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Abstract
Streaming graph partitioning methods have recently gained attention due to their ability to scale to very large graphs with 
limited resources. However, many such methods do not consider workload and graph characteristics. This may degrade the 
performance of queries by increasing inter-node communication and computational load imbalance. Moreover, existing 
workload-aware methods cannot consistently provide good performance as they do not consider dynamic workloads that 
keep emerging in graph applications. We address these issues by proposing a novel workload-adaptive streaming partitioner 
named WASP, that aims to achieve low-latency and high-throughput online graph queries. As each workload typically con-
tains frequent query patterns, WASP exploits the existing workload to capture active vertices and edges which are frequently 
visited and traversed, respectively. This information is used to heuristically improve the quality of partitions either by avoiding 
the concentration of active vertices in a few partitions proportional to their visit frequencies or by reducing the probability 
of the cut of active edges proportional to their traversal frequencies. In order to assess the impact of WASP on a graph store 
and to show how easily the approach can be plugged on top of the system, we exploit it in a distributed graph-based RDF 
store. Our experiments over three synthetic and real-world graph datasets and the corresponding static and dynamic query 
workloads show that WASP achieves a better query performance against state-of-the-art graph partitioners, especially in 
dynamic query workloads.
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1  According to [8] contemporary database systems are referred to as 
“data stores” where more flexible data models are used and DBMS 
functionalities may not be fully provided.
2  http://​orien​tdb.​com/.
3  https://​think​aurel​ius.​github.​io/​titan/.
4  It is a de-facto standard in many data stores due to creating bal-
anced partitions and its decentralized nature.

1  Introduction

Modern real-world graphs such as social networks and web 
graphs are typically big, constantly changing and simultane-
ously queried by many clients. Hence, it is no longer feasible 
for a single database server to provide computing resources 
for managing such graphs and still be capable to provide 
quality services to their client applications [13]. A tradi-
tional solution is resorting to the vertical scaling of servers 
and full replication, which is costly or even unattainable. 
This leads to the cost-effective design of distributed graph 

stores1 that rely on the horizontal partitioning or sharding 
and parallel processing of graph data over large clusters of 
cheap commodity servers.

Existing graph partitioning strategies are mostly designed 
for static graphs. When they are used for dynamic graphs, 
whose vertices and edges are continuously changing (e.g., 
the semantic Web and social networks), it requires the heav-
yweight repartitioning of graphs after a batch of changes, 
which may take hours in big graphs [41, 48, 54]. For this 
reason, some graph stores such as OrientDB,2 Titan3 and 
Microsoft Trinity [43] use naive partitioning methods such 
as the random hash-based partitioning,4 whereby each ver-
tex along with its incident edges are assigned to a server 

http://orcid.org/0000-0002-8245-2355
http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-021-00156-2&domain=pdf
http://orientdb.com/
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in the hash bucket [11]. However, these methods can lead 
to costly inter-partition traversals which greatly impact the 
performance of queries. Thus, some graph stores such as 
Neo4j [53], HypergraphDB [24] and DEX [31] avoid the 
partitioning of graph datasets.

The quality of partitions in real-world graphs may 
degrade due to continuous changes in query workloads 
and graph topologies. An adaptive graph partitioner can 
deal with this problem by exploiting streaming approaches 
[35] along with the incremental adaptation of the obtained 
partitions to the above changes. This usually incurs online 
monitoring of changes in the existing query workload and 
graph topology followed by the probable movement of some 
vertices between partitions. This adaptation may impose an 
overhead on the system and may reduce the efficiency and 
throughput of online querying. Therefore, adaptive strate-
gies should be “lightweight” in terms of time and memory 
requirements. So far, there have been several research efforts 
on workload-driven partitioning strategies to achieve online 
low-latency graph querying [12, 5, 13–17, 21, 33, 37, 56]. 
However, there are still several significant shortcomings. 

1.	 The existing strategies are mostly workload-agnostic 
(e.g., [10, 22]), as they presume the same probability 
of traversing edges or visiting vertices, which does not 
always hold with different query workloads. In other 
words, they do not consider frequent query patterns and 
locality of access to graph elements, which may degrade 
system performance. For example, Fig. 1 depicts a sim-
ple property graph and query workload. After running a 
vertex-centric partitioner, we get an optimal partitioning 
{P1, P2}. However, it is not optimal for the workload. 
Each query may require an expensive inter-partition tra-
versal because of the cutting edge “?x authors ?y”.

2.	 The existing strategies are mostly graph topology-agnos-
tic, as they do not differentiate between high-degree and 
low-degree vertices which may result in load imbalance. 
In a hybrid-cut model, the vertex-centric partitioning is 
exploited for low-degree vertices while incident edges of 
high-degree vertices are partitioned via the edge-centric 
partitioning. There are only two graph analytics engines 
[9, 29] that exploit the hybrid-cut model. However, no 

workload-driven partitioning strategy has yet exploited 
this model.

3.	 Many existing workload-aware strategies are unable 
to adapt to dynamic workloads where the frequency of 
query patterns fluctuate. For example, WARP [21], Par-
tout [17] and the Peng et al. method [37] exploit a given 
query log to extract frequent query patterns whereby 
the associated triple patterns are partitioned to increase 
access locality. However, such strategies suffer from two 
drawbacks: (1) Over time, the popularity of frequent 
query patterns may change. Accordingly, we have done 
some research on the British Museum (BM) query log 
[40]. It spans from April 12, 2014 to October 16, 2014 
and records over 1.2 million query requests. The daily 
arrival rate of the top four frequent query patterns is 
demonstrated by Fig. 2. We have added the frequencies 
of the four patterns together as they follow a similar 
arrival trend. As we can see, despite being frequent (over 
150 times a day) during a short period from August 4, 
2014, to August 22, 2014, these patterns are infrequent 
most of the time. Therefore, a partitioning plan based 
on frequent query patterns with temporary spike results 
in inefficient queries most of the time. (2) Over time, 
the existing frequent query patterns may be outdated. In 
other words, queries in the future can rarely be reflected 
by query logs in the past.

 
To address the above issues, we present a workload-

adaptive streaming graph partitioner, named WASP, that 
is also topology aware. Being workload-adaptive, WASP 
incrementally adjusts partitions (initially obtained by the 
random hashing of graph vertices) regarding the frequently 

Fig. 1   A balanced min-cut example

Fig. 2   The arrival rate of the top four query patterns in the BM query 
log
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traversed active edges of the existing query workload and the 
frequently explored endpoint active vertices of the edges. In 
this sense, our partitioner distributes active vertices across 
partitions proportional to their frequency of visits. This leads 
to balance in the existing computational load, which in turn 
increases the throughput. On the other hand, it reduces the 
probability of the cut of active edges proportional to their 
frequency of traversals. As such, active vertices belonging 
to the same query are likely to be collocated into the same 
partition, which in turn decreases the query response time. 
WASP monitors active edges and vertices by tracking their 
activity weights where larger activity weights mean more 
activities. In order to adapt to the existing workload and 
diminish the effect of old active edges and vertices, WASP 
exploits a set of active edge logs, each of which is stored 
in a computing node. By inserting new active edges (of 
the existing workload) to an edge log, old active edges (of 
previous workloads) are gradually removed from the log. 
This removal turns the old active edges and their associated 
old active endpoint vertices to the passive ones, which are 
no longer considered in adjusting graph partitions. Being 
topology-aware, WASP utilizes a hybrid-cut model whereby 
the exploration of high-degree vertices is distributed across 
multiple nodes, which in turn increases the throughput. Our 
contributions are summarized as follows.

