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Abstract
Motivated by location-based social networks which allow people to access location-based services as a group, we study 
a novel variant of optimal sequenced route (OSR) queries, optimal sequenced route for group meetup (OSR-G) queries. 
OSR-G query aims to find the optimal meeting POI (point of interest) such that the maximum users’ route distance to the 
meeting POI is minimized after each user visits a number of POIs of specific categories (e.g., gas stations, restaurants, and 
shopping malls) in a particular order. To process OSR-G queries, we first propose an OSR-Based (OSRB) algorithm as our 
baseline, which examines every POI in the meeting category and utilizes existing OSR (called E-OSR) algorithm to compute 
the optimal route for each user to the meeting POI. To address the shortcomings (i.e., requiring to examine every POI in the 
meeting category) of OSRB, we propose an upper bound based filtering algorithm, called circle filtering (CF) algorithm, 
which exploits the circle property to filter the unpromising meeting POIs. In addition, we propose a lower bound based prun-
ing (LBP) algorithm, namely LBP-SP which exploits a shortest path lower bound to prune the unqualified meeting POIs to 
reduce the search space. Furthermore, we develop an approximate algorithm, namely APS, to accelerate OSR-G queries with 
a good approximation ratio. Finally the experimental results show that both CF and LBP-SP outperform the OSRB algorithm 
and have high pruning rates. Moreover, the proposed approximate algorithm runs faster than the exact OSR-G algorithms 
and has a good approximation ratio.

Keywords  Route queries · Group meeting · Pruning algorithms

1  Introduction

Optimal sequenced route (OSR) [23] queries aim to find 
an optimal route passing through a sequence of points of 
interest (POIs) of specific categories (e.g., gas stations, 
restaurants, and shopping malls) in a particular order. An 
example of OSR query in a road network is shown in Fig. 1. 
The example shows four POI categories, where s1 , s2 , s3 are 
the supermarkets, r1 , r2 are the restaurants, and so on. Given 

a user u1 starting at the current position, passing through 
a sequence of POIs (restaurant, supermarket) and arriv-
ing at the destination d1 , the optimal sequenced route is 
(u1, r1, s1, d1)

1 with a cost of 14. The OSR query is firstly 
studied by Sharifzadeh et al. [23, 24], followed up by a num-
ber of variants [4–8, 12, 13, 15, 17, 18, 20, 22]. However 
these prior works assume that the optimal route is designed 
for only one user instead of multiple users to have a meet-
ing. With the rapid development of location-based social 
network, it attracts not only single user but also a group 
of users to access location-based services, e.g., finding the 
optimal sequenced routes. For example, there is an activity 
which requires multiple users to take part in. Every user has 
to visit some different POIs (e.g., finishing some tasks) and 
finally meets at a place2 to be determined. The OSR query is 
not applicable for this situation directly. This realistic need 
motivates our research in this paper.
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1  The detailed route actually is ( u
1
 , d
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1
 , s

1
 , u

2
 , d

1
 ). For brevity, we 

only list the start point, the corresponding POIs and the destination 
point.
2  The meeting places can also be extended to be a lot of candidate 
POIs, specifically just one is finally chosen for meeting.
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Motivated by the OSR query for group meetup, we pro-
pose a new query type, optimal sequenced route for group 
meetup (OSR-G) query in this paper. Given a group of users 
U, where each user ui corresponds to a starting position 
si and a sequence of POI categories Cui

 ( C_U = { Cu1
 , Cu2

,..., Cui
,..., Cun

}), and the group meeting POI category cd , 
the OSR-G query is a tuple (U, C_U , cd ), which is to find 
the optimal meeting POI d (d belongs to category cd ) and 
an optimal route for each user to minimize the maximum 
user’s route distance to the meeting POI. An example of 
the OSR-G query is illustrated in Fig. 1. A group of users 
u1 and u2 would like to meet at a bar (e.g., candidates are 
{d1, d2,… , d6} ) today. However, before their meeting, u1 
and u2 should visit a sequence of POIs (restaurant, super-
market) and (gas station, supermarket), respectively. The 
answer to this OSR-G query is that user u1 visits the route 
(u1, r2, s3, d3) with a cost of 10 and user u2 visits the route 
(u2, g3, s3, d3) with a cost of 9. Since they will meet after the 
last user u1 finishes his route with the cost of 10 (i.e., the 
cost of u1 ’s route is 10 and the cost of u2 ’s route is 9), the 
meeting cost with respect to d3 is 10. While choosing d1 (or 
other candidates) as the meeting place, the meeting cost is 
14 (or larger than 10). Thus, the optimal meeting place is 
d3 with the minimal cost 10 for this OSR-G query. A major 
challenge faced in processing OSR-G queries is that we need 
to consider all the query users’ optimal route simultaneously 
for meeting, which is a combinatorial optimization problem. 
OSR-G query is useful for a popular real-life application, 
i.e., meeting point recommendation.

