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Abstract
Graphs have been widely used to represent complex data in many applications, such as e-commerce, social networks, and 
bioinformatics. Efficient and effective analysis of graph data is important for graph-based applications. However, most graph 
analysis tasks are combinatorial optimization (CO) problems, which are NP-hard. Recent studies have focused a lot on the 
potential of using machine learning (ML) to solve graph-based CO problems. Most recent methods follow the two-stage 
framework. The first stage is graph representation learning, which embeds the graphs into low-dimension vectors. The second 
stage uses machine learning to solve the CO problems using the embeddings of the graphs learned in the first stage. The 
works for the first stage can be classified into two categories, graph embedding methods and end-to-end learning methods. 
For graph embedding methods, the learning of the the embeddings of the graphs has its own objective, which may not rely 
on the CO problems to be solved. The CO problems are solved by independent downstream tasks. For end-to-end learning 
methods, the learning of the embeddings of the graphs does not have its own objective and is an intermediate step of the 
learning procedure of solving the CO problems. The works for the second stage can also be classified into two categories, 
non-autoregressive methods and autoregressive methods. Non-autoregressive methods predict a solution for a CO problem 
in one shot. A non-autoregressive method predicts a matrix that denotes the probability of each node/edge being a part of 
a solution of the CO problem. The solution can be computed from the matrix using search heuristics such as beam search. 
Autoregressive methods iteratively extend a partial solution step by step. At each step, an autoregressive method predicts 
a node/edge conditioned to current partial solution, which is used to its extension. In this survey, we provide a thorough 
overview of recent studies of the graph learning-based CO methods. The survey ends with several remarks on future research 
directions.

Keywords Graph representation learning · Graph neural network · Combinational optimization

Abbreviations
ML  Machine learningime
GNN  Graph neural network
DL  Deep learning
RL  Reinforcement learning
CNN  Convolutional neural network
DNN  Deep neural network
RNN  Recurrent neural network
MLP  Multi-layer perceptron
MDP  Markov decision process
MCTS  Monte Carlo tree search

CO  Combinatorial optimization
MVC  Minimum vertex cover
MIS  Maximum independent set
TSP  Travelling salesman problem
GC  Graph coloring
MDS  Minimum dominating set
MM  Maximum matching
MaxCut  Maximum cut
MC  Maximum clique
SI  Subgraph isomorphism
GSim  Graph similarity
MF  Matrix factorization
B & B  Branch and bound
MILP  Mixed-integer linear programming
BFS  Breadth-first search
DFS  Depth-first search

 * Jianliang Xu 
 xujl@comp.hkbu.edu.hk

1 Department of Computer Science, Hong Kong Baptist 
University, DLB 626, Level 6, David C. Lam Building, Shaw 
Campus, Kowloon Tong, Hong Kong

http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-021-00155-3&domain=pdf


120 Y. Peng et al.

1 3

1 Introduction

Graphs are ubiquitous and are used in a wide range of 
domains, from e-commerce [21, 78] to social networking 
[31, 70] to bioinformatics [20, 76]. Effectively and effi-
ciently analyzing graph data are important for graph-based 
applications. However, many graph analysis tasks are com-
binatorial optimization (CO) problems, such as the trave-
ling salesman problem (TSP) [67], maximum independent 
set (MIS) [14], maximum cut (MaxCut) [23], minimum 
vertex cover (MVC) [42], maximum clique (MC) [10], 
graph coloring (GC) [54], subgraph isomorphism (SI) 
[22], and graph similarity (GSim) [55]. These graph-based 
CO problems are NP-hard. In the existing literature on this 
subject, there are three main approaches used to solve a 
CO problem: exact algorithms, approximation algorithms, 
and heuristic algorithms. Given a CO problem on a graph 
G, exact algorithms aim to compute an optimum solution. 
Due to the NP-hardness of the problems, the worst-case 
time complexity of exact algorithms is exponential to the 
size of G. To reduce time complexity, approximation algo-
rithms find a suboptimal solution that has a guaranteed 
approximation ratio to the optimum, with a worst-case 
polynomial runtime. Nevertheless, many graph-based CO 
problems, such as general TSP [53], GC [35], and MC 
[27], are inapproximable with such a bounded ratio. Thus, 
heuristic algorithms are designed to efficiently find a sub-
optimal solution with desirable empirical performance. 
Despite having no theoretical guarantee of optimality, 
heuristic algorithms often produce good enough solutions 
in practice.

The practice of applying machine learning (ML) to 
solve graph-based CO problems has a long history. For 
example, as far back as the 1980s, researchers were 
using the Hopfield neural network to solve TSP [28, 60]. 
Recently, the success of deep learning methods has led 
to an increasing attention being paid to this subject [5, 
14, 43, 67]. Compared to manual algorithm designs, ML-
based methods have several advantages in solving graph-
based CO problems. First, ML-based methods can auto-
matically identify distinct features from training data. In 
contrast, human algorithm designers need to study the 
heuristics with substantial problem-specific research 
based on intuitions and trial-and-errors. Second, for a 
graph-based CO problem, ML has the potential to find 
useful features that it may be hard to specify by human 
algorithm designers, enabling it to develop a better solu-
tion [29]. Third, an ML-based method can adapt to a 
family of CO problems. For example, S2V-DQN [14] can 
support TSP, MVC, and MaxCut; GNNTS [42] can sup-
port MIS, MVC, and MC. In comparison, it is unlikely 
for a handcrafted algorithm of one CO problem to be 
adapted to other CO problems.

Most recent graph learning-based CO methods follow the 
two-stage framework. The first stage is graph representation 
learning which embeds the graphs into low-dimension vec-
tors. The second stage uses machine learning to solve the CO 
problems using the embedding vectors of the graphs learned 
in the first stage. In this survey, we review the state-of-the-
art works of the two stages, respectively.

For the first stage, existing graph representation learn-
ing techniques that have been used in ML-based CO meth-
ods can be classified into two categories: graph embedding 
methods and end-to-end learning methods. On one hand, 
graph embedding methods embed the nodes of a graph into 
low-dimension vectors. The embedding vectors of the graph 
learned are inputted to downstream machine learning tasks 
to solve CO problems. Graph embedding has its learning 
objective, which may not rely on the CO problems to be 
solved. The embeddings of the graph are fixed during the 
solving of the downstream task. On the other hand, in end-
to-end learning methods, graph representation learning does 
not have its own learning objective and is an intermediate 
step of the learning procedure of solving the CO problem. 
The embeddings learned are specific to the CO problem 
being solved.

For the second stage, existing works can be classified 
into two categories: non-autoregressive methods and autore-
gressive methods. On one hand, non-autoregressive methods 
predict a solution for a graph-based CO problem in one shot. 
For example, for the TSP problem on a graph, a non-autore-
gressive method predicts a matrix, where each element of 
the matrix is the probability of an edge belonging to a TSP 
tour. The TSP tour can be computed from the matrix using 
beam search. On the other hand, autoregressive methods 
iteratively extend a partial solution step by step. For the TSP 
problem, at each step, an autoregressive method predicts an 
edge conditioned to the current partial TSP tour, which is 
used to extend the current partial TSP tour.

There have been several surveys of graph representa-
tion learning [7, 11, 13, 26, 77]. However, existing surveys 
mainly focus on the graph representation learning models 
and their applications in node classification, link prediction 
or graph classification. In contrast, we focus on using graph 
learning to solve CO problems. There have also been several 
previous surveys that have discussed ML-based CO meth-
ods [5, 38, 43]. The present survey, however, has different 
emphases from previous studies. The survey [5] focuses on 
branch and bound (B&B) search techniques for the mixed-
integer linear programming (MILP) problem. Although 
many graph-based CO problems can be formulated using 
MILP and solved using the B&B method, most existing ML-
based methods for solving graph-based CO problems focus 
on graph-specific methods. Mazyavkina et al. [43] discuss 
RL-based CO methods. However, there are ML-based CO 
methods that do not use RL. This survey is not limited to RL 
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approaches. Lamb et al. [38] survey the GNN-based neural-
symbolic computing methods. Symbolic computing is a 
broad field and graph-based CO is a topic of it. In contrast, 
we focus on the graph-based CO problems in this survey.

The rest of this survey is organized as follows. Section 2 
presents the notations and preliminaries. Section 3 summa-
rizes graph representation learning techniques. Section 4 
discusses the use of ML to solve graph-based CO problems. 
Section 5 suggests directions for future research. Section 6 
concludes this survey.

2  Notations and Preliminaries

In this section, we present some of the notations and defini-
tions that are frequently used in this survey.

We denote a graph by G = (V ,E,�) , where V and E are 
the node set and the edge set of G, respectively, �|V|×d� is 
the matrix of initial features of all nodes, and �u = �[u, ⋅] 
denotes the initial features of node u. We may choose u ∈ G 
or u ∈ V  to denote a node of the graph, when the choice is 
more intuitive. Similarly, we may use (u, v) ∈ G or (u, v) ∈ E 
to denote an edge of the graph. The adjacency matrix of 
G is denoted by � . The weight of edge (u, v) is denoted 
by wu,v . We use � to denote the transition matrix, where 
�[u, v] = wu,v∕

∑
v�∈G wu,v� . �k =

∏
k � is the k-step transi-

tion matrix and � is also called the 1-step transition matrix. 
We use g to denote a subgraph of G and G∖g to denote the 
subgraph of G after removing all nodes in g. For a node 
u ∈ G, u ∉ g , we use g ∪ {u} to denote adding the node u and 
the edges {(u, v)|v ∈ g, (u, v) ∈ G} to g. G can be a directed 
or undirected graph. If G is directed, (u, v) and (v, u) may 
not present simultaneously in E. No(u) and Ni(u) denote the 
outgoing and incoming neighbors of u, respectively. If G 
is undirected, N(u) denotes the neighbors of u. We use a 
bold uppercase character to denote a matrix (e.g., � ), a bold 
lowercase character to denote a vector (e.g., � ), and a low-
ercase character to denote a scalar (e.g., x). The embedding 
vectors (or embeddings for short) of a node u and a graph 
G are d-dimensional vectors denoted by �u and �G , respec-
tively. Table 1 summarizes the notations of frequently used 
symbols.

A graph-based CO problem is formulated in Definition 1.

Definition 1 Given a graph G and a cost function c of the 
subgraphs of G, a CO problem is to find the optimum value 
of c or the corresponding subgraph that produces that opti-
mum value.

