas-
signments. The choice and impact of Δ will be discussed
in Sect. 5.4.

As aforementioned, our framework uses the simple hash par-
titioning scheme for the initial partitioning of the vertices
across the nodes for two reasons. First, there is no compli-
cated logic involved in assigning new vertices to partitions.

Fig. 3   a Existing partitions before reassigning vertex v
3
 ; b the improved quality of partitions after reassigning v

3
 from the 2nd to the 3rd node

169A Workload‑Adaptive Streaming Partitioner for Distributed Graph Stores﻿	

1 3

Second, for a given vertex, we can simply look up its origi-
nal hosting node. Hence, the initial node hosting a newly
arrived vertex can be simply found through the hashing of
the vertex ID. However, reassigning the vertex necessitates
using a lookup table to find its new hosting node. This table
can be implemented in a distributed manner through a set
of lookup variables. More precisely, each reassigned vertex
v has a lookup variable stored as metadata in the v’s initial
node. Note that, as long as v is hosted on its initial node,
there is no need for this lookup variable.

Our selective reassignment heuristic is presented in Eq. 2.
By comparing to Eq. 1, we set � = 2 and � =

1

|Si|×n
.

This reassignment takes a vertex v as input, computes a
score for every node in the cluster, and a node with the high-
est score is determined as the potential target node to host v.
To ensure a balanced partitioning with respect to the activity
weight of nodes, there is a penalty function �(Si)|Si|×n

 , where by
increasing the activity weight of each node, its score
decreases.

In order to prevent the source node (assume it
is the sth node) to be underloaded, the condition:
{�(Ss) − �(v)} ≥ (2 − Φ) × Ω is checked before performing
the selective reassignment. Here, Ω indicates the average
aggregate activity weight of all nodes. In addition, parameter
Φ ∈ [1, 2] , which is called maximum load imbalance, indi-
cates how imbalanced a partition can be. For example, Φ = 1
indicates that all nodes are required to have the same aggre-
gate of activity weights. If the source node is underloaded,
the vertex v is not considered to be moved. On the other
hand, the condition: {�(St) + �(v)} ≤ Φ × Ω is checked on
the potential target node (assume it is the tth node) in order
to prevent overloading it. If the node becomes overloaded,
the condition is checked on the next highest score node;
otherwise, the tth node is selected as the target node.

Assume the quality of partitions is determined by a pair
of quality factors: (1) the probability of intra-partition tra-
versals ( � ) and (2) the load imbalance factor ( � ) indicating
how imbalanced existing partitions are. These factors are
defined as follows:

(2)

argmax
1≤i≤n

{
Di(v) −

�(Si)

|Si| × n

}

�(Si) =
∑

1≤j≤|Si|
�(vj), where vj ∈ Si

�(vj) =
∑

1≤i≤n

Di(vj)

(3)
� =

the aggregate weight of edges that are not cut

the weight of all edges

� =
max1≤i≤n �(Si)

Ω

The selective reassignment improves � as the higher the
weight of an edge, the lower the probability to cut it. In
other words, by increasing the weight of an edge, the inter-
est of its endpoints to be collocated on the same node is
increased. Higher the value of � means less the probability of
inter-partition traversals during the existing query workload.

Figure 3 illustrates the selective reassignment. Suppose
there are three nodes, Φ = 1.6 , and vertex v3 is selected for
reassignment. As Fig. 3a shows, �(S1) = 2 , �(S2) = 6 and
�(S3) = 2 and Ω ≈ 3.33 . With respect to Eq. 2, we have the
following calculations: Score1 ≈ 0.33 , Score2 ≈ −0.66 and
Score3 ≈ 1.33 . As Fig. 3b shows, after moving v3 , the 2nd
node (as the source node) is not underloaded ( �(S2) ≥ 1.32 ),
and no one of the potential target nodes is overloaded (each
one has an aggregate activity weight less than or equal to
5.33). As a result, v3 is moved to the third node having the
highest score. The quality of partitions after moving v3
is improved as � has increased from 0.2 to 0.6, and � has
decreased from 1.8 to 1.5 in Fig. 3a, b, respectively.

4.3.1 � Vertex Reassignment Data Maintenance

Reassigning a vertex v incurs moving its topological data
from the ith node as the source to the jth node as the target.
Such data include v’s relationships to other vertices along
with v’s properties. It also incurs maintaining the associ-
ated metadata as the following: (1) all active edges (and
their weights) that are incident to v are removed from �i and
inserted to �j , (2) v’s degrees of interest toward all nodes
are moved to the target node, (3) for each active edge e that
is incident to u and v, u’s degrees of interest toward the
source and target nodes are changed. More precisely, �(e)
is subtracted from Di(u) and then added to Dj(u) , (4) the
aggregate activity weights of the source and target nodes
are changed. More precisely, w is subtracted from �(Si) and
added to �(Sj) , and (5) v’s lookup variable in its initial node
is updated to refer to the target node.

During the reassignment, the source node’s query pro-
cessor does not answer any request on v, in order to prevent
their access to inconsistent data. As such, a request queue is
maintained in the query processor, whereby all requests on v
are queued. By completing the reassignment, the v’s lookup
variable refers to the target node. Therefore, requests on v
are released from the queue and redirected to the target node.

