
Vol:.(1234567890)

Data Science and Engineering (2021) 6:180–191
https://doi.org/10.1007/s41019-021-00153-5

1 3

Querying Optimal Routes for Group Meetup

Bo Chen1 · Huaijie Zhu1 · Wei Liu1 · Jian Yin1 · Wang‑Chien Lee2 · Jianliang Xu3

Received: 15 September 2020 / Revised: 28 January 2021 / Accepted: 19 February 2021 / Published online: 15 March 2021
© The Author(s) 2021

Abstract
Motivated by location-based social networks which allow people to access location-based services as a group, we study
a novel variant of optimal sequenced route (OSR) queries, optimal sequenced route for group meetup (OSR-G) queries.
OSR-G query aims to find the optimal meeting POI (point of interest) such that the maximum users’ route distance to the
meeting POI is minimized after each user visits a number of POIs of specific categories (e.g., gas stations, restaurants, and
shopping malls) in a particular order. To process OSR-G queries, we first propose an OSR-Based (OSRB) algorithm as our
baseline, which examines every POI in the meeting category and utilizes existing OSR (called E-OSR) algorithm to compute
the optimal route for each user to the meeting POI. To address the shortcomings (i.e., requiring to examine every POI in the
meeting category) of OSRB, we propose an upper bound based filtering algorithm, called circle filtering (CF) algorithm,
which exploits the circle property to filter the unpromising meeting POIs. In addition, we propose a lower bound based prun-
ing (LBP) algorithm, namely LBP-SP which exploits a shortest path lower bound to prune the unqualified meeting POIs to
reduce the search space. Furthermore, we develop an approximate algorithm, namely APS, to accelerate OSR-G queries with
a good approximation ratio. Finally the experimental results show that both CF and LBP-SP outperform the OSRB algorithm
and have high pruning rates. Moreover, the proposed approximate algorithm runs faster than the exact OSR-G algorithms
and has a good approximation ratio.

Keywords Route queries · Group meeting · Pruning algorithms

1 Introduction

Optimal sequenced route (OSR) [23] queries aim to find
an optimal route passing through a sequence of points of
interest (POIs) of specific categories (e.g., gas stations,
restaurants, and shopping malls) in a particular order. An
example of OSR query in a road network is shown in Fig. 1.
The example shows four POI categories, where s1 , s2 , s3 are
the supermarkets, r1 , r2 are the restaurants, and so on. Given

a user u1 starting at the current position, passing through
a sequence of POIs (restaurant, supermarket) and arriv-
ing at the destination d1 , the optimal sequenced route is
(u1, r1, s1, d1)

1 with a cost of 14. The OSR query is firstly
studied by Sharifzadeh et al. [23, 24], followed up by a num-
ber of variants [4–8, 12, 13, 15, 17, 18, 20, 22]. However
these prior works assume that the optimal route is designed
for only one user instead of multiple users to have a meet-
ing. With the rapid development of location-based social
network, it attracts not only single user but also a group
of users to access location-based services, e.g., finding the
optimal sequenced routes. For example, there is an activity
which requires multiple users to take part in. Every user has
to visit some different POIs (e.g., finishing some tasks) and
finally meets at a place2 to be determined. The OSR query is
not applicable for this situation directly. This realistic need
motivates our research in this paper.

 * Huaijie Zhu
 zhuhuaijie@mail.sysu.edu.cn

 Wang-Chien Lee
 wlee@cse.psu.edu

 Jianliang Xu
 xujl@comp.hkbu.edu.hk

1 School of Data and Computer Science, Sun Yat-sen
University, Guangzhou, China

2 Department of Computer Science and Engineering, The
Pennsylvania State University, State College, US

3 Hong Kong Baptist University, Kowloon Tong, China

1 The detailed route actually is (u
1
 , d

2
 , r

1
 , s

1
 , u

2
 , d

1
). For brevity, we

only list the start point, the corresponding POIs and the destination
point.
2 The meeting places can also be extended to be a lot of candidate
POIs, specifically just one is finally chosen for meeting.

http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-021-00153-5&domain=pdf

181Querying Optimal Routes for Group Meetup

1 3

Motivated by the OSR query for group meetup, we pro-
pose a new query type, optimal sequenced route for group
meetup (OSR-G) query in this paper. Given a group of users
U, where each user ui corresponds to a starting position
si and a sequence of POI categories Cui

 (C_U = { Cu1
 , Cu2

,..., Cui
,..., Cun

}), and the group meeting POI category cd ,
the OSR-G query is a tuple (U, C_U , cd), which is to find
the optimal meeting POI d (d belongs to category cd) and
an optimal route for each user to minimize the maximum
user’s route distance to the meeting POI. An example of
the OSR-G query is illustrated in Fig. 1. A group of users
u1 and u2 would like to meet at a bar (e.g., candidates are
{d1, d2,… , d6}) today. However, before their meeting, u1
and u2 should visit a sequence of POIs (restaurant, super-
market) and (gas station, supermarket), respectively. The
answer to this OSR-G query is that user u1 visits the route
(u1, r2, s3, d3) with a cost of 10 and user u2 visits the route
(u2, g3, s3, d3) with a cost of 9. Since they will meet after the
last user u1 finishes his route with the cost of 10 (i.e., the
cost of u1 ’s route is 10 and the cost of u2 ’s route is 9), the
meeting cost with respect to d3 is 10. While choosing d1 (or
other candidates) as the meeting place, the meeting cost is
14 (or larger than 10). Thus, the optimal meeting place is
d3 with the minimal cost 10 for this OSR-G query. A major
challenge faced in processing OSR-G queries is that we need
to consider all the query users’ optimal route simultaneously
for meeting, which is a combinatorial optimization problem.
OSR-G query is useful for a popular real-life application,
i.e., meeting point recommendation.

Meeting point recommendation A group of friends
located at different parts of a city want to have a meeting in a
coffee shop. Before the meeting, everyone has some tasks to
do such as going to a bank and then shopping in a supermar-
ket. In this scenario, an optimal meeting coffee shop, as well
as the routing schedules, can be recommended to the users
so that they can meet as soon as possible while satisfying all

users’ requirements.Our query is useful for recommending
the optimal meeting point if the users don’t have a good idea
about where to meet up.

In this paper, we first propose an OSR-Based (OSRB)
algorithm as our baseline to solve OSR-G problem. OSRB
algorithm utilizes an OSR algorithm by examining all meet-
ing POIs in the meeting category to obtain the optimal solu-
tion. OSRB algorithm requires to enumerate all the POIs in
the meeting POI category, thus it is very time-consuming.
To improve the baseline, we develop the circle filtering (CF)
algorithm which utilizes the circle property (i.e., an upper
bound as the circle radius) to filter the unpromising meeting
POIs by narrowing the filtering radius gradually. To further
improve the efficiency, we design an efficient lower bound
based pruning (LBP) algorithm, namely shortest path lower
bound based (LBP-SP) algorithm which exploits a shortest
path lower bound to prune the unqualified meeting POIs
to do early termination. Furtherly, we develop an approxi-
mate algorithm, namely approximate points select (APS)
algorithm. Finally, We validate our ideas and evaluate the
proposed OSR-G algorithms using both real and synthetic
datasets.

