
Vol.:(0123456789)1 3

Data Science and Engineering (2021) 6:119–141
https://doi.org/10.1007/s41019-021-00155-3

Graph Learning for Combinatorial Optimization: A Survey
of State‑of‑the‑Art

Yun Peng1 · Byron Choi1 · Jianliang Xu1

Received: 21 August 2020 / Revised: 16 December 2020 / Accepted: 18 March 2021 / Published online: 28 April 2021
© The Author(s) 2021

Abstract
Graphs have been widely used to represent complex data in many applications, such as e-commerce, social networks, and
bioinformatics. Efficient and effective analysis of graph data is important for graph-based applications. However, most graph
analysis tasks are combinatorial optimization (CO) problems, which are NP-hard. Recent studies have focused a lot on the
potential of using machine learning (ML) to solve graph-based CO problems. Most recent methods follow the two-stage
framework. The first stage is graph representation learning, which embeds the graphs into low-dimension vectors. The second
stage uses machine learning to solve the CO problems using the embeddings of the graphs learned in the first stage. The
works for the first stage can be classified into two categories, graph embedding methods and end-to-end learning methods.
For graph embedding methods, the learning of the the embeddings of the graphs has its own objective, which may not rely
on the CO problems to be solved. The CO problems are solved by independent downstream tasks. For end-to-end learning
methods, the learning of the embeddings of the graphs does not have its own objective and is an intermediate step of the
learning procedure of solving the CO problems. The works for the second stage can also be classified into two categories,
non-autoregressive methods and autoregressive methods. Non-autoregressive methods predict a solution for a CO problem
in one shot. A non-autoregressive method predicts a matrix that denotes the probability of each node/edge being a part of
a solution of the CO problem. The solution can be computed from the matrix using search heuristics such as beam search.
Autoregressive methods iteratively extend a partial solution step by step. At each step, an autoregressive method predicts
a node/edge conditioned to current partial solution, which is used to its extension. In this survey, we provide a thorough
overview of recent studies of the graph learning-based CO methods. The survey ends with several remarks on future research
directions.

Keywords  Graph representation learning · Graph neural network · Combinational optimization

Abbreviations
ML	� Machine learningime
GNN	� Graph neural network
DL	� Deep learning
RL	� Reinforcement learning
CNN	� Convolutional neural network
DNN	� Deep neural network
RNN	� Recurrent neural network
MLP	� Multi-layer perceptron
MDP	� Markov decision process
MCTS	� Monte Carlo tree search

CO	� Combinatorial optimization
MVC	� Minimum vertex cover
MIS	� Maximum independent set
TSP	� Travelling salesman problem
GC	� Graph coloring
MDS	� Minimum dominating set
MM	� Maximum matching
MaxCut	� Maximum cut
MC	� Maximum clique
SI	� Subgraph isomorphism
GSim	� Graph similarity
MF	� Matrix factorization
B & B	� Branch and bound
MILP	� Mixed-integer linear programming
BFS	� Breadth-first search
DFS	� Depth-first search

 *	 Jianliang Xu
	 xujl@comp.hkbu.edu.hk

1	 Department of Computer Science, Hong Kong Baptist
University, DLB 626, Level 6, David C. Lam Building, Shaw
Campus, Kowloon Tong, Hong Kong

http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-021-00155-3&domain=pdf

120	 Y. Peng et al.

1 3

1  Introduction

Graphs are ubiquitous and are used in a wide range of
domains, from e-commerce [21, 78] to social networking
[31, 70] to bioinformatics [20, 76]. Effectively and effi-
ciently analyzing graph data are important for graph-based
applications. However, many graph analysis tasks are com-
binatorial optimization (CO) problems, such as the trave-
ling salesman problem (TSP) [67], maximum independent
set (MIS) [14], maximum cut (MaxCut) [23], minimum
vertex cover (MVC) [42], maximum clique (MC) [10],
graph coloring (GC) [54], subgraph isomorphism (SI)
[22], and graph similarity (GSim) [55]. These graph-based
CO problems are NP-hard. In the existing literature on this
subject, there are three main approaches used to solve a
CO problem: exact algorithms, approximation algorithms,
and heuristic algorithms. Given a CO problem on a graph
G, exact algorithms aim to compute an optimum solution.
Due to the NP-hardness of the problems, the worst-case
time complexity of exact algorithms is exponential to the
size of G. To reduce time complexity, approximation algo-
rithms find a suboptimal solution that has a guaranteed
approximation ratio to the optimum, with a worst-case
polynomial runtime. Nevertheless, many graph-based CO
problems, such as general TSP [53], GC [35], and MC
[27], are inapproximable with such a bounded ratio. Thus,
heuristic algorithms are designed to efficiently find a sub-
optimal solution with desirable empirical performance.
Despite having no theoretical guarantee of optimality,
heuristic algorithms often produce good enough solutions
in practice.

The practice of applying machine learning (ML) to
solve graph-based CO problems has a long history. For
example, as far back as the 1980s, researchers were
using the Hopfield neural network to solve TSP [28, 60].
Recently, the success of deep learning methods has led
to an increasing attention being paid to this subject [5,
14, 43, 67]. Compared to manual algorithm designs, ML-
based methods have several advantages in solving graph-
based CO problems. First, ML-based methods can auto-
matically identify distinct features from training data. In
contrast, human algorithm designers need to study the
heuristics with substantial problem-specific research
based on intuitions and trial-and-errors. Second, for a
graph-based CO problem, ML has the potential to find
useful features that it may be hard to specify by human
algorithm designers, enabling it to develop a better solu-
tion [29]. Third, an ML-based method can adapt to a
family of CO problems. For example, S2V-DQN [14] can
support TSP, MVC, and MaxCut; GNNTS [42] can sup-
port MIS, MVC, and MC. In comparison, it is unlikely
for a handcrafted algorithm of one CO problem to be
adapted to other CO problems.

Most recent graph learning-based CO methods follow the
two-stage framework. The first stage is graph representation
learning which embeds the graphs into low-dimension vec-
tors. The second stage uses machine learning to solve the CO
problems using the embedding vectors of the graphs learned
in the first stage. In this survey, we review the state-of-the-
art works of the two stages, respectively.

For the first stage, existing graph representation learn-
ing techniques that have been used in ML-based CO meth-
ods can be classified into two categories: graph embedding
methods and end-to-end learning methods. On one hand,
graph embedding methods embed the nodes of a graph into
low-dimension vectors. The embedding vectors of the graph
learned are inputted to downstream machine learning tasks
to solve CO problems. Graph embedding has its learning
objective, which may not rely on the CO problems to be
solved. The embeddings of the graph are fixed during the
solving of the downstream task. On the other hand, in end-
to-end learning methods, graph representation learning does
not have its own learning objective and is an intermediate
step of the learning procedure of solving the CO problem.
The embeddings learned are specific to the CO problem
being solved.

For the second stage, existing works can be classified
into two categories: non-autoregressive methods and autore-
gressive methods. On one hand, non-autoregressive methods
predict a solution for a graph-based CO problem in one shot.
For example, for the TSP problem on a graph, a non-autore-
gressive method predicts a matrix, where each element of
the matrix is the probability of an edge belonging to a TSP
tour. The TSP tour can be computed from the matrix using
beam search. On the other hand, autoregressive methods
iteratively extend a partial solution step by step. For the TSP
problem, at each step, an autoregressive method predicts an
edge conditioned to the current partial TSP tour, which is
used to extend the current partial TSP tour.

There have been several surveys of graph representa-
tion learning [7, 11, 13, 26, 77]. However, existing surveys
mainly focus on the graph representation learning models
and their applications in node classification, link prediction
or graph classification. In contrast, we focus on using graph
learning to solve CO problems. There have also been several
previous surveys that have discussed ML-based CO meth-
ods [5, 38, 43]. The present survey, however, has different
emphases from previous studies. The survey [5] focuses on
branch and bound (B&B) search techniques for the mixed-
integer linear programming (MILP) problem. Although
many graph-based CO problems can be formulated using
MILP and solved using the B&B method, most existing ML-
based methods for solving graph-based CO problems focus
on graph-specific methods. Mazyavkina et al. [43] discuss
RL-based CO methods. However, there are ML-based CO
methods that do not use RL. This survey is not limited to RL

121Graph Learning for Combinatorial Optimization: A Survey of State‑of‑the‑Art﻿	

1 3

approaches. Lamb et al. [38] survey the GNN-based neural-
symbolic computing methods. Symbolic computing is a
broad field and graph-based CO is a topic of it. In contrast,
we focus on the graph-based CO problems in this survey.

The rest of this survey is organized as follows. Section 2
presents the notations and preliminaries. Section 3 summa-
rizes graph representation learning techniques. Section 4
discusses the use of ML to solve graph-based CO problems.
Section 5 suggests directions for future research. Section 6
concludes this survey.

2 � Notations and Preliminaries

In this section, we present some of the notations and defini-
tions that are frequently used in this survey.

We denote a graph by G = (V ,E,�) , where V and E are
the node set and the edge set of G, respectively, �|V|×d� is
the matrix of initial features of all nodes, and �u = �[u, ⋅]
denotes the initial features of node u. We may choose u ∈ G
or u ∈ V to denote a node of the graph, when the choice is
more intuitive. Similarly, we may use (u, v) ∈ G or (u, v) ∈ E
to denote an edge of the graph. The adjacency matrix of
G is denoted by � . The weight of edge (u, v) is denoted
by wu,v . We use � to denote the transition matrix, where
�[u, v] = wu,v∕

∑
v�∈G wu,v� . �k =

∏
k � is the k-step transi-

tion matrix and � is also called the 1-step transition matrix.
We use g to denote a subgraph of G and G∖g to denote the
subgraph of G after removing all nodes in g. For a node
u ∈ G, u ∉ g , we use g ∪ {u} to denote adding the node u and
the edges {(u, v)|v ∈ g, (u, v) ∈ G} to g. G can be a directed
or undirected graph. If G is directed, (u, v) and (v, u) may
not present simultaneously in E. No(u) and Ni(u) denote the
outgoing and incoming neighbors of u, respectively. If G
is undirected, N(u) denotes the neighbors of u. We use a
bold uppercase character to denote a matrix (e.g., � ), a bold
lowercase character to denote a vector (e.g., � ), and a low-
ercase character to denote a scalar (e.g., x). The embedding
vectors (or embeddings for short) of a node u and a graph
G are d-dimensional vectors denoted by �u and �G , respec-
tively. Table 1 summarizes the notations of frequently used
symbols.

A graph-based CO problem is formulated in Definition 1.

Definition 1  Given a graph G and a cost function c of the
subgraphs of G, a CO problem is to find the optimum value
of c or the corresponding subgraph that produces that opti-
mum value.

For example, for a graph G, the maximum clique (MC)
problem is to find the largest clique of G, and the minimum
vertex cover (MVC) problem is to find the minimum set of
nodes that are adjacent to all edges in G.

2.1 � Overview of Graph Learning‑based CO Methods

Most existing methods that use machine learning to solve
the graph-based CO problem follow the two-stage frame-
work, as illustrated in Fig. 1. Given an input graph, the
first stage is to learn the representation of the graph in
a low-dimension embedding space. The nodes or edges
of the graph are represented as embedding vectors (or
embeddings for short). The techniques for the first stage
are discussed in Sect. 3. The second stage uses machine
learning to solve the CO problem using the embeddings
of the graph learned in the first stage. The techniques for
the second stage are discussed in Sect. 4.

There are mainly two ways to learn graph representation
in the first stage. In the first way, the embeddings are learned
by graph embedding methods. Graph embedding has its own
learning objectives that may not rely on the objective of
the CO problem to be solved in the second stage. The CO
problem is solved as a downstream task of graph embedding
and the gradient of the loss of the CO problem in the second
stage will not be back-propagated to the first stage. In the
second way, the CO problem is solved in the end-to-end
manner. The first stage does not have its own learning objec-
tive and the gradient of the second stage is back-propagated
to the first stage for learning the embeddings of the graph.

There are mainly two different approaches to solve the
CO problems in the second stage, namely non-autoregres-
sive methods and autoregressive methods. The non-autore-
gressive methods predict a solution for a graph-based CO
problem in one shot. A non-autoregressive method predicts
a matrix that denotes the probability of each node/edge being
a part of a solution. The solution of the CO problem can be
computed from the matrix by search heuristics, e.g., beam
search. The autoregressive methods compute the solution
by iteratively extending a partial solution. At each time step,
the node/edge that is used to extend the partial solution is
predicted conditioned to the current partial solution.