4.3.2 � Vertex Reassignment Timing

The timing of reassigning vertices is critical to make a bal-
ance between the quality of partitions and the above over-
head of data/metadata maintenance. Recall that by changing
the activity weight of a vertex, its degree of interest toward
different nodes may change. This, in turn, triggers checking
the possibility of reassigning the vertex. On the other hand,

170	 A. Davoudian et al.

1 3

by increasing the activity weight of a vertex, the influence
of a new exploration in its degree of interest toward different
nodes is negligible. Therefore, after a reassignment, we will
check the possibility of another reassignment only after a
similar amount of new explorations. In more detail, assum-
ing a reassignment threshold k, vertex reassignments are
triggered after {k, 2 × k, 4 × k, …, 2i× k, ...} explorations.
This significantly reduces the number of reassignments for
a vertex. For example, if k is equal to 10, for a vertex whose
activity weight is 10,240, the maximum number of reassign-
ments is only 10. Currently, we use a hardwired reassign-
ment threshold. The choice and impact of the reassignment
threshold will be discussed in Sect. 5.3.

4.3.3 � High‑Degree Vertices

High-degree active vertices may significantly reduce the effi-
ciency and throughput of online querying. More precisely,
their large neighbourhood may incur a significant processing
overhead on their hosting nodes, as well as a large amount
of network traffic on their incident edges. As an illustra-
tion, Fig. 4a depicts a high-degree active vertex u, hosted
on node N1, whose neighbors are scattered across N1 to N3.
Also, assume there is a graph traversal through the pattern
matching query Q, and vertices t, u and v1 to v100,000 in the
input graph are instances of vertices T, U and V in the query.
Accordingly, a traversal from the source vertex u to the tar-
get vertices v1 to v100,000 needs gathering and processing a
huge amount of results that are sent back to N1. In addition,
a traversal from the source vertex t, hosted on node N2, to
the target vertex u incurs sending back the huge amount of
gathered results from N1 to N2.

WASP alleviates these issues by specifying and splitting
high-degree vertices. Accordingly, for each vertex u when
u’s degree (of incoming and outgoing edges) exceeds a
configurable splitting threshold, it is considered as a high-
degree vertex which in turn results in splitting up u’s edges,
whereby vertex u is collocated with its neighbors. In more

detail, an outgoing edge u → v is collocated with its target
vertex v, and an incoming edge u ← v is collocated with its
source vertex v. Accordingly, as u’s neighbors are randomly
distributed through hashing, its edges will be evenly dis-
tributed. This uniformly divides the query processing over-
head (which was already on u’s hosting node) between all
nodes that host its splits. As Fig. 4b shows, vertex u is split
into three vertices u′ , u′′ and u ′′′ hosted on N1, N2 and N3,
respectively. As such, traversing from t as the source vertex
to u’s splits as the target neighbors results in dividing the
traffic load (which was already between two nodes N1 and
N2) between all nodes. The choice and impact of the split-
ting threshold will be discussed in Sect. 5.5.

4.4 � Verifying WASP on an RDF Store

The popularity of property graphs is due to their flexibility
to express other structures. Accordingly, by not using attrib-
utes in property graphs, Resource Description Framework
(RDF)6 or knowledge graphs are generated. Intuitively, an
RDF graph consists of triples of the form ⟨subject, predicate,
object⟩ which can be interpreted as either two entities (sub-
ject and object) connected via a labeled relationship (predi-
cate) or an entity (subject) associated via an attribute name
(predicate) to its corresponding value (object). In a graph-
based RDF store the dataset is stored as a graph, where RDF
triples are modeled as vertices and edges [4]. An RDF graph
is explored by walking the graph in specific orders accord-
ing to the edges of a given SPARQL graph pattern matching
query7 [44, 57].

In order to assess the impact of WASP on a graph store
and to show how easily the approach can be plugged on top

Fig. 4   a A high-degree active vertex u regarding Q as a query pattern belonging to the existing workload; b splitting up the edges of u across the
nodes

6  http://​www.​w3.​org/​TR/​rdf-​primer/.
7  http://​www.​w3.​org/​TR/​rdf-​sparql-​query/.

http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-sparql-query/

171A Workload‑Adaptive Streaming Partitioner for Distributed Graph Stores﻿	

1 3

of the store, it is exploited on a graph-based RDF store.8
WASP is deployed on a cluster whose nodes are connected
in a peer-to-peer fashion similar to the one presented in
Fig. 5a. The key components of the system are as follows.

•	 A client library that contains a query routing module in
order to balance the load among computing nodes. As
such, a client can connect to any node and perform a
query.

•	 A distributed memory storage that is made up of a batch
of independent single-node and in-memory Redis serv-
ers9 as the back-end stores. Redis provides a variety of
data structures such as hashes, lists, sets and ordered sets,
as well as various operations for handling them. Accord-
ingly, each node stores the associated data/metadata in
the following local/global indices for an input graph G
(see Definition 1).

•	 Global index of vertices is stored as a Distributed
Hash Table (DHT) of Key-Value (KV) pairs, where
for each v ∈VG , there is a KV pair consisting of the
corresponding vertex identifier or vID as the key and
the corresponding metadata as the value. Note that
the name of v is initially hashed to a vID which, in
turn, is hashed to a computing node. In addition, the
metadata of v include its name and hosting node.
Sending and storing vIDs instead of long names may
result in saving network bandwidth and memory con-
sumption. In addition, storing hosting nodes allows
for changing the current hosting node of a vertex due
to G’s repartitioning.