•	 We propose a dedicated cost model to manage vertex 
reassignment according to frequent query patterns and 
graph topology. The model decides which vertex should 
be moved and where to move in order to maximize the 
reassignment gain. Simultaneously, the load-balance on 
each computing node is preserved.

•	 We propose incremental lightweight metadata manage-
ment, where data structures are mainly weight counters. 
As such, time-consuming computations such as calculat-
ing the degree of interest of active vertices to be hosted 
on different nodes are replaced by a continuous update of 
weights. We exploit Redis [7] for the quick in-memory 
storage and access of various weights in each node in the 
form of key-value pairs.

•	 We carry out an extensive evaluation using both real-
world and synthetic graph datasets. Results show that our 
method is much faster than state-of-the-art graph stores, 
regarding dynamic workloads and increases the parallel-
ism for accessing high-degree vertices of the graph.

The rest of this paper is organized as follows. Sections 2 
and 3 introduce the background and related work for the 
proposed algorithms, respectively. Our WASP framework 
architecture is described in detail in Sect. 4, which mainly 
includes the details of our workload-adaptive and topology-
aware graph partitioning strategy. Section 5 reports the 
evaluation results. Finally, we conclude the paper in Sect. 6.

2 � Background

Balanced k-way graph partitioning divides the graph into k 
disjoint and balanced partitions and minimizes the cut size. 
This is a well-known NP-hard problem, where computa-
tional load balance, in order to maximize parallelism, and 
data access locality, in order to minimize inter-node commu-
nication, are two conflicting issues [18]. This results in lots 
of heuristic partitioning methods for graph datasets, which 
can be classified as two orthogonal categories: vertex-cen-
tric/edge-centric and offline/online.

Vertex-centric partitioners assign each source vertex 
along with its incident edges into the same partition, which 
in turn increases locality. However, the corresponding desti-
nation vertices may be assigned to different partitions which 
results in cutting their in-between edges or edge-cuts. These 
partitioners aim at performing a balanced distribution of 
vertices across nodes, as well as minimizing the number 
of edge-cuts. Although vertex-centric partitioners promote 
locality, they may severely impact the computational load 
balance for power-law graphs.5 In other words, by grouping 
all edges of high-degree vertices together, a subset of nodes 
are overloaded. On the other hand, edge-centric methods 
tend to assign the edges incident to a particular vertex into 
different partitions. However, the endpoint vertices of an 
edge are replicated in the same node as the edge places. 
These partitioners aim at performing a balanced distribution 
of edges across nodes, as well as minimizing the number 
of replicas. Although edge-centric partitioners alleviate the 
computational load imbalance of high-degree vertices, they 
often incur higher communication and synchronization cost 
through the poor locality [19].

Offline or non-streaming partitioners, such as METIS 
[25], require accessing to the whole graph dataset in order to 
perform preprocessing prior to partitioning. However, they 
scale poorly against very large graphs due to their heavy 
usage of memory and high computational cost, which in 
turn impacts the performance of online (non-analytical) 
query processing. This partitioning approach has been later 
improved through parallelization techniques, such as ParME-
TIS [26]. These parallel strategies yet suffer from the need 
for a global view of the graph that reduces their scalability.

Since scaling offline approaches for large graphs are dif-
ficult, online or streaming approaches have been introduced 
which continually update the partitioning as new changes 
are streamed into the system. More precisely, they parti-
tion the incoming vertices (for vertex-centric partitioning) 
or edges (for edge-centric partitioning) one at a time based 
on the local knowledge of the input graph such as the current 

5  A small fraction of vertices have extremely high degrees in propor-
tion to others [14].
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properties of streamed elements and the information of pre-
viously partitioned ones. These streaming approaches are 
one-pass since after assigning a vertex or edge to a par-
tition, no reassignment is performed. Due to the online 
nature of these approaches, lightweight heuristics, such as 
Fennel [49], are used to decide where to assign incoming 
elements. However, as graph elements are assigned once, 
new streamed elements of a graph may deteriorate its previ-
ous partitioning. Hence, there are several extensions [34, 
50] of the streaming approach, where graphs are partitioned 
in several passes or iterations. But the quality of partitions 
is still dependent on the ordering of streamed elements as 
there may not be enough local knowledge of the input graph.

3 � Related Work

In recent years, several online partitioning strategies have 
been proposed for supporting low-latency query execution 
of large-scale dynamic graphs. They aim at increasing the 
performance of either offline graph analytics as in [27, 30, 
39, 42, 51, 52, 55, 12, 13], or online graph queries as in [10, 
13–17, 21, 22, 32, 33, 37, 38, 56] whose workload-driven 
ones are more relevant to our work in this study. As we only 
review a subset of graph partitioning methods, the interested 
readers are referred to the recent surveys on graph partition-
ing [6, 20, 35].

Hermes [33] is a workload-driven partitioning method, 
where each vertex knows the number of its neighbors in 
each partition, the weight of each partition and the aggregate 
weight of partitions. Nodes are balanced based on the weight 
of their hosted vertices, where the weight of a vertex indi-
cates the frequency of queries toward it. Vertex reassignment 
is triggered when the weights of vertices change. The gain 
of reassigning a vertex from its source to a target partition is 
how many more neighbors it has in the target than the source 
partition. Peng et al. [36, 37] propose a workload-driven 
partitioning method that mines frequent query patterns from 
a representative query workload. Then it puts matches of the 
same frequent pattern into the same fragment to improve the 
workload throughout.

WARP [21] is a workload-driven replication method, 
whereby RDF triples are initially partitioned using METIS, 
regarding their subjects. It then uses a representative query 
workload to replicate frequently accessed triples across the 
cluster using the n-hop guarantee method [23]. Given a user 
query, WARP determines its center vertex and radius. If the 
query is within the n-hop guarantee, WARP sends the query 
to all servers, which evaluate the query in parallel. Other-
wise, the query is decomposed into subqueries for which a 
distributed query evaluation plan is created. Subqueries are 
evaluated in parallel by all servers, and the results are sent 
to the master which combines them. Partout [17] is also 

workload-driven by extracting frequent query patterns from 
a representative query workload and using them to partition 
the data into fragments.