Table 1   Notations of frequently used symbols and their meaning

Notation Description

G = (V ,E,�) A graph
� The adjacent matrix of G
u, v Node u and node v of G
� A matrix of features of all nodes
�u The features of u, i.e., a row of �
� A signal, i.e., a column of �
N u Neighborhood of u
�u,�G Embedding vector of a node u, a graph G
� The matrix of embedding vectors of all nodes
d Dimension of a vector
f l
�

The l-th layer of a neural network with parameter �

122	 Y. Peng et al.

1 3

3 � Graph Representation Learning Methods

In this section, we survey the graph representation learn-
ing methods that have been applied to solve graph-based
CO problems. In Sect. 3.1, we review the graph embedding
methods, which learn the embeddings of the graph indepen-
dently to the downstream task of solving the CO problem,
and in Sect. 3.2, we review the end-to-end learning methods
that learn the embeddings of the graph as an intermediate
step of solving the CO problem.

3.1 � Graph Embedding Methods

We first review generalized SkipGram and AutoEncoder that
are two widely used models in graph embedding.

3.1.1 � Generalized SkipGram

The generalized SkipGram model is extended from the well-
known SkipGram model [45] for embedding words in natu-
ral language processing. The generalized SkipGram model
relies on the neighborhood Nu of node u to learn an embed-
ding of u. The objective is to maximize the likelihood of the
nodes in Nu conditioned on u.

A s s u m i n g c o n d i t i o n a l i n d e p e n d e n c e ,
P(v1, v2,… , v�Nu��u) =

∏
vi∈Nu

P(vi��u) . P(vi|�u) can be

(1)maxP(v1, v2,… , v|Nu||u), vi ∈ Nu

defined as
�T
vi
�u∑

v∈G �T
v
�u

 . Maximizing
∏

vi∈Nu
P(vi��u) is then

equivalent to maximizing its logarithm. Hence, (1) becomes

Since computing the denominator of the softmax in (2) is
time consuming, many optimization techniques have been
proposed. Negative sampling [45] is one of the most well-
known techniques. Specifically, the nodes in the neighbor-
hood Nu of u are regarded as positive samples of u. On the
other hand, the nodes not in Nu are considered negative sam-
ples of u. Then, maximizing the likelihood in Formula 2 can
be achieved as follows:

where v is a positive sample of u, v̄ is a negative sample, Pn
is the probability distribution of negative samples, v̄ ∼ Pn
means sampling a node from the probability distribution Pn ,
K is the number of negative samples, � is the sigmoid activa-
tion function, and � is the expectation.

To conveniently adopt the gradient descent algorithms,
maximizing an objective is often rewritten as minimizing its
negative. Thus, the objective function of the generalized Skip-
Gram model is to minimize the loss L as follows:

(2)

max
�
vi∈Nu

logP(vi��u)

= max
�
vi∈Nu

log
�T
vi
�u∑

v∈G �T
v
�u

(3)max log 𝜎(�T
v
�u) +

K∑
i=1

�v̄∼Pn
log 𝜎(−�T

v̄
�u),

Fig. 1   Overview of the two stages of ML-based CO methods

123Graph Learning for Combinatorial Optimization: A Survey of State‑of‑the‑Art﻿	

1 3

Existing studies on the generalized SkipGram model define
the neighborhood in different ways. For example, LINE [63]
defines the 1-hop neighbors as the neighborhood in order to
preserve the second-order proximity; DeepWalk [56] uses
the random walk to define the neighborhood for preserving
more global structural information of G.

3.1.2 � AutoEncoder

AutoEncoder is composed of an encoder and a decoder.
For a graph-based CO problem, the encoder encodes the
nodes in the graph into d-dimensional embedding vectors.
The decoder then predicts a solution to the CO problem
using the node embeddings (e.g., PointerNet [67]).

Formally, the encoder is a function

enc(�u) embeds node u into �u ∈ ℝ
d.

There are several different types of decoder. For
instance, the inner product-based decoder, the reconstruc-
tion-based decoder, and the classification-based decoder
are three widely-used decoders.

The inner product-based decoder is a function

dec(�u, �v) returns the similarity of �u and �v . Let sim(u, v)
denotes the proximity of u and v in G (e.g., �u[u, v] in [68]).
The objective function of the inner product decoder is to
minimize the loss

where D is the training dataset and dist is a user-specified
distance function.

The reconstruction-based decoder is a function

dec(�u) outputs �̂u as the reconstruction of �u . The objective
function is to minimize the reconstruction loss

The encoder and the decoder can be implemented by differ-
ent types of neural networks, e.g., the multi-layer perceptron
(MLP) [68] or the recurrent neural network (RNN) [65].

(4)

minL =min− log 𝜎(�T
v
�u)

−

K∑
i=1

�v̄∼Pn
log 𝜎(−�T

v̄
�u)

enc ∶ ℝ
d�
→ ℝ

d

dec ∶ ℝ
d ×ℝ

d
→ ℝ

(5)L =
∑

(u,v)∈D

dist(dec(�u, �v), sim(u, v)),

dec ∶ ℝ
d
→ ℝ

d�

L =
∑
u∈G

||(dec(�u), �u)||22

3.1.3 � Generalized SkipGram‑Based Graph Embedding
Method

This subsection reviews the generalized SkipGram-based
graph embedding methods DeepWalk [56], Node2Vec [24],
and Struc2Vec [58]; and the subgraph-based graph embed-
ding methods DeepGK [73], Subgraph2Vec [48], RUM [75],
Motif2Vec [15], and MotifWalk [50] .

DeepWalk [56] was one of the earlist works to introduce
the generalized SkipGram model to graph embedding. The
main idea of DeepWalk is to sample a set of truncated ran-
dom walks of the graph G, and the nodes in a window of
a random walk are regarded as co-occurence. The neigh-
borhood of a node is the nodes that co-occurred with it.
DeepWalk uses the generalized SkipGram model with the
negative sampling (refer to Formula 4) to learn the graph
embedding.

To incorporate more flexibility into the definition of
node neighborhood, Node2Vec [24] introduces breadth-first
search (BFS) and depth-first search (DFS) in neighborhood
sampling. The nodes found by BFS and DFS can capture
different structural properties. Node2Vec uses the second-
order random walk to simulate the BFS and DFS. (“second-
order” means that when the random walk is at the step i, the
random walk needs to look back to the step i − 1 to decide
the step i + 1 .) Two parameters p and q are introduced to
control the random walk. p controls the probability of return
to an already visited node in the following two steps, and q
controls the probability of visiting a close or a far node in
the following two steps. Let ui denotes the current node in
the walk and ui−1 denotes the previous node. The probability
of the random walk to visit the next node ui+1 is defined as
below.

where dist(ui−1, ui+1) is the shortest distance from ui−1 to ui+1
and wi,i+1 is the weight of the edge (ui, ui+1) . An example is
shown in Fig. 2. The current node of the random walk is ui .
There are four nodes ui−1 , v1 , v2 and v3 that can be the next
node of the random walk. The probability of selecting each
of them as the next node is shown in Fig. 2.

Struc2Vec [58] argues that the random walks of Node-
2Vec cannot find nodes that have similar structures but are
far away. Struc2Vec builds a multi-layer graph G′ for the
input graph G. The layer l is a complete graph G′

l
 , where

each node in G is a node in G′
l
 and each edge (u, v) ∈ G�

l

is weighted by the structural similarity of the l-hop

(6)

P(ui+1�ui) =
�

�ui−1,ui+1
× wui,ui+1

if (ui, ui+1) ∈ G

0 otherwise

�ui−1,ui+1
=

⎧
⎪⎨⎪⎩

1∕p if dist(ui−1, ui+1) = 0

1 if dist(ui−1, ui+1) = 1

1∕q if dist(ui−1, ui+1) = 2

124	 Y. Peng et al.

1 3

neighborhoods of u and v in G. In this way, two nodes that
are far away in G can reach each other by just one hop in G′

l
 .

The nodes in G′
l
 can have directed edges to the nodes in G�

l−1

and G�
l+1

 . Random walks are sampled on G′ , and the general-
ized SkipGram model is used to learn the node embedding.

Besides using paths to sample the neighborhood, many
works use representative subgraphs of the input graph. The
representative subgraphs may be termed motifs, graphlets
or kernels in different studies. Yanardag and Vishwanathan
[73] propose DeepGK, which is the earlist work embedding
the motifs. The neighborhood of a motif g is defined as the
motifs within a small distance from g. The generalized Skip-
Gram model is used to learn the embeddings for the motifs.

Yu et al. [75] propose a network representation learning
method using motifs (RUM). RUM builds a motif graph G′
for the input graph G, where each node in G′ is a motif of
G and two nodes have an edge in G′ if the corresponding
motifs share common nodes. Triangle is used as the graph
motif in RUM. RUM uses random walks on the motif graph
G′ to define the neighborhood of a motif. Then, the general-
ized SkipGram model is used to learn the embedding of the
motif. An original node u of G may occur in multiple motifs
of G′ . RUM uses the average of the embeddings of the motifs
as the embedding of u.

Dareddy et al. [15] propose another type of motif graph.
Given a graph G = (V ,E) , for each motif g, Motif2Vec
builds a motif graph G� = (V ,E�) , where the weight of an
edge (u, v) ∈ E� is the number of motif instances of g in G
that contain node u and v. Then, Motif2Vec simulates a set
of random walks on each motif graph and uses Node2Vec
[24] to learn the embeddings of the nodes in G. A similar
idea is also proposed in the MotifWalk method of [50].

Narayanany et al. [48] propose Subgraph2Vec to compute
the embeddings of the neighboring subgraphs of the nodes

in the input graph. Let gu denotes the neighboring subgraph
of a node u, Subgraph2Vec computes �gu using the general-
ized SkipGram model. The neighborhood of gu is defined
as the neighboring subgraphs of the neighbors of u, i.e.,
{gv|v ∈ N(u)}.

3.1.4 � AutoEncoder‑based Graph Embedding

AutoEncoder-based graph embedding often preserves
the graph structure properties measured by the following
proximities.

Definition 2  Given a graph G = (V ,E) , the first-order
proximity from u to v is the weight of (u, v). If (u, v) ∈ E ,
p(1)(u, v) = wu,v ; otherwise, p(1)(u, v) = 0.

The first-order proximity captures the direct relationship
between nodes. The second-order proximity captures the
similarity of the neighbors of two nodes.

Definition 3  Given a graph G, the second-order proximity
between u and v is p(2)(u, v) = sim(�(1)(u), �(1)(v)) , where
�(1)(u) is the vector of the first-order proximity from u to
all other nodes in G, i.e., �(1)(u) = (p(1)(u, v1), p

(1)(u, v2),… ,
p(1)(u, v|V|)) , and sim is a user-specified similarity function.

The first- and second-order proximities encode the local
structures of a graph. Proximities to capture more global
structures of a graph have also been proposed in the lit-
erature. For example, Cai et al. [7] propose to use p(k)(u, v)
(recursively defined, similar to Definition 3) as the k-th-
order proximity between u and v, Cao et al. [8] use the
k-step transition probability � k[u, v] to measure the k-step
relationship from u to v, Chen et al. [12] use the node

Fig. 2   An example of selecting the next node by the second-order random walk of Node2Vec [24]. ui is the current node of the random walk and
ui−1 is the previous node. ui−1 , v1 , v2 , and v

3

 can be selected as the next node with the corresponding probabilities, respectively

125Graph Learning for Combinatorial Optimization: A Survey of State‑of‑the‑Art﻿	

1 3

centrality, Tsitsulin et al. [64] use the Personalized Pag-
eRank, and Ou et al. [52] use the Katz Index and Adamic-
Adar to measure more global structural properties of G.

Large-scale information network embedding (LINE)
[63] preserves both the first- and second-order proxim-
ity in graph embedding using two AutoEncoders, respec-
tively. In order for AutoEncoder to preserve the first-order
proximity, the encoder is a simple embedding lookup [9].
The decoder outputs the estimated adjacent matrix using
the node embeddings, and the objective is to minimize
the loss between the estimated adjacent matrix and the
ground truth.

The decoder of LINE is designed as follows. Since adja-
cent nodes u and v in G have high first-order proximity,
they should be close in the embedding space. LINE uses
the inner product of �u and �v to measure the distance
between u and v in the embedding space, as shown below.