•	 Global index of predicates is stored as a DHT of
KV pairs, where for each p ∈LG , there is a KV pair
consisting of the corresponding predicate identifier
or pID as the key and the corresponding metadata as
the value. Note that the name of p is initially hashed
to a pID. In addition, the metadata of p include its
name and a pair of lists <sbjNodeList, objNodeL-
ist>, where sbjNodeList (or objNodeList) includes
node(s) hosting some subjects (or objects) incident to
an edge labelled with p. This index is globally used
to determine those nodes where a triple pattern with
a bound predicate should be submitted for evalua-
tion.

•	 Local index of vertices of each node is stored as a
hash table of KV pairs, where each pair belongs to
a vertex v ∈VG that is hosted on the node. This pair
consists of a combination of the corresponding vID
and an OUT (=1) or IN (= 0) direction as the com-
posite key, and a list of all unique pIDs of outgoing
or incoming edges incident to v. This index is locally
used for evaluating those triple patterns whose only
subjects (or objects) are bound.

•	 Local index of predicates of each node is stored as a
hash table of KV pairs, where each pair belongs to a
predicate p ∈LG . This pair consists of a combination
of the corresponding pID and an OUT or IN direc-
tion as the composite key, and a list of all vertices on
the node that are the source or the target of an edge
labeled with p, respectively. This index is locally
used for evaluating those triple patterns whose only
predicates are bound.

•	 Local index of vertices-predicates of each node is
stored as a hash table of KV pairs, where each pair
belongs to a vertex v ∈ VG that is hosted on the node.
This pair consists of a combination of the corre-
sponding vID, a pID where p ∈LG and an OUT or

Fig. 5   a System architecture; b graph-based SPARQL query processing steps

8  The source code is publicly available for download at https://​github.​
com/​alida​voudi​an/​WASP-​Graph-​Parti​tioner/.
9  http://​redis.​io/.

https://github.com/alidavoudian/WASP-Graph-Partitioner/
https://github.com/alidavoudian/WASP-Graph-Partitioner/
http://redis.io/

172	 A. Davoudian et al.

1 3

IN direction as the composite key, and the list of
corresponding neighbor vertices as the value. This is
used for evaluating those triple patterns whose only
subjects (or objects) and predicates are bound.

•	 Local index of activity weights of each node is
stored as a hash table of KV pairs, where each pair
belongs to an active vertex v ∈VG that is hosted on
the node. This pair consists of a combination of the
corresponding vertex identifier vID as the key and
the corresponding activity weight ( �(v) ) as the value.

•	 Local index of degrees of interest of each node is
stored as a hash table of KV pairs, where each pair
belongs to an active vertex v ∈VG that is hosted on
the node. This pair consists of a combination of the
corresponding vID and a node identifier nID as the
composite key, and v’s degree of interest to be hosted
on that node as the value.

•	 A graph-based SPARQL processor that consists of three
running processes: (1) query plan generator that heuris-
tically calculates a query plan for each received query,
where a query plan is an ordered sequence of triple pat-
terns. It then uses the aforementioned global indices to
determine proper nodes where the plan is sent. Finally,
after receiving the results of all sent plans, they are com-
bined and sent back to the corresponding user; (2) query
plan evaluator that receives a query plan and sequen-
tially sends the corresponding triple patterns to proper
nodes determined via the aforementioned global indices.
Finally, after receiving the matches of all sent triple pat-
terns, they are merged and sent back to the corresponding
query plan generator; (3) triple pattern evaluator that
uses the aforementioned local indices, determines the
matches of a received triple pattern, and finally sends
back the matches to the query plan evaluator. Figure 5b
depicts the query processing steps.

•	 WASP framework that is made up of several independ-
ent partitioning managers which are integrated with
their peer query processors. Partitioners are in charge of
watching the existing query workload during the graph
exploration along with making autonomous decisions for
relocating graph vertices hosted on their corresponding
nodes.

Note that since Redis servers are single threaded, by hav-
ing each server manage partitions of both graph dataset and
metadata, the concurrency between the processing of data
and maintenance of metadata is decreased which in turn
impacts the efficiency of query processing. As a result, we
exploited two Redis servers on each node for the separate
management of partitioned data and metadata.

4.5 � Memory and Time Complexities

The amount of metadata used by WASP has a small size
compared to the huge amount of a given graph dataset. In
more detail, by storing the weights of at most Δ active edges
on a node, the metadata of at most 2 × Δ active vertices are
stored in the node as each edge represents two endpoint ver-
tices. On the other hand, for each active vertex hosted on the
node, there are at most n degrees of interest toward all nodes.
Therefore, there are at most n × 2 × Δ degrees of interest on
each node. In addition, for each active vertex u hosted on a
node, there is an activity weight �(u) . Hence, there are at
most 2 × Δ activity weights on each node. Finally, each node
stores the total activity weight of its hosted active vertices
requiring one long integer. As a result, the maximum amount
of metadata used by WASP is 2Δn2 + (3Δ + 1)n , where n
is the number of computing nodes, and Δ is the size of the
edge log. An implication of the above complexity is that
the size of metadata scales with Δ . However, according to
our experiment in Sect. 5.4, Δ is far less than the number of
edges of a given graph dataset. On the other hand, the per-
formance of a partitioner is mainly affected by the amount
of communication required by the partitioning algorithm.
Accordingly, the time complexity of our partitioner relies on
the number of times the selective reassignment and its exam-
ination are called. This requires a good balance between the
edge-cut ratio and the number of vertex reassignments that
is experimented in Sect. 5.3.