For example, for a graph G, the maximum clique (MC) 
problem is to find the largest clique of G, and the minimum 
vertex cover (MVC) problem is to find the minimum set of 
nodes that are adjacent to all edges in G.

2.1  Overview of Graph Learning‑based CO Methods

Most existing methods that use machine learning to solve 
the graph-based CO problem follow the two-stage frame-
work, as illustrated in Fig. 1. Given an input graph, the 
first stage is to learn the representation of the graph in 
a low-dimension embedding space. The nodes or edges 
of the graph are represented as embedding vectors (or 
embeddings for short). The techniques for the first stage 
are discussed in Sect. 3. The second stage uses machine 
learning to solve the CO problem using the embeddings 
of the graph learned in the first stage. The techniques for 
the second stage are discussed in Sect. 4.

There are mainly two ways to learn graph representation 
in the first stage. In the first way, the embeddings are learned 
by graph embedding methods. Graph embedding has its own 
learning objectives that may not rely on the objective of 
the CO problem to be solved in the second stage. The CO 
problem is solved as a downstream task of graph embedding 
and the gradient of the loss of the CO problem in the second 
stage will not be back-propagated to the first stage. In the 
second way, the CO problem is solved in the end-to-end 
manner. The first stage does not have its own learning objec-
tive and the gradient of the second stage is back-propagated 
to the first stage for learning the embeddings of the graph.

There are mainly two different approaches to solve the 
CO problems in the second stage, namely non-autoregres-
sive methods and autoregressive methods. The non-autore-
gressive methods predict a solution for a graph-based CO 
problem in one shot. A non-autoregressive method predicts 
a matrix that denotes the probability of each node/edge being 
a part of a solution. The solution of the CO problem can be 
computed from the matrix by search heuristics, e.g., beam 
search. The autoregressive methods compute the solution 
by iteratively extending a partial solution. At each time step, 
the node/edge that is used to extend the partial solution is 
predicted conditioned to the current partial solution.

Table 1  Notations of frequently used symbols and their meaning

Notation Description

G = (V ,E,�) A graph
� The adjacent matrix of G
u, v Node u and node v of G
� A matrix of features of all nodes
�u The features of u, i.e., a row of �
� A signal, i.e., a column of �
N  u Neighborhood of u
�u,�G Embedding vector of a node u, a graph G
� The matrix of embedding vectors of all nodes
d Dimension of a vector
f l
�

The l-th layer of a neural network with parameter �
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3  Graph Representation Learning Methods

In this section, we survey the graph representation learn-
ing methods that have been applied to solve graph-based 
CO problems. In Sect. 3.1, we review the graph embedding 
methods, which learn the embeddings of the graph indepen-
dently to the downstream task of solving the CO problem, 
and in Sect. 3.2, we review the end-to-end learning methods 
that learn the embeddings of the graph as an intermediate 
step of solving the CO problem.

3.1  Graph Embedding Methods

We first review generalized SkipGram and AutoEncoder that 
are two widely used models in graph embedding.

3.1.1  Generalized SkipGram

The generalized SkipGram model is extended from the well-
known SkipGram model [45] for embedding words in natu-
ral language processing. The generalized SkipGram model 
relies on the neighborhood Nu of node u to learn an embed-
ding of u. The objective is to maximize the likelihood of the 
nodes in Nu conditioned on u.

A s s u m i n g  c o n d i t i o n a l  i n d e p e n d e n c e , 
P(v1, v2,… , v�Nu��u) =

∏
vi∈Nu

P(vi��u) . P(vi|�u) can be 

(1)maxP(v1, v2,… , v|Nu||u), vi ∈ Nu

defined as 
�T
vi
�u∑

v∈G �T
v
�u

 . Maximizing 
∏

vi∈Nu
P(vi��u) is then 

equivalent to maximizing its logarithm. Hence, (1) becomes

Since computing the denominator of the softmax in (2) is 
time consuming, many optimization techniques have been 
proposed. Negative sampling [45] is one of the most well-
known techniques. Specifically, the nodes in the neighbor-
hood Nu of u are regarded as positive samples of u. On the 
other hand, the nodes not in Nu are considered negative sam-
ples of u. Then, maximizing the likelihood in Formula 2 can 
be achieved as follows:

where v is a positive sample of u, v̄ is a negative sample, Pn 
is the probability distribution of negative samples, v̄ ∼ Pn 
means sampling a node from the probability distribution Pn , 
K is the number of negative samples, � is the sigmoid activa-
tion function, and � is the expectation.

To conveniently adopt the gradient descent algorithms, 
maximizing an objective is often rewritten as minimizing its 
negative. Thus, the objective function of the generalized Skip-
Gram model is to minimize the loss L as follows:

(2)

max
�
vi∈Nu

logP(vi��u)

= max
�
vi∈Nu

log
�T
vi
�u∑

v∈G �T
v
�u

(3)max log 𝜎(�T
v
�u) +

K∑
i=1

�v̄∼Pn
log 𝜎(−�T

v̄
�u),

Fig. 1  Overview of the two stages of ML-based CO methods
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Existing studies on the generalized SkipGram model define 
the neighborhood in different ways. For example, LINE [63] 
defines the 1-hop neighbors as the neighborhood in order to 
preserve the second-order proximity; DeepWalk [56] uses 
the random walk to define the neighborhood for preserving 
more global structural information of G.

3.1.2  AutoEncoder

AutoEncoder is composed of an encoder and a decoder. 
For a graph-based CO problem, the encoder encodes the 
nodes in the graph into d-dimensional embedding vectors. 
The decoder then predicts a solution to the CO problem 
using the node embeddings (e.g., PointerNet [67]).

Formally, the encoder is a function

enc(�u) embeds node u into �u ∈ ℝ
d.

There are several different types of decoder. For 
instance, the inner product-based decoder, the reconstruc-
tion-based decoder, and the classification-based decoder 
are three widely-used decoders.

The inner product-based decoder is a function

dec(�u, �v) returns the similarity of �u and �v . Let sim(u, v) 
denotes the proximity of u and v in G (e.g., �u[u, v] in [68]). 
The objective function of the inner product decoder is to 
minimize the loss

where D is the training dataset and dist is a user-specified 
distance function.

The reconstruction-based decoder is a function

dec(�u) outputs �̂u as the reconstruction of �u . The objective 
function is to minimize the reconstruction loss

The encoder and the decoder can be implemented by differ-
ent types of neural networks, e.g., the multi-layer perceptron 
(MLP) [68] or the recurrent neural network (RNN) [65].

(4)

minL =min− log 𝜎(�T
v
�u)

−

K∑
i=1

�v̄∼Pn
log 𝜎(−�T

v̄
�u)

enc ∶ ℝ
d�
→ ℝ

d

dec ∶ ℝ
d ×ℝ

d
→ ℝ

(5)L =
∑

(u,v)∈D

dist(dec(�u, �v), sim(u, v)),

dec ∶ ℝ
d
→ ℝ

d�

L =
∑
u∈G

||(dec(�u), �u)||22

3.1.3  Generalized SkipGram‑Based Graph Embedding 
Method

This subsection reviews the generalized SkipGram-based 
graph embedding methods DeepWalk [56], Node2Vec [24], 
and Struc2Vec [58]; and the subgraph-based graph embed-
ding methods DeepGK [73], Subgraph2Vec [48], RUM [75], 
Motif2Vec [15], and MotifWalk [50] .

DeepWalk [56] was one of the earlist works to introduce 
the generalized SkipGram model to graph embedding. The 
main idea of DeepWalk is to sample a set of truncated ran-
dom walks of the graph G, and the nodes in a window of 
a random walk are regarded as co-occurence. The neigh-
borhood of a node is the nodes that co-occurred with it. 
DeepWalk uses the generalized SkipGram model with the 
negative sampling (refer to Formula 4) to learn the graph 
embedding.

To incorporate more flexibility into the definition of 
node neighborhood, Node2Vec [24] introduces breadth-first 
search (BFS) and depth-first search (DFS) in neighborhood 
sampling. The nodes found by BFS and DFS can capture 
different structural properties. Node2Vec uses the second-
order random walk to simulate the BFS and DFS. (“second-
order” means that when the random walk is at the step i, the 
random walk needs to look back to the step i − 1 to decide 
the step i + 1 .) Two parameters p and q are introduced to 
control the random walk. p controls the probability of return 
to an already visited node in the following two steps, and q 
controls the probability of visiting a close or a far node in 
the following two steps. Let ui denotes the current node in 
the walk and ui−1 denotes the previous node. The probability 
of the random walk to visit the next node ui+1 is defined as 
below.

where dist(ui−1, ui+1) is the shortest distance from ui−1 to ui+1 
and wi,i+1 is the weight of the edge (ui, ui+1) . An example is 
shown in Fig. 2. The current node of the random walk is ui . 
There are four nodes ui−1 , v1 , v2 and v3 that can be the next 
node of the random walk. The probability of selecting each 
of them as the next node is shown in Fig. 2.

Struc2Vec [58] argues that the random walks of Node-
2Vec cannot find nodes that have similar structures but are 
far away. Struc2Vec builds a multi-layer graph G′ for the 
input graph G. The layer l is a complete graph G′

l
 , where 

each node in G is a node in G′
l
 and each edge (u, v) ∈ G�

l
 

is weighted by the structural similarity of the l-hop 

(6)

P(ui+1�ui) =
�

�ui−1,ui+1
× wui,ui+1

if (ui, ui+1) ∈ G

0 otherwise

�ui−1,ui+1
=

⎧
⎪⎨⎪⎩

1∕p if dist(ui−1, ui+1) = 0

1 if dist(ui−1, ui+1) = 1

1∕q if dist(ui−1, ui+1) = 2
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neighborhoods of u and v in G. In this way, two nodes that 
are far away in G can reach each other by just one hop in G′

l
 . 

The nodes in G′
l
 can have directed edges to the nodes in G�

l−1
 

and G�
l+1

 . Random walks are sampled on G′ , and the general-
ized SkipGram model is used to learn the node embedding.

Besides using paths to sample the neighborhood, many 
works use representative subgraphs of the input graph. The 
representative subgraphs may be termed motifs, graphlets 
or kernels in different studies. Yanardag and Vishwanathan 
[73] propose DeepGK, which is the earlist work embedding 
the motifs. The neighborhood of a motif g is defined as the 
motifs within a small distance from g. The generalized Skip-
Gram model is used to learn the embeddings for the motifs.