P1(⋅, ⋅) defines the estimated distribution of the first-order
proximity (i.e., the estimated adjacent matrix). LINE
ensures that the estimated distribution P1(⋅, ⋅) is close to the
empirical distribution P̂1(⋅, ⋅) so as to preserve the first-order
proximity.

where P̂1(u, v) =
wu,v∑

(u� ,v�)∈G wu� ,v�
 and dist is the distance between

two probability distributions. If the KL-divergence is used
as dist, L1 becomes

In order for AutoEncoder to preserve the second-order prox-
imity, the encoder is a simple embedding lookup [9]. The
decoder outputs an estimated distribution between each node
and its neighbors. The estimated distribution is reconstructed
from the embeddings of the nodes. The objective is to mini-
mize the reconstruction loss between the estimated distribu-
tion and the ground truth.

The decoder is designed as follows. Inspired by word
embedding [39], the neighbors of u are regarded as the
“context” of u. LINE uses a conditional probability P2(v|u)
defined in Formula 10 to model the estimated probability
of u generating a neighbor v.

where �′ is the vector of a node when the node is regarded
as context.

(7)P1(u, v) =
1

1 + exp(−�T
u
�v)

(8)L1 = min dist(P̂1(⋅, ⋅),P1(⋅, ⋅))

(9)L1 = min−
∑

(u,v)∈G

wu,v logP1(u, v)

(10)P2(v�u) =
exp(��T

v
�u)∑

v�∈G exp(��T
v�
�u)

,

P2(⋅|u) defines the estimated distribution of u over the
context. The nodes u and u′ in G that have a high second-
order proximity should have similar estimated distributions
over the context, i.e., P2(⋅|u) should be similar to P2(⋅|u�) .
This can be achieved by minimizing the distance between
the estimated distribution P2(⋅|u) and the empirical distribu-
tion P̂2(⋅|u) , for each node u in G. The empirical distribu-
tion P̂2(⋅|u) is defined as P̂2(v�u) = wu,v∕

∑
u,v� wu,v� . LINE

preserves the second-order proximity as follows.

Using the KL-divergence for dist, Formula 11 produces

LINE trains the two AutoEncoders separately. The node
embeddings generated by the two AutoEncoders are con-
catenated as the embeddings of the nodes. The model of
LINE is also adopted by Tang et al. [62] to embed the words
in a heterogeneous text graph.

Wang et al. [68] argue that LINE is a shallow model, in
the sense that it cannot effectively capture the highly non-
linear structure of a graph. Therefore, structural deep net-
work embedding (SDNE) is proposed as a mean of using
the deep neural network to embed the nodes. As with LINE,
SDNE also preserves the first- and second-order proximity.
Both the encoder and decoder of SDNE are MLPs. Given a
graph G, the encoder embeds �u to �u , where �u is the u-th
row in the adjacent matrix � of G, and the decoder recon-
structs �̂u from �u.

SDNE preserves the first-order proximity by minimizing
the distance in the embeded space for the adjacent nodes
in G.

The second-order proximity is preserved by minimizing the
reconstrucspation loss.

SDNE combines L1 , L2 , and a regularizer term as the objec-
tive function and jointly optimizes them by means of a deep
neural network. The first- and second-order proximity are
preserved and the graph embedding learned is more robust
than LINE. As demonstrated in experiments, SDNE outper-
forms LINE in several downstream tasks (e.g., node clas-
sification and link prediction).

Versatile graph embedding method (VERSE) [64] shows
that the first- and second-order proximity are not sufficient to

(11)L2 = min
∑
u∈G

dist(P̂2(⋅|u),P2(⋅|u)))

(12)L2 = min−
∑

(u,v)∈G

wu,v logP2(v|u)

L1 =
∑

(u,v)∈G

�[u, v] × ||�u − �v||22

L2 =
∑
u∈G

||�̂u − �u||22

126	 Y. Peng et al.

1 3

capture the diverse forms of similarity relationships among
nodes in a graph. Tsitsulin et al. [64] propose to use a func-
tion sim(u, v) to measure the similarity between any two
nodes u and v in G, where sim(⋅, ⋅) can be any similarity
function. The similarity distribution of u to all other nodes
can be defined by sim(u, ⋅) . The encoder of VERSE is a sim-
ple embedding lookup. The decoder estimates the similarity
distribution using the node embeddings, as in Formula 10.
The objective is to minimize the reconstruction loss between
the estimated similarity distribution and the ground truth.

Dave et al. [16] propose Neural-Brane to capture both
node attribute information and graph structural information
in the embedding of the graph. Bonner et al. [6] study the
interpretability of graph embedding models.

3.1.5 � Discussion

The generalized SkipGram model is inspired by the word
embedding model in natural language processing (NLP).
Random walks of the graphs, which are the analog of sen-
tences in texts are widely used by the generalized SkipGram
model-based methods for computing the embeddings of the
graphs. However, computing random walks are time-con-
suming. Moreover, the generalized SkipGram model is often
regarded as a shallow model when compared to AutoEn-
coder. AutoEncoder can be deeper by stacking more layers
and has more potentials to encode the complex and nonlin-
ear relationships between the nodes of a graph [68]. Recent
works of word embedding in NLP also verify the advantage
of AutoEncoder [18]. However, designing the architectures
of the encoder and decoder and the loss function to encode
the structure information of the graph is challenging.

Graph embedding methods can precompute the embedding
vectors of graphs. The advantage is that the structure informa-
tion encoded in the embeddings can be transferred to different
downstream tasks. Graph embedding methods learn the embed-
dings of the graph without considering the downstream CO
problems to be solved. The embeddings may not encode the
information that are critical for solving the CO problem. There
is an opportunity that the performance of the graph embedding-
based methods may be inferior to the end-to-end learning meth-
ods for solving CO problems. Therefore, there have been recent
studies on alternative graph representation learning methods
for solving CO problems such as end-to-end learning methods.

3.2 � End‑to‑End Method

Graph neural network (GNN) and AutoEncoder are widely
used in the end-to-end learning methods of solving CO prob-
lems, where computing the embeddings of the graphs are an
intermediate step.

3.2.1 � Graph Neural Network

Graph neural network uses the graph convolution operation
to aggregate graph structure and node content information.
Graph convolution can be divided into two categories: i)
spectral convolutions, defined using the spectra of a graph,
which can be computed from the eigendecomposition of
the graph’s Laplacian matrix, and ii) spatial convolutions,
directly defined on a graph by information propagation.

A) Graph Spectral Convolution
Given an undirected graph G, � = � − �−1∕2��−1∕2 is

the normalized Laplacian matrix of G. � can be decom-
posed into � = ���T , where � is the eigenvectors ordered
by eigenvalues, � is the diagonal matrix of eigenvalues,
and �[i, i] is the i-th eigenvalue �i.

The graph convolution ∗G of an input signal � ∈ ℝ
|V|

with a filter �� is defined as

Existing studies on graph spectral convolution all follow
Formula (13), and the differences are the choice of the filter
�� [72]. The u-th row of the output channel is the embedding
�u of a node u.

B) Graph Spatial Convolution
Graph spatial convolution aggregates the informa-

tion from a node’s local neighborhood. Intuitively, each
node sends messages based on its current embedding and
updates its embedding based on the messages received
from its local neighborhood. A graph spatial convolution
model often stacks multiple layers, and each layer per-
forms one iteration of message propagation. To illustrate
this, we recall the definition given in GraphSAGE [25]. A
layer of GraphSAGE is as follows:

where l denotes the l-th layer, || denotes concatenation, Nu is
a set of randomly selected neighbors of u, and AGG​ denotes
an order-invariant aggregation function. GraphSAGE sug-
gests three aggregation functions: element-wise mean,
LSTM-based aggregator, and max-pooling.

3.2.2 � GNN‑Based Graph Representation Learning

Graph convolutional network (GCN) [36] is a well-known
graph spectral convolution model, which is an approxima-
tion of the original graph spectral convolution defined in

(13)� ∗G �
�
= ��

�
�T�

(14)�l
u
= �(�l[�l−1

u
||�l

Nu
])

(15)�l
Nu

= AGG({�l−1
v

, v ∈ Nu}),

127Graph Learning for Combinatorial Optimization: A Survey of State‑of‑the‑Art﻿	

1 3

Formula 13. Given a graph G and a one-channel input
signal � ∈ ℝ

|V| , GCN can output a d-channel signal �|V|×d
as follows:

where � is a 1 × d trainable parameter vector of the filter,
�̃ = � + � and �̃ is a diagonal matrix with �̃[i, i] =

∑
j �̃[i, j] .

The u-th row of � is the embedding of the node u, �u . To
allow a d′-channel input signal � |V|×d� and output a d-channel
signal �|V|×d , the filter needs to take a parameter matrix
�d�×d . Formula 16 becomes

Let �i denotes the i-th channel (i.e., column) of � . �u can then
be written in the following way.

where � is a d′-dimensional column vector.
When multi-layer models are considered, Formulas 17

and 18 are written as Formulas 19 and 20, respectively, where
l denotes the l-th layer.

(16)� = � ∗G �� = (�̃−1∕2�̃�̃−1∕2)��,

(17)� = � ∗G �� = (�̃−1∕2�̃�̃−1∕2)��.

(18)
�u =�

T�,

�[i] =
�

v∈Nu∪{u}

1√�Nu�
√�Nv�

�i[v], 1 ≤ i ≤ d�,

(19)�l =(�̃−1∕2�̃�̃−1∕2)�l−1�l

(20)

�lu =�
lT�l

�l[i] =
�

v∈Nu∪{u}

1√�Nu�
√�Nv�

�l−1[v, i]

=
�

v∈Nu∪{u}

1√�Nu�
√�Nv�

�l−1
v

[i]

From Formula 20, we can observe that GCN aggregates
weighted information from a node’s neighbors. In particu-
lar, for a node u and a neighbor v of u, the information from
v is weighted by their degrees, i.e., 1∕

√�Nu��Nv� . Graph
attention network (GAT) [66] argues that the fixed weight
approach of GCN may not always be optimal. Therefore,
GAT introduces the attention mechanism to graph convolu-
tion. A learnable weight function �(⋅, ⋅) is proposed, where
�(u, v) denotes the attention weight of u over its neighbor
v. Specifically, the convolution layer of GAT is as follows.

where || denotes concatenation, �l and �l are the trainable
vector and matrix of parameters, respectively.

The attention mechanism enhances models’ capacity, and
hence, GAT can perform better than GCN in some down-
stream tasks (e.g., node classification). However, when L
layers are stacked, the L-hop neighbors of a node are needed
to be computed. If the graph G is dense or a power-law
graph, there may exist some nodes that can access almost
all nodes in G, even for a small value of L. The time cost
can be unaffordable.

To optimize efficiency, Hamilton et al. [25] propose a sam-
pling-based method (GraphSAGE). GraphSAGE randomly
samples k neighbors in each layer. Therefore, a model having
L layers only needs to expand O(kL) neighbors. Huang et al.
[30] further improve the sampling process with an adaptive
sampling method. The adaptive sampling in [30] samples

(21)�l
u
=�

(∑
v∈N(u)

�
l(u, v)�l�l−1

v

)

(22)

�
l(u, v) =

exp(LeakyReLU(�l
T
[�l�l−1

u
���l�l−1

v
]))

∑
v�∈N(u) exp(LeakyReLU(�l

T
[�l�l−1

u
���l�l−1

v�
]))

,

Fig. 3   Adaptive sampling of ASGCN [30]: a the node-wise sampling
and b the layer-wise sampling. In the node-wise sampling, each node
in a layer samples its neighbors in the next layer independently. In
particular, a node v in the l + 1-th layer samples its neighbors in the

l-th layer by p(uj|v) . In contrast, all nodes in a layer jointly sample the
neighbors in the next layer. uj is sampled based on p(uj|v1, v2,… , v

4

) .
The layer-wise sampling is more efficient than the node-wise sam-
pling

128	 Y. Peng et al.

1 3

the neighbors based on the embedding of u, as illustrated
in Fig. 3a. The efficiency is further improved by layer-wise
sampling, as shown in Fig. 3b. These sampling techniques are
experimentally verified effective regarding the classification
accuracy.

Yang et al. [74] combine the ideas of attention and sam-
pling and propose the shortest path attention method (SPA-
GAN). The shortest path attention of SPAGAN has two levels,
as shown in Fig. 4. The first level is length-specific, which
embeds the shortest paths of the same length c to a vector �c

u
 .

The second level aggregates �c
u
 of different values of c to get

the embedding �u of u.
More specifically, let Pc

u
 be the set of shortest paths starting

from u of the length c and pu,v be a shortest path from node u
to node v. �c

u
 is computed as follows.

where �u,v is the attention weight and �(pu,v) is a mean pool-
ing that computes the average of the embeddings of the
nodes in pu,v.

where �1 and � are trainable parameters shared by all nodes,
and || is concatenation. The second level aggregates the paths
with different lengths as follows.

where C is a hyperparameter of the path length limit and �c
is the attention weight.

where �2 is a trainable parameter vector.