5 � Experimental Evaluation

In this section, we evaluate WASP in extensive experiments
to thoroughly test its adaptivity and performance, regarding
different static and dynamic query workloads.

Hardware/software setup We have implemented
WASP in C/C++. In more detail, MPICH-3.1.4 library and
ZeroMQ10 sockets are used for communication across nodes.
In addition, Hiredis11 that is an official C client library is
used for connecting to Redis KV stores. WASP is deployed
on a cluster with 10 homogeneous nodes connected in a
peer-to-peer fashion, where each node has 48GB of RAM,
16 quad-core CPUs of 2.4GHz, 160GB SATA HDD, and
runs Debian Linux 6.0.6.

Datasets and query workloads We have conducted our
experiments using three synthetic and real datasets (see
Table 2) as well as six query workloads over the datasets.
WatDiv [1] and LUBM [47] are two synthetic property
graph benchmarks whereby we create two datasets, each

10  http://​zeromq.​org.
11  https://​github.​com/​redis/​hired​is.

http://zeromq.org
https://github.com/redis/hiredis

173A Workload‑Adaptive Streaming Partitioner for Distributed Graph Stores﻿	

1 3

of which contains over 1 billion edges. We use their query
template generators to generate 20 and 14 basic templates
or patterns, respectively. We then instantiate 1K queries for
each template. Accordingly, we create two workloads for
WatDiv, namely WatDiv-SW and WatDiv-DW, each of which
contains a total of 20K queries. The former simulates a static
workload by shuffling the queries of all patterns with no fluc-
tuating frequency. The latter simulates a dynamic workload
by the consecutive execution of queries of the same pattern.
Similarly, we create LUBM-SW and LUBM-DW workloads
for LUBM, each of which contains a total of 14K queries.

As both WatDiv and LUBM are synthetic, we also use
DBpedia [28] as a real property graph dataset extracted from
Wikipedia by crowdsourcing. We extract 44 query templates
from the DBpedia query log [40], which spans from April
12, 2014, to October 16, 2014, recording over 1.7 million
query requests.12 We used this log as it is also used by the
other state-of-the-art graph partitioners, which in turn results
in a fair comparison. We remove the queries with parse error
or runtime error, and there remain 1.2 million queries in the
end. As before, we create two workloads, namely DBpedia-
SW and DBpedia-DW, each of which contains a total of 44K
queries. Note that most of the queries in the DBpedia query
log consist of only one or a few triple patterns, so the tem-
plates of DBpedia are much simpler than the other datasets.

Competitors Regarding Table 1, we compare WASP
against Hermes [33] that is the only strategy with no prior
knowledge of query workloads. We also compare against
the Peng et al. method [36] as a representative of strategies
that are based on knowing a priori query workload. It has
already shown to have a faster query response time against
WARP [21] and Partout [17].

5.1 � Partition Quality

We first study the ratio of inter-partition traversals (IPT)
achieved by the three partitioners, regarding the six static
and dynamic workloads. In Fig. 6a, the X-axis shows the
WatDiv-SW query stream in 10 units, each of which contains
2K queries. The Y-axis indicates the IPT ratio achieved by
executing the queries of each unit. The diagram shows a

gradual decrease of IPT ratio in both Hermes and WASP
as they gradually improve data access locality via their ver-
tex reassignment strategies. However, since Hermes does
not consider the weight of active edges, the corresponding
decreasing rate is lower than WASP. On the other hand,
despite WASP and Hermes that initially partition the graph
dataset via the simple hashing strategy, the Peng et al.
method [36] partitions the whole graph dataset assuming
a priori knowledge of the WatDiv-SW workload. Therefore,
the diagram shows an almost steady IPT ratio less than 0.1,
as the Peng et al. method has already assigned the matches
of each frequent pattern to the same partition.

On the contrary, regarding the WatDiv-DW query stream
as shown in Fig. 6b, the IPT ratio in the Peng et al. method
is very high (more than 0.8). In more detail, it partitions
the graph dataset based on the frequent query patterns in
the first workload unit, assuming a priori knowledge of the
unit. However, the existing frequent query patterns change
in subsequent units which results in a severe increase in IPT
ratio as the Peng et al. method is not workload adaptive. On
the other hand, WASP and Hermes adapt themselves to the
WatDiv-DW query stream. During the workload, the IPT
ratio in WASP fluctuates approximately between 0.3 to 0.4.
However, Hermes acts in an upper bound of ratios between
0.6 to 0.7, as it takes into account a uniform frequency of
edge traversals despite the non-uniform ones in real-world
scenarios. Similar reasoning can be used to justify the results
obtained for LUBM and DBpedia datasets. As Fig. 6c shows,
after executing the LUBM-SW query stream, WASP achieves
a better IPT ratio (almost 0.27) compared to the one in Wat-
Div-SW (almost 0.43 in Fig. 6a). This is due to the exist-
ence of more complex queries with long paths in LUBM
than WatDiv. In more detail, more complex queries cause
more edge traversals, which results in the identification of
hot edges and collocating their endpoint vertices by WASP.
On the other hand, as Fig. 6e shows, the behavior of WASP
and Hermes are closer to each other compared to Fig. 6a,
c. This is because of simple short path queries in DBpedia.