Loom [15] is a streaming partitioning strategy that 
assumes a given query workload of graph patterns and 
their relative frequencies. During the workload, it discovers 
common patterns of edge traversals. It then compares the 
sub-graph pattern matching queries against these common 
patterns and attempts to reduce inter-partition traversals of 
frequently traversed sub-graphs by allocating each match to 
a single partition. Taper [16] takes any given initial parti-
tioning as a starting point, and iteratively enhances it by esti-
mating traversal probabilities for a given path queries work-
load. These are then used to swap chosen vertices across 
partitions, and reducing the probability of inter-partition 
traversals.

Table 1 summarizes the state-of-the-art workload-driven 
partitioning strategies for supporting online graph queries. 
Loom, Partout, WARP and the Peng et al. method are based 
on knowing a priori query workload. Also, Taper assumes 
a given frequency of patterns in the existing path query 
workload. By exploiting this prior knowledge, the parts 
of the dataset that are targeted together by future queries 
can be highlighted. However, not only it might be prac-
tically difficult to have such knowledge in advance, but 
such strategies do not (properly) adapt to changes. This 
results in degrading the quality of partitions by evolving 
the workload while there is no repartitioning. Hermes takes 
into account a uniform frequency of edge traversals despite 
the non-uniform edge weights of real-world graphs. On 
the other hand, WARP extensively exploits the replication 
of graph vertices for improving their locality of access. 
However, maintaining replicas means additional metadata 
management, which in turn increases the system overhead. 

Table 1   Workload-driven partitioning methods supporting online 
graph queries

Full support ( ✓), Limited support (✤), No support ( ✗)

Method Cut model Initial parti-
tioning

Workload-
adaptive

Topology-
aware

Hermes [33] Vertex-centric Simple 
hashing

✤ ✗

Peng et al. 
[36]

Vertex-centric Existing 
workload

✤  ✗

Partout [17] Vertex-centric Existing 
workload

✤  ✗

WARP [33] Vertex-centric METIS  ✗  ✗
Loom [15] Vertex-centric Existing 

workload
✤ ✗

Taper [16] Vertex-centric METIS ✤  ✗
WASP Hybrid-cut Simple 

hashing
 ✓  ✓
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Replicas also become useless by changing the workload, 
which in turn increases the storage overhead. On the con-
trary, WASP can take any given initial partitioning and 
assumes nothing about the workload upfront. Moreover, 
it avoids additional storage overheads by using no replica-
tion. WASP also exploits the hyper-cut model to alleviate 
the load imbalance of high-degree vertices and improve 
parallelism.

4 � WASP Framework

In this section, we describe the design of WASP in more 
detail.

4.1 � Data and Query Model

In this paper, data are represented by the property graph 
model, as it has gained wide acceptance and is used in 
many graph database systems such as Neo4j and Titan. It is 
defined as follows.

Definition 1  A property graph is a tuple G = ( VG , EG , 
LG , �G , �G ), where VG is a finite set of vertices; EG ⊆
VG ×VG is a finite set of directed edges; LG is a finite 
set of labels; �G ∶ VG ∪ EG → LG is a total function 
that maps a (vertex or edge) identifier to a label; and 
�G ∶ (VG ∪ EG) × ProG → ValG is a partial function that 
maps a (vertex or edge) identifier and a property (or attrib-
ute) to a value, assuming that ProG and ValG are a final set 
of properties and a set of values, respectively.

Intuitively, G is a directed, labeled and attributed mul-
tigraph, where each vertex represents an entity and has a 
label or type as well as a (possibly empty) set of properties 
associated with this entity, and each edge represents a binary 
relationship between entities and has a label and some prop-
erties as well.

Online graph queries can be classified into two 
major types, namely path queries and pattern match-
ing queries [11]. Hence, we assume a query workload 
W = {<Q1, f1>,<Q2, f2>,… ,<Qn, fn>} as a set of either 
path queries or pattern matching queries [2, 3] and their fre-
quencies, processed by an exploration-based query proces-
sor [44, 57]. A pattern matching query Q follows the same 
structure as the property graph, but instead of allowing its 
vertices VQ , edges EQ , labels LQ and property values ValQ to 
contain only constants, it permits variables as well. A path 
query, which determines the existence of a path connecting 
two vertices of a property graph, can be considered as a 
subset of pattern matching queries.

4.2 � Workload Characteristics

As query workloads are usually dynamic (via changing the 
frequency of associated queries), the quality of graph parti-
tions may degrade over time. Hence, WASP encodes work-
load characteristics into vertex and edge weights, according 
to the following definitions.

Definition 2  Given a property graph G, for each directional 
edge <u, v> ∈ EG , where u and v are in VG and hosted on 
nodes N and M, respectively, there is a traversal weight 
𝜔(<u, v>) denoting the amount of data passed by traversing 
the edge.

In more detail, during the processing of a query Q, a tra-
versal from the source vertex u to the target vertex v sends 
both Q and u from N to M where Q’s processing continues, 
followed by receiving back the exploration result required by 
u. This weight starts from a default minimum value of 0 indi-
cating that its corresponding passive edge has not yet been 
traversed. By traversing an edge during the existing query 
workload, the edge weight is gradually increased along with 
decreasing the probability of cutting the edge.

Definition 3  Given a property graph G, for each vertex v ∈
VG , where v is hosted on node N, there is an activity weight 
�(v) that is equal to the total weight of v’s incident edges.

In more detail, as any traversal toward or from v requires 
the exploration of its neighborhood, �(v) denotes the com-
puting load imposed on N by accessing the corresponding 
local indices (see Sect. 4.4). Accordingly, by visiting an 
active vertex during the existing query workload, its activ-
ity weight becomes greater than 0. As an illustration, Fig. 3a 
shows the vertex/edge weights of a sample property graph. 
In this figure, the thicker the edges graphically indicate the 
ones with more frequent traversal.

4.3 � Vertex Reassignment

The Fennel streaming heuristic [49] is used for the online 
one-pass partitioning of large-scale graphs, whereby a newly 
added vertex is assigned (only once) to an existing partition 
with the highest number of its neighbours; while at the same 
time, a large partition should be penalized to prevent it from 
becoming too large with respect to the number of its hosted 
vertices. This heuristic is presented in Eq. 1, where v refers 
to a vertex to be assigned, N(v) refers to the set of v’s neigh-
bors, Vi indicates the set of vertices hosted on the ith node, 
n refers to the number of nodes, and � and � are parameters.