�c
u
=

∑
pu,v∈P

c
u

�u,v�(pu,v),

�u,v =
exp(�(�1[(��u)���(pu,v)])∑

pu,v� ∈P
c
u
exp(�(�1[(��u)���(pu,v�)])

,

�u = �

(
C∑
c=2

�c�
c
u

)
,

�c =
exp(�(�2[(��u)���cu]))∑C

c�=2
exp(�(�2[(��u)���c�u]))

,

3.2.3 � AutoEncoder‑Based Graph Representation Learning

For the AutoEncoder used in the end-to-end learning, the
embeddsings of the graph are computed by the encoder. The
decoder outputs the probabilities of nodes/edges belonging
to the solutions of the CO problems. In recent works, the
encoder mainly uses RNN and attention-based model, and
the decoder mainly uses MLP, RNN and attention-based
model. The encoder corresponds to the first stage of the
ML-based CO methods and the decoder corresponds to the
second stage (see Fig. 1). In this subsection, we mainly focus
on the encoder. The details of the decoders will be discussed
in Section 4.

The pointer network (Ptr-Net) proposed by Vinyals et al.
[67] is a seminal work of using AutoEncoder to solve the
TSP problem. The encoder of Ptr-Net is an RNN taking the
nodes of the graph G as input and outputting an embed-
ding of G, where the order of the nodes is randomly chosen.
Experiments of Ptr-Net observe that the order of input nodes
has affects on the quality of the TSP tour found. Therefore,
the decoder of Ptr-Net introduces an attention mechanism
that can assign weights to the input nodes and ignore the
order of them.

Kool et al. [37] use AutoEncoder to sequentially output a
TSP tour of a graph G. The encoder stacks L self-attention
layers. Each layer is defined as follows.

where �i denotes the embedding vector of the node vi , l
means the l-th layer, MHA denotes the multi-head attention
and BN denotes the batch normalization. The embedding of
G �G =

1

n

∑n

i
�L
vi
 and the embedding of each node �L

vi
 are

input to the decoder.

3.2.4 � Discussions

Most graph neural network-based methods adopt the
message propagation framework. Each node iteratively

�̂vi =BN
l(�l−1

vi
+MHAl

i
(�l−1

v1
,… , �l−1

vn
))

�l
vi
=BNl(�̂vi +MLPl(�̂vi)),

Fig. 4   The two-level convolution of SPAGAN [74]

129Graph Learning for Combinatorial Optimization: A Survey of State‑of‑the‑Art﻿	

1 3

aggregates the message from neighbors. The structure
information of k-hops of a node can be captured by k itera-
tions of message aggregation. GNN does not require any
node order and can support permutation invariance of CO
problems. AutoEncoder-based methods are often used in
solving the CO problems having sequential characteristics,
e.g., TSP. Sequence model is often used as the encoder to
compute the embeddings of the graphs. Attention mecha-
nism is used to support permutation invariance.

End-to-end learning methods learn the embeddings of
graph as an intermediate step in solving the CO problem.
The embeddings of the graph learned are more specific for
the CO problem being solved and are expected to lead to
better solutions of the CO problem.

A disadvantage of the GNN-based method is that the
GNN is often shallow, due to the over-smooth problem.
The attention-based encoder can alleviate this problem,
where the encoder with self-attention layers and skip con-
nections can be potentially deeper. However, the time
complexity of such encoder on large graphs will be a
bottleneck.

For the GNN-based method, the current trend is to use
anisotropy GNN (e.g. GAT [66]), which can differentiate
the information propagated from different neighbors. For
AutoEncoder-based method, more recent studies are inte-
grating the attention mechanism with the sequence model
to increase the capacity of the model and encode inductive
biases.

4 � Graph Learning‑Based Combinatorial
Optimization Methods

In this section, we review the works that solve CO prob-
lems using graph learning. We review the whole learning
procedure in solving a CO problem. For the two stages of
the learning procedure, we pay more attention to the second
stage, as the first stage has been thoroughly reviewed in the
previous section. We will brief the first stage of the ML-
based CO methods for the convenience of presentation.

Recent works can be classified into two categories. The
first category is the non-autoregressive method which pre-
dicts the solution of a CO problem in one shot. The non-
autoregressive method predicts a matrix that denotes the
probability of each node/edge being a part of a solution.
The solution of the CO problem can be found by search
heuristics such as beam search. The second category is the
autoregressive method, which constructs a solution by itera-
tively extending a partial solution to obtain a solution of the
CO problem. Table 2 lists the selected graph learning-based
CO methods.

Section 4.1 summarizes the recent non-autoregressive
methods for traver travelling salesman problem (TSP), graph
partition, graph similarity, minimum vertex cover (MVC),
graph coloring, maximum independent set, graph match-
ing and graph isomorphism. Section 4.2 presents the recent
autoregressive methods for TSP, graph matching, graph
alignment, MVC and maximum common subgraph.

Table 2   Summary of selected
CO methods using graph
embedding

Method CO problem Model

ConvNet [34] TSP GNN, non-autoregressive
DTSPGNN [57] TSP GNN, non-autoregressive
CPNGNN [59] MDS, MM, MVC GNN, non-autoregressive
GAP [49] Graph partition GNN, non-autoregressive
GMN [41] GED GNN, non-autoregressive
SimGNN [2] GED GNN, non-autoregressive
GRAPHSIM [3] GED GNN, non-autoregressive
GNNGC [40] GColor GNN, non-autogressive
SiameseGNN [51] Graph matching, TSP GNN, non-autogressive
PCAGM [69] Graph matching GNN, non-autogressive
IsoNN [44] Graph Iso. AutoEncoder, non-autogressive
GNNTS [42] MIS, MVC, MC GNN, non-autoregressive
Ptr-Net [67] TSP AutoEncoder, autoregressive
LSTMGMatching [46] Graph matching AutoEncoder, autogressive
S2V-DQN [14] MVC, MaxCut, TSP GNN, autoregressive
CombOptZero [1] MVC, MaxCut, MC GNN, autoregressive
RLMCS [4] MCS GNN, autoregressive
CENALP [19] Graph alignment SkipGram, autoregressive
TSPImprove [71] TSP AutoEncoder, autoregressive
AM [37] TSP AutoEncoder, autoregressive

130	 Y. Peng et al.

1 3

4.1 � Non‑autoregressive CO Methods

Most works in this category use classification techniques to pre-
dict the class label of the nodes in the input graph. For a graph
G, the prediction result is a |V| × K matrix � , where K is the
number of classes. The u-th row �u of � is the prediction result
for the node u, where �u[i] is the probability that u is of the i-th
class, for 1 ≤ i ≤ K . For example, for the minimum vertex cover
(MVC) problem, the classification is binary (i.e., K = 2 ), and
{u|�u[1] > �u[0]} is the predicted solution. For the graph parti-
tion problem, K is the number of parts, and a node u is classified
to the part with the largest predicted probability. There are some
works that predict a score for the input graphs. For example, for
the graph similarity problem, the similarity score between two
graphs is predicted.

A. Travelling Salesman Problem
Joshi et al. [34] propose a GNN-based model (ConvNet)

to solve the TSP problem on Euclidean graph. The graph
convolution layer of ConvNet is as follows.

where BN stands for batch normalization, ⊙ denotes ele-
ment-wise product, � is attention weight, � is a small value,
�1 , �2 and �3 are trainable parameters.

The embeddings of the edges outputted by the l-th layer
of ConvNet are fed into a multilayer perceptron (MLP) to
predict pij the probability of the edge eij belongs to the solu-
tion of TSP. The cross entropy with the ground-truth TSP
tour is used as the loss. The experiments of ConvNet show
that ConvNet outperforms recent autoregressive methods but
falls short of standard Operations Research solvers.

Prates et al. [57] use GNN to solve the decision version
of TSP, which is to decide if a given graph admits a Hamil-
tonian route with a cost no greater than a given threshold C.
Since the weights of edges are closely related to the cost of a
route, Prates et al. compute edge embedding in the graph con-
volution. Specifically, given a graph G = (V ,E) , an auxiliary

�l+1
i

=�l
i
+ ReLU

�
BN

�
�l

1
�l
i
+
�
j∈Ni

�l
ij
⊙�l

2
�l
j

��

�l
ij
=

𝜎(�l
ij
)

∑
j�∈Ni

𝜎(�l
ij�
) + 𝜖

�l
ij
=�l

ij
+ ReLU(BN(�l

3
�l
ij
+�l

4
�l
i
+�l

5
�l
j
)),

bipartite graph G� = (V ∪ V �,E�) is constructed, where for
each edge (u, v) in G, G′ has a node nu,v in V ′ and edges (nu,v, u)
and (nu,v, v) are added to E′ . The embeddings of the nodes and
edges of G can be computed by a GNN on the auxiliary graph
G′ . Finally, the embeddings of the edges of G are fed into an
MLP to make a binary classification. If the class label of G is
predicted to be 1, G has a Hamiltonian route with a cost no
greater than C; otherwise, G has no such route.

B. Graph Partition
Nazi et al. [49] propose GAP as a method for computing

a balanced partition of a graph. GAP is composed of a graph
embedding module, which uses a GNN model to determine
the embedding of the input graph, and a graph partition mod-
ule, which uses an MLP to predict the partition of nodes. The
architecture of GAP is illustrated in Fig. 5. The normalized
cut size and the balancedness of the partition are used as the
loss. GAP trained on a small graph can be generalized at the
inference time on unseen graphs of larger size.

Specifically, suppose G = (V ,E,�) is to be partitioned to K
disjoint parts and V1,V2,… ,VK denote the sets of nodes of the
parts, respectively. A GNN first computes the embeddings of the
nodes in G. Then, the MLP uses the node embeddings to predict
the partition probability �|V|×K for the nodes, where �[u, i] is the
probability that node u is partitioned to Vi . Finally, each node can
be partitioned to the partition of the largest probability.

The loss of GAP has two components. The first component is
to minimize the normalized cut size of the partition:

where V̄i denotes the nodes not in Vi , cut(Vi, V̄i) denotes the
number of edges crossing Vi and V̄i , and vol(Vi) denotes the
total degree of the nodes in Vi . The second component is to
minimize the distance from the balanced partition:

where |V|
K

 is the part size of the balanced partition. The objec-
tive function of GAP is as follows.

K∑
i=1

cut(Vi, V̄i)

vol(Vi)
,

K∑
i=1

∑
u∈G

(
�[u, i] −

|V|
K

)2

,

Fig. 5   Overview of GAP [49]

131Graph Learning for Combinatorial Optimization: A Survey of State‑of‑the‑Art﻿	

1 3

C. Graph Similarity
Bai et al. [2] propose SimGNN as a method for predicting

the similarity between two graphs. SimGNN combines two
strategies for predicting the similarity between two graphs
G1 and G2 . The first strategy compares G1 and G2 by compar-
ing their global summaries �G1

 and �G2
 . The second strategy

uses the pair-wise node comparison to provide a fine-grained
information as a supplement to the global summaries �G1

 and
�G2

 . The architecture of SimGNN is shown in Fig. 6.
As shown in Fig. 6, SimGNN first computes the node

embeddings of the two input graphs G1 and G2 using GCN.
For the first strategy, SimGNN computes �G1

 and �G2
 from

the node embeddings by means of an attention mechanism
that can adaptively emphasize the important nodes with
respect to a specifc similarity metric. Then, �G1

 and �G2
 are

input to a neural tensor network (NTN) to compute a similar-
ity score vector for G1 and G2.

The attention mechanism to compute �G is defined as
follows. For a graph G, SimGNN introduces a context vec-
tor � = tanh(�

∑
u∈G �u) to encode the global information

of G. � is adaptive to the given similarity metric via � .
Intuitively, nodes that are close to the global context should
receive more attention. Therefore, the attention weight �u of
a node u is defined based on the inner product of � and �u .
�u = �(�T�u) , where � is the sigmoid function. The embed-
ding of G, �G , is computed as �G =

∑
u∈G �u�u.

For the second strategy, SimGNN constructs a pair-
wise node similarity matrix M by computing the inner
product of �u and �v for each u ∈ G1, v ∈ G2 . SimGNN

min

K∑
i=1

cut(Vi, V̄i)

vol(Vi)
+

K∑
i=1

∑
u∈G

(
�[u, i] −

|V|
K

)2 uses a histogram of M to summarize the pair-wise node
similarity.