To the best of our knowledge, this is the first attempt to
tackle OSR-G problem. This paper makes five contributions:

• We formalize a new variant of OSR query, namely
OSR-G query, which finds the optimal meeting point for
a group of users taking every user’s query requirements
into consideration.

• We propose three exact OSR-G algorithms, namely
OSRB, CF and LBP-SP algorithms. Both CF and LBP-
SP can efficiently answer the OSR-G query.

• We prove that any lower bound estimating the cost of an
OSR can be plugged in the LBP algorithms, which can
become a general framework to solve OSR-G problem.

• We develop an approximate OSR-G algorithm, namely
APS. APS runs faster than the exact OSR-G algorithms
and gives a solution with an approximation ratio not
greater than �.

• We verify our proposed OSR-G algorithms in both real
and synthetic datasets. The results show that CF and
LBP-SP outperform the OSRB algorithm a lot in running
time. The proposed approximate OSR-G algorithm runs
faster than the exact algorithms and gives good approxi-
mate solutions.

2 Related Work

In this section, we overview the related works on optimal
route queries, which can be classified into single user que-
ries and multiple users queries. The single user queries aim

Fig. 1 A road network with “supermarket”={s
1
 , s

2
 , s

3
 }, “gas sta-

tion”= { g
1
 , g

2
 , g

3
 }, “restaurant”={r

1
 , r

2
 } and meeting category cd

=“bar” with POIs { d
1
,d

2
 , d

3
 , d

4
 , d

5
 , d

6
}

182 B. Chen et al.

1 3

to find the optimal route for a single user, and multiple users
queries are designed for multiple users.

2.1 Single User Queries

Li et al. [14] first propose the trip planning query (TPQ)
where a user starts at q and ends at d passing through a
set of POIs without a particular order. Several approximate
algorithms have been proposed to solve the TPQ. After that,
the optimal sequenced route (OSR) query, a variant of TPQ,
is proposed by Sharifzadeh and Kolahdouzan [23]. Different
from TPQ, the OSR query visits a number of POIs in a par-
ticular sequenced order, and the destination is not restricted
to one predefined point but the candidate points in the last
POI category. Two algorithms, namely LOAD and PNE,
are designed to answer the OSR queries [23]. Chen et al.
[5] study the multi-rule partial sequenced route (MRPSR)
query, which finds the optimal route via a number of POIs
in a partial visiting order defined by the user. Obviously, the
MRPSR query is more general and can be converted to TPQ
and OSR queries. Yaron Kanza et al. [13] study sequenced
route search with order constraints using interactive search
methods. And Ohsawa et al. [18] study the OSR query in
Euclidean space, and develop the EOSR algorithm based on
incremental Euclidean restriction (IER) [19]. Then, Costa
et al. [7] propose TD-OSR algorithm to find an optimal
time-dependent sequenced route (OTDSR) in road network.
Yuya Sasaki et al. [22] propose the skyline sequenced route
(SkySR) query, which is similar to OSR query, the differ-
ence is that SkySR query does not strictly obey the passing
categories, but adopts the similar categories using a seman-
tic hierarchy. Jian Dai et al. [8] propose the Personalized
and Sequenced Route (PSR) query, which considers both the
sequenced constraint and personalized category preferences,
and develop a framework to solve the query. Similar to [8],
Francesco Lettich et al. [12] propose the Trade-Off Aware
Sequenced Routing (TASeR) query, which extends the OSR
query with a POI cost (that is, each POI has a visiting cost),
and an approach using the linear skyline paradigm to process
the query. Recently, Li et al. present and tackle the rating
constrained optimal sequenced route (RCOSR) query prob-
lem in which the POIs in the sequenced route should satisfy
category rating thresholds [16].

The above works all consider the routes for a single user
while our OSR-G queries are for a group of users. Thus,
these works on TPQ queries or OSR queries can not be
directly applied to our problem.

2.2 Multiple Users Queries

For the case of multiple users queries, we further categorize
them into different destinations and one common destination.

2.2.1 Different Destinations

Hashem et al. [10] propose group trip planning (GTP)
queries in Euclidean space, which aim to find the mini-
mum of the total trip distance of group members with dif-
ferent departure points and destination points. GTP que-
ries plan the routes, which pass a common set of POIs.
Hashem et al. [9] extends work [10] to solve GTP queries
in both Euclidean space and road networks. Both the total
and maximum trip distance of the group members are
minimized in this work. Ahmadi et al. [2] study a variant
of GTP queries, namely SGTP where the visiting POIs
are predefined by users in road networks. At the same
time, works [2, 21] study group optimal sequenced route
(GOSR) queries, which are inherently the same as SGTP
queries. They employ the elliptical properties as pruning
strategies to process the query. Jahan et al. [11] propose
the group trip scheduling (GTS) queries which find the
independent trips for the group members with minimum
aggregate trip distance. Unlike GTP queries, the visit-
ing POIs in GTS queries are scheduled among the group
members which means that some POIs are not necessarily
visited by every group member.

Although these works, e.g., GTP queries, SGTP que-
ries and GTS queries, have considered a group of users
(multiple users), they are not designed for the meeting of a
group of users. Thus, the OSR-G query has not been studied
previously.

2.2.2 Common Destination

Another relevant work is the optimal meeting point que-
ries (OMP), which are involved in one common destination.
OMP queries focus on finding an optimal meeting point for
a group of users, which minimizes the aggregate distance
of the group members’ positions to the meeting point. One
exact algorithm and an approximate algorithm are developed
for OMP query by Yan et al. [25]. Yan et al. [26] extends
work [25] in both Euclidean space and road networks, and
proposes the algorithms to solve OMP queries with two
aggregate distance (i.e., sum and maximum distance) from
the group members’ positions to the meeting point. Ahmadi
and Nascimento [3] study the k-optimal meeting points for
public transit (kOMPPT) queries, which aims to find k opti-
mal meeting points to minimize the aggregate distance of
a group of users. Different from [26], the group members
have their predefined public transit routes such as a certain
subway route and any subway stop can be the possible start-
ing point.

Different from the above works, our OSR-G query is to
find the optimal solution which every user must visit differ-
ent sequences of POIs before reaching the meeting point.

183Querying Optimal Routes for Group Meetup

1 3

3 Preliminaries

In this section, we define some terms and notations used in
the paper. Then we formally give the problem definition and
present our baseline idea.

3.1 Definitions

In this work, we focus on route queries over the road net-
work. Thus, we define the notion of road network and POIs,
and use them to define OSR query, feasible group routes and
optimal group routes.

Definition 1 (Road Network) A road network is represented
as an undirected graph G, which includes a vertex set V
and an edge set E ⊆ V × V . For an edge (a, b) in G, w(a, b)
denotes the weight of the edge, e.g., the travel distance when
traversing edge (a, b).

Definition 2 (Point of Interest, POI). POI, a special kind of
vertex in a road network, belongs to one or more categories
such as gas stations or restaurants.

Based on the notion of POI, we now define the optimal
sequenced route (OSR) query.