(1)argmax
1≤i≤n

{
|N(v) ∩ Vi| − �

�

2
(|Vi|)�−1

}



168	 A. Davoudian et al.

1 3

Such a one-pass streaming heuristic is similar to the dynamic 
partitioning of graphs whose newly streamed vertices/edges 
are incrementally added to the existing partitions [45, 49]. 
However, one-pass partitioning falls short in four areas to 
be workload-adaptive: (1) an assigned vertex is never reas-
signed, (2) the removal of vertices/edges is not considered, 
(3) a uniform frequency of edge traversals is considered, and 
(4) partitions may not be balanced based on the aggregate 
activity weight of their hosted vertices. These drawbacks 
motivate us to use a workload-adaptive selective reassign-
ment that continuously revisits active vertices and reassigns 
them when appropriate. This necessitates maintaining some 
workload-based metadata in the main memory of comput-
ing nodes. This amount of information is not comparable to 
the huge amount of the given graph dataset. In more detail, 
according to the existing workload, assume v ∈ Si , where Si 
is the set of active vertices hosted on the ith node. The fol-
lowing metadata need to be maintained in the main memory 
of the ith node:

•	 v’s degree of interest to be hosted on each node, where 
each degree is initialized from a default minimum value 
zero. In more detail, v’s degree of interest toward the 
jth node ( j ∈ [1..n] ) is called Dj(v) , which indicates the 
total weight of v’s incident edges to/from vertices hosted 
on the jth node. During a query traversal, Dj(v) is incre-
mented by sending a request from v to a vertex on the 
jth node or vice versa. Accordingly, �(v) can be simply 
calculated by summing up v’s degrees of interest toward 
all nodes. Note that degrees with a default value of zero 
are not stored in the memory. They are not also shown in 
Fig. 3.

•	 The activity weight of the ith node, that is called �(Si) . 
It indicates the aggregate activity weight of all active 
vertices hosted on the node.

•	 An edge log hosted on the ith node, that is called �i . The 
log stores all active edges and corresponding weights, 
that are incident to the active vertices hosted on the ith 
node. In more detail, during the existing workload, the 
most recently traversed edge incident to an active vertex 
hosted on the ith node is inserted on top of �i . As a result, 
an edge e that is not traversed any more (i.e., belonging to 
the previous workload) is gradually shifted to the bottom 
of the log and finally moved out of it. This turns e into 
a passive edge and its weight is set to 0, which in turn 
changes the degrees of locality of e’s endpoint vertices. 
More precisely, assuming e’s weight is w and its endpoint 
vertices are u hosted on the jth node, and v hosted on the 
ith node, then w is subtracted from both Di(u) and Dj(v) . 
w is also subtracted from �(Si) and �(Sj).

	   Each edge log has a configurable size Δ , which is uni-
formly set for all nodes as their logs contain almost the 
same number of active edges. This is because of alleviat-
ing the load skew at query time through the edge-centric 
partitioning of high-degree vertices (see Sect. 4.3.3). 
When Δ is too small, each log stores a subset of active 
edges traversed in the existing workload. This means 
moving out some frequently traversed edges belonging 
to the workload and mistakenly making them passive. On 
the other hand, when Δ is too large, each log stores active 
edges that were traversed during the previous workloads, 
not the existing one. In both cases, the quality of parti-
tioning may be impacted due to imprecise vertex reas-
signments. The choice and impact of Δ will be discussed 
in Sect. 5.4.

As aforementioned, our framework uses the simple hash par-
titioning scheme for the initial partitioning of the vertices 
across the nodes for two reasons. First, there is no compli-
cated logic involved in assigning new vertices to partitions. 

Fig. 3   a Existing partitions before reassigning vertex v
3
 ; b the improved quality of partitions after reassigning v

3
 from the 2nd to the 3rd node
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Second, for a given vertex, we can simply look up its origi-
nal hosting node. Hence, the initial node hosting a newly 
arrived vertex can be simply found through the hashing of 
the vertex ID. However, reassigning the vertex necessitates 
using a lookup table to find its new hosting node. This table 
can be implemented in a distributed manner through a set 
of lookup variables. More precisely, each reassigned vertex 
v has a lookup variable stored as metadata in the v’s initial 
node. Note that, as long as v is hosted on its initial node, 
there is no need for this lookup variable.

Our selective reassignment heuristic is presented in Eq. 2. 
By comparing to Eq. 1, we set � = 2 and � =

1

|Si|×n
.

This reassignment takes a vertex v as input, computes a 
score for every node in the cluster, and a node with the high-
est score is determined as the potential target node to host v. 
To ensure a balanced partitioning with respect to the activity 
weight of nodes, there is a penalty function �(Si)|Si|×n

 , where by 
increasing the activity weight of each node, its score 
decreases.

In order to prevent the source node (assume it 
is the sth node) to be underloaded, the condition: 
{�(Ss) − �(v)} ≥ (2 − Φ) × Ω is checked before performing 
the selective reassignment. Here, Ω indicates the average 
aggregate activity weight of all nodes. In addition, parameter 
Φ ∈ [1, 2] , which is called maximum load imbalance, indi-
cates how imbalanced a partition can be. For example, Φ = 1 
indicates that all nodes are required to have the same aggre-
gate of activity weights. If the source node is underloaded, 
the vertex v is not considered to be moved. On the other 
hand, the condition: {�(St) + �(v)} ≤ Φ × Ω is checked on 
the potential target node (assume it is the tth node) in order 
to prevent overloading it. If the node becomes overloaded, 
the condition is checked on the next highest score node; 
otherwise, the tth node is selected as the target node.

Assume the quality of partitions is determined by a pair 
of quality factors: (1) the probability of intra-partition tra-
versals ( � ) and (2) the load imbalance factor ( � ) indicating 
how imbalanced existing partitions are. These factors are 
defined as follows:

(2)

argmax
1≤i≤n

{
Di(v) −

�(Si)

|Si| × n

}

�(Si) =
∑

1≤j≤|Si|
�(vj), where vj ∈ Si

�(vj) =
∑

1≤i≤n

Di(vj)

(3)
� =

the aggregate weight of edges that are not cut

the weight of all edges

� =
max1≤i≤n �(Si)

Ω

The selective reassignment improves � as the higher the 
weight of an edge, the lower the probability to cut it. In 
other words, by increasing the weight of an edge, the inter-
est of its endpoints to be collocated on the same node is 
increased. Higher the value of � means less the probability of 
inter-partition traversals during the existing query workload.

Figure 3 illustrates the selective reassignment. Suppose 
there are three nodes, Φ = 1.6 , and vertex v3 is selected for 
reassignment. As Fig. 3a shows, �(S1) = 2 , �(S2) = 6 and 
�(S3) = 2 and Ω ≈ 3.33 . With respect to Eq. 2, we have the 
following calculations: Score1 ≈ 0.33 , Score2 ≈ −0.66 and 
Score3 ≈ 1.33 . As Fig. 3b shows, after moving v3 , the 2nd 
node (as the source node) is not underloaded ( �(S2) ≥ 1.32 ), 
and no one of the potential target nodes is overloaded (each 
one has an aggregate activity weight less than or equal to 
5.33). As a result, v3 is moved to the third node having the 
highest score. The quality of partitions after moving v3 
is improved as � has increased from 0.2 to 0.6, and � has 
decreased from 1.8 to 1.5 in Fig. 3a, b, respectively.