Finally, the similarity score vector outputted by NTN
and the histogram are input to a fully connected neural
network to predict the similarity between G1 and G2 . The
mean squared error between the predicted similarity with
the ground truth is used as the loss of SimGNN. In the
follow-up work GRAPHSIM [3], a CNN-based method is
used to replace the histogram of SimGNN.

Li et al. [41] propose the graph matching network
(GMN) to solve the graph similarity problem. Instead
of embedding each graph independently, GMN embeds
two graphs G1 and G2 jointly by examining the matching
between them. The matching used in GMN is soft match-
ing, which means that a node of G1 can match to all nodes
of G2 yet with different strengths. The embedding of G1 can
change based on the other graph it is compared against. At
inference time, GMN can predict if the distance between
two graphs is smaller than a given threshold �.

G i ve n t wo g r a p h s G1 = (V(G1),E(G1)) a n d
G2 = (V(G2),E(G2)) , the l-th convolution layer of GMN
is defined as below.

Fig. 6   Overview of SimGNN [2]. The blue solid line illustrates the first strategy of comparing G
1

 and G
2

 using their global summaries �G
1

 and
�G

2

 . The orange dashed line indicates the second strategy of the find-grained pair-wise node comparison

132	 Y. Peng et al.

1 3

where � denotes the message aggregation of a node from
its neighbors in the same graph, � is the cross-graph match-
ing vector that measures the difference between a node in a
graph and all the nodes in the other graph, and fmatch can be
defined by the following attention-based method.

where dist is the Euclidean distance.
Suppose GMN stacks L layers. The embedding of a

graph G is computed as below.

where �L
i
 is the embedding of node i outputted by the last

convolution layer.
The objective function of GMN is to min-

i m i z e t h e m a r g i n - b a s e d p a i r - w i s e l o s s
L = max{0, � − t × (1 − dist(G1,G2))} , where 𝛾 > 0 is the
given margin threshold, dist(G1,G2) = ||�G1

− �G2
||2 is

the Euclidean distance, and t is the ground truth of the

(23)

�j→i = MLP(�l
i
, �l

j
),∀(i, j) ∈ E(G1)

�j�→i� = MLP(�l
i�
, �l

j�
),∀(i�, j�) ∈ E(G2)

�j�→i = fmatch(�
l
i
, �l

j�
),∀i ∈ V(G1), j

� ∈ V(G2)

�i→j� = fmatch(�
l
i
, �l

j�
),∀i ∈ V(G1), j

� ∈ V(G2)

�l+1
i

= MLP

(
�l
i
,
∑
j∈G1

�j→i,
∑
j�∈G2

�j�→i

)

�l+1
j�

= MLP

(
�l
j�
,
∑
i�∈G2

�i�→j� ,
∑
i∈G1

�i→j�

)
,

�j�→i = �j�→i(�
l
i
− �l

j�
),∀i ∈ V(G1), j

� ∈ V(G2)

�j�→i =
exp(dist(�l

i
, �l

j�
))

∑
v�∈G2

exp(dist(�l
i
, �l

v�
))

�i→j� = �i→j� (�
l
i
− �l

j�
),∀i ∈ V(G1), j

� ∈ V(G2)

�i→j� =
exp(dist(�l

i
, �l

j�
))

∑
v∈G1

exp(dist(�l
v
, �l

j�
))
,

(24)�G = MLP({�L
i
)i∈G}),

similarity relationship between G1 and G2 , i.e., if G1 and
G2 are similar, t = 1 ; otherwise, t = −1.

D. Minimum Vertex Cover
Sato et al. [59], from a theoretical perspective, study the

power of GNNs in learning approximation algorithms for
the minimum vertex cover (MVC) problem. They prove that
no existing GNN can compute a (2 − �)-approximation for
MVC, where 𝜖 > 0 is any real number and Δ is the maximum
node degree. Moreover, Sato et al. propose a more power-
ful consistent port numbering GNN (CPNGNN), which can
return a 2-approximation for MVC. The authors theoretically
prove that there exist a set of parameters of CPNGNN that
can be used to find an optimal solution for MVC. However,
the authors do not propose a method for finding this set of
parameters.

CPNGNN is designed based on graph port number-
ing. Given a graph G, the ports of a node u are pairs (u, i),
1 ≤ i ≤ |Nu| , where i is the port number. A port numbering
is a function p such that for any edge (u1, u2) ∈ G , there
exists a port (u1, i) of u1 and a port (u2, j) of u2 satisfying
p(u1, i) = (u2, j) . Intuitively, u1 can send messages from the
ith port of u1 to the jth port of u2 . If p(u1, i) = (u2, j) , u1 is
denoted by ptail(u2, j) and i is denoted by pn(u2, j) . An exam-
ple of port numbering is shown in Fig. 7.

CPNGNN stacks L convolution layers, and the l-th layer
is defined as follows.

where �l is the trainable parameter matrix and || is
concatenation.

Let �L
u
 denotes the embedding of u outputted by the last

layer of CPNGNN. An MLP takes �L
u
 as input and outputs

the prediction �u for u, where �u[1] and �u[0] are the prob-
abilities that u is in an MVC or not, respectively. Then, the
nodes {u|�u[1] > �u[0]} are outputted as an MVC of G. The
approximation ratio of CPNGNN is 2 for MVC. CPNGNN
can also solve the minimum dominating set (MDS) problem

(25)
�l
u
=ReLU(�l[�l−1

u
||�l−1

u,1
||�l−1

u,2
||...||�l−1

u,|Nu|])

�l−1
u,i

=�l−1
ptail(u,i)

||pn(u, i),

Fig. 7   An example of port
numbering

133Graph Learning for Combinatorial Optimization: A Survey of State‑of‑the‑Art﻿	

1 3

and the maximum matching (MM) problem with the approx-
imation ratio Δ+1

2
.

E. Graph Coloring
Lemos et al. [40] propose a graph recurrent neural net-

work to predict if a graph is k-colorable. Each node v has an
embedding vector �v and each color c also has an embedding
vector �c . Let � denotes the adjacent matrix of the graph
G and � denotes the color assignment matrix, where each
row of � is a node of G and each column of � is a color.
�[v, c] = 1 means the node v is assigned the color c. The
embeddings of the l + 1-th iteration �l+1

v
 and �l+1

c
 are com-

puted as follows.

The embeddings of nodes are fed into an MLP to predict
the probability if G is k-colorable and the loss is the binary
cross entropy between the prediction and the ground-truth.
Experiments of [40] show that the proposed techniques out-
perform the existing heuristic algorithm Tabucol and the
greedy algorithm.

F. Graph Matching
Nowak et al. [51] study the GNN-based model for the

quadratic assignment problem, that can be used to address
the graph matching problem. A siamese GNN is constructed
to compute the embeddings of two graphs. Let � be the
product of the embeddings of the nodes of the two graphs. A
stochastic matrix is computed from � by taking the softmax
along each row (or column). The cross entropy between the

�v
l+1, �nhid

l+1 =RNN1(�nhid
l,� × �l

v
,� ×MLP1(�

l
c
))

�c
l+1, �chid

l+1 =RNN2(�
l
chid

,� ×MLP2(�
l
v
))

stochastic matrix and the ground-truth node mapping is the
loss. The proposed model can also be used to solve the TSP
problem, as TSP can be formulated as a quadratic assign-
ment problem.

Wang et al. [69] propose a GNN-based model to predict
the matching of two graphs. Given two graphs G1 and G2 , it
first uses GNN to compute the embeddings of the nodes of
the two graphs. Then, the embeddings are fed to a Sinkhorn
layer to obtain a doubly-stochastic matrix. The cross entropy
with the ground-truth node mapping is used as the loss.
The idea of the Sinkhorn layer is that given a non-negative
matrix, iteratively normalize each row and each column of
the matrix until the sum of each row and the sum of each
column equal to 1, respectively. Experiments of [69] show
that the proposed model outperforms the existing learning-
based graph matching methods.

G. Graph Isomorphism
Meng and Zhang [44] propose an isomorphic neural net-

work (IsoNN) for learning graph embedding. The encoder
has three layers: a convolution layer, a min-pooling layer,
and a softmax layer. The encoder is shown in Fig. 8. The
decoder is an MLP to predict the binary class of G, and
the loss is the cross entropy between the prediction and the
ground truth.

Specifically, the encoder of IsoNN is designed as follows.
Given a set of motifs, the convolution layer of the encoder
extracts a set of isomorphism features from G for each motif.
Suppose �i is the adjacent matrix of the i-th motif that has
k nodes. The L2-norm between �i and a k by k submatrix
�x,y,k of the adjacent matrix � of G is an isomorphism feature
extracted by �i with respect to �x,y,k , where x and y denote

Fig. 8   Overview of IsoNN [44]

134	 Y. Peng et al.

1 3

the top-left corner of the submatrix in � . IsoNN examines k!
permutations of �i and extracts k! isomorphism features for
�x,y,k . The smallest one is regarded as the optimal isomor-
phism feature extracted by �i for �x,y,k , which is computed
by the min-pooling layer. Since the optimal isomorphism fea-
tures for �x,y,k extracted by different motifs can have different
scales, the softmax layer is used to normalize them. Finally, the
normalized isomorphism features extracted by all motifs for
all values of x and y are concatenated as the embedding of G.

H. Maximum Independent Set
Li et al. [42] propose a GNNTS model that combines GNN

and heuristic search to compute the maximum independent
set (MIS) of a graph. GNNTS trains a GCN f using a set of
training graphs, where the MISs of a graph can be used as the
ground truth labels of the graph. For a graph G = (V ,E) , the
prediction result of f is a |V| × 2 matrix � , where �[⋅, 1] and
�[⋅, 0] are the probabilities of the nodes being in or not in an
MIS of G, respectively.

The basic idea of GNNTS is to use f as the heuristic func-
tion within a greedy search procedure. Specifically, in each
iteration, the nodes of G are sorted by �[⋅, 1] . The greedy algo-
rithm picks the node u with the largest value in �[⋅, 1] , marks
u as 1, and adds u to a partial solution U. All neighbors of u
are marked as 0. u and its neighbors are removed from G, and
the remaining graph is input to f for the next iteration. Once all
nodes in G are marked, U is returned as the MIS of G.

The basic method described above has the disadvantage
that it cannot support the case in which G has multiple solu-
tions. For the example shown in Fig. 9, the square graph of
four nodes has two MISs and the basic method predicts that
each node has a probability 0.5 of belonging to an MIS, which
is not useful.

To address this disadvantage, the GNN f is
extended to output multiple prediction results, i.e.,
f (G) = {f 1(G), f 2(G),… , f m(G)} , where f i(G) is a |V| × 2
matrix �i , 1 ≤ i ≤ m , and m is a hyperparameter. Then, the
GNN f is used in a tree search procedure. Specifically, GNNTS
maintains a tree of partial solutions, where each leaf is a par-
tital solution to be extended. At each step, GNNTS randomly
picks a leaf nleaf from the search tree and uses f to output m
prediction results �1,�2,… ,�m . Then, for each �i , GNNTS
uses the basic method to compute an extension of nleaf  . The
m newly obtained partial solutions are inserted to the search
tree as the children of nleaf  . If a leaf of the search tree cannot
be extended anymore, the leaf is a maximal independent set.

The largest computed maximal independent set is outputted.
GNNTS can also solve the minimum vertex cover (MVC) and
maximal clique (MC) problems by reducing to MIS.

4.1.1 � Discussions

Non-autoregressive methods output a solution in one shot.
The advantage is that the inference of non-autoregressive
methods is faster than autoregressive methods [33]. How-
ever, the probability of a node/edge being a part of a solu-
tion does not depend on that of other nodes/edges. There
is an opportunity that non-autoregressive methods are not
able to outperform autoregressive methods for solving the
CO problems having sequential characteristics, such as TSP.
Therefore, there are many recent works studying autoregres-
sive methods.

4.2 � Autoregressive CO Methods

Autoregressive methods iteratively extend a partial solution.
In each iteration, a node/edge is added to the partial solution.
Most existing works use sequence model-based methods or
reinforcement learning-based methods to iteratively extend
the partial solution.

A. Sequence Model-Based Methods
The pointer network (Ptr-Net) proposed by Vinyals et al.

[67] is a seminal work in this category. It uses an RNN-
based AutoEncoder to solve the travelling salesman problem
(TSP) on a Euclidian graph. The encoder of Ptr-Net is an
RNN taking the nodes of the graph G as input and output-
ting an embedding of G, where the order of the nodes is
randomly chosen. The decoder of Ptr-Net is also an RNN. In
each time step, the decoder computes an attention over the
input nodes, and selects the input node that has the largest
attention weight as output.