Definition 3 (OSR Query [23]) Given a starting point q and a
sequence of categories Cq = (c1, c2,… , cm) and a destination
point d3, the OSR query is a triple (q, d,Cq), which finds a
route �⃗R=(q,p1,p2,...,pm , d) (pi ∈ ci , 1 ≤ i ≤ m) such that L(�⃗R)
4 ≤ L(���⃗R�) where ���⃗R′5 ∈ {��������⃗route|��������⃗route = (q, p′

1
 , p′

2
 , ..., p′

m
 , d),

p�
i
∈ ci, 1 ≤ i ≤ m}.

By considering the OSR query for a group of users, we
now define the feasible group routes and meeting cost for
route queries by a group of users.

Definition 4 (Feasible Group Routes (FGRoutes)) Given a
group of users U = {u1, u2,… , un} , where each user ui cor-
responds to a starting position si , a sequence of categories
Ci , and a meeting point d. Assume every user ui in U starts
from si , passes through its own category sequences Cui

 and
finally meets each other at d. Thus, each user has his own
feasible route ��⃗Ri (see it in Definition 3). We say the feasi-
ble group routes (FGRoutes) are consisted of these feasible
routes. Correspondingly, the meeting cost (or the cost of

FGRoutes, denoted by L(FGRoutes)) is the maximum cost
of the route among each users’ route.

In many cases, there exists multiple feasible group routes
for a given group of users and a meeting point.

Example 1 An example of FGRoutes is illustrated in Fig. 1.
Assume there is a group of users U={u1, u2} where user u1
needs to visit the category sequence (restaurant, supermar-
ket), and user u2 is to visit the category sequence (gas station,
supermarket). They then meet at d4 after visiting the POIs
corresponding to its own category sequences. The user u1
can follow the route ���⃗R1 = (u1, r1, s1, d4) with L(���⃗R1) = 13 , and
u2 can follow the route ���⃗R2 = (u2, g1, s2, d4) with L(���⃗R2) = 15 .
Since L(���⃗R2) > L(���⃗R1) , the meeting cost for U is 15. ���⃗R1 and ���⃗R2
constitute FGRoutes for U.

Definition 5 (Optimal Group Routes (OGRoutes)). Given a
group of users U={u1, u2,… , un} , where each user ui cor-
responds to a starting position si , a sequence of categories
Cui

 , and a meeting point d. Each user has the optimal route
���������������⃗ORouteui with respect to si , d and Cui

 . The meeting cost for
U and d, denoted by L(U, d), is the maximum cost of the
route among those optimal routes { ���������������⃗ORouteu1 , ���������������⃗ORouteu2 ,
...,���������������⃗ORouteun }. The optimal routes for U are called the opti-
mal group routes (OGRoutes). Accordingly, L(U, d) is the
cost of OGRoutes. The OGRoutes ending at d is denoted by
OGRoutesd , and the ������������⃗ORoute for u ending at d is denoted by
��������������⃗ORouteu

d
.

Continue with the Example 1 in Fig. 1. The route (u1 , r2 ,
s3 , d4) with a cost of 11 is the optimal route for u1 , and the
route (u2 , g3 , s3 , d4) with a cost of 10 is the optimal route for
user u2 . Therefore, the meeting cost is 11 with the maximum
cost among these two optimal routes. Correspondingly, these
two routes constitute the optimal group routes.

3.2 Problem Formulation and Baseline Algorithm

In this section, we formally define the OSR-G query.
OSR-G query Given a group of users U, where each user

ui corresponds to a starting position si and a sequence of
categories Cui

 , and the group meeting POI category cd , the
OSR-G query is a tuple (U, C_U , cd), which aims to find the
optimal meeting POI do (do ∈ cd) and the optimal route for
each user such that the meeting cost L(U, do) is the mini-
mum, i.e., L(U, do) = min

d∈cd

L(U, d).

According to the definition of OSR-G query, the basic
idea is to examine all POIs in cd to guarantee the optimality
of an OSR-G without missing the optimal meeting POI. For
each candidate meeting POI d, we invoke the existing OSR

3 Original OSR query [23] does not have a destination point explic-
itly, thus we add d as the last query category for the original OSR
query to fit our problem.
4 L(�⃗R) denotes the cost of the route �⃗R.
5 Such a route is also called a feasible route.

184 B. Chen et al.

1 3

algorithm (i.e., E-OSR6) to find the optimal route for each
user. After examining all the candidate meeting POIs in cd ,
the solution with minimal cost is returned as the OSR-G
result. This OSR-based (OSRB) algorithm, serves as a base-
line for comparison in our evaluation.

4 Upper Bound Based Filtering Algorithm :
CF

As shown in OSRB algorithm, it costs too much overhead
to examine every POI in the meeting category. To address
this shortcoming, a natural idea is to filter the unpromising
meeting point candidates to reduce the search space. Accord-
ingly, we propose an upper bound based filtering algorithm,
namely circle filtering (CF) algorithm.

The main idea of circle filtering is to utilize the circle
property (which is introduced next) to do filtering. For the
current examining meeting POI, every user takes a feasible
route firstly to make the feasible group routes (FGRoutes),
and every user takes the cost of FGRoutes as his radius
which is an upper bound of the cost of OGRoutes to draw
a circle. By computing the intersection area of each user’s
circle, if one candidate meeting POI is located outside this
intersection area, it can be filtered safely, as specified in
Property 1 (the circle property). By narrowing the radius
gradually, more unpromising meeting points can be filtered.

Property 1 Given an OSR-G query, a candidate meeting
POI p, and the intersection area which is generated by each
user’s circle, p can be filtered iff p is outside the intersec-
tion area.

Proof Suppose the current radius is obtained from d and
its length is L(FGRoutesd) and there is a meeting POI dout
outside the intersection area of every user’s drawing circle.

We prove it by contradiction (suppose dout is the optimal
meeting point). Since dout is outside the intersection area,
there must exists a user u such that L(u, dout) > L(FGRoutesd) .
By the definition of OGRoutes (see Definition5), we have
L(OGRoutesdout) ≥ L(�����������������⃗ORouteu

dout
) ≥ L(u, dout) > L(FGRoutesd)

≥ L(OGRoutesd) . We have L(OGRoutesdout) > L(OGRoutesd) .
While dout is the optimal meeting point, thus L(OGRoutesdout)
≤ L(OGRoutesd) , which makes a contradiction. The proof
completes. ◻

Figure 2 shows an example of illustrating Property1.
Before meeting at a “bar”, user u1 has a visiting sequence
(restaurant, supermarket) and user u2 has another visiting
sequence (gas station, supermarket). If users u1 and u2 take

d1 as the initial meeting point, u1 queries a feasible route ���⃗R1

=(u1,r1,s1,d1) with a cost of 14 while u2 queries a feasible
route ���⃗R2 = (u2, g1, s2, d1) with a cost of 11. Then we have
L(FGRoutesd1)=14, and u1,u2 take a radius of 14 with his
starting point as the center to draw his own circle respec-
tively (u1 and u2 will draw 2 circles totally) and make an
intersection of these two circles. We find that the destination
point d4 is outside the intersection area. Since the network
distance (the shortest path distance) from the starting point
of u2 to d4 is larger than 14, d4 can be filtered safely.