4.3.1 � Vertex Reassignment Data Maintenance

Reassigning a vertex v incurs moving its topological data 
from the ith node as the source to the jth node as the target. 
Such data include v’s relationships to other vertices along 
with v’s properties. It also incurs maintaining the associ-
ated metadata as the following: (1) all active edges (and 
their weights) that are incident to v are removed from �i and 
inserted to �j , (2) v’s degrees of interest toward all nodes 
are moved to the target node, (3) for each active edge e that 
is incident to u and v, u’s degrees of interest toward the 
source and target nodes are changed. More precisely, �(e) 
is subtracted from Di(u) and then added to Dj(u) , (4) the 
aggregate activity weights of the source and target nodes 
are changed. More precisely, w is subtracted from �(Si) and 
added to �(Sj) , and (5) v’s lookup variable in its initial node 
is updated to refer to the target node.

During the reassignment, the source node’s query pro-
cessor does not answer any request on v, in order to prevent 
their access to inconsistent data. As such, a request queue is 
maintained in the query processor, whereby all requests on v 
are queued. By completing the reassignment, the v’s lookup 
variable refers to the target node. Therefore, requests on v 
are released from the queue and redirected to the target node.

4.3.2 � Vertex Reassignment Timing

The timing of reassigning vertices is critical to make a bal-
ance between the quality of partitions and the above over-
head of data/metadata maintenance. Recall that by changing 
the activity weight of a vertex, its degree of interest toward 
different nodes may change. This, in turn, triggers checking 
the possibility of reassigning the vertex. On the other hand, 
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by increasing the activity weight of a vertex, the influence 
of a new exploration in its degree of interest toward different 
nodes is negligible. Therefore, after a reassignment, we will 
check the possibility of another reassignment only after a 
similar amount of new explorations. In more detail, assum-
ing a reassignment threshold k, vertex reassignments are 
triggered after {k, 2 × k, 4 × k, …, 2i× k, ...} explorations. 
This significantly reduces the number of reassignments for 
a vertex. For example, if k is equal to 10, for a vertex whose 
activity weight is 10,240, the maximum number of reassign-
ments is only 10. Currently, we use a hardwired reassign-
ment threshold. The choice and impact of the reassignment 
threshold will be discussed in Sect. 5.3.

4.3.3 � High‑Degree Vertices

High-degree active vertices may significantly reduce the effi-
ciency and throughput of online querying. More precisely, 
their large neighbourhood may incur a significant processing 
overhead on their hosting nodes, as well as a large amount 
of network traffic on their incident edges. As an illustra-
tion, Fig. 4a depicts a high-degree active vertex u, hosted 
on node N1, whose neighbors are scattered across N1 to N3. 
Also, assume there is a graph traversal through the pattern 
matching query Q, and vertices t, u and v1 to v100,000 in the 
input graph are instances of vertices T, U and V in the query. 
Accordingly, a traversal from the source vertex u to the tar-
get vertices v1 to v100,000 needs gathering and processing a 
huge amount of results that are sent back to N1. In addition, 
a traversal from the source vertex t, hosted on node N2, to 
the target vertex u incurs sending back the huge amount of 
gathered results from N1 to N2.

WASP alleviates these issues by specifying and splitting 
high-degree vertices. Accordingly, for each vertex u when 
u’s degree (of incoming and outgoing edges) exceeds a 
configurable splitting threshold, it is considered as a high-
degree vertex which in turn results in splitting up u’s edges, 
whereby vertex u is collocated with its neighbors. In more 

detail, an outgoing edge u → v is collocated with its target 
vertex v, and an incoming edge u ← v is collocated with its 
source vertex v. Accordingly, as u’s neighbors are randomly 
distributed through hashing, its edges will be evenly dis-
tributed. This uniformly divides the query processing over-
head (which was already on u’s hosting node) between all 
nodes that host its splits. As Fig. 4b shows, vertex u is split 
into three vertices u′ , u′′ and u ′′′ hosted on N1, N2 and N3, 
respectively. As such, traversing from t as the source vertex 
to u’s splits as the target neighbors results in dividing the 
traffic load (which was already between two nodes N1 and 
N2) between all nodes. The choice and impact of the split-
ting threshold will be discussed in Sect. 5.5.

4.4 � Verifying WASP on an RDF Store

The popularity of property graphs is due to their flexibility 
to express other structures. Accordingly, by not using attrib-
utes in property graphs, Resource Description Framework 
(RDF)6 or knowledge graphs are generated. Intuitively, an 
RDF graph consists of triples of the form ⟨subject, predicate, 
object⟩ which can be interpreted as either two entities (sub-
ject and object) connected via a labeled relationship (predi-
cate) or an entity (subject) associated via an attribute name 
(predicate) to its corresponding value (object). In a graph-
based RDF store the dataset is stored as a graph, where RDF 
triples are modeled as vertices and edges [4]. An RDF graph 
is explored by walking the graph in specific orders accord-
ing to the edges of a given SPARQL graph pattern matching 
query7 [44, 57].

In order to assess the impact of WASP on a graph store 
and to show how easily the approach can be plugged on top 

Fig. 4   a A high-degree active vertex u regarding Q as a query pattern belonging to the existing workload; b splitting up the edges of u across the 
nodes

6  http://​www.​w3.​org/​TR/​rdf-​primer/.
7  http://​www.​w3.​org/​TR/​rdf-​sparql-​query/.

http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-sparql-query/
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of the store, it is exploited on a graph-based RDF store.8 
WASP is deployed on a cluster whose nodes are connected 
in a peer-to-peer fashion similar to the one presented in 
Fig. 5a. The key components of the system are as follows.

•	 A client library that contains a query routing module in 
order to balance the load among computing nodes. As 
such, a client can connect to any node and perform a 
query.

•	 A distributed memory storage that is made up of a batch 
of independent single-node and in-memory Redis serv-
ers9 as the back-end stores. Redis provides a variety of 
data structures such as hashes, lists, sets and ordered sets, 
as well as various operations for handling them. Accord-
ingly, each node stores the associated data/metadata in 
the following local/global indices for an input graph G 
(see Definition 1).

•	 Global index of vertices is stored as a Distributed 
Hash Table (DHT) of Key-Value (KV) pairs, where 
for each v ∈VG , there is a KV pair consisting of the 
corresponding vertex identifier or vID as the key and 
the corresponding metadata as the value. Note that 
the name of v is initially hashed to a vID which, in 
turn, is hashed to a computing node. In addition, the 
metadata of v include its name and hosting node. 
Sending and storing vIDs instead of long names may 
result in saving network bandwidth and memory con-
sumption. In addition, storing hosting nodes allows 
for changing the current hosting node of a vertex due 
to G’s repartitioning.