Note that the improvement of the IPT ratio does not nec-
essarily result in the improvement of query performance
unless there is a balanced load distribution [35]. Therefore,
we study the “computational” load balance achieved by the
three partitioners. In this respect, although Hermes and the
Peng et al. method exploit the existing workload to achieve
a balanced load distribution, they perform poorly in WatDiv
and DBpedia as all edges of very high-degree vertices are
grouped together. This causes a subset of machines to be
computationally overloaded by active vertices with a very
high degree. On the other hand, WASP splits such vertices
(see Sect. 4.3.3). Accordingly, Fig. 7 shows the load imbal-
ance factor ( � ) achieved by the partitioning strategies on the
three static workloads. As shown, WASP achieves a better
load imbalance than the others in all the workloads.

Table 2   Dataset statistics in millions (M)

Dataset #Vertices #Edges Avg./Max. degree

WatDiv-1B [1] 97M 1092M 24/190K
LUBM-10240 [47] 332M 1367M 17/4.3K
DBpedia [28] 14M 1096M 35/630K

12  To extract query templates, we randomly select one-day queries
from the log and transform them into a parameterized form [46].

174	 A. Davoudian et al.

1 3

5.2 � Query Performance

Table 3 shows the execution time of the six aforemen-
tioned static and dynamic query workloads, regarding the
three partitioning strategies. Unlike the Peng et al. method
which initially mines frequent query patterns from the static

workloads, WASP and Hermes use initial hash partitioning
that mounts communication on complex queries. This results
in better performance of the Peng et al. method compared
to Hermes and WASP, regarding WatDiv and LUBM static
workloads. However, WASP achieves a lower execution time
than Peng et al. regarding DBpedia-SW. This is because of

Fig. 6   IPT ratio regarding the
six workloads

175A Workload‑Adaptive Streaming Partitioner for Distributed Graph Stores﻿	

1 3

either the low impact of IPT ratio on query performance
due to the simple short path queries in DBpedia or the high
impact of load imbalance factor on query performance
regardless of the complexity of queries. On the other hand,
unlike WASP and Hermes, the Peng et al. method does not
adapt to changes in frequent query patterns. This incurs high
communication costs for the dynamic workloads and results
in achieving higher workload execution times in the Peng
et al. method compared to the other strategies.

5.3 � Reassignment Threshold Sensitivity Analysis

The reassignment threshold controls the triggering of the
vertex reassignment process. Consequently, it influences the
edge-cut ratio and the number of vertex reassignments in the
system. In this experiment, we conduct an empirical sen-
sitivity analysis to select the reassignment threshold value
regarding the aforementioned static workloads. We execute
each workload regarding a wide range of possible reassign-
ment threshold values from 1 to 30 as load execution times
get almost steady regarding the threshold value 30. The
edge-cut ratio, the number of vertex reassignments and the
resulting workload execution times are shown in Fig. 8a–c,
respectively. As Fig. 8a, b show, there is a contrast between
edge-cut ratio and the number of vertex reassignments. This
necessitates to make a balance between these factors in order
to decrease load execution times.We observe that WatDiv is
very sensitive to slight changes in the reassignment thresh-
old because of the complexity of its queries. As the reassign-
ment threshold increases, the reassignment of active vertices
is delayed causing more queries to be executed with com-
munication. On the other hand, by decreasing the reassign-
ment threshold, more vertices are reassigned causing more

overhead of data/metadata maintenance. As it can be seen,
DBpedia is not as sensitive to this range of reassignment
thresholds because most of its queries are simple short path
queries that are processed with low or no communication.
As the both workloads show, either increasing or decreasing
the reassignment threshold may impact the efficiency and
throughput of query processing. In all our experiments, we
use a reassignment threshold of 10; this results in a good
balance between the edge-cut ratio and the number of ver-
tex reassignments. We plan to study the autotuning of this
parameter in the future.

5.4 � Edge Log Size Sensitivity Analysis

Edge log size or Δ affects the lifespan of active edges and
the quality of partitions. This incurs choosing a proper log
size value. By increasing Δ , both recent and old active edges
are considered in partitioning. This decreases the throughput
due to an improper load balance. More precisely, the weights
of endpoint vertices associated with old active edges are
still considered in calculating their hosting nodes’ weights.
On the other hand, by decreasing Δ , only a subset of recent
active edges are taken into account in partitioning. This
decreases the efficiency of queries via increasing edge-cut
ratio as the endpoint vertices of some recent active edges
are not collocated. Hence, decreasing or increasing Δ can
impact the workload execution time. In this experiment, we
conduct an empirical sensitivity analysis to select a proper
edge log size based on the workload execution time, regard-
ing WatDiv-SW and DBpedia-SW workloads. As typical
query workloads access only a small fraction of the whole
graph, we execute each workload regarding a range of log
sizes from 100K to 1000K as workload execution times get
almost steady regarding the lower and upper bounds. Work-
load execution times are shown in Fig. 8d. In all subsequent
experiments, we use an edge log size of 700K; this results
in a high throughput and query efficiency. We plan to study
the autotuning of reassignment threshold and edge log size
in the future.

5.5 � Splitting Threshold Sensitivity Analysis

The splitting threshold controls the cutting up of high-degree
vertices. However, despite alleviating the computational load
imbalance, splitting the edges leads to the replication of
high-degree vertices. This in turn introduces extra network

Fig. 7   Load imbalance factor regarding the three static workloads

Table 3   Workload runtime (s) Method WatDiv-SW LUBM-SW DBpedia-SW WatDiv-DW LUBM-DW DBpedia-DW

Peng et al. 924 830 435 1332 1396 515
Hermes 1210 1153 481 1244 1136 487
WASP 987 1089 377 916 843 347

176	 A. Davoudian et al.

1 3

overhead to retrieve data from remote nodes. Therefore, it
is important to find the best splitting threshold to make a
trade-off between the computational load balance and the
average number of replicas. In this experiment, we conduct
an empirical sensitivity analysis to select the splitting thresh-
old value regarding the WatDiv and DBpedia datasets in a
cluster of 10 nodes.