Yu et al. [75] propose a network representation learning 
method using motifs (RUM). RUM builds a motif graph G′ 
for the input graph G, where each node in G′ is a motif of 
G and two nodes have an edge in G′ if the corresponding 
motifs share common nodes. Triangle is used as the graph 
motif in RUM. RUM uses random walks on the motif graph 
G′ to define the neighborhood of a motif. Then, the general-
ized SkipGram model is used to learn the embedding of the 
motif. An original node u of G may occur in multiple motifs 
of G′ . RUM uses the average of the embeddings of the motifs 
as the embedding of u.

Dareddy et al. [15] propose another type of motif graph. 
Given a graph G = (V ,E) , for each motif g, Motif2Vec 
builds a motif graph G� = (V ,E�) , where the weight of an 
edge (u, v) ∈ E� is the number of motif instances of g in G 
that contain node u and v. Then, Motif2Vec simulates a set 
of random walks on each motif graph and uses Node2Vec 
[24] to learn the embeddings of the nodes in G. A similar 
idea is also proposed in the MotifWalk method of [50].

Narayanany et al. [48] propose Subgraph2Vec to compute 
the embeddings of the neighboring subgraphs of the nodes 

in the input graph. Let gu denotes the neighboring subgraph 
of a node u, Subgraph2Vec computes �gu using the general-
ized SkipGram model. The neighborhood of gu is defined 
as the neighboring subgraphs of the neighbors of u, i.e., 
{gv|v ∈ N(u)}.

3.1.4  AutoEncoder‑based Graph Embedding

AutoEncoder-based graph embedding often preserves 
the graph structure properties measured by the following 
proximities.

Definition 2 Given a graph G = (V ,E) , the first-order 
proximity from u to v is the weight of (u, v). If (u, v) ∈ E , 
p(1)(u, v) = wu,v ; otherwise, p(1)(u, v) = 0.

The first-order proximity captures the direct relationship 
between nodes. The second-order proximity captures the 
similarity of the neighbors of two nodes.

Definition 3 Given a graph G, the second-order proximity 
between u and v is p(2)(u, v) = sim(�(1)(u), �(1)(v)) , where 
�(1)(u) is the vector of the first-order proximity from u to 
all other nodes in G, i.e., �(1)(u) = (p(1)(u, v1), p

(1)(u, v2),… , 
p(1)(u, v|V|)) , and sim is a user-specified similarity function.

The first- and second-order proximities encode the local 
structures of a graph. Proximities to capture more global 
structures of a graph have also been proposed in the lit-
erature. For example, Cai et al. [7] propose to use p(k)(u, v) 
(recursively defined, similar to Definition 3) as the k-th-
order proximity between u and v, Cao et al. [8] use the 
k-step transition probability � k[u, v] to measure the k-step 
relationship from u to v, Chen et al. [12] use the node 

Fig. 2  An example of selecting the next node by the second-order random walk of Node2Vec [24]. ui is the current node of the random walk and 
ui−1 is the previous node. ui−1 , v1 , v2 , and v

3

 can be selected as the next node with the corresponding probabilities, respectively



125Graph Learning for Combinatorial Optimization: A Survey of State-of-the-Art  

1 3

centrality, Tsitsulin et al. [64] use the Personalized Pag-
eRank, and Ou et al. [52] use the Katz Index and Adamic-
Adar to measure more global structural properties of G.

Large-scale information network embedding (LINE) 
[63] preserves both the first- and second-order proxim-
ity in graph embedding using two AutoEncoders, respec-
tively. In order for AutoEncoder to preserve the first-order 
proximity, the encoder is a simple embedding lookup [9]. 
The decoder outputs the estimated adjacent matrix using 
the node embeddings, and the objective is to minimize 
the loss between the estimated adjacent matrix and the 
ground truth.

The decoder of LINE is designed as follows. Since adja-
cent nodes u and v in G have high first-order proximity, 
they should be close in the embedding space. LINE uses 
the inner product of �u and �v to measure the distance 
between u and v in the embedding space, as shown below.

P1(⋅, ⋅) defines the estimated distribution of the first-order 
proximity (i.e., the estimated adjacent matrix). LINE 
ensures that the estimated distribution P1(⋅, ⋅) is close to the 
empirical distribution P̂1(⋅, ⋅) so as to preserve the first-order 
proximity.

where P̂1(u, v) =
wu,v∑

(u� ,v�)∈G wu� ,v�
 and dist is the distance between 

two probability distributions. If the KL-divergence is used 
as dist, L1 becomes

In order for AutoEncoder to preserve the second-order prox-
imity, the encoder is a simple embedding lookup [9]. The 
decoder outputs an estimated distribution between each node 
and its neighbors. The estimated distribution is reconstructed 
from the embeddings of the nodes. The objective is to mini-
mize the reconstruction loss between the estimated distribu-
tion and the ground truth.

The decoder is designed as follows. Inspired by word 
embedding [39], the neighbors of u are regarded as the 
“context” of u. LINE uses a conditional probability P2(v|u) 
defined in Formula 10 to model the estimated probability 
of u generating a neighbor v.

where �′ is the vector of a node when the node is regarded 
as context.

(7)P1(u, v) =
1

1 + exp(−�T
u
�v)

(8)L1 = min dist(P̂1(⋅, ⋅),P1(⋅, ⋅))

(9)L1 = min−
∑

(u,v)∈G

wu,v logP1(u, v)

(10)P2(v�u) =
exp(��T

v
�u)∑

v�∈G exp(��T
v�
�u)

,

P2(⋅|u) defines the estimated distribution of u over the 
context. The nodes u and u′ in G that have a high second-
order proximity should have similar estimated distributions 
over the context, i.e., P2(⋅|u) should be similar to P2(⋅|u�) . 
This can be achieved by minimizing the distance between 
the estimated distribution P2(⋅|u) and the empirical distribu-
tion P̂2(⋅|u) , for each node u in G. The empirical distribu-
tion P̂2(⋅|u) is defined as P̂2(v�u) = wu,v∕

∑
u,v� wu,v� . LINE 

preserves the second-order proximity as follows.

Using the KL-divergence for dist, Formula 11 produces

LINE trains the two AutoEncoders separately. The node 
embeddings generated by the two AutoEncoders are con-
catenated as the embeddings of the nodes. The model of 
LINE is also adopted by Tang et al. [62] to embed the words 
in a heterogeneous text graph.

Wang et al. [68] argue that LINE is a shallow model, in 
the sense that it cannot effectively capture the highly non-
linear structure of a graph. Therefore, structural deep net-
work embedding (SDNE) is proposed as a mean of using 
the deep neural network to embed the nodes. As with LINE, 
SDNE also preserves the first- and second-order proximity. 
Both the encoder and decoder of SDNE are MLPs. Given a 
graph G, the encoder embeds �u to �u , where �u is the u-th 
row in the adjacent matrix � of G, and the decoder recon-
structs �̂u from �u.

SDNE preserves the first-order proximity by minimizing 
the distance in the embeded space for the adjacent nodes 
in G.

The second-order proximity is preserved by minimizing the 
reconstrucspation loss.

SDNE combines L1 , L2 , and a regularizer term as the objec-
tive function and jointly optimizes them by means of a deep 
neural network. The first- and second-order proximity are 
preserved and the graph embedding learned is more robust 
than LINE. As demonstrated in experiments, SDNE outper-
forms LINE in several downstream tasks (e.g., node clas-
sification and link prediction).

Versatile graph embedding method (VERSE) [64] shows 
that the first- and second-order proximity are not sufficient to 

(11)L2 = min
∑
u∈G

dist(P̂2(⋅|u),P2(⋅|u)))

(12)L2 = min−
∑

(u,v)∈G

wu,v logP2(v|u)

L1 =
∑

(u,v)∈G

�[u, v] × ||�u − �v||22

L2 =
∑
u∈G

||�̂u − �u||22



126 Y. Peng et al.

1 3

capture the diverse forms of similarity relationships among 
nodes in a graph. Tsitsulin et al. [64] propose to use a func-
tion sim(u, v) to measure the similarity between any two 
nodes u and v in G, where sim(⋅, ⋅) can be any similarity 
function. The similarity distribution of u to all other nodes 
can be defined by sim(u, ⋅) . The encoder of VERSE is a sim-
ple embedding lookup. The decoder estimates the similarity 
distribution using the node embeddings, as in Formula 10. 
The objective is to minimize the reconstruction loss between 
the estimated similarity distribution and the ground truth.

Dave et al. [16] propose Neural-Brane to capture both 
node attribute information and graph structural information 
in the embedding of the graph. Bonner et al. [6] study the 
interpretability of graph embedding models.

3.1.5  Discussion

The generalized SkipGram model is inspired by the word 
embedding model in natural language processing (NLP). 
Random walks of the graphs, which are the analog of sen-
tences in texts are widely used by the generalized SkipGram 
model-based methods for computing the embeddings of the 
graphs. However, computing random walks are time-con-
suming. Moreover, the generalized SkipGram model is often 
regarded as a shallow model when compared to AutoEn-
coder. AutoEncoder can be deeper by stacking more layers 
and has more potentials to encode the complex and nonlin-
ear relationships between the nodes of a graph [68]. Recent 
works of word embedding in NLP also verify the advantage 
of AutoEncoder [18]. However, designing the architectures 
of the encoder and decoder and the loss function to encode 
the structure information of the graph is challenging.

Graph embedding methods can precompute the embedding 
vectors of graphs. The advantage is that the structure informa-
tion encoded in the embeddings can be transferred to different 
downstream tasks. Graph embedding methods learn the embed-
dings of the graph without considering the downstream CO 
problems to be solved. The embeddings may not encode the 
information that are critical for solving the CO problem. There 
is an opportunity that the performance of the graph embedding-
based methods may be inferior to the end-to-end learning meth-
ods for solving CO problems. Therefore, there have been recent 
studies on alternative graph representation learning methods 
for solving CO problems such as end-to-end learning methods.

3.2  End‑to‑End Method

Graph neural network (GNN) and AutoEncoder are widely 
used in the end-to-end learning methods of solving CO prob-
lems, where computing the embeddings of the graphs are an 
intermediate step.

3.2.1  Graph Neural Network

Graph neural network uses the graph convolution operation 
to aggregate graph structure and node content information. 
Graph convolution can be divided into two categories: i) 
spectral convolutions, defined using the spectra of a graph, 
which can be computed from the eigendecomposition of 
the graph’s Laplacian matrix, and ii) spatial convolutions, 
directly defined on a graph by information propagation.