Meeting point recommendation A group of friends 
located at different parts of a city want to have a meeting in a 
coffee shop. Before the meeting, everyone has some tasks to 
do such as going to a bank and then shopping in a supermar-
ket. In this scenario, an optimal meeting coffee shop, as well 
as the routing schedules, can be recommended to the users 
so that they can meet as soon as possible while satisfying all 

users’ requirements.Our query is useful for recommending 
the optimal meeting point if the users don’t have a good idea 
about where to meet up.

In this paper, we first propose an OSR-Based (OSRB) 
algorithm as our baseline to solve OSR-G problem. OSRB 
algorithm utilizes an OSR algorithm by examining all meet-
ing POIs in the meeting category to obtain the optimal solu-
tion. OSRB algorithm requires to enumerate all the POIs in 
the meeting POI category, thus it is very time-consuming. 
To improve the baseline, we develop the circle filtering (CF) 
algorithm which utilizes the circle property (i.e., an upper 
bound as the circle radius) to filter the unpromising meeting 
POIs by narrowing the filtering radius gradually. To further 
improve the efficiency, we design an efficient lower bound 
based pruning (LBP) algorithm, namely shortest path lower 
bound based (LBP-SP) algorithm which exploits a shortest 
path lower bound to prune the unqualified meeting POIs 
to do early termination. Furtherly, we develop an approxi-
mate algorithm, namely approximate points select (APS) 
algorithm. Finally, We validate our ideas and evaluate the 
proposed OSR-G algorithms using both real and synthetic 
datasets.

To the best of our knowledge, this is the first attempt to 
tackle OSR-G problem. This paper makes five contributions:

•	 We formalize a new variant of OSR query, namely 
OSR-G query, which finds the optimal meeting point for 
a group of users taking every user’s query requirements 
into consideration.

•	 We propose three exact OSR-G algorithms, namely 
OSRB, CF and LBP-SP algorithms. Both CF and LBP-
SP can efficiently answer the OSR-G query.

•	 We prove that any lower bound estimating the cost of an 
OSR can be plugged in the LBP algorithms, which can 
become a general framework to solve OSR-G problem.

•	 We develop an approximate OSR-G algorithm, namely 
APS. APS runs faster than the exact OSR-G algorithms 
and gives a solution with an approximation ratio not 
greater than �.

•	 We verify our proposed OSR-G algorithms in both real 
and synthetic datasets. The results show that CF and 
LBP-SP outperform the OSRB algorithm a lot in running 
time. The proposed approximate OSR-G algorithm runs 
faster than the exact algorithms and gives good approxi-
mate solutions.

2 � Related Work

In this section, we overview the related works on optimal 
route queries, which can be classified into single user que-
ries and multiple users queries. The single user queries aim 

Fig. 1   A road network with “supermarket”={s
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2
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3
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2
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3
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to find the optimal route for a single user, and multiple users 
queries are designed for multiple users.

2.1 � Single User Queries

Li et al. [14] first propose the trip planning query (TPQ) 
where a user starts at q and ends at d passing through a 
set of POIs without a particular order. Several approximate 
algorithms have been proposed to solve the TPQ. After that, 
the optimal sequenced route (OSR) query, a variant of TPQ, 
is proposed by Sharifzadeh and Kolahdouzan [23]. Different 
from TPQ, the OSR query visits a number of POIs in a par-
ticular sequenced order, and the destination is not restricted 
to one predefined point but the candidate points in the last 
POI category. Two algorithms, namely LOAD and PNE, 
are designed to answer the OSR queries [23]. Chen et al. 
[5] study the multi-rule partial sequenced route (MRPSR) 
query, which finds the optimal route via a number of POIs 
in a partial visiting order defined by the user. Obviously, the 
MRPSR query is more general and can be converted to TPQ 
and OSR queries. Yaron Kanza et al. [13] study sequenced 
route search with order constraints using interactive search 
methods. And Ohsawa et al. [18] study the OSR query in 
Euclidean space, and develop the EOSR algorithm based on 
incremental Euclidean restriction (IER) [19]. Then, Costa 
et al. [7] propose TD-OSR algorithm to find an optimal 
time-dependent sequenced route (OTDSR) in road network. 
Yuya Sasaki et al. [22] propose the skyline sequenced route 
(SkySR) query, which is similar to OSR query, the differ-
ence is that SkySR query does not strictly obey the passing 
categories, but adopts the similar categories using a seman-
tic hierarchy. Jian Dai et al. [8] propose the Personalized 
and Sequenced Route (PSR) query, which considers both the 
sequenced constraint and personalized category preferences, 
and develop a framework to solve the query. Similar to [8], 
Francesco Lettich et al. [12] propose the Trade-Off Aware 
Sequenced Routing (TASeR) query, which extends the OSR 
query with a POI cost (that is, each POI has a visiting cost), 
and an approach using the linear skyline paradigm to process 
the query. Recently, Li et al. present and tackle the rating 
constrained optimal sequenced route (RCOSR) query prob-
lem in which the POIs in the sequenced route should satisfy 
category rating thresholds [16].