While this circle filtering idea is simple but efficient for
filtering the unpromising candidates, however, it still faces
three issues in processing the OSR-G query. One is how to
select a good initial meeting point to achieve the optimal
filtering ability. The second one is how to calculate a feasible
route (or a smaller upper bound) for every user in the group
efficiently. The last issue is how to narrow the filtering radius
more faster to filter more unpromising meeting points.

With respect to the first issue, the initial meeting point dinitial
in CF algorithm is selected by Equation 1. While for the
second one, it is efficient to perform the greedy search by
nearest neighbor query to get a feasible route. Assuming a
user ui at a start point si who has a visiting sequence
C = (c1, c2,… , cm) , the user ui obtains the feasible route
�⃗R = (si, p

�
1
, p�

2
,… , p�

m
, d) where p′

1
 is the nearest neighbor in

category c1 of si and p′
j
 is the nearest neighbor in category cj

of p�
j−1

 (2 ≤ j ≤ m). The cost of acquired FGRoutesdinitial is
used as the initial filtering radius. We can try every POI in
cd to get the minimum radius to filter the unpromising meet-
ing points by doing the same greedy search. Since the dif-
ference between those feasible routes returned by the greedy
search is reaching at different meeting points, we use

(1)dinitial = argmin
d

max
ui∈U,d∈cd

ShortestPathCost(ui, d)

Fig. 2 A road network with “supermarket”={s
1
 , s

2
 }, “gas sta-

tion”={g
1
} , “restaurant”={r

1
} and “bar”= { d

1
 , d

2
 , d

3
 , d

4
}

6 E-OSR is an OSR algorithm modified in [7].

185Querying Optimal Routes for Group Meetup

1 3

FGRoutesdinitial to retrieve the minimum radius among all
FGRoutes to avoid the same nearest neighbor search.

To narrow the filtering radius more quickly when examin-
ing the remaining candidates, CF retrieves the optimal route
for each user as OGRoutesd rather than executing greedy
search to obtain the feasible route. If L(OGRoutesd) is less
than the current filtering radius, we update the filtering
radius .Otherwise, we repeat the above steps until there is no
meeting point to be examined and the query processing ends.

The pseudo code of CF algorithm is show in Algo-
rithm 1. We show the running example in Fig. 2.Firstly,
CF algorithm selects the initial meeting point d1 by
Equation 1 and FGRoutesd1={(u1,r1,s1,d1),(u2,g1,s2,d1)} is
obtained by greedy nearest neighbor search and radius
is set to L(FGRoutesd1)=14. d6 is filtered firstly since
max{L(u1, d6), L(u2, d6)} = 16 > 14 . Then CF algorithm
obtains a new radius which is acquired from FGRoutesd2
among all feasible group routes and radius is updated to
12. Similar to d6 , d5 is filtered because it is not located
into the intersection area. In the next stage, the candi-
date meeting points are examined according to the cost
of their feasible group routes in an ascending order. Thus
d2 is examined firstly and OGRoutes is set to OGRoutesd2 .
Again CF algorithm examines d1 and does nothing since
L(OGRoutesd1) = 14 > 12 . Next, d3 is examined, OGRoutes
and the current radius are updated which causes d4 to be
filtered. Finally, there is no candidate meeting points to be
examined, and CF algorithm returns the optimal solution.

5 Lower Bound Based Pruning Algorithm:
LBP‑SP

Although the proposed CF algorithm can filter many
unpromising meeting POIs, it still takes much overhead on
narrowing the filtering radius gradually. In contrast to the
upper bound based filtering idea, we propose a lower bound
based pruning (LBP) algorithm to process OSR-G query.

If we sort the POIs in cd in an ascending order accord-
ing to the lower bound of the cost of the corresponding
OGRoutes, the optimal meeting POI will be found more
quickly by the early termination using its lower bound. Once
having the current optimal meeting POI, if the lower bound
of the OGRoutes is not less than the current meeting cost,
there is no need to examine the remaining POIs. By this way,
a lot of unpromising POIs in cd can be pruned and the early
termination is also achieved. Thus, motivated by this idea,
the key issue is how to compute a tight lower bound of the
OGRoutes to design a LBP algorithm.

For an user u in the group U, let lb(u, d) be the lower
bound of the cost of ORoute for u. It is easy to deduce that
for a group U, lb(U, d) = max

u∈U
 lb(u, d) is also the lower

bound of the cost of the OGRoutes w.r.t d, which is shown
in Lemma 1.

Lemma 1 If lb(u, d) is a lower bound of the cost of user u’s
��������������⃗ORouteu

d
 , then lb(U, d) = max

u∈U
 lb(u, d) is a lower bound of

the cost of OGRoutesd.

Proof If lb(u , d) is a lower bound, then we
h a v e lb(u, d) ≤ L(��������������⃗ORouteu

d
) (��������������⃗ORouteu

d
 i s a n

ORoute ending at d for user u) . Supposing
L(
����������������⃗
ORoute

ux1
d
) ≤ L(

����������������⃗
ORoute

ux2
d
) ≤ ... ≤ L(

����������������⃗
ORoute

uxn
d
) , then we

have L(U, d) = L(
����������������⃗
ORoute

uxn
d
) . We prove lb(U, d) ≤ L(U, d)

by the following two cases.

Case 1 If lb(uxn , d) ≥ lb(uxi , d),∀uxi ∈ U , obviously we
have lb(U, d)=lb(uxn , d) ≤ L(����������������⃗ORoute

uxn
d
) ≤ L(U, d). There-

fore, lb(U, d) ≤ L(U, d).

Case 2 Otherwise, ∃uxj ,∀uxi ∈ U, lb(uxj , d) ≥ lb(uxi , d) . Then
we have lb(U, d)=lb(uxj , d) ≤ L(����������������⃗ORoute

uxj

d
) ≤ L(����������������⃗ORoute

uxn
d
) ≤

L(U, d). Therefore, lb(U, d) ≤ L(U, d) holds.

Combining case 1 and 2 above, the proof completes.
 ◻

According to Lemma 1, our goal is transferred to design
a tight lower bound lb(u, d) of the cost of ORoute for u. For
the lower bound of the cost of ORoute for u, one direct idea
is to utilize the cost of the shortest path from user u’s start-
ing point to the meeting point d as the lower bound lb(u, d),
which is called SP lower bound. Based on this SP lower

186 B. Chen et al.

1 3

bound, we propose a Shortest Path based LBP algorithm,
namely LBP-SP.

Algorithm 2 shows the pseudo-code of the framework
of LBP algorithm. Given a group of users and the meeting
category cd , LBP first computes lb(U, d) for all d in cd to
generate a sorted list Lists (line 2). Next, it examines the
candidate meeting POIs in Lists one by one (lines 3-10).
If lb(U, d) ≥ L(OGRoutes) , the examination of the remain-
ing canditate POIs terminates (lines 4-5). Otherwise, LBP
performs the OSR algorithm (i.e., E-OSR) to retrieve the
optimal route for each user and these users’ routes form the
OGRoutes (lines 6-8). Moreover, it checks whether the cost
of new tempOGRoutes is smaller than the current OGRoutes.
If it is, OGRoutes is updated as tempOGRoutes (lines 9-10).
Finally, the algorithm returns the OSR-G result (line 11).