A) Graph Spectral Convolution
Given an undirected graph G, � = � − �−1∕2��−1∕2 is 

the normalized Laplacian matrix of G. � can be decom-
posed into � = ���T , where � is the eigenvectors ordered 
by eigenvalues, � is the diagonal matrix of eigenvalues, 
and �[i, i] is the i-th eigenvalue �i.

The graph convolution ∗G of an input signal � ∈ ℝ
|V| 

with a filter �� is defined as

Existing studies on graph spectral convolution all follow 
Formula (13), and the differences are the choice of the filter 
�� [72]. The u-th row of the output channel is the embedding 
�u of a node u.

B) Graph Spatial Convolution
Graph spatial convolution aggregates the informa-

tion from a node’s local neighborhood. Intuitively, each 
node sends messages based on its current embedding and 
updates its embedding based on the messages received 
from its local neighborhood. A graph spatial convolution 
model often stacks multiple layers, and each layer per-
forms one iteration of message propagation. To illustrate 
this, we recall the definition given in GraphSAGE [25]. A 
layer of GraphSAGE is as follows:

where l denotes the l-th layer, || denotes concatenation, Nu is 
a set of randomly selected neighbors of u, and AGG  denotes 
an order-invariant aggregation function. GraphSAGE sug-
gests three aggregation functions: element-wise mean, 
LSTM-based aggregator, and max-pooling.

3.2.2  GNN‑Based Graph Representation Learning

Graph convolutional network (GCN) [36] is a well-known 
graph spectral convolution model, which is an approxima-
tion of the original graph spectral convolution defined in 

(13)� ∗G �
�
= ��

�
�T�

(14)�l
u
= �(�l[�l−1

u
||�l

Nu
])

(15)�l
Nu

= AGG({�l−1
v

, v ∈ Nu}),
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Formula 13. Given a graph G and a one-channel input 
signal � ∈ ℝ

|V| , GCN can output a d-channel signal �|V|×d 
as follows:

where � is a 1 × d trainable parameter vector of the filter, 
�̃ = � + � and �̃ is a diagonal matrix with �̃[i, i] =

∑
j �̃[i, j] . 

The u-th row of � is the embedding of the node u, �u . To 
allow a d′-channel input signal � |V|×d� and output a d-channel 
signal �|V|×d , the filter needs to take a parameter matrix 
�d�×d . Formula 16 becomes

Let �i denotes the i-th channel (i.e., column) of � . �u can then 
be written in the following way.

where � is a d′-dimensional column vector.
When multi-layer models are considered, Formulas 17 

and 18 are written as Formulas 19 and 20, respectively, where 
l denotes the l-th layer.

(16)� = � ∗G �� = (�̃−1∕2�̃�̃−1∕2)��,

(17)� = � ∗G �� = (�̃−1∕2�̃�̃−1∕2)��.

(18)
�u =�

T�,

�[i] =
�

v∈Nu∪{u}

1√�Nu�
√�Nv�

�i[v], 1 ≤ i ≤ d�,

(19)�l =(�̃−1∕2�̃�̃−1∕2)�l−1�l

(20)

�lu =�
lT�l

�l[i] =
�

v∈Nu∪{u}

1√�Nu�
√�Nv�

�l−1[v, i]

=
�

v∈Nu∪{u}

1√�Nu�
√�Nv�

�l−1
v

[i]

From Formula 20, we can observe that GCN aggregates 
weighted information from a node’s neighbors. In particu-
lar, for a node u and a neighbor v of u, the information from 
v is weighted by their degrees, i.e., 1∕

√�Nu��Nv� . Graph 
attention network (GAT) [66] argues that the fixed weight 
approach of GCN may not always be optimal. Therefore, 
GAT introduces the attention mechanism to graph convolu-
tion. A learnable weight function �(⋅, ⋅) is proposed, where 
�(u, v) denotes the attention weight of u over its neighbor 
v. Specifically, the convolution layer of GAT is as follows.

where || denotes concatenation, �l and �l are the trainable 
vector and matrix of parameters, respectively.

The attention mechanism enhances models’ capacity, and 
hence, GAT can perform better than GCN in some down-
stream tasks (e.g., node classification). However, when L 
layers are stacked, the L-hop neighbors of a node are needed 
to be computed. If the graph G is dense or a power-law 
graph, there may exist some nodes that can access almost 
all nodes in G, even for a small value of L. The time cost 
can be unaffordable.

To optimize efficiency, Hamilton et al. [25] propose a sam-
pling-based method (GraphSAGE). GraphSAGE randomly 
samples k neighbors in each layer. Therefore, a model having 
L layers only needs to expand O(kL) neighbors. Huang et al. 
[30] further improve the sampling process with an adaptive 
sampling method. The adaptive sampling in [30] samples 

(21)�l
u
=�

( ∑
v∈N(u)

�
l(u, v)�l�l−1

v

)

(22)

�
l(u, v) =

exp(LeakyReLU(�l
T
[�l�l−1

u
���l�l−1

v
]))

∑
v�∈N(u) exp(LeakyReLU(�l

T
[�l�l−1

u
���l�l−1

v�
]))

,

Fig. 3  Adaptive sampling of ASGCN [30]: a the node-wise sampling 
and b the layer-wise sampling. In the node-wise sampling, each node 
in a layer samples its neighbors in the next layer independently. In 
particular, a node v in the l + 1-th layer samples its neighbors in the 

l-th layer by p(uj|v) . In contrast, all nodes in a layer jointly sample the 
neighbors in the next layer. uj is sampled based on p(uj|v1, v2,… , v

4

) . 
The layer-wise sampling is more efficient than the node-wise sam-
pling
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the neighbors based on the embedding of u, as illustrated 
in Fig. 3a. The efficiency is further improved by layer-wise 
sampling, as shown in Fig. 3b. These sampling techniques are 
experimentally verified effective regarding the classification 
accuracy.

Yang et al. [74] combine the ideas of attention and sam-
pling and propose the shortest path attention method (SPA-
GAN). The shortest path attention of SPAGAN has two levels, 
as shown in Fig. 4. The first level is length-specific, which 
embeds the shortest paths of the same length c to a vector �c

u
 . 

The second level aggregates �c
u
 of different values of c to get 

the embedding �u of u.
More specifically, let Pc

u
 be the set of shortest paths starting 

from u of the length c and pu,v be a shortest path from node u 
to node v. �c

u
 is computed as follows.

where �u,v is the attention weight and �(pu,v) is a mean pool-
ing that computes the average of the embeddings of the 
nodes in pu,v.

where �1 and � are trainable parameters shared by all nodes, 
and || is concatenation. The second level aggregates the paths 
with different lengths as follows.

where C is a hyperparameter of the path length limit and �c 
is the attention weight.

where �2 is a trainable parameter vector.

�c
u
=

∑
pu,v∈P

c
u

�u,v�(pu,v),

�u,v =
exp(�(�1[(��u)���(pu,v)])∑

pu,v� ∈P
c
u
exp(�(�1[(��u)���(pu,v� )])

,

�u = �

(
C∑
c=2

�c�
c
u

)
,

�c =
exp(�(�2[(��u)���cu]))∑C

c�=2
exp(�(�2[(��u)���c�u ]))

,

3.2.3  AutoEncoder‑Based Graph Representation Learning

For the AutoEncoder used in the end-to-end learning, the 
embeddsings of the graph are computed by the encoder. The 
decoder outputs the probabilities of nodes/edges belonging 
to the solutions of the CO problems. In recent works, the 
encoder mainly uses RNN and attention-based model, and 
the decoder mainly uses MLP, RNN and attention-based 
model. The encoder corresponds to the first stage of the 
ML-based CO methods and the decoder corresponds to the 
second stage (see Fig. 1). In this subsection, we mainly focus 
on the encoder. The details of the decoders will be discussed 
in Section 4.

The pointer network (Ptr-Net) proposed by Vinyals et al. 
[67] is a seminal work of using AutoEncoder to solve the 
TSP problem. The encoder of Ptr-Net is an RNN taking the 
nodes of the graph G as input and outputting an embed-
ding of G, where the order of the nodes is randomly chosen. 
Experiments of Ptr-Net observe that the order of input nodes 
has affects on the quality of the TSP tour found. Therefore, 
the decoder of Ptr-Net introduces an attention mechanism 
that can assign weights to the input nodes and ignore the 
order of them.

Kool et al. [37] use AutoEncoder to sequentially output a 
TSP tour of a graph G. The encoder stacks L self-attention 
layers. Each layer is defined as follows.

where �i denotes the embedding vector of the node vi , l 
means the l-th layer, MHA denotes the multi-head attention 
and BN denotes the batch normalization. The embedding of 
G �G =

1

n

∑n

i
�L
vi
 and the embedding of each node �L

vi
 are 

input to the decoder.

3.2.4  Discussions

Most graph neural network-based methods adopt the 
message propagation framework. Each node iteratively 

�̂vi =BN
l(�l−1

vi
+MHAl

i
(�l−1

v1
,… , �l−1

vn
))

�l
vi
=BNl(�̂vi +MLPl(�̂vi )),

Fig. 4  The two-level convolution of SPAGAN [74]
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aggregates the message from neighbors. The structure 
information of k-hops of a node can be captured by k itera-
tions of message aggregation. GNN does not require any 
node order and can support permutation invariance of CO 
problems. AutoEncoder-based methods are often used in 
solving the CO problems having sequential characteristics, 
e.g., TSP. Sequence model is often used as the encoder to 
compute the embeddings of the graphs. Attention mecha-
nism is used to support permutation invariance.

End-to-end learning methods learn the embeddings of 
graph as an intermediate step in solving the CO problem. 
The embeddings of the graph learned are more specific for 
the CO problem being solved and are expected to lead to 
better solutions of the CO problem.

A disadvantage of the GNN-based method is that the 
GNN is often shallow, due to the over-smooth problem. 
The attention-based encoder can alleviate this problem, 
where the encoder with self-attention layers and skip con-
nections can be potentially deeper. However, the time 
complexity of such encoder on large graphs will be a 
bottleneck.

For the GNN-based method, the current trend is to use 
anisotropy GNN (e.g. GAT [66]), which can differentiate 
the information propagated from different neighbors. For 
AutoEncoder-based method, more recent studies are inte-
grating the attention mechanism with the sequence model 
to increase the capacity of the model and encode inductive 
biases.

4  Graph Learning‑Based Combinatorial 
Optimization Methods

In this section, we review the works that solve CO prob-
lems using graph learning. We review the whole learning 
procedure in solving a CO problem. For the two stages of 
the learning procedure, we pay more attention to the second 
stage, as the first stage has been thoroughly reviewed in the 
previous section. We will brief the first stage of the ML-
based CO methods for the convenience of presentation.