The above works all consider the routes for a single user 
while our OSR-G queries are for a group of users. Thus, 
these works on TPQ queries or OSR queries can not be 
directly applied to our problem.

2.2 � Multiple Users Queries

For the case of multiple users queries, we further categorize 
them into different destinations and one common destination.

2.2.1 � Different Destinations

Hashem et al. [10] propose group trip planning (GTP) 
queries in Euclidean space, which aim to find the mini-
mum of the total trip distance of group members with dif-
ferent departure points and destination points. GTP que-
ries plan the routes, which pass a common set of POIs. 
Hashem et al. [9] extends work [10] to solve GTP queries 
in both Euclidean space and road networks. Both the total 
and maximum trip distance of the group members are 
minimized in this work. Ahmadi et al. [2] study a variant 
of GTP queries, namely SGTP where the visiting POIs 
are predefined by users in road networks. At the same 
time, works [2, 21] study group optimal sequenced route 
(GOSR) queries, which are inherently the same as SGTP 
queries. They employ the elliptical properties as pruning 
strategies to process the query. Jahan et al. [11] propose 
the group trip scheduling (GTS) queries which find the 
independent trips for the group members with minimum 
aggregate trip distance. Unlike GTP queries, the visit-
ing POIs in GTS queries are scheduled among the group 
members which means that some POIs are not necessarily 
visited by every group member.

Although these works, e.g., GTP queries, SGTP que-
ries and GTS queries, have considered a group of users 
(multiple users), they are not designed for the meeting of a 
group of users. Thus, the OSR-G query has not been studied 
previously.

2.2.2 � Common Destination

Another relevant work is the optimal meeting point que-
ries (OMP), which are involved in one common destination. 
OMP queries focus on finding an optimal meeting point for 
a group of users, which minimizes the aggregate distance 
of the group members’ positions to the meeting point. One 
exact algorithm and an approximate algorithm are developed 
for OMP query by Yan et al. [25]. Yan et al. [26] extends 
work [25] in both Euclidean space and road networks, and 
proposes the algorithms to solve OMP queries with two 
aggregate distance (i.e., sum and maximum distance) from 
the group members’ positions to the meeting point. Ahmadi 
and Nascimento [3] study the k-optimal meeting points for 
public transit (kOMPPT) queries, which aims to find k opti-
mal meeting points to minimize the aggregate distance of 
a group of users. Different from [26], the group members 
have their predefined public transit routes such as a certain 
subway route and any subway stop can be the possible start-
ing point.

Different from the above works, our OSR-G query is to 
find the optimal solution which every user must visit differ-
ent sequences of POIs before reaching the meeting point.
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3 � Preliminaries

In this section, we define some terms and notations used in 
the paper. Then we formally give the problem definition and 
present our baseline idea.

3.1 � Definitions

In this work, we focus on route queries over the road net-
work. Thus, we define the notion of road network and POIs, 
and use them to define OSR query, feasible group routes and 
optimal group routes.

Definition 1  (Road Network) A road network is represented 
as an undirected graph G, which includes a vertex set V 
and an edge set E ⊆ V × V  . For an edge (a, b) in G, w(a, b) 
denotes the weight of the edge, e.g., the travel distance when 
traversing edge (a, b).

Definition 2  (Point of Interest, POI). POI, a special kind of 
vertex in a road network, belongs to one or more categories 
such as gas stations or restaurants.

Based on the notion of POI, we now define the optimal 
sequenced route (OSR) query.

Definition 3  (OSR Query [23]) Given a starting point q and a 
sequence of categories Cq = (c1, c2,… , cm) and a destination 
point d3, the OSR query is a triple ( q, d,Cq ), which finds a 
route �⃗R=(q,p1,p2,...,pm , d) ( pi ∈ ci , 1 ≤ i ≤ m ) such that L( �⃗R)
4 ≤ L(���⃗R�) where ���⃗R′5 ∈ {��������⃗route|��������⃗route = (q, p′

1
 , p′

2
 , ..., p′

m
 , d), 

p�
i
∈ ci, 1 ≤ i ≤ m}.

By considering the OSR query for a group of users, we 
now define the feasible group routes and meeting cost for 
route queries by a group of users.

Definition 4  (Feasible Group Routes (FGRoutes)) Given a 
group of users U = {u1, u2,… , un} , where each user ui cor-
responds to a starting position si , a sequence of categories 
Ci , and a meeting point d. Assume every user ui in U starts 
from si , passes through its own category sequences Cui

 and 
finally meets each other at d. Thus, each user has his own 
feasible route ��⃗Ri (see it in Definition 3). We say the feasi-
ble group routes (FGRoutes) are consisted of these feasible 
routes. Correspondingly, the meeting cost (or the cost of 

FGRoutes, denoted by L(FGRoutes)) is the maximum cost 
of the route among each users’ route.

In many cases, there exists multiple feasible group routes 
for a given group of users and a meeting point.