An example of illustrating LBP-SP algorithm is recalled
in Fig.1. Firstly, LBP-SP calculates lb(U, d) for all d in cd
and gets lb(U, d1) = 2, lb(U, d2) = 3, lb(U, d3) = 9, lb(U, d4) =
10, lb(U, d5) = 13, lb(U, d6) = 16. Lists = (d1 , d2 , d3 , d4 , d5 ,
d6) is obtained by sorting lb(U, d) . Then the POIs in sList
are examined sequentially. When computing the OGRoutes
w.r.t d1 , the ������������⃗ORoute of user u1 is returned as (u1, r1, s1, d1)
with a cost of 14 and the ������������⃗ORoute of user u2 is returned as
(u2, g1, s2, d1) with a cost of 11. Thus, L(U, d1) = 14 and the
current optimal solution is OGRoutesd1 . After that, LBP-
SP examines d2 for lb(U, d2) < L(U, d1) and computes the
OGRoutes for d2 . The ������������⃗ORoute of user u1 is (u1, r1, s1, d2) with
a cost of 12 and the ������������⃗ORoute of user u2 is (u2, g1, s2, d2) with a
cost of 12. Since L(U, d2) = 12 < L(U, d1) , the current best
solution is updated to OGRoutesd2 . Following the order in
Lists , d3 is examined, the ������������⃗ORoute of user u1 is (u1, r2, s3, d3)
with a cost of 10 and the ������������⃗ORoute of user u2 is (u2, g3, s3, d3)
with a cost of 9. The current optimal solution is updated to
OGRouted3 since L(U, d3) = 10 < 12 . Finally, LBP-SP com-
pares lb(U, d4) and L(U, d3) before computing OGRoutesd4 .

Due to lb(U, d4) = 10 ≥ L(U, d3) , d4 and the rest points (d5
and d6) in Lists can not be the optimal meeting point and the
algorithm terminates and returns OGRouted3 as the OSR-G
result.

6 Approximate Points Selection:
An Approximate Algorithm

Although the proposed LBP-SP algorithm can prune more
unpromising candidate POIs than CF, it still requires a lot of
time to do the OSR queries for the candidate meeting POIs
which is inefficient for large datasets. The main issue is that
the main cost of LBP algorithm heavily depends on multiple
times’ performing the existing OSR (i.e., E-OSR) algorithm.
Inspired by the minimum distance (namely MD) algorithm
[14] for approximately addressing the TPQ query, which can
be generalized to OSR, we develop APS algorithm with �
-approximate (the approximate ratio is not greater than � , see
Definition 6 introduced next) solution for OSR-G problem
by utilizing MD to replace E-OSR.

We first define the �-approximate OSR-G problem as
follows.

Definition 6 (�-approximate OSR-G problem) Given an
OSR-G query Q and a scalar � where 𝜃 > 1 , suppose the cost
of the optimal solution Sopt for Q is L(Sopt) . The �-approxi-
mate OSR-G problem aims to find an approximate solution
Sappr such that � ≥

L(Sappr)

L(Sopt)
 , where L(Sappr) is the cost of Sappr

and L(Sappr)
L(Sopt)

 is called the approximate ratio of Sappr.

Then we recall the MD algorithm to approximately pro-
cess the OSR query. Given an OSR query where the user
starts from q, the destination is d and a query sequence
C = {c1, c2,… , cm} . For every category ci ∈ C , MD selects
a point pi such that L(q, pi) + L(pi, d) is minimum among all
POIs in the category ci . Correspondingly, one POI in each
category ci is selected to form a feasible route �⃗R=(q,p1,p2
,...,pm,d). Since MD provides a (m + 1)-approximate solution
where m is the size of the query category, applying the MD
algorithm on the OSR query is also with an approximation
ratio not greater than (m + 1).

For an OSR-G query, directly applying MD for the OSR
query by all users in U results in a large approximation ratio.
To make a trade-off between the approximation ratio and
time, a natural idea is that when examining a candidate meet-
ing POI, only some users in U perform the exact OSR que-
ries and the rest of users perform an approximate OSR algo-
rithm such as MD algorithm. We define the parameter � as
the percentage of users in U who perform exact OSR que-
ries. Notice that the larger � is, the slower the algorithm
becomes and the smaller the approximation ratio is. In

187Querying Optimal Routes for Group Meetup

1 3

addition, in order to early terminate the algorithm and not to
lose a guaranteed approximation ratio bound, we define a
parameter � as a termination parameter for APS algorithm
where 1 < 𝜆 ≤ 𝜃 . � is greater than 1, which provides a loose
termination condition for examining a candidate meeting
point. Notice that the larger the � is, the faster the algorithm
finds a solution with a larger approximation ratio. In order
to assure a good approximation ratio, we restrict � not to be
greater than � . Following the examination order sorted by
lb(U, d), we check whether the cost of current solution is
greater than or equal to � times of the cost of the lower
bound (i.e., lb(U, d)) of OGRoutesd . If it is, the examination
of the remaining POIs in Lists is terminated. By Lemma 2,
we known that APS algorithm offers an �-approximate solu-
tion for an OSR-G query, where �= max

Cui
∈C_U

 {|Cui
|} + 1 . The

pseudo-code of APS algorithm is shown in algorithm 3.

Lemma 2 APS algorithm offers an �-approximate solution
for an OSR-G query.

Proof Let OGRoutesd denote the OGRoutes ending at d.
Then, FGRoutesAPS

d
 denotes the FGRoutes ending at d found

by APS algorithm and L(OSR-G) denotes the cost of exact
solution.

In order to prove L(FGRoutesAPS
d

) ≤ � × L(OSR-G) , we
first prove that L(FGRoutesAPS

d
) ≤ � × L(OGRoutesd) . When

examining a candidate meeting POI d, assume users u1
,u2,...,uy (y is determined by � where y = ⌊� × �U�⌋) do
exact OSR queries by E-OSR algorithm while other users
uy+1, uy+2,… , un perform an approximate OSR algorithm
using MD algorithm. Let the query route of i-th user be
����⃗R
ui
d

 and the corresponding ORoute ending at d denote

���������������⃗ORoute
ui
d

 . If L(����⃗R
ux
d
) (1 ≤ x ≤ y) is maximum among all query

routes, then we have L(����⃗R
ux
d
) = L(���������������⃗ORoute

ux
d
) ≤ L(OGRoutesd)

≤ � × L(OGRoutesd) . Otherwise, suppose L(����⃗Ruz
d
) is the

maximum among all query routes (y < z ≤ n). We have
L(����⃗R

uz
d
) ≤ (|Cuz

| + 1) × L(���������������⃗ORoute
uz
d
)7 ≤ � × L(���������������⃗ORoute

uz
d
) ≤

� × L(OGRoutesd) . Thus, we have L(FGRoutesAPS
d

) ≤ � ×
L(OGRoutesd).