The result (Fig. 9) shows that by increasing the split-
ting threshold, fewer vertices get replicated causing a sharp
decrease in the average number of replicas. However, in both
datasets, the average number of replicas is almost insensitive
to the splitting thresholds larger than 100 that is selected as
the splitting threshold in our experiments.

5.6 � Workload Evolution

In this experiment, we use the aforementioned dynamic
workloads to investigate the impact of changing frequent
query patterns on our partitioning strategy. Regarding the
WatDiv-DW workload, Fig. 10a shows the cumulative time
as the execution progresses using our method with and
without the adaptivity feature. After every sequence of 1K
query executions, the pattern of queries changes. Without

adaptivity, the cumulative time increases sharply. On the
other hand, our method adapts to the dynamic workload with
little overhead causing the cumulative time to drop signifi-
cantly by almost 6 times. Once our method starts adapting,
most of future queries are solved with less communication.
The same behavior is observed for the DBpedia-DW work-
load (see Fig. 10b).

Fig. 8   Sensitivity analysis of
reassignment threshold and
edge log size

Fig. 9   Average number of replicas under different splitting thresholds

177A Workload‑Adaptive Streaming Partitioner for Distributed Graph Stores﻿	

1 3

5.7 � Data Scalability

In this experiment, we investigate the impact of dataset size
on our fragmentation strategies. We use the WatDiv bench-
mark data generator to generate four datasets: WatDiv-1M,
WatDiv-10M, WatDiv-100M, WatDiv-1B, varying from
1 million to 1 billion triples, respectively. Regarding the
WatDiv-SW workload, Fig. 11a, b show the performance
and throughput of our partitioning method with and without
the adaptivity feature by increasing the dataset size. Gen-
erally, as the size of RDF datasets gets larger, the average
response time per query increases and the number of queries
answered in 1 min decreases accordingly. However, the rates
of increase and decrease in the method with adaptivity are
gradual compared to the method without adaptivity, and we
can say that the query performance and throughput are scal-
able with RDF graph sizes.

6 � Conclusion and Future Work

We have presented WASP, a novel workload-adaptive and
topology-aware streaming partitioner, in order to achieve
low-latency and high-throughput online queries in distrib-
uted graph stores. As each query workload typically contains
popular or similar queries, WASP captures active vertices
and edges that are frequently visited and traversed in the
existing query workload. Using this information, the qual-
ity of partitions is improved by avoiding the concentration
of active vertices in a few partitions proportional to their
visit frequencies, or by reducing the probability of the cut of
active edges proportional to their traversal frequencies. Our
experiments show that WASP significantly reduces the num-
ber of inter-partition traversals during a query workload. It
is able to handle evolving query workloads and graph topol-
ogy while maintaining the quality of partitions over time. In
the future, we plan to increase the performance of queries
in static workloads through a workload-driven replication,

Fig. 10   WASP adaptivity to dynamic workloads

Fig. 11   WASP scalability
regarding the WatDiv dataset

178	 A. Davoudian et al.

1 3

where the replication scheme of a vertex (i.e., how many
replicas of the vertex are created and to which partitions
these replicas are allocated) dynamically changes based on
the read/write frequencies of the vertex.

Funding  This work was partly supported by the National Natural Sci-
ence Foundation of China (No.61672389) and Guangzhou Key Labora-
tory of Big Data and Intelligent Education (No.2015010009).

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Aluç G, Hartig O, Özsu MT, Daudjee K (2014) Diversified stress
testing of RDF data management systems. In: International
semantic web conference. Springer, pp 197–212

	 2.	 Angles R (2012) A comparison of current graph database models.
In: 28th international conference on data engineering workshops
(ICDEW). IEEE, pp 171–177

	 3.	 Angles R, Arenas M, Barcelo P, Hogan A, Reutter J, Vrgoc D
(2016) Foundations of modern graph query languages. arXiv pre-
print arXiv:​1610.​06264

	 4.	 Angles R, Gutierrez C (2018) An introduction to graph data man-
agement. In: Graph data management. Springer, pp 1–32

	 5.	 Bok K, Kim J, Yoo J (2019) Dynamic partitioning supporting load
balancing for distributed RDF graph stores. Symmetry 11(7):926

	 6.	 Buluç A, Meyerhenke H, Safro I, Sanders P, Schulz C (2016)
Recent advances in graph partitioning. In: Kliemann L, Sanders
P (eds) Algorithm engineering. Springer, pp 117–158

	 7.	 Carlson JL (2013) Redis in action. Manning Publications Co
	 8.	 Cattell R (2011) Scalable SQL and NoSQL data stores. ACM

SIGMOD Rec 39(4):12–27
	 9.	 Chen R, Shi J, Chen Y, Zang B, Guan H, Chen H (2019) Power-

lyra: differentiated graph computation and partitioning on skewed
graphs. ACM Trans Parallel Comput 5(3):1–39

	10.	 Dai D, Zhang W, Chen Y (2017) IOGP: an incremental online
graph partitioning algorithm for distributed graph databases. In:
Proceedings of the 26th international symposium