Example 1  An example of FGRoutes is illustrated in Fig. 1. 
Assume there is a group of users U={u1, u2} where user u1 
needs to visit the category sequence (restaurant, supermar-
ket), and user u2 is to visit the category sequence (gas station, 
supermarket). They then meet at d4 after visiting the POIs 
corresponding to its own category sequences. The user u1 
can follow the route ���⃗R1 = (u1, r1, s1, d4) with L(���⃗R1) = 13 , and 
u2 can follow the route ���⃗R2 = (u2, g1, s2, d4) with L(���⃗R2) = 15 . 
Since L(���⃗R2) > L(���⃗R1) , the meeting cost for U is 15. ���⃗R1 and ���⃗R2 
constitute FGRoutes for U.

Definition 5  (Optimal Group Routes (OGRoutes)). Given a 
group of users U={u1, u2,… , un} , where each user ui cor-
responds to a starting position si , a sequence of categories 
Cui

 , and a meeting point d. Each user has the optimal route 
���������������⃗ORouteui  with respect to si , d and Cui

 . The meeting cost for 
U and d, denoted by L(U, d), is the maximum cost of the 
route among those optimal routes { ���������������⃗ORouteu1  , ���������������⃗ORouteu2  , 
...,���������������⃗ORouteun  }. The optimal routes for U are called the opti-
mal group routes (OGRoutes). Accordingly, L(U, d) is the 
cost of OGRoutes. The OGRoutes ending at d is denoted by 
OGRoutesd , and the ������������⃗ORoute for u ending at d is denoted by 
��������������⃗ORouteu

d
.

Continue with the Example 1 in Fig. 1. The route ( u1 , r2 , 
s3 , d4 ) with a cost of 11 is the optimal route for u1 , and the 
route ( u2 , g3 , s3 , d4 ) with a cost of 10 is the optimal route for 
user u2 . Therefore, the meeting cost is 11 with the maximum 
cost among these two optimal routes. Correspondingly, these 
two routes constitute the optimal group routes.

3.2 � Problem Formulation and Baseline Algorithm

In this section, we formally define the OSR-G query.
OSR-G query Given a group of users U, where each user 

ui corresponds to a starting position si and a sequence of 
categories Cui

 , and the group meeting POI category cd , the 
OSR-G query is a tuple (U, C_U , cd ), which aims to find the 
optimal meeting POI do ( do ∈ cd ) and the optimal route for 
each user such that the meeting cost L(U, do) is the mini-
mum, i.e., L(U, do) = min

d∈cd

L(U, d).

According to the definition of OSR-G query, the basic 
idea is to examine all POIs in cd to guarantee the optimality 
of an OSR-G without missing the optimal meeting POI. For 
each candidate meeting POI d, we invoke the existing OSR 

3  Original OSR query [23] does not have a destination point explic-
itly, thus we add d as the last query category for the original OSR 
query to fit our problem.
4  L( �⃗R) denotes the cost of the route �⃗R.
5  Such a route is also called a feasible route.
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algorithm (i.e., E-OSR6) to find the optimal route for each 
user. After examining all the candidate meeting POIs in cd , 
the solution with minimal cost is returned as the OSR-G 
result. This OSR-based (OSRB) algorithm, serves as a base-
line for comparison in our evaluation.

4 � Upper Bound Based Filtering Algorithm : 
CF

As shown in OSRB algorithm, it costs too much overhead 
to examine every POI in the meeting category. To address 
this shortcoming, a natural idea is to filter the unpromising 
meeting point candidates to reduce the search space. Accord-
ingly, we propose an upper bound based filtering algorithm, 
namely circle filtering (CF) algorithm.

The main idea of circle filtering is to utilize the circle 
property (which is introduced next) to do filtering. For the 
current examining meeting POI, every user takes a feasible 
route firstly to make the feasible group routes (FGRoutes), 
and every user takes the cost of FGRoutes as his radius 
which is an upper bound of the cost of OGRoutes to draw 
a circle. By computing the intersection area of each user’s 
circle, if one candidate meeting POI is located outside this 
intersection area, it can be filtered safely, as specified in 
Property 1 (the circle property). By narrowing the radius 
gradually, more unpromising meeting points can be filtered.

Property 1  Given an OSR-G query, a candidate meeting 
POI p, and the intersection area which is generated by each 
user’s circle, p can be filtered iff p is outside the intersec-
tion area.

Proof  Suppose the current radius is obtained from d and 
its length is L(FGRoutesd) and there is a meeting POI dout 
outside the intersection area of every user’s drawing circle.