Recent works can be classified into two categories. The 
first category is the non-autoregressive method which pre-
dicts the solution of a CO problem in one shot. The non-
autoregressive method predicts a matrix that denotes the 
probability of each node/edge being a part of a solution. 
The solution of the CO problem can be found by search 
heuristics such as beam search. The second category is the 
autoregressive method, which constructs a solution by itera-
tively extending a partial solution to obtain a solution of the 
CO problem. Table 2 lists the selected graph learning-based 
CO methods.

Section 4.1 summarizes the recent non-autoregressive 
methods for traver travelling salesman problem (TSP), graph 
partition, graph similarity, minimum vertex cover (MVC), 
graph coloring, maximum independent set, graph match-
ing and graph isomorphism. Section 4.2 presents the recent 
autoregressive methods for TSP, graph matching, graph 
alignment, MVC and maximum common subgraph.

Table 2  Summary of selected 
CO methods using graph 
embedding

Method CO problem Model

ConvNet [34] TSP GNN, non-autoregressive
DTSPGNN [57] TSP GNN, non-autoregressive
CPNGNN [59] MDS, MM, MVC GNN, non-autoregressive
GAP [49] Graph partition GNN, non-autoregressive
GMN [41] GED GNN, non-autoregressive
SimGNN [2] GED GNN, non-autoregressive
GRAPHSIM [3] GED GNN, non-autoregressive
GNNGC [40] GColor GNN, non-autogressive
SiameseGNN [51] Graph matching, TSP GNN, non-autogressive
PCAGM [69] Graph matching GNN, non-autogressive
IsoNN [44] Graph Iso. AutoEncoder, non-autogressive
GNNTS [42] MIS, MVC, MC GNN, non-autoregressive
Ptr-Net [67] TSP AutoEncoder, autoregressive
LSTMGMatching [46] Graph matching AutoEncoder, autogressive
S2V-DQN [14] MVC, MaxCut, TSP GNN, autoregressive
CombOptZero [1] MVC, MaxCut, MC GNN, autoregressive
RLMCS [4] MCS GNN, autoregressive
CENALP [19] Graph alignment SkipGram, autoregressive
TSPImprove [71] TSP AutoEncoder, autoregressive
AM [37] TSP AutoEncoder, autoregressive
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4.1  Non‑autoregressive CO Methods

Most works in this category use classification techniques to pre-
dict the class label of the nodes in the input graph. For a graph 
G, the prediction result is a |V| × K matrix � , where K is the 
number of classes. The u-th row �u of � is the prediction result 
for the node u, where �u[i] is the probability that u is of the i-th 
class, for 1 ≤ i ≤ K . For example, for the minimum vertex cover 
(MVC) problem, the classification is binary (i.e., K = 2 ), and 
{u|�u[1] > �u[0]} is the predicted solution. For the graph parti-
tion problem, K is the number of parts, and a node u is classified 
to the part with the largest predicted probability. There are some 
works that predict a score for the input graphs. For example, for 
the graph similarity problem, the similarity score between two 
graphs is predicted.

A. Travelling Salesman Problem
Joshi et al. [34] propose a GNN-based model (ConvNet) 

to solve the TSP problem on Euclidean graph. The graph 
convolution layer of ConvNet is as follows.

where BN stands for batch normalization, ⊙ denotes ele-
ment-wise product, � is attention weight, � is a small value, 
�1 , �2 and �3 are trainable parameters.

The embeddings of the edges outputted by the l-th layer 
of ConvNet are fed into a multilayer perceptron (MLP) to 
predict pij the probability of the edge eij belongs to the solu-
tion of TSP. The cross entropy with the ground-truth TSP 
tour is used as the loss. The experiments of ConvNet show 
that ConvNet outperforms recent autoregressive methods but 
falls short of standard Operations Research solvers.

Prates et al. [57] use GNN to solve the decision version 
of TSP, which is to decide if a given graph admits a Hamil-
tonian route with a cost no greater than a given threshold C. 
Since the weights of edges are closely related to the cost of a 
route, Prates et al. compute edge embedding in the graph con-
volution. Specifically, given a graph G = (V ,E) , an auxiliary 
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=�l
i
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�
�l

1
�l
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+
�
j∈Ni

�l
ij
⊙�l

2
�l
j

��

�l
ij
=

𝜎(�l
ij
)

∑
j�∈Ni

𝜎(�l
ij�
) + 𝜖

�l
ij
=�l

ij
+ ReLU(BN(�l

3
�l
ij
+�l

4
�l
i
+�l

5
�l
j
)),

bipartite graph G� = (V ∪ V �,E�) is constructed, where for 
each edge (u, v) in G, G′ has a node nu,v in V ′ and edges (nu,v, u) 
and (nu,v, v) are added to E′ . The embeddings of the nodes and 
edges of G can be computed by a GNN on the auxiliary graph 
G′ . Finally, the embeddings of the edges of G are fed into an 
MLP to make a binary classification. If the class label of G is 
predicted to be 1, G has a Hamiltonian route with a cost no 
greater than C; otherwise, G has no such route.

B. Graph Partition
Nazi et al. [49] propose GAP as a method for computing 

a balanced partition of a graph. GAP is composed of a graph 
embedding module, which uses a GNN model to determine 
the embedding of the input graph, and a graph partition mod-
ule, which uses an MLP to predict the partition of nodes. The 
architecture of GAP is illustrated in Fig. 5. The normalized 
cut size and the balancedness of the partition are used as the 
loss. GAP trained on a small graph can be generalized at the 
inference time on unseen graphs of larger size.

Specifically, suppose G = (V ,E,�) is to be partitioned to K 
disjoint parts and V1,V2,… ,VK denote the sets of nodes of the 
parts, respectively. A GNN first computes the embeddings of the 
nodes in G. Then, the MLP uses the node embeddings to predict 
the partition probability �|V|×K for the nodes, where �[u, i] is the 
probability that node u is partitioned to Vi . Finally, each node can 
be partitioned to the partition of the largest probability.

The loss of GAP has two components. The first component is 
to minimize the normalized cut size of the partition:

where V̄i denotes the nodes not in Vi , cut(Vi, V̄i) denotes the 
number of edges crossing Vi and V̄i , and vol(Vi) denotes the 
total degree of the nodes in Vi . The second component is to 
minimize the distance from the balanced partition:

where |V|
K

 is the part size of the balanced partition. The objec-
tive function of GAP is as follows.

K∑
i=1

cut(Vi, V̄i)

vol(Vi)
,

K∑
i=1

∑
u∈G

(
�[u, i] −

|V|
K

)2

,

Fig. 5  Overview of GAP [49]
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C. Graph Similarity
Bai et al. [2] propose SimGNN as a method for predicting 

the similarity between two graphs. SimGNN combines two 
strategies for predicting the similarity between two graphs 
G1 and G2 . The first strategy compares G1 and G2 by compar-
ing their global summaries �G1

 and �G2
 . The second strategy 

uses the pair-wise node comparison to provide a fine-grained 
information as a supplement to the global summaries �G1

 and 
�G2

 . The architecture of SimGNN is shown in Fig. 6.
As shown in Fig. 6, SimGNN first computes the node 

embeddings of the two input graphs G1 and G2 using GCN. 
For the first strategy, SimGNN computes �G1

 and �G2
 from 

the node embeddings by means of an attention mechanism 
that can adaptively emphasize the important nodes with 
respect to a specifc similarity metric. Then, �G1

 and �G2
 are 

input to a neural tensor network (NTN) to compute a similar-
ity score vector for G1 and G2.

The attention mechanism to compute �G is defined as 
follows. For a graph G, SimGNN introduces a context vec-
tor � = tanh(�

∑
u∈G �u) to encode the global information 

of G. � is adaptive to the given similarity metric via � . 
Intuitively, nodes that are close to the global context should 
receive more attention. Therefore, the attention weight �u of 
a node u is defined based on the inner product of � and �u . 
�u = �(�T�u) , where � is the sigmoid function. The embed-
ding of G, �G , is computed as �G =

∑
u∈G �u�u.

For the second strategy, SimGNN constructs a pair-
wise node similarity matrix M by computing the inner 
product of �u and �v for each u ∈ G1, v ∈ G2 . SimGNN 

min

K∑
i=1

cut(Vi, V̄i)

vol(Vi)
+

K∑
i=1

∑
u∈G

(
�[u, i] −

|V|
K

)2 uses a histogram of M to summarize the pair-wise node 
similarity.

Finally, the similarity score vector outputted by NTN 
and the histogram are input to a fully connected neural 
network to predict the similarity between G1 and G2 . The 
mean squared error between the predicted similarity with 
the ground truth is used as the loss of SimGNN. In the 
follow-up work GRAPHSIM [3], a CNN-based method is 
used to replace the histogram of SimGNN.

Li et  al. [41] propose the graph matching network 
(GMN) to solve the graph similarity problem. Instead 
of embedding each graph independently, GMN embeds 
two graphs G1 and G2 jointly by examining the matching 
between them. The matching used in GMN is soft match-
ing, which means that a node of G1 can match to all nodes 
of G2 yet with different strengths. The embedding of G1 can 
change based on the other graph it is compared against. At 
inference time, GMN can predict if the distance between 
two graphs is smaller than a given threshold �.

G i ve n  t wo  g r a p h s  G1 = (V(G1),E(G1))  a n d 
G2 = (V(G2),E(G2)) , the l-th convolution layer of GMN 
is defined as below.