Next, we prove L(FGRoutesAPS
d

) ≤ � × L(OSR-G) . Before
examining a candidate meeting POI d′

i
 in the sorted list Lists

(Lists={d
�

1
,d′

2
, . . . ,d�

�
}) , if we f ind � × lb(U, d

�

i
) ≥

L(FGRoutesAPS
d
�

x

) , we have found a FGRoutes FGRoutesAPS
d
′

x

(1 ≤ x < i) and L(FGRoutesAPS
d
�

x

) is minimum among current

examined FGRoutes such that L(FGRoutesAPS
d
�

x

) ≤ � ×

L(OSR-G) . If the optimal meeting POI is d′

k
 (1 ≤ k < i), we

have L(FGRoutesAPS
d
�

x

) ≤ L(FGRoutesAPS
d
�

k

) ≤ � × L(OGRoutesd�
k
)

≤ � × L(OSR-G) . Otherwise, supposing the optimal meeting
POI is d′

j
 (i ≤ j ≤ �), then L(FGRoutesAPS

d
�

x

) ≤ � × lb(U, d�
i
) ≤ �

× lb(U, d�
j
) ≤ � × L(OSR-G) ≤ � × L(OSR-G) . As a result, we

find an �-approximate solution before examining d′
i
.

In the worst case, all POIs in the sorted list Lists are exam-
ined, we still have a �-approximate solution. Supposing d′

x

(1 ≤ x ≤ �) is the optimal meeting POI found by APS algo-
rithm and the optimal meeting POI is d′

y
 (1 ≤ y ≤ �), we have

L(FGRoutesAPS
d
�

x

) ≤ L(FGRoutesAPS
d
�

y

) ≤ � × L(OGRoutesd�
y
) ≤ �

× L(OSR-G) . ◻

6.1 Selection of � and �

Since the approximate OSR-G algorithm uses parameters
� and � , selecting the appropriate values of � and � for a
network dataset is important because larger � can lead to
faster termination of examination with higher approximate
ratio while larger � has lower approximate ratio with more
time for the approximate algorithm to run.

So some trade-offs must be made in the selection of � and
� . However, choosing the values of � and � is empirical and
different people have different requirements of between the
query time and the query quality. In general, we have two
ways of selecting � and � . For a specific network, we should
do sufficient OSR-G queries to decide the values of which
values should be set in terms of the network size. One way is
selecting � first. Set � to 1.0 and vary different � values and
choose the � in terms of the time and the approximate ratio.
If the query time is more concerned, select the value where
the time curve tends to converge with acceptable approxi-
mate ratio. Or the query quality is more cared, select the

7 It is deduced by the approximation ratio of MD algorithm.

188 B. Chen et al.

1 3

value where the approximate ratio curve tends to converge
with acceptable query time. After � is set, fix the � and vary
different � values and select the appropriate � which satisfies
the requirements in the similar way. Another way is select-
ing � first. Set � to 1.0 and vary different � s and select the
value according to the query time and query quality prefer-
ence. After � is set, similar process can be done to select the
appropriate value of �.

7 Complexity Analysis

Here we show the time complexity analysis of our proposed
OSR-G algorithms.

Let |U| be the number of the users, |cd| denote the number
of POIs which is in meeting category cd , and |V| be the num-
ber of vertices in the road network. Since OSR-G algorithms
utilize OSR algorithm, we use O(OSR) to denote the time
complexity of the E-OSR algorithm.

For OSRB algorithm, every user in the group U performs
an OSR query in every candidate meeting POI in cd . There-
fore, the time complexity of OSRB is O(|U||cd|O(OSR)) . For
LBP-SP algorithm, suppose the pruning rate is rSP . Then it is
easy to obtain the time complexity of the LBP-SP algorithm
is O((1 − rSP)|U||cd|O(OSR)) without considering the cost
of computing the sorted list of the lower bounds.

Hence, pruning rate is a key factor contributing to the
actual computational cost, which is to be evaluated experi-
mentally in the next section.

For CF algorithm, assume the pruning rate is rCF . CF
algorithm firstly performs |U| times shortest path algorithm
for latter computation of L(U, d) which takes O(|U||V|log|V|)
time complexity. Selecting the initial meeting point takes
O(cd) time. The first time of performing greedy search
requires O(

∑�U�
i=1

(�Cui
� + 1)O(Greedy)) (O(Greedy) is

the time complexity of the greedy neighbor search),
while the second time of performing greedy search takes
O(|U||cd|O(Greedy)) . The last stage of performing OSR
algorithm takes (1 − rCF) × |U||cd|O(OSR) . The filtering
process of examining candidate POIs in cd takes O(rCF|cd|2) .
In summary, the time complexity of CF algorithm is
O(|U||V|log|V|) + O(cd) + O(

∑�U�
i=1

(�Cui
� + 1))O(Greedy) +

O(|U||cd|)O(Greedy) + (1 − rCF)|U||cd|O(OSR) + rCF|cd|2.
For APS algorithm, we denote O(AOSRAPS) as

the time complexity of the approximate OSR algo-
rithm used by APS algorithm and assume the prun-
ing rate is rAPS8 and the � parameter used is
�APS , the time complexity of APS algorithm is
(1 − rAPS)|U||cd|(�APS × O(OSR) + (1 − �APS) × O(AOSRAPS))

.

8 Experiments

In this section, we investigate the performance evaluation
of our proposed algorithms. All the algorithms are imple-
mented in C++ and the experiments are conducted on a
2.10 GHz Intel Xreon CPU with 128 GB RAM, using both
two real (SNW and NW) and three synthetic datasets (DE,
VT and ME). These five network datasets are obtained from
[1] listed in Table 1, where the POIs in real datasets are cap-
tured from OpenStreetMap.9 Since DE, VT and ME datasets
do not contain the POI information, we generate the POIs of
8 categories randomly with the same density 0.01.

We conduct the performance evaluation in two aspects:
(1) the efficiency (including the running time and pruning
rate) of OSR-G algorithms—we compare the running time
and pruning rate10 of the proposed OSR-G algorithms under
various parameters); and (2) the effectiveness of the approx-
imate OSR-G algorithm—we compare the approximation
ratio of the approximate algorithm under various parameters.
The parameters are summarized in Table 2, numbers in bold
are the default settings except the |cd| parameter is done sep-
arately. Query user size |U| denotes the number of users in an
OSR-G query. Query category size |C| denotes the number
of categories for every user in an OSR-G query (this param-
eter of the approximate algorithm is 8). Tested algorithms
include OSRB, CF, LBP-SP and APS. We randomly gen-
erate several groups of OSR-G queries by the parameters
where each group of queries consists of 100 OSR-G que-
ries (20 queries for NW dataset). In each experiment, we

Table 1 Road network datasets Network Vertices Edges

DE 48,812 119,004
VT 95,672 209,288
ME 187,315 412,352
SNW 158,181 183,865
NW 1,089,933 2,545,844

Table 2 Experiment settings

Parameter Values

|U| 4, 5, 6, 7, 8
|C| 3, 4, 5, 6, 7, 8
� 1.5, 2.0, 2.5, 3.0, 3.5, 4.0
� 0%, 12.5% ,25%, 50%, 100%
|c

d
| 10, 40, 200, 1000, 5000

8 The � parameter used is �
APS

 not greater than � , it affects r
APS

.