We prove it by contradiction (suppose dout is the optimal 
meeting point). Since dout is outside the intersection area, 
there must exists a user u such that L(u, dout) > L(FGRoutesd) . 
By the definition of OGRoutes (see Definition5), we have 
L(OGRoutesdout ) ≥ L(�����������������⃗ORouteu

dout
) ≥ L(u, dout) > L(FGRoutesd) 

≥ L(OGRoutesd) . We have L(OGRoutesdout ) > L(OGRoutesd) . 
While dout is the optimal meeting point, thus L(OGRoutesdout ) 
≤ L(OGRoutesd) , which makes a contradiction. The proof 
completes. 	�  ◻

Figure 2 shows an example of illustrating Property1. 
Before meeting at a “bar”, user u1 has a visiting sequence 
(restaurant, supermarket) and user u2 has another visiting 
sequence (gas station, supermarket). If users u1 and u2 take 

d1 as the initial meeting point, u1 queries a feasible route ���⃗R1

=(u1,r1,s1,d1 ) with a cost of 14 while u2 queries a feasible 
route ���⃗R2 = (u2, g1, s2, d1) with a cost of 11. Then we have 
L(FGRoutesd1 )=14, and u1,u2 take a radius of 14 with his 
starting point as the center to draw his own circle respec-
tively ( u1 and u2 will draw 2 circles totally) and make an 
intersection of these two circles. We find that the destination 
point d4 is outside the intersection area. Since the network 
distance (the shortest path distance) from the starting point 
of u2 to d4 is larger than 14, d4 can be filtered safely.

While this circle filtering idea is simple but efficient for 
filtering the unpromising candidates, however, it still faces 
three issues in processing the OSR-G query. One is how to 
select a good initial meeting point to achieve the optimal 
filtering ability. The second one is how to calculate a feasible 
route ( or a smaller upper bound) for every user in the group 
efficiently. The last issue is how to narrow the filtering radius 
more faster to filter more unpromising meeting points.

With respect to the first issue, the initial meeting point dinitial 
in CF algorithm is selected by Equation 1. While for the 
second one, it is efficient to perform the greedy search by 
nearest neighbor query to get a feasible route. Assuming a 
user ui at a start point si who has a visiting sequence 
C = (c1, c2,… , cm) , the user ui obtains the feasible route 
�⃗R = (si, p

�
1
, p�

2
,… , p�

m
, d) where p′

1
 is the nearest neighbor in 

category c1 of si and p′
j
 is the nearest neighbor in category cj 

of p�
j−1

 ( 2 ≤ j ≤ m ). The cost of acquired FGRoutesdinitial is 
used as the initial filtering radius. We can try every POI in 
cd to get the minimum radius to filter the unpromising meet-
ing points by doing the same greedy search. Since the dif-
ference between those feasible routes returned by the greedy 
search is reaching at different meeting points, we use 

(1)dinitial = argmin
d

max
ui∈U,d∈cd

ShortestPathCost(ui, d)

Fig. 2   A road network with “supermarket”={s
1
 , s

2
 }, “gas sta-

tion”={g
1
} , “restaurant”={r

1
} and “bar”= { d

1
 , d

2
 , d

3
 , d

4
}

6  E-OSR is an OSR algorithm modified in [7].
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FGRoutesdinitial to retrieve the minimum radius among all 
FGRoutes to avoid the same nearest neighbor search.

To narrow the filtering radius more quickly when examin-
ing the remaining candidates, CF retrieves the optimal route 
for each user as OGRoutesd rather than executing greedy 
search to obtain the feasible route. If L(OGRoutesd) is less 
than the current filtering radius, we update the filtering 
radius .Otherwise, we repeat the above steps until there is no 
meeting point to be examined and the query processing ends.

The pseudo code of CF algorithm is show in Algo-
rithm 1. We show the running example in Fig. 2.Firstly, 
CF algorithm selects the initial meeting point d1 by 
Equation  1 and FGRoutesd1={(u1,r1,s1,d1),(u2,g1,s2,d1)} is 
obtained by greedy nearest neighbor search and radius 
is set to L(FGRoutesd1 )=14. d6 is filtered firstly since 
max{L(u1, d6), L(u2, d6)} = 16 > 14 . Then CF algorithm 
obtains a new radius which is acquired from FGRoutesd2 
among all feasible group routes and radius is updated to 
12. Similar to d6 , d5 is filtered because it is not located 
into the intersection area. In the next stage, the candi-
date meeting points are examined according to the cost 
of their feasible group routes in an ascending order. Thus 
d2 is examined firstly and OGRoutes is set to OGRoutesd2 . 
Again CF algorithm examines d1 and does nothing since 
L(OGRoutesd1 ) = 14 > 12 . Next, d3 is examined, OGRoutes 
and the current radius are updated which causes d4 to be 
filtered. Finally, there is no candidate meeting points to be 
examined, and CF algorithm returns the optimal solution.

5 � Lower Bound Based Pruning Algorithm: 
LBP‑SP

Although the proposed CF algorithm can filter many 
unpromising meeting POIs, it still takes much overhead on 
narrowing the filtering radius gradually. In contrast to the 
upper bound based filtering idea, we propose a lower bound 
based pruning (LBP) algorithm to process OSR-G query.