Fig. 6  Overview of SimGNN [2]. The blue solid line illustrates the first strategy of comparing G
1

 and G
2

 using their global summaries �G
1

 and 
�G

2

 . The orange dashed line indicates the second strategy of the find-grained pair-wise node comparison
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where � denotes the message aggregation of a node from 
its neighbors in the same graph, � is the cross-graph match-
ing vector that measures the difference between a node in a 
graph and all the nodes in the other graph, and fmatch can be 
defined by the following attention-based method.

where dist is the Euclidean distance.
Suppose GMN stacks L layers. The embedding of a 

graph G is computed as below.

where �L
i
 is the embedding of node i outputted by the last 

convolution layer.
The objective function of GMN is to min-

i m i z e  t h e  m a r g i n - b a s e d  p a i r - w i s e  l o s s 
L = max{0, � − t × (1 − dist(G1,G2))} , where 𝛾 > 0 is the 
given margin threshold, dist(G1,G2) = ||�G1

− �G2
||2 is 

the Euclidean distance, and t is the ground truth of the 

(23)

�j→i = MLP(�l
i
, �l

j
),∀(i, j) ∈ E(G1)

�j�→i� = MLP(�l
i�
, �l

j�
),∀(i�, j�) ∈ E(G2)

�j�→i = fmatch(�
l
i
, �l

j�
),∀i ∈ V(G1), j

� ∈ V(G2)

�i→j� = fmatch(�
l
i
, �l

j�
),∀i ∈ V(G1), j

� ∈ V(G2)

�l+1
i

= MLP

(
�l
i
,
∑
j∈G1

�j→i,
∑
j�∈G2

�j�→i

)

�l+1
j�

= MLP

(
�l
j�
,
∑
i�∈G2

�i�→j� ,
∑
i∈G1

�i→j�

)
,

�j�→i = �j�→i(�
l
i
− �l

j�
),∀i ∈ V(G1), j

� ∈ V(G2)

�j�→i =
exp(dist(�l

i
, �l

j�
))

∑
v�∈G2

exp(dist(�l
i
, �l

v�
))

�i→j� = �i→j� (�
l
i
− �l

j�
),∀i ∈ V(G1), j

� ∈ V(G2)

�i→j� =
exp(dist(�l

i
, �l

j�
))

∑
v∈G1

exp(dist(�l
v
, �l

j�
))
,

(24)�G = MLP({�L
i
)i∈G}),

similarity relationship between G1 and G2 , i.e., if G1 and 
G2 are similar, t = 1 ; otherwise, t = −1.

D. Minimum Vertex Cover
Sato et al. [59], from a theoretical perspective, study the 

power of GNNs in learning approximation algorithms for 
the minimum vertex cover (MVC) problem. They prove that 
no existing GNN can compute a (2 − �)-approximation for 
MVC, where 𝜖 > 0 is any real number and Δ is the maximum 
node degree. Moreover, Sato et al. propose a more power-
ful consistent port numbering GNN (CPNGNN), which can 
return a 2-approximation for MVC. The authors theoretically 
prove that there exist a set of parameters of CPNGNN that 
can be used to find an optimal solution for MVC. However, 
the authors do not propose a method for finding this set of 
parameters.

CPNGNN is designed based on graph port number-
ing. Given a graph G, the ports of a node u are pairs (u, i), 
1 ≤ i ≤ |Nu| , where i is the port number. A port numbering 
is a function p such that for any edge (u1, u2) ∈ G , there 
exists a port (u1, i) of u1 and a port (u2, j) of u2 satisfying 
p(u1, i) = (u2, j) . Intuitively, u1 can send messages from the 
ith port of u1 to the jth port of u2 . If p(u1, i) = (u2, j) , u1 is 
denoted by ptail(u2, j) and i is denoted by pn(u2, j) . An exam-
ple of port numbering is shown in Fig. 7.

CPNGNN stacks L convolution layers, and the l-th layer 
is defined as follows.

where �l is the trainable parameter matrix and || is 
concatenation.

Let �L
u
 denotes the embedding of u outputted by the last 

layer of CPNGNN. An MLP takes �L
u
 as input and outputs 

the prediction �u for u, where �u[1] and �u[0] are the prob-
abilities that u is in an MVC or not, respectively. Then, the 
nodes {u|�u[1] > �u[0]} are outputted as an MVC of G. The 
approximation ratio of CPNGNN is 2 for MVC. CPNGNN 
can also solve the minimum dominating set (MDS) problem 

(25)
�l
u
=ReLU(�l[�l−1

u
||�l−1

u,1
||�l−1

u,2
||...||�l−1

u,|Nu|])

�l−1
u,i

=�l−1
ptail(u,i)

||pn(u, i),

Fig. 7  An example of port 
numbering
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and the maximum matching (MM) problem with the approx-
imation ratio Δ+1

2
.

E. Graph Coloring
Lemos et al. [40] propose a graph recurrent neural net-

work to predict if a graph is k-colorable. Each node v has an 
embedding vector �v and each color c also has an embedding 
vector �c . Let � denotes the adjacent matrix of the graph 
G and � denotes the color assignment matrix, where each 
row of � is a node of G and each column of � is a color. 
�[v, c] = 1 means the node v is assigned the color c. The 
embeddings of the l + 1-th iteration �l+1

v
 and �l+1

c
 are com-

puted as follows.

The embeddings of nodes are fed into an MLP to predict 
the probability if G is k-colorable and the loss is the binary 
cross entropy between the prediction and the ground-truth. 
Experiments of [40] show that the proposed techniques out-
perform the existing heuristic algorithm Tabucol and the 
greedy algorithm.

F. Graph Matching
Nowak et al. [51] study the GNN-based model for the 

quadratic assignment problem, that can be used to address 
the graph matching problem. A siamese GNN is constructed 
to compute the embeddings of two graphs. Let � be the 
product of the embeddings of the nodes of the two graphs. A 
stochastic matrix is computed from � by taking the softmax 
along each row (or column). The cross entropy between the 

�v
l+1, �nhid

l+1 =RNN1(�nhid
l,� × �l

v
,� ×MLP1(�

l
c
))

�c
l+1, �chid

l+1 =RNN2(�
l
chid

,� ×MLP2(�
l
v
))

stochastic matrix and the ground-truth node mapping is the 
loss. The proposed model can also be used to solve the TSP 
problem, as TSP can be formulated as a quadratic assign-
ment problem.

Wang et al. [69] propose a GNN-based model to predict 
the matching of two graphs. Given two graphs G1 and G2 , it 
first uses GNN to compute the embeddings of the nodes of 
the two graphs. Then, the embeddings are fed to a Sinkhorn 
layer to obtain a doubly-stochastic matrix. The cross entropy 
with the ground-truth node mapping is used as the loss. 
The idea of the Sinkhorn layer is that given a non-negative 
matrix, iteratively normalize each row and each column of 
the matrix until the sum of each row and the sum of each 
column equal to 1, respectively. Experiments of [69] show 
that the proposed model outperforms the existing learning-
based graph matching methods.

G. Graph Isomorphism
Meng and Zhang [44] propose an isomorphic neural net-

work (IsoNN) for learning graph embedding. The encoder 
has three layers: a convolution layer, a min-pooling layer, 
and a softmax layer. The encoder is shown in Fig. 8. The 
decoder is an MLP to predict the binary class of G, and 
the loss is the cross entropy between the prediction and the 
ground truth.

Specifically, the encoder of IsoNN is designed as follows. 
Given a set of motifs, the convolution layer of the encoder 
extracts a set of isomorphism features from G for each motif. 
Suppose �i is the adjacent matrix of the i-th motif that has 
k nodes. The L2-norm between �i and a k by k submatrix 
�x,y,k of the adjacent matrix � of G is an isomorphism feature 
extracted by �i with respect to �x,y,k , where x and y denote 

Fig. 8  Overview of IsoNN [44]
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the top-left corner of the submatrix in � . IsoNN examines k! 
permutations of �i and extracts k! isomorphism features for 
�x,y,k . The smallest one is regarded as the optimal isomor-
phism feature extracted by �i for �x,y,k , which is computed 
by the min-pooling layer. Since the optimal isomorphism fea-
tures for �x,y,k extracted by different motifs can have different 
scales, the softmax layer is used to normalize them. Finally, the 
normalized isomorphism features extracted by all motifs for 
all values of x and y are concatenated as the embedding of G.

H. Maximum Independent Set
Li et al. [42] propose a GNNTS model that combines GNN 

and heuristic search to compute the maximum independent 
set (MIS) of a graph. GNNTS trains a GCN f using a set of 
training graphs, where the MISs of a graph can be used as the 
ground truth labels of the graph. For a graph G = (V ,E) , the 
prediction result of f is a |V| × 2 matrix � , where �[⋅, 1] and 
�[⋅, 0] are the probabilities of the nodes being in or not in an 
MIS of G, respectively.

The basic idea of GNNTS is to use f as the heuristic func-
tion within a greedy search procedure. Specifically, in each 
iteration, the nodes of G are sorted by �[⋅, 1] . The greedy algo-
rithm picks the node u with the largest value in �[⋅, 1] , marks 
u as 1, and adds u to a partial solution U. All neighbors of u 
are marked as 0. u and its neighbors are removed from G, and 
the remaining graph is input to f for the next iteration. Once all 
nodes in G are marked, U is returned as the MIS of G.

The basic method described above has the disadvantage 
that it cannot support the case in which G has multiple solu-
tions. For the example shown in Fig. 9, the square graph of 
four nodes has two MISs and the basic method predicts that 
each node has a probability 0.5 of belonging to an MIS, which 
is not useful.

To address this disadvantage, the GNN f is 
extended to output multiple prediction results, i.e., 
f (G) = {f 1(G), f 2(G),… , f m(G)} , where f i(G) is a |V| × 2 
matrix �i , 1 ≤ i ≤ m , and m is a hyperparameter. Then, the 
GNN f is used in a tree search procedure. Specifically, GNNTS 
maintains a tree of partial solutions, where each leaf is a par-
tital solution to be extended. At each step, GNNTS randomly 
picks a leaf nleaf  from the search tree and uses f to output m 
prediction results �1,�2,… ,�m . Then, for each �i , GNNTS 
uses the basic method to compute an extension of nleaf  . The 
m newly obtained partial solutions are inserted to the search 
tree as the children of nleaf  . If a leaf of the search tree cannot 
be extended anymore, the leaf is a maximal independent set. 

The largest computed maximal independent set is outputted. 
GNNTS can also solve the minimum vertex cover (MVC) and 
maximal clique (MC) problems by reducing to MIS.

4.1.1  Discussions

Non-autoregressive methods output a solution in one shot. 
The advantage is that the inference of non-autoregressive 
methods is faster than autoregressive methods [33]. How-
ever, the probability of a node/edge being a part of a solu-
tion does not depend on that of other nodes/edges. There 
is an opportunity that non-autoregressive methods are not 
able to outperform autoregressive methods for solving the 
CO problems having sequential characteristics, such as TSP. 
Therefore, there are many recent works studying autoregres-
sive methods.

4.2  Autoregressive CO Methods

Autoregressive methods iteratively extend a partial solution. 
In each iteration, a node/edge is added to the partial solution. 
Most existing works use sequence model-based methods or 
reinforcement learning-based methods to iteratively extend 
the partial solution.