Specifically, given a graph G, suppose the nodes of G are
sequentially input as v1, v2,… , v|V| to the encoder, and the
decoder sequentially outputs vj1 , vj2 ,… , vj|V| . Let
�1, �2,… , �|V| and �1, �2,… , �|V| denote the sequences of the
hidden states of the encoder and the decoder, respectively.
For the k-th time step of the decoder, the decoder selects one
node in v1, v2,… , v|V| as vjk by an attention weight vector �k
over �1, �2,… , �|V| . �k is defined as:

where � , �1 , and �2 are trainable parameters. Then, the
decoder outputs vjk = vi , where i = argmax �k.

For example, Fig. 10a shows a Euclidean graph G with
four nodes and a solution v1, v3, v2, v4 . Fig. 10b shows the
procedure of Ptr-Net for computing the solution. The hollow

�k[j] = �T [tanh(�1�j +�2�k)], 1 ≤ j ≤ |V|

Fig. 9   Illustration of the two
MISs of the square graph [42]

135Graph Learning for Combinatorial Optimization: A Survey of State‑of‑the‑Art﻿	

1 3

arrow marks the node that has the largest attention weight at
each time step of the decoder.

Milan et al. [46] propose a LSTM-based method to solve
the graph matching problem. Given two graphs G1 and G2 of
n nodes, from the features of nodes and edges of G1 and G2 ,
a n2 by n2 similarity matrix � can be computed, where �ij,lk
is the similarity of the edge (vi, vj) ∈ G1 and (vj, vk) ∈ G2 ,
and �ii,ll is the similarity of the node vi of G1 and vl in G2 .
� is input to the LSTM as the input feature. At each step,
the LSTM will predict a node pair of matching. The cross
entropy with the ground-truth matching is used as the loss.
However, � is of O(n4) size, which is too large for matching
large graphs.

Du et al. [19] observe that link prediction and graph
alignment are inherently related and the joint learning of
them can benefit each other. Given two graphs G1 and G2 ,
crossing edges between all nodes of G1 and G2 are added.
The network alignment model predicts the probability of
accepting a crossing edge, i.e., the end nodes of the cross-
ing edge are aligned. The link prediction model predicts
the probability of inserting an edge (u, v) to G1 based on
if (u�, v�) is in G2 , where u and v are aligned to u′ and v′ ,
respectively. Both the network alignment model and the
link prediction model need the embeddings of the nodes
of G1 and G2 , which are computed by the generalized Skip-
Gram model using the random walks crossing the two
graphs. Suppose the random walk is on G1 , it will switch to
G2 at the next step with probability p. If the random walk
switches, the probability of walking from a node v in G1
to a node u in G2 is p�(v, u) . If the crossing edge between v
and u is an accepted crossing edge, p�(v, u) = 1 ; otherwise,
p�(v, u) =

w(v,u)

Z
 , where w(v, u) is the structure similarity

between v and u and Z =
∑

u�∈G2
w(v, u�) . w(v, u) is meas-

ured by the degree distributions of the neighbors of v and
u in G1 and G2 , respectively. In each iteration, the pair of

nodes of the two graphs having the largest predicted prob-
ability by the graph alignment model is aligned and the
edges of G1 and G2 whose probabilities predicted by the
link prediction model exceed the threshold are added to G1
and G2 , respectively. Node embeddeings are recomputed in
each iteration, as the alignment between G1 and G2 and the
edges in G1 and G2 are updated. Experiments of [19] show
that link prediction and graph alignment can benefit each
other and the proposed techniques are suitable for aligning
graphs whose distribution of the degree of aligned nodes
is close to linear or the graphs having no node attribute
information.

B. Reinforcement Learning-Based Searching
When iteratively extending a partial solution, each itera-

tion selects the node in order to optimize the final solution.
Such a sequential decision process can be modeled as a
Markov decision process (MDP) and solved by reinforce-
ment learning (RL). Therefore, we first presents a brief
review of RL.

B.1 Review of Reinforcement Learning
In RL, an agent acts in an environment, collecting rewards

and updating its policy to select future actions. It can be
formulated as an MDP (S,A, T ,R, �) , where

–	 S is the set of states, and some states in S are end states;
–	 A is the set of actions;
–	 T ∶ S × A × S → [0, 1] is the transition function, T(s, a, s�)

is the transition probability to state s′ after taking action
a in state s;

–	 R ∶ S × A → ℝ is the reward of taking action a in state s;
and

–	 � is a discount factor.

Fig. 10   An example of using
Ptr-Net [67]. a shows a Euclid-
ean graph G on a 2D plane, and
the solution is marked by the
edges. b shows the encoder and
the decoder of Ptr-Net for find-
ing the solution on G 

136	 Y. Peng et al.

1 3

The agent uses a policy � ∶ S → A to select an action for a
state. RL is to learn an optimal policy �∗ that can return the
optimal action for each state in terms of the overall reward.
RL relies on the state-value function and the action-value
function to optimize the policy. The state-value function
V�(s) denotes the overall reward starting from the state s
following the policy � . The action-value function Q�(s, a)
denotes the overall reward starting from the state s and the
action a following the policy � . Formally,

where �
�
 denotes the expected value given that the agent

follows the policy � , t is the time step and T is the time step
of reaching an ending state. The state-value function and the
action-value function of the optimal policy �∗ are denoted
by V∗ and Q∗ , respectively.

RL can learn �∗ by iteratively optimizing the value
functions, which is called as the value-based method.
The value-based methods compute Q∗ and output the
optimal policy �∗(s) = maxa Q

∗(s, a) . Q-learning is a
well-known value-based RL method. Suppose Q is the
current action-value function. At each state st , Q-learn-
ing selects the action at by the �-greedy policy, which is
selecting maxa Q(s, a) with a probability 1 − � and select-
ing a random action with a probability � , and updates Q
as Formula 26.

where �t is the learning rate at the time step t. Q-learning
converges to Q∗ with probability 1, if each state-action pair
is performed infinitely often and �t satisfies

∑∞

n=1
�t = ∞

and
∑∞

n=1
𝛼
2
t
< ∞.

Q-learning needs a table, namely Q-table, to store the
action values. The size of the Q-table is |S| × |A| , which can
be too large to support the applications having a large num-
ber of states and actions. Therefore, many methods have
been proposed to approximate the Q-table by parameterized
functions. For example, deep Q-learning network (DQN)
uses a deep neural network as the function approximation
of the Q-table [47].

The value-based methods first optimize the value func-
tions and then improve the policy based on the optimized
value functions. There are also many methods that directly
optimize the policy based on policy gradient. We refer the
reader to [61] for more details of RL.

V�(s) =�
�

[
T∑
t=0

�
tR(st, at)|s0 = s

]
,

Q�(s, a) =�
�

[
T∑
t=0

�
kR(st, at)|s0 = s, a0 = a

]
,

(26)
Q(st, at) =Q(st, at) + �t[R(st, at) + � max

a
Q(st+1, a)

− Q(st, at)],

B.2 Reinforcement Learning-Based CO Methods
Since iteratively extending a partial solution of a CO

problem is inherently a sequential decision process, several
works use reinforcement learning (RL) to extend the partial
solution. The partial solution and the input graph together
determine the state of RL, whereas the node that can be
added to the partial solution is the action. RL can learn an
optimal policy to find the optimal node for a partial solution.

Dai et al. propose S2V-DQN [14] that combines GNN and
deep Q-learning to tackle the MVC problem. Given a graph
G, let U denotes the current partial solution and Ū = V�U .
The RL task for MVC can be formulated as follows.

–	 A state s is determined by G and U, s = fstate(G,U) . If U
is a vertex cover of G, the state is an end state;

–	 An action av is adding a node v ∈ Ū to U;
–	 The transition T(fstate(G,U), av) = fstate(G,U ∪ {v}) ; and
–	 The reward of an action R(s, av) = −1 so as to minimize

the vertex cover.

The representation of state s can be computed by embedding
G and U using a GNN as follows.

where L is the total number of layers of the GNN, xu = 1 if
u ∈ U and otherwise, xu = 0 , wu,v is the weight of the edge
(u, v), and �1,�2 , �3 and �4 are trainable parameters.

We can use the embedding of v, �v to represent the action
av . The representations of the state s and the action av are fed
into an MLP to compute Q(s, av) as below.

where �5,�6 , and �7 are trainable parameters.
Deep Q-learning is used to optimize the parameters. After

the MLP and the GNN are trained, they can be generalized
to compute MVC for unseen graphs. S2V-DQN can also
solve the MaxCut and TSP problems.

Bai et al. [4] propose to compute the maximum common
subgraph (MCS) of two graphs using GNN and Q-learning.
Given two graphs G1 and G2 , the partial solution is a sub-
graph g1 of G1 and a subgraph g2 of G2 satisfying g1 and
g2 are isomorphic. The RL task for MCS is formulated as
follows.

(27)

fstate(G,U) =
∑
v

�L
v

�l
u
= ReLU

(
�1xu + �2

∑
v∈Nu

�l−1
v

+ �3

∑
v∈Nu

ReLU(�4wu,v)

)
,

(28)Q(s, av) = �5ReLU

(
Concat

(
�6

∑
u∈V

�L
u
,�7�

L
v

))
,

137Graph Learning for Combinatorial Optimization: A Survey of State‑of‑the‑Art﻿	

1 3

–	 A state s is determined by G1 , G2 , g1 and g2 ,
s = fstate(G1,G2, g1, g2) . If g1 and g2 cannot be extended,
the state is an end state;

–	 An action au,v is to select a node u from G1∖g1 and a node
v from G2∖g2 and add them to g1 and g2 , respectively;

–	 T h e t r a n s a c t i o n
T(fstate(G1,G2, g1, g2), au,v) = fstate(G1,G2, g1 ∪ {u}, g2 ∪ {v}) .
The isomorphism between g1 ∪ {u} and g2 ∪ {v} needs
to be assured; and

–	 The reward R(s, au,v) = 1.

The represention of the state s can be computed by a
GNN on an auxiliary graph G′ . G′ is constructed by adding
a pseudo node ns connecting to the nodes in g1 and the nodes
in g2 . Then, a GNN is used to compute the node embed-
dings for G′ . Note that the node embeddings change with
the extension of the partial solution g1 and g2 . �G1

 and �G1

can be computed by the summation of the embeddings of
the nodes in G1 and G2 , respectively. The concatenation of
�ns , �G1

 and �G1
 is the representation of the state s. The action

au,v is represented by the concatenation of �u and �v . The
representations of the states and the actions are fed into an
MLP to predict Q. Fig. 11a, b show an example.

Rather than just selecting one node with the largest
Q-value as in [14], Bai et al. [4] propose to select k nodes
utilizing the beam search. At each time step, the agent of RL
is allowed to transit to at most k best next states. The beam
search builds an exploration tree, where each node of the tree
is a state and each edge of the tree is an action. Figure 11c
shows an example of k = 3 . The partial solution is returned
as a maximal independent set if it cannot be extended. The
largest one among the computed maximal independent sets
is outputted.

Inspired by AlphaGo Zero, which has surpassed human in
the game Go, Abe et al. [1] propose CombOptZero, combin-
ing GNN and Monte Carlo tree search (MCTS)-based RL to
solve the MVC problem. The formulation of the RL task is
as S2V-DQN [14]. The key difference is that CombOptZero
uses the MCTS-based searching for the next action. For a
state s, suppose U is the partial solution, a GNN embeds G
and U and outputs two vectors � and � , where �[a] is the
probability of taking the action a for the state, and �[a] is
the estimated overall reward from the state s with action a.
� and � are input to a MCTS, which can produce a better

Fig. 11   Overview of RLMCS [4]

138	 Y. Peng et al.

1 3

action prediction �′ than � . argmaxa ��[a] is outputted as the
optimal action selected for s. CombOptZero can also solve
the MaxCut problem.

Kool et al. [37] use AutoEncoder to sequentially out-
put a TSP tour of a graph G. The encoder stacks L self-
attention layers. The details of the encoder are presented in
Sect. 3.2.3.

The decoder of [37] sequentially predicts the next node
to be added to the partial solution seq, i.e., a partial TSP
tour. At the t-th step of decoding, seq has t − 1 nodes. A
special context vector �c is introduced to represent the
decoding context. At the t-th step of decoding,
�c = �G||�seqt−1 ||�seq0 , where || denotes concatenation, seq0
denotes the 0-th node in seq and seqt−1 denotes the t − 1-th
node in seq. The embedding of a node vi is computed as
�vi =

∑
j∈Ni

�j�1�j , where the attention weight �j =
e
uj∑

v
j� ∈Ni

e
u
j�

and uj = (�2�c)
T (�3�vj) , if vj ∉ seq ; otherwise, uj = −∞ .