9 http://www.opens treet map.org.
10 Pruning rate is the ratio of meeting points that are not necessary to
be examined.

http://www.openstreetmap.org

189Querying Optimal Routes for Group Meetup

1 3

test one parameter at a time (other parameters are fixed at
their default values). The reported experimental results are
obtained by averaging the processing time of queries, prun-
ing rates and approximation ratio. For space reasons, mostly
we show only two figures per experiment.

8.1 Efficiency: Running Time

In this section, we evaluate the running time of the proposed
OSR-G algorithms under various parameters.

Running time versus different datasets In this experiment,
we first compare the running time of all the OSR-G algo-
rithms on all datasets. Figure 3 shows that CF and LBP-SP
algorithms outperform the OSRB algorithm and the approxi-
mate algorithm APS runs faster than all exact OSR-G algo-
rithms. That is because CF can exploit the circle property
to do filtering and LBP-SP can utilize the lower bound to
prune the unpromising meeting points while OSRB needs
to examine all the candidate meeting points to assure the
optimality. LBP-SP outperforms CF mainly due to the higher
pruning rate. As expected, APS is much more efficient than
the exact algorithms mainly because APS takes larger � than
the exact algorithms (we can equally think the � in the exact
algorithms is set 1, while � in approximate algorithms is set
3) which makes it have stronger pruning rate than the exact
algorithms. Since the baseline algorithm run relatively too
long, we do not report the corresponding results in the fol-
lowing experimental figures.

Running time versus query user size |U|. We investigate
the running time of the OSR-G algorithms by varying dif-
ferent query user sizes in Fig. 4. As shown in Fig. 4a on
ME dataset, the query time of all the OSR-G algorithms
increases as the user size of OSR-G queries increases. This
is because the larger the query user size is, the more query
overhead will be spent on executing OSR algorithms or
approximate OSR algorithms. Similar result can be found
in SNW dataset from Fig. 4b.

Running time versus query category size |C|. Figure 5
shows the running time with respect to the query category
size. The running time of OSR-G algorithms increases as
the query category size increases. For VT dataset in Fig. 5a,
when the query category size increases, the query sequence
of a user becomes larger. This leads to increasing the time
of executing an OSR query or an approximate OSR query
for every user in the group. Therefore, the larger query cat-
egory size costs more processing time of the OSR-G query.
Figure 5b shows the similar results.

8.2 Efficiency: Pruning Rate

In this section, we evaluate another aspect about the effi-
ciency: the pruning rate of the proposed algorithms under
various parameters.

Pruning rate versus query user size |U|. We evaluate the
pruning rate by varying query user size in Fig. 6. Figure 6b
shows the pruning rates of all OSR-G algorithms remain
relatively stable (no more than 1%) as the query user size
increases. Recall that the meeting cost is determined by
maximum cost of the last meeting user no matter how many
users take part in an OSR-G query. Thus the pruning rate
does not depend greatly on the query user size when the
lower bound is tight enough. Note that the pruning rate of
LBP-SP is higher than that of CF mainly for LBP-SP has
good estimation ability which is faster to find the minimum
’radius’ comparing to CF. Similar results can be seen from
Fig. 6a.

 0.1

 1

 10

 100

 1000

DE VT ME SNW NW

Ti
m

e
(s

)
OSRB

CF
LBP-SP

APS

Fig. 3 Time versus five datasets

Fig. 4 Time versus |U|

Fig. 5 Time versus |C|

190 B. Chen et al.

1 3

Pruning rate versus � and � . Figure 7a shows the effect
of varying � on the pruning rates of the APS algorithm. In
Fig. 7a, the pruning rate of APS increases dramatically as
� increases. This is because the larger � is, the higher the
pruning rate APS has. Similarly, we evaluate the pruning
rate of APS by varying � in Fig. 7b. The pruning rate of
APS increases only about 2% by varying � from 0% to 100%
which is less significant comparing to increasing �.

8.3 Effectiveness Evaluation

In this section, we evaluate the effectiveness of the approxi-
mate algorithm by varying � and �.

Approximation ratio versus � . We evaluate the effect of
varying � on the approximation ratios of APS in Fig. 8a, the
approximate ratio of APS increases greatly as � increases.
Since the pruning rate of APS increases greatly as � increases,

APS examines less points in the meeting category and returns
an approximate solution more quickly with the increasing of
the approximate ratio.

Approximation ratio versus � . Then we evaluate the effect
of varying � on the approximation ratios of APS algorithm.
As shown in Fig. 8b, the approximation ratios of APS algo-
rithm decreases as � increases. The approximate ratio of APS
decreases greatly and converges to nearly 1.0 on SNW data-
set when � is 100%. Though the approximate ratio is mainly
determined by the part of users who executing approximate
OSR algorithms, as � increases, the percentage of approximate
OSRs decreases which results in better approximate solutions.

8.4 Evaluation of Effect on |cd|

Since the size of meeting category (i.e., |cd|) is a key fac-
tor for OSR-G queries, we evaluate the effect (i.e., query
time and pruning rate) corresponding to the size of cd . As
shown in Fig. 9a, the query time of the exact algorithms is
increasing as |cd| increases because they require to examine
more candidate meeting POIs when increasing |cd| . While
for the approximate algorithm APS, the query time starts
to decrease when |cd| becomes larger. Because the prun-
ing rate of the approximate algorithms is quite high and is
increasing, the number of actual examined candidate meet-
ing points is decreasing. The query time of APS algorithm
increases slightly when |cd| is 5000 because the number of
actual examined candidate meeting points increases (here
the pruning rate of APS algorithm tends to converge to a
point. That is, the increase of |cd| is faster than that of the
pruning rate). In Fig. 9b, the pruning rates of all algorithms
are increasing because the larger the size of the meeting
POI category becomes, the more unpromising points can be
pruned by CF, LBP-SP and APS algorithms.

9 Conclusion

In this paper, we formulate a new query, namely, optimal
sequenced route for group meetup (OSR-G) query, for find-
ing the optimal meeting point such that all users meet as

Fig. 6 Pruning rate versus |U|

 0.82
 0.84
 0.86
 0.88

 0.9
 0.92
 0.94
 0.96
 0.98

 1

1.5 2.0 2.5 3.0 3.5 4.0

Pr
un

in
g

ra
te

λ

APS

(a) DE

 0.924
 0.926
 0.928

 0.93
 0.932
 0.934
 0.936
 0.938

 0.94
 0.942
 0.944

0 12.5 25 50 100

Pr
un

in
g

ra
te

µ (%)

APS

(b) SNW

Fig. 7 Pruning rate versus � and �

 1.75
 1.8

 1.85
 1.9

 1.95
 2

 2.05
 2.1

 2.15
 2.2

 2.25

1.5 2.0 2.5 3.0 3.5 4.0

Ap
pr

ox
im

at
e

ra
tio

λ

APS

(a) DE

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

0 12.5 25 50 100

Ap
pr

ox
im

at
e

ra
tio

µ (%)