•	 Global index of predicates is stored as a DHT of 
KV pairs, where for each p ∈LG , there is a KV pair 
consisting of the corresponding predicate identifier 
or pID as the key and the corresponding metadata as 
the value. Note that the name of p is initially hashed 
to a pID. In addition, the metadata of p include its 
name and a pair of lists <sbjNodeList, objNodeL-
ist>, where sbjNodeList (or objNodeList) includes 
node(s) hosting some subjects (or objects) incident to 
an edge labelled with p. This index is globally used 
to determine those nodes where a triple pattern with 
a bound predicate should be submitted for evalua-
tion.

•	 Local index of vertices of each node is stored as a 
hash table of KV pairs, where each pair belongs to 
a vertex v ∈VG that is hosted on the node. This pair 
consists of a combination of the corresponding vID 
and an OUT (=1) or IN (= 0) direction as the com-
posite key, and a list of all unique pIDs of outgoing 
or incoming edges incident to v. This index is locally 
used for evaluating those triple patterns whose only 
subjects (or objects) are bound.

•	 Local index of predicates of each node is stored as a 
hash table of KV pairs, where each pair belongs to a 
predicate p ∈LG . This pair consists of a combination 
of the corresponding pID and an OUT or IN direc-
tion as the composite key, and a list of all vertices on 
the node that are the source or the target of an edge 
labeled with p, respectively. This index is locally 
used for evaluating those triple patterns whose only 
predicates are bound.

•	 Local index of vertices-predicates of each node is 
stored as a hash table of KV pairs, where each pair 
belongs to a vertex v ∈ VG that is hosted on the node. 
This pair consists of a combination of the corre-
sponding vID, a pID where p ∈LG and an OUT or 

Fig. 5   a System architecture; b graph-based SPARQL query processing steps

8  The source code is publicly available for download at https://​github.​
com/​alida​voudi​an/​WASP-​Graph-​Parti​tioner/.
9  http://​redis.​io/.

https://github.com/alidavoudian/WASP-Graph-Partitioner/
https://github.com/alidavoudian/WASP-Graph-Partitioner/
http://redis.io/
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IN direction as the composite key, and the list of 
corresponding neighbor vertices as the value. This is 
used for evaluating those triple patterns whose only 
subjects (or objects) and predicates are bound.

•	 Local index of activity weights of each node is 
stored as a hash table of KV pairs, where each pair 
belongs to an active vertex v ∈VG that is hosted on 
the node. This pair consists of a combination of the 
corresponding vertex identifier vID as the key and 
the corresponding activity weight ( �(v) ) as the value.

•	 Local index of degrees of interest of each node is 
stored as a hash table of KV pairs, where each pair 
belongs to an active vertex v ∈VG that is hosted on 
the node. This pair consists of a combination of the 
corresponding vID and a node identifier nID as the 
composite key, and v’s degree of interest to be hosted 
on that node as the value.

•	 A graph-based SPARQL processor that consists of three 
running processes: (1) query plan generator that heuris-
tically calculates a query plan for each received query, 
where a query plan is an ordered sequence of triple pat-
terns. It then uses the aforementioned global indices to 
determine proper nodes where the plan is sent. Finally, 
after receiving the results of all sent plans, they are com-
bined and sent back to the corresponding user; (2) query 
plan evaluator that receives a query plan and sequen-
tially sends the corresponding triple patterns to proper 
nodes determined via the aforementioned global indices. 
Finally, after receiving the matches of all sent triple pat-
terns, they are merged and sent back to the corresponding 
query plan generator; (3) triple pattern evaluator that 
uses the aforementioned local indices, determines the 
matches of a received triple pattern, and finally sends 
back the matches to the query plan evaluator. Figure 5b 
depicts the query processing steps.

•	 WASP framework that is made up of several independ-
ent partitioning managers which are integrated with 
their peer query processors. Partitioners are in charge of 
watching the existing query workload during the graph 
exploration along with making autonomous decisions for 
relocating graph vertices hosted on their corresponding 
nodes.

Note that since Redis servers are single threaded, by hav-
ing each server manage partitions of both graph dataset and 
metadata, the concurrency between the processing of data 
and maintenance of metadata is decreased which in turn 
impacts the efficiency of query processing. As a result, we 
exploited two Redis servers on each node for the separate 
management of partitioned data and metadata.

4.5 � Memory and Time Complexities

The amount of metadata used by WASP has a small size 
compared to the huge amount of a given graph dataset. In 
more detail, by storing the weights of at most Δ active edges 
on a node, the metadata of at most 2 × Δ active vertices are 
stored in the node as each edge represents two endpoint ver-
tices. On the other hand, for each active vertex hosted on the 
node, there are at most n degrees of interest toward all nodes. 
Therefore, there are at most n × 2 × Δ degrees of interest on 
each node. In addition, for each active vertex u hosted on a 
node, there is an activity weight �(u) . Hence, there are at 
most 2 × Δ activity weights on each node. Finally, each node 
stores the total activity weight of its hosted active vertices 
requiring one long integer. As a result, the maximum amount 
of metadata used by WASP is 2Δn2 + (3Δ + 1)n , where n 
is the number of computing nodes, and Δ is the size of the 
edge log. An implication of the above complexity is that 
the size of metadata scales with Δ . However, according to 
our experiment in Sect. 5.4, Δ is far less than the number of 
edges of a given graph dataset. On the other hand, the per-
formance of a partitioner is mainly affected by the amount 
of communication required by the partitioning algorithm. 
Accordingly, the time complexity of our partitioner relies on 
the number of times the selective reassignment and its exam-
ination are called. This requires a good balance between the 
edge-cut ratio and the number of vertex reassignments that 
is experimented in Sect. 5.3.

5 � Experimental Evaluation

In this section, we evaluate WASP in extensive experiments 
to thoroughly test its adaptivity and performance, regarding 
different static and dynamic query workloads.

Hardware/software setup We have implemented 
WASP in C/C++. In more detail, MPICH-3.1.4 library and 
ZeroMQ10 sockets are used for communication across nodes. 
In addition, Hiredis11 that is an official C client library is 
used for connecting to Redis KV stores. WASP is deployed 
on a cluster with 10 homogeneous nodes connected in a 
peer-to-peer fashion, where each node has 48GB of RAM, 
16 quad-core CPUs of 2.4GHz, 160GB SATA HDD, and 
runs Debian Linux 6.0.6.