If we sort the POIs in cd in an ascending order accord-
ing to the lower bound of the cost of the corresponding 
OGRoutes, the optimal meeting POI will be found more 
quickly by the early termination using its lower bound. Once 
having the current optimal meeting POI, if the lower bound 
of the OGRoutes is not less than the current meeting cost, 
there is no need to examine the remaining POIs. By this way, 
a lot of unpromising POIs in cd can be pruned and the early 
termination is also achieved. Thus, motivated by this idea, 
the key issue is how to compute a tight lower bound of the 
OGRoutes to design a LBP algorithm.

For an user u in the group U, let lb(u, d) be the lower 
bound of the cost of ORoute for u. It is easy to deduce that 
for a group U, lb(U, d) = max

u∈U
 lb(u, d) is also the lower 

bound of the cost of the OGRoutes w.r.t d, which is shown 
in Lemma 1.

Lemma 1  If lb(u, d) is a lower bound of the cost of user u’s 
��������������⃗ORouteu

d
 , then lb(U, d) = max

u∈U
 lb(u, d) is a lower bound of 

the cost of OGRoutesd.

Proof  If  lb(u ,   d)  is  a lower bound, then we 
h a v e  lb(u, d) ≤ L(��������������⃗ORouteu

d
)  (  ��������������⃗ORouteu

d
 i s  a n 

ORoute ending at  d  for  user  u) .  Supposing 
L(
����������������⃗
ORoute

ux1
d
) ≤ L(

����������������⃗
ORoute

ux2
d
) ≤ ... ≤ L(

����������������⃗
ORoute

uxn
d
) , then we 

have L(U, d) = L(
����������������⃗
ORoute

uxn
d
) . We prove lb(U, d) ≤ L(U, d) 

by the following two cases.

Case 1  If lb(uxn , d) ≥ lb(uxi , d),∀uxi ∈ U  , obviously we 
have lb(U, d)=lb(uxn , d) ≤ L( ����������������⃗ORoute

uxn
d
) ≤ L(U, d). There-

fore, lb(U, d) ≤ L(U, d).

Case 2  Otherwise, ∃uxj ,∀uxi ∈ U, lb(uxj , d) ≥ lb(uxi , d) . Then 
we have lb(U, d)=lb(uxj , d) ≤ L(����������������⃗ORoute

uxj

d
) ≤ L( ����������������⃗ORoute

uxn
d
) ≤ 

L(U, d). Therefore, lb(U, d) ≤ L(U, d) holds.

Combining case 1 and 2 above, the proof completes. 	
� ◻

According to Lemma 1, our goal is transferred to design 
a tight lower bound lb(u, d) of the cost of ORoute for u. For 
the lower bound of the cost of ORoute for u, one direct idea 
is to utilize the cost of the shortest path from user u’s start-
ing point to the meeting point d as the lower bound lb(u, d), 
which is called SP lower bound. Based on this SP lower 
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bound, we propose a Shortest Path based LBP algorithm, 
namely LBP-SP.

Algorithm 2 shows the pseudo-code of the framework 
of LBP algorithm. Given a group of users and the meeting 
category cd , LBP first computes lb(U, d) for all d in cd to 
generate a sorted list Lists (line 2). Next, it examines the 
candidate meeting POIs in Lists one by one (lines 3-10). 
If lb(U, d) ≥ L(OGRoutes) , the examination of the remain-
ing canditate POIs terminates (lines 4-5). Otherwise, LBP 
performs the OSR algorithm (i.e., E-OSR) to retrieve the 
optimal route for each user and these users’ routes form the 
OGRoutes (lines 6-8). Moreover, it checks whether the cost 
of new tempOGRoutes is smaller than the current OGRoutes. 
If it is, OGRoutes is updated as tempOGRoutes (lines 9-10). 
Finally, the algorithm returns the OSR-G result (line 11).

An example of illustrating LBP-SP algorithm is recalled 
in Fig.1. Firstly, LBP-SP calculates lb(U, d) for all d in cd 
and gets lb(U, d1) = 2, lb(U, d2) = 3, lb(U, d3) = 9, lb(U, d4) = 
10, lb(U, d5) = 13, lb(U, d6) = 16. Lists = ( d1 , d2 , d3 , d4 , d5 , 
d6 ) is obtained by sorting lb(U, d) . Then the POIs in sList 
are examined sequentially. When computing the OGRoutes 
w.r.t d1 , the ������������⃗ORoute of user u1 is returned as (u1, r1, s1, d1) 
with a cost of 14 and the ������������⃗ORoute of user u2 is returned as 
(u2, g1, s2, d1) with a cost of 11. Thus, L(U, d1) = 14 and the 
current optimal solution is OGRoutesd1 . After that, LBP-
SP examines d2 for lb(U, d2) < L(U, d1) and computes the 
OGRoutes for d2 . The ������������⃗ORoute of user u1 is (u1, r1, s1, d2) with 
a cost of 12 and the ������������⃗ORoute of user u2 is (u2, g1, s2, d2) with a 
cost of 12. Since L(U, d2) = 12 < L(U, d1) , the current best 
solution is updated to OGRoutesd2 . Following the order in 
Lists , d3 is examined, the ������������⃗ORoute of user u1 is (u1, r2, s3, d3) 
with a cost of 10 and the ������������⃗ORoute of user u2 is (u2, g3, s3, d3) 
with a cost of 9. The current optimal solution is updated to 
OGRouted3 since L(U, d3) = 10 < 12 . Finally, LBP-SP com-
pares lb(U, d4) and L(U, d3) before computing OGRoutesd4 . 