APS

(b) SNW

Fig. 8 Approximate ratios versus � and �

 10

 100

 1000

 10000

10 40 200 1000 5000

Ti
m

e
(s

)

|cd|

CF
LBP-SP

APS

(a) Running time

 0.82
 0.84
 0.86
 0.88

 0.9
 0.92
 0.94
 0.96
 0.98

 1

10 40 200 1000 5000

Pr
un

in
g

ra
te

|cd|

CF
LBP-SP

APS

(b) Pruning rate

Fig. 9 Effect of |cd| on NW network

191Querying Optimal Routes for Group Meetup

1 3

soon as possible after each user visits a number of POIs.
We carry out a systematic study on the OSR-G query. First,
we propose the OSRB algorithm as a baseline to tackle
OSR-G problem. To address the shortcomings of OSRB,
we propose an upper bound based filtering algorithm (i.e.,
CF algorithm) which utilizes the circle property to filter
unpromising meeting POIs. In contrast, we design a lower
bound based pruning (LBP) algorithm, LBP-SP, which
exploits the shortest path lower bound to prune unqualified
meeting points to have efficient query processing. Moreover,
we prove that any lower bound of an OSR can be plugged
in the LBP algorithms which makes it serve as a general
framework to design different algorithms when using dif-
ferent lower bounds. Furthermore, an approximate OSR-G
algorithm, namely APS, is developed to accelerate OSR-G
queries in large network datasets. Finally, a comprehensive
performance evaluation is conducted to validate the pro-
posed ideas and demonstrate the efficiency and effectiveness
of the proposed algorithms.

This work may lead towards several new directions for
future work, e.g., top k OSR-G problem and more tighter
lower bounds.

Acknowledgements This work is supported by National Natural
Science Foundation of China (U1811264, U1911203, 61902438,
61902439), National Science Foundation for Post-Doctoral Scientists
of China under Grant (2018M643307, 2019M663237), Natural Science
Foundation of Guangdong Province under Grant (2019A1515011704,
2019A1515011159), Young Teacher Training Project of Sun Yat-sen
University under Grant (19lgpy214, 19lgpy223) and Guangdong Basic
and Applied Basic Research Foundation (2019B1515130001).

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

 1. http://users .diag.uniro ma1.it/chall enge9 /
 2. Ahmadi E, Nascimento MA (2015) A mixed breadth-depth first

search strategy for sequenced group trip planning queries. In:
MDM. pp 24–33

 3. Ahmadi E, Nascimento MA (2018) Optimal meeting points for
public transit users. In: MDM. pp 15–23

 4. Cao X, Chen L, Cong G, Xiao X (2012) Keyword-aware optimal
route search. PVLDB 5(11):1136–1147

 5. Chen H, Ku W, Sun M, Zimmermann R (2008) The multi-rule
partial sequenced route query. In: ACM-GIS. p 10

 6. Chen H, Ku W, Sun M, Zimmermann R (2011) The partial
sequenced route query with traveling rules in road networks.
GeoInformatica 15(3):541–569

 7. Costa CF, Nascimento MA, de Macêdo JAF, Theodoridis Y, Pele-
kis N, Machado JC (2015) Optimal time-dependent sequenced
route queries in road networks. In: SIGSPATIAL. pp 56:1–56:4

 8. Dai J, Liu C, Xu J, Ding Z (2016) On personalized and sequenced
route planning. World Wide Web 19(4):679–705

 9. Hashem T, Barua S, Ali ME, Kulik L, Tanin E (2015) Efficient
computation of trips with friends and families. In: CIKM. pp
931–940

 10. Hashem T, Hashem T, Ali ME, Kulik L (2013) Group trip plan-
ning queries in spatial databases. In: SSTD. pp 259–276

 11. Jahan R, Hashem T, Barua S (2017) Group trip scheduling (GTS)
queries in spatial databases. In: EDBT. pp 390–401

 12. Lettich F, Nascimento MA, Anwar S (2020) Trade-off aware
sequenced routing queries (or OSR queries when pois are not
free). In: 21st IEEE International conference on mobile data man-
agement, MDM 2020, Versailles, France, June 30 - July 3, 2020.
pp 59–68. IEEE

 13. Levin R, Kanza Y, Safra E, Sagiv Y (2010) Interactive route
search in the presence of order constraints. Proc. VLDB Endow.
3(1):117–128

 14. Li F, Cheng D, Hadjieleftheriou M, Kollios G, Teng S (2005) On
trip planning queries in spatial databases. In: SSTD. pp 273–290

 15. Li J, Yang YD, Mamoulis N (2013) Optimal route queries with
arbitrary order constraints. TKDE 25(5):1097–1110

 16. Li W, Zhu H, Liu W, Yin J, Xu J (2021) Optimal sequenced route
query with poi preferences. In: Dasffa. p. Accepted

 17. Liu H, Jin C, Yang B, Zhou A (2018) Finding top-k optimal
sequenced routes. In: ICDE. pp 569–580

 18. Ohsawa Y, Htoo H, Sonehara N, Sakauchi M (2012) Sequenced
route query in road network distance based on incremental euclid-
ean restriction. In: DEXA. pp 484–491

 19. Papadias D, Zhang J, Mamoulis N, Tao Y (2003) Query process-
ing in spatial network databases. In: VLDB. pp 802–813

 20. Rice MN, Tsotras VJ (2013) Engineering generalized shortest path
queries. In: ICDE. pp 949–960

 21. Samrose S, Hashem T, Barua S, Ali ME, Uddin MH, Mahmud MI
(2015) Efficient computation of group optimal sequenced routes
in road networks. In: MDM. pp 122–127

 22. Sasaki Y, Ishikawa Y, Fujiwara Y, Onizuka M (2018) Sequenced
route query with semantic hierarchy. In: Böhlen, M.H., Pichler,
R., May, N., Rahm, E., Wu, S., Hose, K. (eds.) Proceedings of
the 21st international conference on extending database technol-
ogy, EDBT 2018, Vienna, Austria, March 26-29, 2018. pp 37–48.
OpenProceedings.org

 23. Sharifzadeh M, Kolahdouzan MR, Shahabi C (2008) The optimal
sequenced route query. VLDB 17(4):765–787

 24. Sharifzadeh M, Shahabi C (2008) Processing optimal sequenced
route queries using voronoi diagrams. GeoInformatica
12(4):411–433

 25. Yan D, Zhao Z, Ng W (2011) Efficient algorithms for finding
optimal meeting point on road networks. PVLDB 4(11):968–979

 26. Yan D, Zhao Z, Ng W (2015) Efficient processing of optimal
meeting point queries in euclidean space and road networks.
Knowl Inf Syst 42(2):319–351

http://creativecommons.org/licenses/by/4.0/
http://users.diag.uniroma1.it/challenge9/

	Querying Optimal Routes for Group Meetup
	Abstract
	1 Introduction
	2 Related Work
	2.1 Single User Queries
	2.2 Multiple Users Queries
	2.2.1 Different Destinations
	2.2.2 Common Destination

	3 Preliminaries
	3.1 Definitions
	3.2 Problem Formulation and Baseline Algorithm

	4 Upper Bound Based Filtering Algorithm : CF
	5 Lower Bound Based Pruning Algorithm: LBP-SP
	6 Approximate Points Selection: An Approximate Algorithm
	6.1 Selection of and

	7 Complexity Analysis
	8 Experiments
	8.1 Efficiency: Running Time
	8.2 Efficiency: Pruning Rate
	8.3 Effectiveness Evaluation
	8.4 Evaluation of Effect on

	9 Conclusion
	Acknowledgements
	References