Datasets and query workloads We have conducted our 
experiments using three synthetic and real datasets (see 
Table 2) as well as six query workloads over the datasets. 
WatDiv [1] and LUBM [47] are two synthetic property 
graph benchmarks whereby we create two datasets, each 

10  http://​zeromq.​org.
11  https://​github.​com/​redis/​hired​is.

http://zeromq.org
https://github.com/redis/hiredis
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of which contains over 1 billion edges. We use their query 
template generators to generate 20 and 14 basic templates 
or patterns, respectively. We then instantiate 1K queries for 
each template. Accordingly, we create two workloads for 
WatDiv, namely WatDiv-SW and WatDiv-DW, each of which 
contains a total of 20K queries. The former simulates a static 
workload by shuffling the queries of all patterns with no fluc-
tuating frequency. The latter simulates a dynamic workload 
by the consecutive execution of queries of the same pattern. 
Similarly, we create LUBM-SW and LUBM-DW workloads 
for LUBM, each of which contains a total of 14K queries.

As both WatDiv and LUBM are synthetic, we also use 
DBpedia [28] as a real property graph dataset extracted from 
Wikipedia by crowdsourcing. We extract 44 query templates 
from the DBpedia query log [40], which spans from April 
12, 2014, to October 16, 2014, recording over 1.7 million 
query requests.12 We used this log as it is also used by the 
other state-of-the-art graph partitioners, which in turn results 
in a fair comparison. We remove the queries with parse error 
or runtime error, and there remain 1.2 million queries in the 
end. As before, we create two workloads, namely DBpedia-
SW and DBpedia-DW, each of which contains a total of 44K 
queries. Note that most of the queries in the DBpedia query 
log consist of only one or a few triple patterns, so the tem-
plates of DBpedia are much simpler than the other datasets.

Competitors Regarding Table 1, we compare WASP 
against Hermes [33] that is the only strategy with no prior 
knowledge of query workloads. We also compare against 
the Peng et al. method [36] as a representative of strategies 
that are based on knowing a priori query workload. It has 
already shown to have a faster query response time against 
WARP [21] and Partout [17].

5.1 � Partition Quality

We first study the ratio of inter-partition traversals (IPT) 
achieved by the three partitioners, regarding the six static 
and dynamic workloads. In Fig. 6a, the X-axis shows the 
WatDiv-SW query stream in 10 units, each of which contains 
2K queries. The Y-axis indicates the IPT ratio achieved by 
executing the queries of each unit. The diagram shows a 

gradual decrease of IPT ratio in both Hermes and WASP 
as they gradually improve data access locality via their ver-
tex reassignment strategies. However, since Hermes does 
not consider the weight of active edges, the corresponding 
decreasing rate is lower than WASP. On the other hand, 
despite WASP and Hermes that initially partition the graph 
dataset via the simple hashing strategy, the Peng et  al. 
method [36] partitions the whole graph dataset assuming 
a priori knowledge of the WatDiv-SW workload. Therefore, 
the diagram shows an almost steady IPT ratio less than 0.1, 
as the Peng et al. method has already assigned the matches 
of each frequent pattern to the same partition.

On the contrary, regarding the WatDiv-DW query stream 
as shown in Fig. 6b, the IPT ratio in the Peng et al. method 
is very high (more than 0.8). In more detail, it partitions 
the graph dataset based on the frequent query patterns in 
the first workload unit, assuming a priori knowledge of the 
unit. However, the existing frequent query patterns change 
in subsequent units which results in a severe increase in IPT 
ratio as the Peng et al. method is not workload adaptive. On 
the other hand, WASP and Hermes adapt themselves to the 
WatDiv-DW query stream. During the workload, the IPT 
ratio in WASP fluctuates approximately between 0.3 to 0.4. 
However, Hermes acts in an upper bound of ratios between 
0.6 to 0.7, as it takes into account a uniform frequency of 
edge traversals despite the non-uniform ones in real-world 
scenarios. Similar reasoning can be used to justify the results 
obtained for LUBM and DBpedia datasets. As Fig. 6c shows, 
after executing the LUBM-SW query stream, WASP achieves 
a better IPT ratio (almost 0.27) compared to the one in Wat-
Div-SW (almost 0.43 in Fig. 6a). This is due to the exist-
ence of more complex queries with long paths in LUBM 
than WatDiv. In more detail, more complex queries cause 
more edge traversals, which results in the identification of 
hot edges and collocating their endpoint vertices by WASP. 
On the other hand, as Fig. 6e shows, the behavior of WASP 
and Hermes are closer to each other compared to Fig. 6a, 
c. This is because of simple short path queries in DBpedia.

Note that the improvement of the IPT ratio does not nec-
essarily result in the improvement of query performance 
unless there is a balanced load distribution [35]. Therefore, 
we study the “computational” load balance achieved by the 
three partitioners. In this respect, although Hermes and the 
Peng et al. method exploit the existing workload to achieve 
a balanced load distribution, they perform poorly in WatDiv 
and DBpedia as all edges of very high-degree vertices are 
grouped together. This causes a subset of machines to be 
computationally overloaded by active vertices with a very 
high degree. On the other hand, WASP splits such vertices 
(see Sect. 4.3.3). Accordingly, Fig. 7 shows the load imbal-
ance factor ( � ) achieved by the partitioning strategies on the 
three static workloads. As shown, WASP achieves a better 
load imbalance than the others in all the workloads.

Table 2   Dataset statistics in millions (M)

Dataset #Vertices #Edges Avg./Max. degree

WatDiv-1B [1] 97M 1092M 24/190K
LUBM-10240 [47] 332M 1367M 17/4.3K
DBpedia [28] 14M 1096M 35/630K

12  To extract query templates, we randomly select one-day queries 
from the log and transform them into a parameterized form [46].
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5.2 � Query Performance

Table 3 shows the execution time of the six aforemen-
tioned static and dynamic query workloads, regarding the 
three partitioning strategies. Unlike the Peng et al. method 
which initially mines frequent query patterns from the static 

workloads, WASP and Hermes use initial hash partitioning 
that mounts communication on complex queries. This results 
in better performance of the Peng et al. method compared 
to Hermes and WASP, regarding WatDiv and LUBM static 
workloads. However, WASP achieves a lower execution time 
than Peng et al. regarding DBpedia-SW. This is because of 

Fig. 6   IPT ratio regarding the 
six workloads
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either the low impact of IPT ratio on query performance 
due to the simple short path queries in DBpedia or the high 
impact of load imbalance factor on query performance 
regardless of the complexity of queries. On the other hand, 
unlike WASP and Hermes, the Peng et al. method does not 
adapt to changes in frequent query patterns. This incurs high 
communication costs for the dynamic workloads and results 
in achieving higher workload execution times in the Peng 
et al. method compared to the other strategies.