Due to lb(U, d4) = 10 ≥ L(U, d3) , d4 and the rest points ( d5 
and d6 ) in Lists can not be the optimal meeting point and the 
algorithm terminates and returns OGRouted3 as the OSR-G 
result.

6 � Approximate Points Selection: 
An Approximate Algorithm

Although the proposed LBP-SP algorithm can prune more 
unpromising candidate POIs than CF, it still requires a lot of 
time to do the OSR queries for the candidate meeting POIs 
which is inefficient for large datasets. The main issue is that 
the main cost of LBP algorithm heavily depends on multiple 
times’ performing the existing OSR (i.e., E-OSR) algorithm. 
Inspired by the minimum distance (namely MD) algorithm 
[14] for approximately addressing the TPQ query, which can 
be generalized to OSR, we develop APS algorithm with �
-approximate (the approximate ratio is not greater than � , see 
Definition 6 introduced next) solution for OSR-G problem 
by utilizing MD to replace E-OSR.

We first define the �-approximate OSR-G problem as 
follows.

Definition 6  (�-approximate OSR-G problem) Given an 
OSR-G query Q and a scalar � where 𝜃 > 1 , suppose the cost 
of the optimal solution Sopt for Q is L(Sopt) . The �-approxi-
mate OSR-G problem aims to find an approximate solution 
Sappr such that � ≥

L(Sappr)

L(Sopt)
 , where L(Sappr) is the cost of Sappr 

and L(Sappr)
L(Sopt)

 is called the approximate ratio of Sappr.

Then we recall the MD algorithm to approximately pro-
cess the OSR query. Given an OSR query where the user 
starts from q, the destination is d and a query sequence 
C = {c1, c2,… , cm} . For every category ci ∈ C , MD selects 
a point pi such that L(q, pi) + L(pi, d) is minimum among all 
POIs in the category ci . Correspondingly, one POI in each 
category ci is selected to form a feasible route �⃗R=(q,p1,p2
,...,pm,d). Since MD provides a (m + 1)-approximate solution 
where m is the size of the query category, applying the MD 
algorithm on the OSR query is also with an approximation 
ratio not greater than (m + 1).

For an OSR-G query, directly applying MD for the OSR 
query by all users in U results in a large approximation ratio. 
To make a trade-off between the approximation ratio and 
time, a natural idea is that when examining a candidate meet-
ing POI, only some users in U perform the exact OSR que-
ries and the rest of users perform an approximate OSR algo-
rithm such as MD algorithm. We define the parameter � as 
the percentage of users in U who perform exact OSR que-
ries. Notice that the larger � is, the slower the algorithm 
becomes and the smaller the approximation ratio is. In 
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addition, in order to early terminate the algorithm and not to 
lose a guaranteed approximation ratio bound, we define a 
parameter � as a termination parameter for APS algorithm 
where 1 < 𝜆 ≤ 𝜃 . � is greater than 1, which provides a loose 
termination condition for examining a candidate meeting 
point. Notice that the larger the � is, the faster the algorithm 
finds a solution with a larger approximation ratio. In order 
to assure a good approximation ratio, we restrict � not to be 
greater than � . Following the examination order sorted by 
lb(U, d), we check whether the cost of current solution is 
greater than or equal to � times of the cost of the lower 
bound (i.e., lb(U, d)) of OGRoutesd . If it is, the examination 
of the remaining POIs in Lists is terminated. By Lemma 2, 
we known that APS algorithm offers an �-approximate solu-
tion for an OSR-G query, where �= max

Cui
∈C_U

 {|Cui
|} + 1 . The 

pseudo-code of APS algorithm is shown in algorithm 3.

Lemma 2  APS algorithm offers an �-approximate solution 
for an OSR-G query.

Proof  Let OGRoutesd denote the OGRoutes ending at d. 
Then, FGRoutesAPS

d
 denotes the FGRoutes ending at d found 

by APS algorithm and L(OSR-G) denotes the cost of exact 
solution.