	11.	 Davoudian A, Chen L, Liu M (2018) A survey on NoSQL stores.
ACM Comput Surv 51(2):1–43

	12.	 Davoudian A (2019) Helios: an adaptive and query workload-
driven partitioning framework for distributed graph stores.In:
Proceedings of the ACM SIGMOD international conference on
management of data

	13.	 Davoudian A, Liu M (2020) Big Data Systems: A Software Engi-
neering Perspective. ACM Comput Surv 53(5):1–39

	14.	 Faloutsos M, Faloutsos P, Faloutsos C (1999) On power-law rela-
tionships of the internet topology. In: Proceedings of the ACM
SIGCOMM special interest group on data communication, vol 29

	15.	 Firth H, Missier P (2016) Workload-aware streaming graph par-
titioning. In: EDBT/ICDT workshops

	16.	 Firth H, Missier P (2017) TAPER: query-aware, partition-
enhancement for large, heterogenous graphs. Proc Distrib Parallel
Databases 35(2):85–115

	17.	 Galárraga L, Hose K, Schenkel R (2014) Partout: a distributed
engine for efficient RDF processing. In: Proceedings of the 23rd
international conference on World Wide Web. ACM, pp 267–268

	18.	 Garey MR, Johnson DS, Stockmeyer L (1974) Some simplified
NP-complete problems. In: Proceedings of the 6th annual ACM
symposium on theory of computing

	19.	 Gonzalez JE, Low Y, Gu H, Bickson D, Guestrin C (2012) Power-
Graph: Distributed graph-parallel computation on natural graphs.
In: Proceedings of the 10th USENIX OSDI conference on operat-
ing systems design and implementation

	20.	 Heidari S, Simmhan Y, Calheiros RN, Buyya R (2018) Scalable
graph processing frameworks: a taxonomy and open challenges.
ACM Comput Surv 51(3):1–53

	21.	 Hose K, Schenkel R (2013) WARP: workload-aware replication
and partitioning for RDF. In: 29th international conference on data
engineering workshops (ICDEW). IEEE, pp 1–6

	22.	 Huang J, Abadi DJ (2016) Leopard: lightweight edge-oriented par-
titioning and replication for dynamic graphs. Proc VLDB Endow
9(7):540–551

	23.	 Huang J, Abadi DJ, Ren K (2011) Scalable SPARQL querying of
large RDF graphs. Proc VLDB Endow 4(11):1123–1134

	24.	 Iordanov B (2010) HyperGraphDB: a generalized graph database.
In: Proceedings of the Springer international conference on web-
age information management

	25.	 Karypis G, Kumar V (1998) A fast and high quality multilevel
scheme for partitioning irregular graphs. SIAM J Sci Comput
20(1):359–392

	26.	 Karypis G, Kumar V (1999) Parallel multilevel series k-way par-
titioning scheme for irregular graphs. SIAM Rev 41(2):278–300

	27.	 Khayyat Z, Awara K, Alonazi A, Jamjoom H, Williams D, Kalnis
P (2013) Mizan: a system for dynamic load balancing in large-
scale graph processing. In: Proceedings of the 8th ACM European
conference on computer systems

	28.	 Lehmann J, Isele R, Jakob M, Jentzsch A, Kontokostas D, Mendes
PN, Hellmann S, Morsey M, Van Kleef P, Auer S et al (2015)
DBpedia—a large-scale, multilingual knowledge base extracted
from Wikipedia. Semant Web 6(2):167–195

	29.	 Li D, Zhang Y, Wang J, Tan KL (2019) Topox: topology refactori-
zation for efficient graph partitioning and processing. Proc VLDB
Endow 12(8):891–905

	30.	 Martella C, Logothetis D, Loukas A, Siganos G (2017) Spinner:
scalable graph partitioning in the cloud. In: Proceedings of the
33rd IEEE ICDE international conference on data engineering

	31.	 Martinez-Bazan N, Gomez-Villamor S, Escale-Claveras F (2011)
DEX: a high-performance graph database management system. In:
Proceedings of the 27th IEEE ICDEW international conference
on data engineering workshops

	32.	 Mondal J, Deshpande A (2012) Managing large dynamic graphs
efficiently. In: Proceedings of the ACM SIGMOD international
conference on management of data

	33.	 Nicoara D, Kamali S, Daudjee K, Chen L (2015) Hermes:
dynamic partitioning for distributed social network graph data-
bases. In: Proceedings of the 18th EDBT international conference
on extending database technology

	34.	 Nishimura J, Ugander J (2013) Restreaming graph partitioning:
simple versatile algorithms for advanced balancing. In: Proceed-
ings of the 19th ACM SIGKDD international conference on
knowledge discovery and data mining

	35.	 Pacaci A, Özsu MT (2019) Experimental analysis of streaming
algorithms for graph partitioning. In: Boncz PA, Manegold S,
Ailamaki A, Deshpande A, Kraska T (eds) Proceedings of the
2019 international conference on management of data, SIGMOD

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1610.06264

179A Workload‑Adaptive Streaming Partitioner for Distributed Graph Stores﻿	

1 3

conference 2019, Amsterdam, The Netherlands, June 30–July 5,
2019. ACM, pp 1375–1392

	36.	 Peng P, Zou L, Chen L, Zhao D (2016) Query workload-based
RDF graph fragmentation and allocation. EDBT

	37.	 Peng P, Zou L, Chen L, Zhao D (2019) Adaptive distributed RDF
graph fragmentation and allocation based on query workload.
IEEE Trans Knowl Data Eng 31(4):670–685