The probability of choosing vi to add to seq at the t-th step
is pvi =

e
uj∑

v
j� ∈G

e
u
j�
 . �1,�2 and �3 are trainable parameters.

The REINFORCE algorithm is used to train the model.
The experiments presented in [37] show that the proposed

method can support several related problems of TSP, includ-
ing vehicle routing problem (VRP), orienteering problem
(OP), prize collecting TSP (PCTSP) and stochastic PCTSP
(SPCTSP) with the same set of hyperparameters. However,
the proposed method does not outperform the specialized
algorithm for TSP (e.g., Concorde).

There are works not iteratively extending a partial solu-
tion to a solution of a CO problem but iteratively improving
a suboptimal solution to a better solution. For example, Wu
et al. [71] propose to improve the solution of TSP (i.e., a
TSP tour) on G using RL. The MDP is defined as follows. A
TSP tour of G is a state s = (v1, v2,… , vn) , n is the number of
nodes in G and vi ≠ vj for i ≠ j . A 2-opt operator is an action.
Given two nodes vi, vj in s, the 2-opt operator selects a pair
of nodes vi and vj and reverses the order of nodes between vi
and vj in s. The transition of an action is deterministic. The
reward of an action is the reduction of the TSP tour with
respect to the current best TSP tour so far. The architecture
of Transformer is adopted to compute node embeddings.
The compatibility of a pair of nodes vi and vj is computed
as (�1�i)

T (�2�j) , where �1 and �2 are trainable param-
eters. The compatibilities of all pairs of nodes are stored in
a matrix � . � is fed into a masked softmax layer as follows.

where �i,j is the probability of selecting the pair of nodes vi
and vj in the 2-opt operator. REINFORCE is used to train
the model. The experiments reported in [71] show that the

��
i,j
=

{
C ⋅ tanh(Yi,j), if i ≠ j

−∞, if i = j

� =softmax(��),

proposed techniques outperform the heuristic algorithms for
improving TSP tours.

4.3 � Discussions

Non-autoregressive methods predict the probabilities that
each node/edge being a part of a solution in one shot. The
cross entropy between the predicted probabilities and the
ground-truth solution of the CO problem is used as the loss
function. Autoregressive methods predict the node/edge to
add to the partial solution step by step. The inference of
non-autoregressive methods can be faster than autoregres-
sive methods, as when performing inference non-autoregres-
sive methods predict a solution in one shot. Fast inference
is desired for some real-time decision-making tasks, e.g.,
the vehicle routing problem. However, non-autoregressive
methods inherently ignore some sequential characteristics of
some CO problems, e.g., the TSP problem. Autoregressive
methods can explicitly model this sequential inductive bias
by attention mechanism or recurrent neural networks. Exper-
imental comparison in [33] shows that the autoregressive
methods can outperform the non-autoregressive methods in
terms of the quality of the tour found for the TSP problem
but takes much longer time. However, for the problem with-
out sequential characteristic, non-autoregressive methods
can produce better solution, e.g., molecule generation task
[32].

The non-autoregressive methods need the ground-
truth solution for supervised training. It is a drawback of
the non-autoregressive methods as it is hard to compute
the ground-truth solution for the CO problems on large
graphs, considering the NP-hardness of the CO problems.
The autoregressive methods with reinforcement learning-
based searching do not need the ground-truth, which has the
potential to support larger graphs. Moreover, the supervised
learning of non-autoregressive models that having a large
number of parameters can make the models remember the
training instances and the generalization is limited on unseen
instances. Although reinforcement learning can overcome
this problem, the sample efficiency needs to be improved.

Regarding the comparison with traditional heuristic algo-
rithms for the CO problems, current learning-based CO
methods can have competitive performance with the tradi-
tional problem-specific heuristic algorithms on small graphs,
but current learning-based CO methods do not scale well to
large graphs. As large graphs have been emerging in many
applications, there have been a trend of studying learning-
based methods on large graphs.

The techniques and ideas of traditional heuristics for the
CO problems can benefit the learning-based CO methods.
For example, Dai et al. [14] present that incorporating the
idea of adding the farthest nodes first and the 2-opt opera-
tion of traditional heuristics can improve the performance

139Graph Learning for Combinatorial Optimization: A Survey of State‑of‑the‑Art﻿	

1 3

of the learning-based method for TSP. Exploring the chance
of integrating the ideas and operations of traditional heuris-
tics into the learning-based methods is attracting increasing
research attention [14, 17, 37].

5 � Future Work

Although there are recent significant advances of using
graph learning models in solving several different CO prob-
lems, graph learning-based methods for CO problems are
still at the early stage and there are many open problems
for further studies. Some possible directions are listed as
follows.

Encoding Global Information of Graphs In many graph-
based CO problems, the global information of the graph
is needed for solving the CO problem (e.g., graph edit
distance, TSP). However, existing graph learning models,
especially graph convolution, is aggregating local informa-
tion from neighbors. Although more global information
can be obtained by adding more graph convolution layers,
there may be a non-trivial over-smooth problem. There-
fore, how to effectively encode more global information
of graphs is an important direction.

Designing Task-Dependent Model A GNN architecture
is used to support diverse types of CO problems. How-
ever, each problem has its own characteristics. How to
encode inductive bias into GNN architectures in order to
better capture the characteristics of the CO problems is an
important direction.

The loss function that is generally used in classifica-
tion or regression (e.g., cross entropy) is widely used in
the learning-based methods for solving CO problems.
However, the general loss function may not have a strong
relationship with the objective of the CO problems. For
example, switching two nodes in a TSP tour will produce a
TSP tour of very different score with respect to the objec-
tive of TSP. However, the two TSP tours can have the same
loss in terms of cross entropy [46]. Therefore, designing
the problem-specific loss function needs to be studied.

Generalization Most existing learning-based methods
for a CO problem cannot outperform traditional heuristic
algorithms specifically designed for the CO problem on
a larger graph or the graphs unseen in training, although
the learning-based methods can be on par with or better
than the traditional heuristic algorithm on small graphs.
Therefore, an important direction is to rethink the learning
pipeline for CO problem in order to generalize to larger
graphs and unseen graphs [33].

Integration of Traditional Heuristics Integrating tradi-
tional heuristics can improve the performance of learning-
based CO methods. For example, Dai et al. [14] present

that incorporating the idea of adding the farthest nodes
first and the 2-opt operation of traditional heuristics can
improve the performance of the learning-based method for
TSP. Therefore, identifying the operations of traditional
heuristics of a CO problem that can benefit the learning-
based methods for the CO problem and integrating the
operations appropriately into the learning procedure need
to be studied.

Supporting Many Graphs Most existing graph learning-
based CO methods focus on a graph or two graphs. Another
possible future direction is to study the problems that involve
a large number of graphs, for example, by optimizing the
query evaluation on a large graph database such as graph
similarity search, graph pattern matching query and sub-
graph isomorphism search.

6 � Conclusion

In this survey, we provided a thorough overview of the
recent graph learning methods for solving CO problems.
Existing works fall into two main categories. First, non-
autoregressive methods predict the solution of a CO prob-
lem in one shot. Second, autoregressive methods iterative
extend a partial solution step by step. Heuristic search and
reinforcement learning are widely used in the autoregres-
sive methods to extend the partial solution. In these graph
learning-based CO methods, a graph is represented in
numerical vectors. Then, we also survey the recent graph
representation learning methods, including the generalized
SkipGram-based methods, the AutoEncoder-based methods
and the GNN-based methods. Several possible directions for
future research are discussed as well.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Abe K, Xu Z, Sato I, Sugiyama M (2019) Solving np-hard prob-
lems on graphs with extended alphago zero. arXiv:​1905.​11623

	 2.	 Bai Y, Ding H, Bian S, Chen T, Sun Y, Wang W (2019) SimGNN:
a neural network approach to fast graph similarity computation.

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1905.11623

140	 Y. Peng et al.

1 3

In: Proceedings of the ACM international conference on web
search and data mining (WSDM’19), pp 384–392

	 3.	 Bai Y, Ding H, Gu K, Sun Y, Wang W (2020) Learning-based effi-
cient graph similarity computation via multi-scale convolutional
set matching. In: Proceedings of the AAAI conference on artificial
intelligence (AAAI’20), pp 3219–3226

	 4.	 Bai Y, Xu D, Wang A, Gu K, Wu X, Marinovic A, Ro C, Sun Y,
Wang W (2020) Fast detection of maximum common subgraph
via deep Q-learning. arXiv:​2002.​03129

	 5.	 Bengio Y, Lodi A, Prouvost A (2018) Machine learning for
combinatorial optimization: A methodological tour d’horizon.
arXiv:1811.06128

	 6.	 Bonner S, Kureshi I, Brennan J, Theodoropoulos G, McGough
AS, Obara B (2019) Exploring the semantic content of unsu-
pervised graph embeddings: an empirical study. Data Sci Eng
4(3):269–289

	 7.	 Cai H, Zheng VW, Chang K (2018) A comprehensive survey of
graph embedding: problems, techniques, and applications. IEEE
Trans Knowl Data Eng 30(09):1616–1637

	 8.	 Cao S, Lu W, Xu Q (2015) GraRep: learning graph representa-
tions with global structural information. In: Proceedings of ACM
international on conference on information and knowledge man-
agement (CIKM’15), pp 891–900

	 9.	 Chami I, Abu-El-Haija S, Perozzi B, Ré C, Murphy K (2020)
Machine learning on graphs: a model and comprehensive tax-
onomy. arXiv:​2005.​03675

	10.	 Chang L (2019) Efficient maximum clique computation over large
sparse graphs. In: Proceedings of ACM SIGKDD international
conference on knowledge discovery and data mining (KDD’19),
pp 529–538

	11.	 Chen F, Wang YC, Wang B, Kuo CCJ (2020) Graph representation
learning: a survey. APSIPA Trans Signal Inf Process 9:e15

	12.	 Chen H, Yin H, Chen T, Nguyen QVH, Peng W, Li X (2019)
Exploiting centrality information with graph convolutions for net-
work representation learning. In: IEEE international conference
on data engineering (ICDE’19), pp 590–601

	13.	 Cui P, Wang X, Pei J, Zhu W (2019) A survey on network embed-
ding. IEEE Trans Knowl Data Eng 31(5):833–852

	14.	 Dai H, Khalil EB, Zhang Y, Dilkina B, Song L (2017) Learning
combinatorial optimization algorithms over graphs. In: Proceed-
ings of international conference on neural information processing
systems (NIPS’17), pp 6351–6361

	15.	 Dareddy MR, Das M, Yang H (2019) Motif2Vec: Motif aware
node representation learning for heterogeneous networks. In:
2019 IEEE international conference on big data (Big Data’19),
pp 1052–1059

	16.	 Dave VS, Zhang B, Chen PY, Al Hasan M (2019) Neural-brane:
neural bayesian personalized ranking for attributed network
embedding. Data Sci Eng 4(2):119–131

	17.	 Deudon M, Cournut P, Lacoste A, Adulyasak Y, Rousseau LM
(2018) Learning heuristics for the TSP by policy gradient. In:
International conference on the integration of constraint program-
ming, artificial intelligence, and operations research, pp 170–181

	18.	 Devlin J, Chang MW, Lee K, Toutanova K (2019) BERT: Pre-
training of deep bidirectional transformers for language under-
standing. Proc Conf N Am Chapter Assoc Comput Linguist Hum
Lang Technol 1:4171–4186

	19.	 Du X, Yan J, Zha H (2019) Joint link prediction and network
alignment via cross-graph embedding. In: Proceedings of inter-
national joint conference on artificial intelligence, IJCAI’19, pp
2251–2257

	20.	 Duvenaud DK, Maclaurin D, Iparraguirre J, Bombarell R, Hirzel
T, Aspuru-Guzik A, Adams RP (2015) Convolutional networks on
graphs for learning molecular fingerprints. Adv Neural Inf Process
Syst 28:2224–2232

	21.	 Fan W, Ma Y, Li Q, He Y, Zhao E, Tang J, Yin D (2019) Graph
neural networks for social recommendation. In: The world wide
web conference, pp 417–426

	22.	 Fan Z, Peng Y, Choi B, Xu J, Bhowmick SS (2014) Towards effi-
cient authenticated subgraph query service in outsourced graph
databases. IEEE Trans Serv Comput 7(4):696–713

	23.	 Goemans MX, Williamson DP (1995) Improved approximation
algorithms for maximum cut and satisfiability problems using
semidefinite programming. J ACM 42(6):1115–1145