A. Sequence Model-Based Methods
The pointer network (Ptr-Net) proposed by Vinyals et al. 

[67] is a seminal work in this category. It uses an RNN-
based AutoEncoder to solve the travelling salesman problem 
(TSP) on a Euclidian graph. The encoder of Ptr-Net is an 
RNN taking the nodes of the graph G as input and output-
ting an embedding of G, where the order of the nodes is 
randomly chosen. The decoder of Ptr-Net is also an RNN. In 
each time step, the decoder computes an attention over the 
input nodes, and selects the input node that has the largest 
attention weight as output.

Specifically, given a graph G, suppose the nodes of G are 
sequentially input as v1, v2,… , v|V| to the encoder, and the 
decoder sequentially outputs vj1 , vj2 ,… , vj|V| .  Let 
�1, �2,… , �|V| and �1, �2,… , �|V| denote the sequences of the 
hidden states of the encoder and the decoder, respectively. 
For the k-th time step of the decoder, the decoder selects one 
node in v1, v2,… , v|V| as vjk by an attention weight vector �k 
over �1, �2,… , �|V| . �k is defined as:

where � , �1 , and �2 are trainable parameters. Then, the 
decoder outputs vjk = vi , where i = argmax �k.

For example, Fig. 10a shows a Euclidean graph G with 
four nodes and a solution v1, v3, v2, v4 . Fig. 10b shows the 
procedure of Ptr-Net for computing the solution. The hollow 

�k[j] = �T [tanh(�1�j +�2�k)], 1 ≤ j ≤ |V|

Fig. 9  Illustration of the two 
MISs of the square graph [42]
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arrow marks the node that has the largest attention weight at 
each time step of the decoder.

Milan et al. [46] propose a LSTM-based method to solve 
the graph matching problem. Given two graphs G1 and G2 of 
n nodes, from the features of nodes and edges of G1 and G2 , 
a n2 by n2 similarity matrix � can be computed, where �ij,lk 
is the similarity of the edge (vi, vj) ∈ G1 and (vj, vk) ∈ G2 , 
and �ii,ll is the similarity of the node vi of G1 and vl in G2 . 
� is input to the LSTM as the input feature. At each step, 
the LSTM will predict a node pair of matching. The cross 
entropy with the ground-truth matching is used as the loss. 
However, � is of O(n4) size, which is too large for matching 
large graphs.

Du et al. [19] observe that link prediction and graph 
alignment are inherently related and the joint learning of 
them can benefit each other. Given two graphs G1 and G2 , 
crossing edges between all nodes of G1 and G2 are added. 
The network alignment model predicts the probability of 
accepting a crossing edge, i.e., the end nodes of the cross-
ing edge are aligned. The link prediction model predicts 
the probability of inserting an edge (u, v) to G1 based on 
if (u�, v�) is in G2 , where u and v are aligned to u′ and v′ , 
respectively. Both the network alignment model and the 
link prediction model need the embeddings of the nodes 
of G1 and G2 , which are computed by the generalized Skip-
Gram model using the random walks crossing the two 
graphs. Suppose the random walk is on G1 , it will switch to 
G2 at the next step with probability p. If the random walk 
switches, the probability of walking from a node v in G1 
to a node u in G2 is p�(v, u) . If the crossing edge between v 
and u is an accepted crossing edge, p�(v, u) = 1 ; otherwise, 
p�(v, u) =

w(v,u)

Z
 , where w(v, u) is the structure similarity 

between v and u and Z =
∑

u�∈G2
w(v, u�) . w(v, u) is meas-

ured by the degree distributions of the neighbors of v and 
u in G1 and G2 , respectively. In each iteration, the pair of 

nodes of the two graphs having the largest predicted prob-
ability by the graph alignment model is aligned and the 
edges of G1 and G2 whose probabilities predicted by the 
link prediction model exceed the threshold are added to G1 
and G2 , respectively. Node embeddeings are recomputed in 
each iteration, as the alignment between G1 and G2 and the 
edges in G1 and G2 are updated. Experiments of [19] show 
that link prediction and graph alignment can benefit each 
other and the proposed techniques are suitable for aligning 
graphs whose distribution of the degree of aligned nodes 
is close to linear or the graphs having no node attribute 
information.

B. Reinforcement Learning-Based Searching
When iteratively extending a partial solution, each itera-

tion selects the node in order to optimize the final solution. 
Such a sequential decision process can be modeled as a 
Markov decision process (MDP) and solved by reinforce-
ment learning (RL). Therefore, we first presents a brief 
review of RL.

B.1 Review of Reinforcement Learning
In RL, an agent acts in an environment, collecting rewards 

and updating its policy to select future actions. It can be 
formulated as an MDP (S,A, T ,R, �) , where

– S is the set of states, and some states in S are end states;
– A is the set of actions;
– T ∶ S × A × S → [0, 1] is the transition function, T(s, a, s�) 

is the transition probability to state s′ after taking action 
a in state s;

– R ∶ S × A → ℝ is the reward of taking action a in state s; 
and

– � is a discount factor.

Fig. 10  An example of using 
Ptr-Net [67]. a shows a Euclid-
ean graph G on a 2D plane, and 
the solution is marked by the 
edges. b shows the encoder and 
the decoder of Ptr-Net for find-
ing the solution on G 
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The agent uses a policy � ∶ S → A to select an action for a 
state. RL is to learn an optimal policy �∗ that can return the 
optimal action for each state in terms of the overall reward. 
RL relies on the state-value function and the action-value 
function to optimize the policy. The state-value function 
V�(s) denotes the overall reward starting from the state s 
following the policy � . The action-value function Q�(s, a) 
denotes the overall reward starting from the state s and the 
action a following the policy � . Formally,

where �
�
 denotes the expected value given that the agent 

follows the policy � , t is the time step and T is the time step 
of reaching an ending state. The state-value function and the 
action-value function of the optimal policy �∗ are denoted 
by V∗ and Q∗ , respectively.

RL can learn �∗ by iteratively optimizing the value 
functions, which is called as the value-based method. 
The value-based methods compute Q∗ and output the 
optimal policy �∗(s) = maxa Q

∗(s, a) . Q-learning is a 
well-known value-based RL method. Suppose Q is the 
current action-value function. At each state st , Q-learn-
ing selects the action at by the �-greedy policy, which is 
selecting maxa Q(s, a) with a probability 1 − � and select-
ing a random action with a probability � , and updates Q 
as Formula 26.

where �t is the learning rate at the time step t. Q-learning 
converges to Q∗ with probability 1, if each state-action pair 
is performed infinitely often and �t satisfies 

∑∞

n=1
�t = ∞ 

and 
∑∞

n=1
𝛼
2
t
< ∞.

Q-learning needs a table, namely Q-table, to store the 
action values. The size of the Q-table is |S| × |A| , which can 
be too large to support the applications having a large num-
ber of states and actions. Therefore, many methods have 
been proposed to approximate the Q-table by parameterized 
functions. For example, deep Q-learning network (DQN) 
uses a deep neural network as the function approximation 
of the Q-table [47].

The value-based methods first optimize the value func-
tions and then improve the policy based on the optimized 
value functions. There are also many methods that directly 
optimize the policy based on policy gradient. We refer the 
reader to [61] for more details of RL.

V�(s) =�
�

[
T∑
t=0

�
tR(st, at)|s0 = s

]
,

Q�(s, a) =�
�

[
T∑
t=0

�
kR(st, at)|s0 = s, a0 = a

]
,

(26)
Q(st, at) =Q(st, at) + �t[R(st, at) + � max

a
Q(st+1, a)

− Q(st, at)],

B.2 Reinforcement Learning-Based CO Methods
Since iteratively extending a partial solution of a CO 

problem is inherently a sequential decision process, several 
works use reinforcement learning (RL) to extend the partial 
solution. The partial solution and the input graph together 
determine the state of RL, whereas the node that can be 
added to the partial solution is the action. RL can learn an 
optimal policy to find the optimal node for a partial solution.

Dai et al. propose S2V-DQN [14] that combines GNN and 
deep Q-learning to tackle the MVC problem. Given a graph 
G, let U denotes the current partial solution and Ū = V�U . 
The RL task for MVC can be formulated as follows.

– A state s is determined by G and U, s = fstate(G,U) . If U 
is a vertex cover of G, the state is an end state;

– An action av is adding a node v ∈ Ū to U;
– The transition T(fstate(G,U), av) = fstate(G,U ∪ {v}) ; and
– The reward of an action R(s, av) = −1 so as to minimize 

the vertex cover.

The representation of state s can be computed by embedding 
G and U using a GNN as follows.

where L is the total number of layers of the GNN, xu = 1 if 
u ∈ U and otherwise, xu = 0 , wu,v is the weight of the edge 
(u, v), and �1,�2 , �3 and �4 are trainable parameters.

We can use the embedding of v, �v to represent the action 
av . The representations of the state s and the action av are fed 
into an MLP to compute Q(s, av) as below.

where �5,�6 , and �7 are trainable parameters.
Deep Q-learning is used to optimize the parameters. After 

the MLP and the GNN are trained, they can be generalized 
to compute MVC for unseen graphs. S2V-DQN can also 
solve the MaxCut and TSP problems.

Bai et al. [4] propose to compute the maximum common 
subgraph (MCS) of two graphs using GNN and Q-learning. 
Given two graphs G1 and G2 , the partial solution is a sub-
graph g1 of G1 and a subgraph g2 of G2 satisfying g1 and 
g2 are isomorphic. The RL task for MCS is formulated as 
follows.

(27)

fstate(G,U) =
∑
v

�L
v

�l
u
= ReLU

(
�1xu + �2

∑
v∈Nu

�l−1
v

+ �3

∑
v∈Nu

ReLU(�4wu,v)

)
,

(28)Q(s, av) = �5ReLU

(
Concat

(
�6

∑
u∈V

�L
u
,�7�

L
v

))
,
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– A state s is determined by G1 , G2 , g1 and g2 , 
s = fstate(G1,G2, g1, g2) . If g1 and g2 cannot be extended, 
the state is an end state;

– An action au,v is to select a node u from G1∖g1 and a node 
v from G2∖g2 and add them to g1 and g2 , respectively;

– T h e  t r a n s a c t i o n 
T(fstate(G1,G2, g1, g2), au,v) = fstate(G1,G2, g1 ∪ {u}, g2 ∪ {v}) . 
The isomorphism between g1 ∪ {u} and g2 ∪ {v} needs 
to be assured; and

– The reward R(s, au,v) = 1.