	38.	 Pujol JM, Erramilli V, Siganos G, Yang X, Laoutaris N, Chhabra
P, Rodriguez P (2010) The little engine (s) that could: scaling
online social networks. Proc ACM SIGCOMM Comput Commun
Rev 40(4):375–386

	39.	 Rahimian F, Payberah AH, Girdzijauskas S, Jelasity M, Haridi S
(2015) A distributed algorithm for large-scale graph partitioning.
Proc ACM TAAS Trans Auton Adapt Syst 10(2):1–24

	40.	 Saleem M, Ali MI, Hogan A, Mehmood Q, Ngomo ACN (2015)
LSQ: the linked SPARQL queries dataset. In: International
semantic web conference. Springer, pp 261–269

	41.	 Schloegel K, Karypis G, Kumar V (2000) Graph partitioning for
high performance scientific simulations. Army High Performance
Computing Research Center

	42.	 Shang Z, Yu JX (2013) Catch the wind: graph workload balancing
on cloud. In: Proceedings of the 29th IEEE ICDE international
conference on data engineering

	43.	 Shao B, Wang H, Li Y (2013) Trinity: a distributed graph engine
on a memory cloud. In: Proceedings of the ACM SIGMOD inter-
national conference on management of data

	44.	 Shi J, Yao Y, Chen R, Chen H, Li F (2016) Fast and concurrent
RDF queries with RDMA-based distributed graph exploration.
OSDI 16:317–332

	45.	 Stanton I, Kliot G (2012) Streaming graph partitioning for large
distributed graphs. In: Proceedings of the 18th ACM SIGKDD
international conference on knowledge discovery and data mining

	46.	 Stegemann T, Ziegler J (2017) Pattern-based analysis of SPARQL
queries from the LSQ dataset. In: International semantic web con-
ference (posters, demos and industry tracks), pp 1–4

	47.	 SWAT-Projects: The Lehigh University Benchmark (LUBM).
http://​swat.​cse.​lehigh.​edu/​proje​cts/​lubm/

	48.	 Tian Y, Balmin A, Corsten SA, Tatikonda S, McPherson J (2013)
From think like a vertex to think like a graph. Proc VLDB Endow
7(3):193–204

	49.	 Tsourakakis C, Gkantsidis C, Radunovic B, Vojnovic M (2014)
Fennel: streaming graph partitioning for massive scale graphs.
In: Proceedings of the 7th ACM international conference on Web
search and data mining

	50.	 Ugander J, Backstrom L (2013) Balanced label propagation for
partitioning massive graphs. In: Proceedings of the 6th ACM
international conference on Web search and data mining

	51.	 Vaquero L, Cuadrado F, Logothetis D, Martella C (2013) xDGP:
a dynamic graph processing system with adaptive partitioning.
arXiv preprint arXiv:​1309.​1049

	52.	 Vaquero LM, Cuadrado F, Logothetis D, Martella C (2014) Adap-
tive partitioning for large-scale dynamic graphs. In: Proceedings
of the 34th IEEE ICDCS international conference on distributed
computing systems

	53.	 Webber J (2012) A programmatic introduction to Neo4j. In: Pro-
ceedings of the 3rd ACM conference on systems, programming,
and applications: software for humanity

	54.	 Wu Z, Karimi HR, Dang C (2019) An approximation algorithm
for graph partitioning via deterministic annealing neural network.
Neural Netw 117:191–200

	55.	 Xu N, Chen L, Cui B (2014) LogGP: a log-based dynamic graph
partitioning method. Proc VLDB Endow 7(14):1917–1928

	56.	 Yang S, Yan X, Zong B, Khan A (2012) Towards effective parti-
tion management for large graphs. In: Proceedings of the ACM
SIGMOD international conference on management of data

	57.	 Zeng K, Yang J, Wang H, Shao B, Wang Z (2013) A distrib-
uted graph engine for web scale RDF data. Proc VLDB Endow
6:265–276

	58.	 Zheng A, Labrinidis A, Chrysanthis PK(2016) Planar: parallel
lightweight architecture-aware adaptive graph repartitioning. In:
Proceedings of the 32nd IEEE ICDE international conference on
data engineering

	59.	 Zheng A, Labrinidis A, Faloutsos C (2017) Skew-resistant graph
partitioning. In: Proceedings of the 33rd IEEE ICDE international
conference on data engineering

http://swat.cse.lehigh.edu/projects/lubm/
http://arxiv.org/abs/1309.1049

	A Workload-Adaptive Streaming Partitioner for Distributed Graph Stores
	Abstract
	1 Introduction
	2 Background
	3 Related Work
	4 WASP Framework
	4.1 Data and Query Model
	4.2 Workload Characteristics
	4.3 Vertex Reassignment
	4.3.1 Vertex Reassignment Data Maintenance
	4.3.2 Vertex Reassignment Timing
	4.3.3 High-Degree Vertices

	4.4 Verifying WASP on an RDF Store
	4.5 Memory and Time Complexities

	5 Experimental Evaluation
	5.1 Partition Quality
	5.2 Query Performance
	5.3 Reassignment Threshold Sensitivity Analysis
	5.4 Edge Log Size Sensitivity Analysis
	5.5 Splitting Threshold Sensitivity Analysis
	5.6 Workload Evolution
	5.7 Data Scalability

	6 Conclusion and Future Work
	References