5.3 � Reassignment Threshold Sensitivity Analysis

The reassignment threshold controls the triggering of the 
vertex reassignment process. Consequently, it influences the 
edge-cut ratio and the number of vertex reassignments in the 
system. In this experiment, we conduct an empirical sen-
sitivity analysis to select the reassignment threshold value 
regarding the aforementioned static workloads. We execute 
each workload regarding a wide range of possible reassign-
ment threshold values from 1 to 30 as load execution times 
get almost steady regarding the threshold value 30. The 
edge-cut ratio, the number of vertex reassignments and the 
resulting workload execution times are shown in Fig. 8a–c, 
respectively. As Fig. 8a, b show, there is a contrast between 
edge-cut ratio and the number of vertex reassignments. This 
necessitates to make a balance between these factors in order 
to decrease load execution times.We observe that WatDiv is 
very sensitive to slight changes in the reassignment thresh-
old because of the complexity of its queries. As the reassign-
ment threshold increases, the reassignment of active vertices 
is delayed causing more queries to be executed with com-
munication. On the other hand, by decreasing the reassign-
ment threshold, more vertices are reassigned causing more 

overhead of data/metadata maintenance. As it can be seen, 
DBpedia is not as sensitive to this range of reassignment 
thresholds because most of its queries are simple short path 
queries that are processed with low or no communication. 
As the both workloads show, either increasing or decreasing 
the reassignment threshold may impact the efficiency and 
throughput of query processing. In all our experiments, we 
use a reassignment threshold of 10; this results in a good 
balance between the edge-cut ratio and the number of ver-
tex reassignments. We plan to study the autotuning of this 
parameter in the future.

5.4 � Edge Log Size Sensitivity Analysis

Edge log size or Δ affects the lifespan of active edges and 
the quality of partitions. This incurs choosing a proper log 
size value. By increasing Δ , both recent and old active edges 
are considered in partitioning. This decreases the throughput 
due to an improper load balance. More precisely, the weights 
of endpoint vertices associated with old active edges are 
still considered in calculating their hosting nodes’ weights. 
On the other hand, by decreasing Δ , only a subset of recent 
active edges are taken into account in partitioning. This 
decreases the efficiency of queries via increasing edge-cut 
ratio as the endpoint vertices of some recent active edges 
are not collocated. Hence, decreasing or increasing Δ can 
impact the workload execution time. In this experiment, we 
conduct an empirical sensitivity analysis to select a proper 
edge log size based on the workload execution time, regard-
ing WatDiv-SW and DBpedia-SW workloads. As typical 
query workloads access only a small fraction of the whole 
graph, we execute each workload regarding a range of log 
sizes from 100K to 1000K as workload execution times get 
almost steady regarding the lower and upper bounds. Work-
load execution times are shown in Fig. 8d. In all subsequent 
experiments, we use an edge log size of 700K; this results 
in a high throughput and query efficiency. We plan to study 
the autotuning of reassignment threshold and edge log size 
in the future.

5.5 � Splitting Threshold Sensitivity Analysis

The splitting threshold controls the cutting up of high-degree 
vertices. However, despite alleviating the computational load 
imbalance, splitting the edges leads to the replication of 
high-degree vertices. This in turn introduces extra network 

Fig. 7   Load imbalance factor regarding the three static workloads

Table 3   Workload runtime (s) Method WatDiv-SW LUBM-SW DBpedia-SW WatDiv-DW LUBM-DW DBpedia-DW

Peng et al. 924 830 435 1332 1396 515
Hermes 1210 1153 481 1244 1136 487
WASP 987 1089 377 916 843 347
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overhead to retrieve data from remote nodes. Therefore, it 
is important to find the best splitting threshold to make a 
trade-off between the computational load balance and the 
average number of replicas. In this experiment, we conduct 
an empirical sensitivity analysis to select the splitting thresh-
old value regarding the WatDiv and DBpedia datasets in a 
cluster of 10 nodes.

The result (Fig. 9) shows that by increasing the split-
ting threshold, fewer vertices get replicated causing a sharp 
decrease in the average number of replicas. However, in both 
datasets, the average number of replicas is almost insensitive 
to the splitting thresholds larger than 100 that is selected as 
the splitting threshold in our experiments.

5.6 � Workload Evolution

In this experiment, we use the aforementioned dynamic 
workloads to investigate the impact of changing frequent 
query patterns on our partitioning strategy. Regarding the 
WatDiv-DW workload, Fig. 10a shows the cumulative time 
as the execution progresses using our method with and 
without the adaptivity feature. After every sequence of 1K 
query executions, the pattern of queries changes. Without 

adaptivity, the cumulative time increases sharply. On the 
other hand, our method adapts to the dynamic workload with 
little overhead causing the cumulative time to drop signifi-
cantly by almost 6 times. Once our method starts adapting, 
most of future queries are solved with less communication. 
The same behavior is observed for the DBpedia-DW work-
load (see Fig. 10b).

Fig. 8   Sensitivity analysis of 
reassignment threshold and 
edge log size

Fig. 9   Average number of replicas under different splitting thresholds



177A Workload‑Adaptive Streaming Partitioner for Distributed Graph Stores﻿	

1 3

5.7 � Data Scalability

In this experiment, we investigate the impact of dataset size 
on our fragmentation strategies. We use the WatDiv bench-
mark data generator to generate four datasets: WatDiv-1M, 
WatDiv-10M, WatDiv-100M, WatDiv-1B, varying from 
1 million to 1 billion triples, respectively. Regarding the 
WatDiv-SW workload, Fig. 11a, b show the performance 
and throughput of our partitioning method with and without 
the adaptivity feature by increasing the dataset size. Gen-
erally, as the size of RDF datasets gets larger, the average 
response time per query increases and the number of queries 
answered in 1 min decreases accordingly. However, the rates 
of increase and decrease in the method with adaptivity are 
gradual compared to the method without adaptivity, and we 
can say that the query performance and throughput are scal-
able with RDF graph sizes.

6 � Conclusion and Future Work

We have presented WASP, a novel workload-adaptive and 
topology-aware streaming partitioner, in order to achieve 
low-latency and high-throughput online queries in distrib-
uted graph stores. As each query workload typically contains 
popular or similar queries, WASP captures active vertices 
and edges that are frequently visited and traversed in the 
existing query workload. Using this information, the qual-
ity of partitions is improved by avoiding the concentration 
of active vertices in a few partitions proportional to their 
visit frequencies, or by reducing the probability of the cut of 
active edges proportional to their traversal frequencies. Our 
experiments show that WASP significantly reduces the num-
ber of inter-partition traversals during a query workload. It 
is able to handle evolving query workloads and graph topol-
ogy while maintaining the quality of partitions over time. In 
the future, we plan to increase the performance of queries 
in static workloads through a workload-driven replication, 

Fig. 10   WASP adaptivity to dynamic workloads

Fig. 11   WASP scalability 
regarding the WatDiv dataset
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where the replication scheme of a vertex (i.e., how many 
replicas of the vertex are created and to which partitions 
these replicas are allocated) dynamically changes based on 
the read/write frequencies of the vertex.
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