The represention of the state s can be computed by a 
GNN on an auxiliary graph G′ . G′ is constructed by adding 
a pseudo node ns connecting to the nodes in g1 and the nodes 
in g2 . Then, a GNN is used to compute the node embed-
dings for G′ . Note that the node embeddings change with 
the extension of the partial solution g1 and g2 . �G1

 and �G1
 

can be computed by the summation of the embeddings of 
the nodes in G1 and G2 , respectively. The concatenation of 
�ns , �G1

 and �G1
 is the representation of the state s. The action 

au,v is represented by the concatenation of �u and �v . The 
representations of the states and the actions are fed into an 
MLP to predict Q. Fig. 11a, b show an example.

Rather than just selecting one node with the largest 
Q-value as in [14], Bai et al. [4] propose to select k nodes 
utilizing the beam search. At each time step, the agent of RL 
is allowed to transit to at most k best next states. The beam 
search builds an exploration tree, where each node of the tree 
is a state and each edge of the tree is an action. Figure 11c 
shows an example of k = 3 . The partial solution is returned 
as a maximal independent set if it cannot be extended. The 
largest one among the computed maximal independent sets 
is outputted.

Inspired by AlphaGo Zero, which has surpassed human in 
the game Go, Abe et al. [1] propose CombOptZero, combin-
ing GNN and Monte Carlo tree search (MCTS)-based RL to 
solve the MVC problem. The formulation of the RL task is 
as S2V-DQN [14]. The key difference is that CombOptZero 
uses the MCTS-based searching for the next action. For a 
state s, suppose U is the partial solution, a GNN embeds G 
and U and outputs two vectors � and � , where �[a] is the 
probability of taking the action a for the state, and �[a] is 
the estimated overall reward from the state s with action a. 
� and � are input to a MCTS, which can produce a better 

Fig. 11  Overview of RLMCS [4]
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action prediction �′ than � . argmaxa ��[a] is outputted as the 
optimal action selected for s. CombOptZero can also solve 
the MaxCut problem.

Kool et al. [37] use AutoEncoder to sequentially out-
put a TSP tour of a graph G. The encoder stacks L self-
attention layers. The details of the encoder are presented in 
Sect. 3.2.3.

The decoder of [37] sequentially predicts the next node 
to be added to the partial solution seq, i.e., a partial TSP 
tour. At the t-th step of decoding, seq has t − 1 nodes. A 
special context vector �c is introduced to represent the 
decoding context. At the t-th step of decoding, 
�c = �G||�seqt−1 ||�seq0 , where || denotes concatenation, seq0 
denotes the 0-th node in seq and seqt−1 denotes the t − 1-th 
node in seq. The embedding of a node vi is computed as 
�vi =

∑
j∈Ni

�j�1�j , where the attention weight �j =
e
uj∑

v
j� ∈Ni

e
u
j�
 

and uj = (�2�c)
T (�3�vj ) , if vj ∉ seq ; otherwise, uj = −∞ . 

The probability of choosing vi to add to seq at the t-th step 
is pvi =

e
uj∑

v
j� ∈G

e
u
j�
 . �1,�2 and �3 are trainable parameters. 

The REINFORCE algorithm is used to train the model.
The experiments presented in [37] show that the proposed 

method can support several related problems of TSP, includ-
ing vehicle routing problem (VRP), orienteering problem 
(OP), prize collecting TSP (PCTSP) and stochastic PCTSP 
(SPCTSP) with the same set of hyperparameters. However, 
the proposed method does not outperform the specialized 
algorithm for TSP (e.g., Concorde).

There are works not iteratively extending a partial solu-
tion to a solution of a CO problem but iteratively improving 
a suboptimal solution to a better solution. For example, Wu 
et al. [71] propose to improve the solution of TSP (i.e., a 
TSP tour) on G using RL. The MDP is defined as follows. A 
TSP tour of G is a state s = (v1, v2,… , vn) , n is the number of 
nodes in G and vi ≠ vj for i ≠ j . A 2-opt operator is an action. 
Given two nodes vi, vj in s, the 2-opt operator selects a pair 
of nodes vi and vj and reverses the order of nodes between vi 
and vj in s. The transition of an action is deterministic. The 
reward of an action is the reduction of the TSP tour with 
respect to the current best TSP tour so far. The architecture 
of Transformer is adopted to compute node embeddings. 
The compatibility of a pair of nodes vi and vj is computed 
as (�1�i)

T (�2�j) , where �1 and �2 are trainable param-
eters. The compatibilities of all pairs of nodes are stored in 
a matrix � . � is fed into a masked softmax layer as follows.

where �i,j is the probability of selecting the pair of nodes vi 
and vj in the 2-opt operator. REINFORCE is used to train 
the model. The experiments reported in [71] show that the 

��
i,j
=

{
C ⋅ tanh(Yi,j), if i ≠ j

−∞, if i = j

� =softmax(��),

proposed techniques outperform the heuristic algorithms for 
improving TSP tours.

4.3  Discussions

Non-autoregressive methods predict the probabilities that 
each node/edge being a part of a solution in one shot. The 
cross entropy between the predicted probabilities and the 
ground-truth solution of the CO problem is used as the loss 
function. Autoregressive methods predict the node/edge to 
add to the partial solution step by step. The inference of 
non-autoregressive methods can be faster than autoregres-
sive methods, as when performing inference non-autoregres-
sive methods predict a solution in one shot. Fast inference 
is desired for some real-time decision-making tasks, e.g., 
the vehicle routing problem. However, non-autoregressive 
methods inherently ignore some sequential characteristics of 
some CO problems, e.g., the TSP problem. Autoregressive 
methods can explicitly model this sequential inductive bias 
by attention mechanism or recurrent neural networks. Exper-
imental comparison in [33] shows that the autoregressive 
methods can outperform the non-autoregressive methods in 
terms of the quality of the tour found for the TSP problem 
but takes much longer time. However, for the problem with-
out sequential characteristic, non-autoregressive methods 
can produce better solution, e.g., molecule generation task 
[32].

The non-autoregressive methods need the ground-
truth solution for supervised training. It is a drawback of 
the non-autoregressive methods as it is hard to compute 
the ground-truth solution for the CO problems on large 
graphs, considering the NP-hardness of the CO problems. 
The autoregressive methods with reinforcement learning-
based searching do not need the ground-truth, which has the 
potential to support larger graphs. Moreover, the supervised 
learning of non-autoregressive models that having a large 
number of parameters can make the models remember the 
training instances and the generalization is limited on unseen 
instances. Although reinforcement learning can overcome 
this problem, the sample efficiency needs to be improved.

Regarding the comparison with traditional heuristic algo-
rithms for the CO problems, current learning-based CO 
methods can have competitive performance with the tradi-
tional problem-specific heuristic algorithms on small graphs, 
but current learning-based CO methods do not scale well to 
large graphs. As large graphs have been emerging in many 
applications, there have been a trend of studying learning-
based methods on large graphs.

The techniques and ideas of traditional heuristics for the 
CO problems can benefit the learning-based CO methods. 
For example, Dai et al. [14] present that incorporating the 
idea of adding the farthest nodes first and the 2-opt opera-
tion of traditional heuristics can improve the performance 
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of the learning-based method for TSP. Exploring the chance 
of integrating the ideas and operations of traditional heuris-
tics into the learning-based methods is attracting increasing 
research attention [14, 17, 37].

5  Future Work

Although there are recent significant advances of using 
graph learning models in solving several different CO prob-
lems, graph learning-based methods for CO problems are 
still at the early stage and there are many open problems 
for further studies. Some possible directions are listed as 
follows.

Encoding Global Information of Graphs In many graph-
based CO problems, the global information of the graph 
is needed for solving the CO problem (e.g., graph edit 
distance, TSP). However, existing graph learning models, 
especially graph convolution, is aggregating local informa-
tion from neighbors. Although more global information 
can be obtained by adding more graph convolution layers, 
there may be a non-trivial over-smooth problem. There-
fore, how to effectively encode more global information 
of graphs is an important direction.

Designing Task-Dependent Model A GNN architecture 
is used to support diverse types of CO problems. How-
ever, each problem has its own characteristics. How to 
encode inductive bias into GNN architectures in order to 
better capture the characteristics of the CO problems is an 
important direction.

The loss function that is generally used in classifica-
tion or regression (e.g., cross entropy) is widely used in 
the learning-based methods for solving CO problems. 
However, the general loss function may not have a strong 
relationship with the objective of the CO problems. For 
example, switching two nodes in a TSP tour will produce a 
TSP tour of very different score with respect to the objec-
tive of TSP. However, the two TSP tours can have the same 
loss in terms of cross entropy [46]. Therefore, designing 
the problem-specific loss function needs to be studied.

Generalization Most existing learning-based methods 
for a CO problem cannot outperform traditional heuristic 
algorithms specifically designed for the CO problem on 
a larger graph or the graphs unseen in training, although 
the learning-based methods can be on par with or better 
than the traditional heuristic algorithm on small graphs. 
Therefore, an important direction is to rethink the learning 
pipeline for CO problem in order to generalize to larger 
graphs and unseen graphs [33].

Integration of Traditional Heuristics Integrating tradi-
tional heuristics can improve the performance of learning-
based CO methods. For example, Dai et al. [14] present 

that incorporating the idea of adding the farthest nodes 
first and the 2-opt operation of traditional heuristics can 
improve the performance of the learning-based method for 
TSP. Therefore, identifying the operations of traditional 
heuristics of a CO problem that can benefit the learning-
based methods for the CO problem and integrating the 
operations appropriately into the learning procedure need 
to be studied.

Supporting Many Graphs Most existing graph learning-
based CO methods focus on a graph or two graphs. Another 
possible future direction is to study the problems that involve 
a large number of graphs, for example, by optimizing the 
query evaluation on a large graph database such as graph 
similarity search, graph pattern matching query and sub-
graph isomorphism search.

6  Conclusion

In this survey, we provided a thorough overview of the 
recent graph learning methods for solving CO problems. 
Existing works fall into two main categories. First, non-
autoregressive methods predict the solution of a CO prob-
lem in one shot. Second, autoregressive methods iterative 
extend a partial solution step by step. Heuristic search and 
reinforcement learning are widely used in the autoregres-
sive methods to extend the partial solution. In these graph 
learning-based CO methods, a graph is represented in 
numerical vectors. Then, we also survey the recent graph 
representation learning methods, including the generalized 
SkipGram-based methods, the AutoEncoder-based methods 
and the GNN-based methods. Several possible directions for 
future research are discussed as well.
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