	24.	 Grover A, Leskovec J (2016) Node2Vec: Scalable feature learn-
ing for networks. In: Proceedings of ACM SIGKDD international
conference on knowledge discovery and data mining (KDD’16),
pp 855–864

	25.	 Hamilton WL, Ying R, Leskovec J (2017) Inductive representa-
tion learning on large graphs. In: Proceedings of international
conference on neural information processing systems (NIPS’17),
pp 1025–1035

	26.	 Hamilton WL, Ying R, Leskovec J (2017) Representation learning
on graphs: methods and applications. IEEE Data Eng Bull

	27.	 Håstad J (1999) Clique is hard to approximate within n1−� . Acta
Math 182(1):105–142

	28.	 Hopfield J, Tank D (1985) Neural computation of decisions in
optimisation problems. Biol Cybern 52:141–152

	29.	 Huang J, Patwary MMA, Diamos GF (2019) Coloring big graphs
with alphagozero. CoRR arXiv:​1902.​10162

	30.	 Huang W, Zhang T, Rong Y, Huang J (2018) Adaptive sampling
towards fast graph representation learning. In: Proceedings of
international conference on neural information processing systems
(NIPS’18), pp 4563–4572

	31.	 Huang X, Lakshmanan LV, Xu J (2019) Community search over
big graphs. Morgan & Claypool Publishers, New York

	32.	 Jin W, Barzilay R, Jaakkola T (2018) Junction tree variational
autoencoder for molecular graph generation. Proc Int Conf Mach
Learn 80:2323–2332

	33.	 Joshi CK, Cappart Q, Rousseau LM, Laurent T, Bresson X (2020)
Learning TSP requires rethinking generalization. arXiv:​2006.​
07054

	34.	 Joshi CK, Laurent T, Bresson X (2019) An efficient graph convo-
lutional network technique for the travelling salesman problem.
CoRR arXiv:​1906.​01227

	35.	 Khot S (2001) Improved inapproximability results for maxclique,
chromatic number and approximate graph coloring. In: Proceed-
ings IEEE symposium on foundations of computer science, pp
600–609

	36.	 Kipf TN, Welling M (2017) Semi-supervised classification with
graph convolutional networks. In: International conference on
learning representations (ICLR’17)

	37.	 Kool W, van Hoof H, Welling M (2019) Attention, learn to
solve routing problems! In: International conference on learning
representations

	38.	 Lamb LC, Garcez AD, Gori M, Prates MO, Avelar PH, Vardi MY
(2020) Graph neural networks meet neural-symbolic computing:
a survey and perspective. In: Proceedings of international joint
conference on artificial intelligence (IJCAI’20), pp 4877–4884

	39.	 Le Q, Mikolov T (2014) Distributed representations of sentences
and documents. In: Proceedings of international conference on
international conference on machine learning, vol 32, ICML’14,
pp II–1188–II–1196

	40.	 Lemos H, Prates MOR, Avelar PHC, Lamb LC (2019) Graph
colouring meets deep learning: Effective graph neural network
models for combinatorial problems. CoRR arXiv:​1903.​04598

	41.	 Li Y, Gu C, Dullien T, Vinyals O, Kohli P (2019) Graph matching
networks for learning the similarity of graph structured objects.
In: Proceedings of international conference on machine learning
(ICML’19), pp 3835–3845

http://arxiv.org/abs/2002.03129
http://arxiv.org/abs/2005.03675
http://arxiv.org/abs/1902.10162
http://arxiv.org/abs/2006.07054
http://arxiv.org/abs/2006.07054
http://arxiv.org/abs/1906.01227
http://arxiv.org/abs/1903.04598

141Graph Learning for Combinatorial Optimization: A Survey of State‑of‑the‑Art﻿	

1 3

	42.	 Li Z, Chen Q, Koltun V (2018) Combinatorial optimization with
graph convolutional networks and guided tree search. In: Proceed-
ings of international conference on neural information processing
systems (NIPS’18), pp 537–546

	43.	 Mazyavkina N, Sviridov S, Ivanov S, Burnaev E (2020) Rein-
forcement learning for combinatorial optimization: a survey.
arXiv:​2003.​03600

	44.	 Meng L, Zhang J (2019) IsoNN: Isomorphic neural network for
graph representation learning and classification. CoRR arXiv:​
1907.​09495

	45.	 Mikolov T, Sutskever I, Chen K, Corrado G, Dean J (2013) Dis-
tributed representations of words and phrases and their composi-
tionality. In: Proceedings of the 26th international conference on
neural information processing systems (NIPS’13), pp 3111–3119

	46.	 Milan A, Rezatofighi SH, Garg R, Dick A, Reid I (2017) Data-
driven approximations to np-hard problems. In: Thirty-first AAAI
conference on artificial intelligence

	47.	 Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare
MG, Graves A, Riedmiller M, Fidjeland AK, Ostrovski G et al
(2015) Human-level control through deep reinforcement learning.
Nature 518(7540):529–533

	48.	 Narayanan A, Chandramohan M, Chen L, Liu Y, Saminathan S,
Subgraph2Vec: learning distributed representations of rooted sub-
graphs from large graphs

	49.	 Nazi A, Hang W, Goldie A, Ravi S, Mirhoseini A (2019) GAP :
Generalizable approximate graph partitioning framework. URL
ICLR workshop

	50.	 Nguyen H, Murata T (2017) Motif-aware graph embeddings. In:
Proceedings of international joint conference on artificial intel-
ligence (IJCAI’17), pp 1–1

	51.	 Nowak A, Villar S, Bandeira AS, Bruna J (2017) A note on learn-
ing algorithms for quadratic assignment with graph neural net-
works. In: Proceeding of international conference on machine
learning (ICML’17), pp 22–22

	52.	 Ou M, Cui P, Pei J, Zhang Z, Zhu W (2016) Asymmetric tran-
sitivity preserving graph embedding. In: Proceedings of ACM
SIGKDD international conference on knowledge discovery and
data mining (KDD’16), pp 1105–1114

	53.	 Papadimitriou CH, Vempala S (2006) On the approximability of
the traveling salesman problem. Combinatorica 26(1):101–120

	54.	 Peng Y, Choi B, He B, Zhou S, Xu R, Yu X (2016) VColor: A
practical vertex-cut based approach for coloring large graphs. In:
IEEE international conference on data engineering (ICDE’16), pp
97–108

	55.	 Peng Y, Fan Z, Choi B, Xu J, Bhowmick SS (2015) Authenticated
subgraph similarity searchin outsourced graph databases. IEEE
Trans Knowl Data Eng 27(7):1838–1860

	56.	 Perozzi B, Al-Rfou R, Skiena S (2014) DeepWalk: Online learn-
ing of social representations. In: Proceedings of ACM SIGKDD
international conference on knowledge discovery and data mining
(KDD’14), pp 701–710

	57.	 Prates M, Avelar P, Lemos H, Lamb L, Vardi M (2019) Learn-
ing to solve NP-Complete problems - a graph neural network for
decision TSP. In: Proceedings of AAAI conference on artificial
intelligence (AAAI’19), pp 4731–4738

	58.	 Ribeiro LF, Saverese PH, Figueiredo DR (2017) Struc2Vec:
Learning node representations from structural identity. In: Pro-
ceedings of ACM SIGKDD international conference on knowl-
edge discovery and data mining (KDD’17), pp 385–394

	59.	 Sato R, Yamada M, Kashima H (2019) Approximation ratios of
graph neural networks for combinatorial problems. In: Proceed-
ings of the neural information processing systems (NIPS’19)

	60.	 Smith-Miles K (1999) Neural networks for combinatorial optimi-
zation: a review of more than a decade of research. INFORMS J
Comput 11:15–34

	61.	 Sutton RS, Barto AG (2018) Reinforcement learning: an introduc-
tion. MIT Press, Cambridge

	62.	 Tang J, Qu M, Mei Q (2015) PTE: Predictive text embedding
through large-scale heterogeneous text networks. In: Proceedings
of ACM SIGKDD international conference on knowledge discov-
ery and data mining (KDD’15), pp 1165–1174

	63.	 Tang J, Qu M, Wang M, Zhang M, Yan J, Mei Q (2015) LINE:
Large-scale information network embedding. In: Proceedings
of international conference on world wide web (WWW’15), pp
1067–1077

	64.	 Tsitsulin A, Mottin D, Karras P, Müller E (2018) VERSE: Versa-
tile graph embeddings from similarity measures. In: Proceedings
of world wide web conference (WWW’18), pp 539–548

	65.	 Tu K, Cui P, Wang X, Yu PS, Zhu W (2018) Deep recursive net-
work embedding with regular equivalence. In: Proceedings of
ACM SIGKDD international conference on knowledge discovery
& data mining (KDD’18), pp 2357–2366

	66.	 Veličković P, Cucurull G, Casanova A, Romero A, Liò P, Bengio
Y (2018) Graph Attention Networks. In: International conference
on learning representations (ICLR)

	67.	 Vinyals O, Fortunato M, Jaitly N (2015) Pointer networks. Adv
Neural Inf Process Syst 28:2692–2700

	68.	 Wang D, Cui P, Zhu W (2016) Structural deep network embed-
ding. In: Proceedings of ACM SIGKDD International confer-
ence on knowledge discovery and data mining (KDD’16), pp
1225–1234

	69.	 Wang R, Yan J, Yang X (2019) Learning combinatorial embed-
ding networks for deep graph matching. In: Proceedings of the
IEEE international conference on computer vision (ICCV’19),
pp 3056–3065

	70.	 Wasserman S, Faust K et al (1994) Social network analysis:
methods and applications, vol 8. Cambridge University Press,
Cambridge

	71.	 Wu Y, Song W, Cao Z, Zhang J, Lim A (2019) Learning improve-
ment heuristics for solving the travelling salesman problem. CoRR
arXiv:​1912.​05784

	72.	 Wu Z, Pan S, Chen F, Long G, Zhang C, Yu PS (2019) A com-
prehensive survey on graph neural networks. CoRR arXiv:​1901.​
00596

	73.	 Yanardag P, Vishwanathan S (2015) Deep graph kernels. In: Pro-
ceedings of ACM sigkdd international conference on knowledge
discovery and data mining (KDD’15), pp 1365–1374

	74.	 Yang Y, Wang X, Song M, Yuan J, Tao D (2019) SPAGAN:
Shortest path graph attention network. In: Proceedings of inter-
national joint conference on artificial intelligence (IJCAI’19), pp
4099–4105

	75.	 Yu Y, Lu Z, Liu J, Zhao G, Wen J (2019) RUM: Network repre-
sentation learning using motifs. In: IEEE international conference
on data engineering (ICDE’19), pp 1382–1393

	76.	 Yue X, Wang Z, Huang J, Parthasarathy S, Moosavinasab S,
Huang Y, Lin SM, Zhang W, Zhang P, Sun H (2019) Graph
embedding on biomedical networks: methods, applications and
evaluations. Bioinformatics 36(4):1241–1251

	77.	 Zhang D, Yin J, Zhu X, Zhang C (2020) Network representation
learning: a survey. IEEE Trans Big Data 6(1):3–28

	78.	 Zhang F, Yuan NJ, Lian D, Xie X, Ma WY (2016) Collaborative
knowledge base embedding for recommender systems. In: Pro-
ceedings of ACM SIGKDD international conference on knowl-
edge discovery and data mining (KDD’16), pp 353–362

http://arxiv.org/abs/2003.03600
http://arxiv.org/abs/1907.09495
http://arxiv.org/abs/1907.09495
http://arxiv.org/abs/1912.05784
http://arxiv.org/abs/1901.00596
http://arxiv.org/abs/1901.00596

	Graph Learning for Combinatorial Optimization: A Survey of State-of-the-Art
	Abstract
	1 Introduction
	2 Notations and Preliminaries
	2.1 Overview of Graph Learning-based CO Methods

	3 Graph Representation Learning Methods
	3.1 Graph Embedding Methods
	3.1.1 Generalized SkipGram
	3.1.2 AutoEncoder
	3.1.3 Generalized SkipGram-Based Graph Embedding Method
	3.1.4 AutoEncoder-based Graph Embedding
	3.1.5 Discussion

	3.2 End-to-End Method
	3.2.1 Graph Neural Network
	3.2.2 GNN-Based Graph Representation Learning
	3.2.3 AutoEncoder-Based Graph Representation Learning
	3.2.4 Discussions

	4 Graph Learning-Based Combinatorial Optimization Methods
	4.1 Non-autoregressive CO Methods
	4.1.1 Discussions

	4.2 Autoregressive CO Methods
	4.3 Discussions

	5 Future Work
	6 Conclusion
	References