In order to prove L(FGRoutesAPS
d

) ≤ � × L(OSR-G) , we 
first prove that L(FGRoutesAPS

d
) ≤ � × L(OGRoutesd) . When 

examining a candidate meeting POI d, assume users u1
,u2,...,uy (y is determined by � where y = ⌊� × �U�⌋ ) do 
exact OSR queries by E-OSR algorithm while other users 
uy+1, uy+2,… , un perform an approximate OSR algorithm 
using MD algorithm. Let the query route of i-th user be 
����⃗R
ui
d

 and the corresponding ORoute ending at d denote 

���������������⃗ORoute
ui
d

 . If L( ����⃗R
ux
d
) (1 ≤ x ≤ y ) is maximum among all query 

routes, then we have L( ����⃗R
ux
d
) = L(���������������⃗ORoute

ux
d
) ≤ L(OGRoutesd) 

≤ � × L(OGRoutesd) . Otherwise, suppose L( ����⃗Ruz
d
) is the 

maximum among all query routes (y < z ≤ n). We have 
L( ����⃗R

uz
d
) ≤ (|Cuz

| + 1) × L(���������������⃗ORoute
uz
d
)7 ≤ � × L(���������������⃗ORoute

uz
d
) ≤ 

� × L(OGRoutesd) . Thus, we have L(FGRoutesAPS
d

) ≤ � × 
L(OGRoutesd).

Next, we prove L(FGRoutesAPS
d

) ≤ � × L(OSR-G) . Before 
examining a candidate meeting POI d′

i
 in the sorted list Lists 

(  Lists={d
�

1
,d′

2
, . . . ,d�

�
} ) ,  if  we f ind � × lb(U, d

�

i
) ≥ 

L(FGRoutesAPS
d
�

x

) , we have found a FGRoutes FGRoutesAPS
d
′

x

 

(1 ≤ x < i) and L(FGRoutesAPS
d
�

x

) is minimum among current 

examined FGRoutes such that L(FGRoutesAPS
d
�

x

) ≤ � × 

L(OSR-G) . If the optimal meeting POI is d′

k
 (1 ≤ k < i), we 

have L(FGRoutesAPS
d
�

x

) ≤ L(FGRoutesAPS
d
�

k

) ≤ � × L(OGRoutesd�
k
) 

≤ � × L(OSR-G) . Otherwise, supposing the optimal meeting 
POI is d′

j
 (i ≤ j ≤ � ), then L(FGRoutesAPS

d
�

x

) ≤ � × lb(U, d�
i
) ≤ � 

× lb(U, d�
j
) ≤ � × L(OSR-G) ≤ � × L(OSR-G) . As a result, we 

find an �-approximate solution before examining d′
i
.

In the worst case, all POIs in the sorted list Lists are exam-
ined, we still have a �-approximate solution. Supposing d′

x
 

(1 ≤ x ≤ � ) is the optimal meeting POI found by APS algo-
rithm and the optimal meeting POI is d′

y
 (1 ≤ y ≤ � ), we have 

L(FGRoutesAPS
d
�

x

) ≤ L(FGRoutesAPS
d
�

y

) ≤ � × L(OGRoutesd�
y
) ≤ � 

× L(OSR-G) . 	�  ◻

6.1 � Selection of � and �

Since the approximate OSR-G algorithm uses parameters 
� and � , selecting the appropriate values of � and � for a 
network dataset is important because larger � can lead to 
faster termination of examination with higher approximate 
ratio while larger � has lower approximate ratio with more 
time for the approximate algorithm to run.

So some trade-offs must be made in the selection of � and 
� . However, choosing the values of � and � is empirical and 
different people have different requirements of between the 
query time and the query quality. In general, we have two 
ways of selecting � and � . For a specific network, we should 
do sufficient OSR-G queries to decide the values of which 
values should be set in terms of the network size. One way is 
selecting � first. Set � to 1.0 and vary different � values and 
choose the � in terms of the time and the approximate ratio. 
If the query time is more concerned, select the value where 
the time curve tends to converge with acceptable approxi-
mate ratio. Or the query quality is more cared, select the 

7  It is deduced by the approximation ratio of MD algorithm.



188	 B. Chen et al.

1 3

value where the approximate ratio curve tends to converge 
with acceptable query time. After � is set, fix the � and vary 
different � values and select the appropriate � which satisfies 
the requirements in the similar way. Another way is select-
ing � first. Set � to 1.0 and vary different � s and select the 
value according to the query time and query quality prefer-
ence. After � is set, similar process can be done to select the 
appropriate value of �.

7 � Complexity Analysis

Here we show the time complexity analysis of our proposed 
OSR-G algorithms.

Let |U| be the number of the users, |cd| denote the number 
of POIs which is in meeting category cd , and |V| be the num-
ber of vertices in the road network. Since OSR-G algorithms 
utilize OSR algorithm, we use O(OSR) to denote the time 
complexity of the E-OSR algorithm.

For OSRB algorithm, every user in the group U performs 
an OSR query in every candidate meeting POI in cd . There-
fore, the time complexity of OSRB is O(|U||cd|O(OSR)) . For 
LBP-SP algorithm, suppose the pruning rate is rSP . Then it is 
easy to obtain the time complexity of the LBP-SP algorithm 
is O((1 − rSP)|U||cd|O(OSR)) without considering the cost 
of computing the sorted list of the lower bounds.

Hence, pruning rate is a key factor contributing to the 
actual computational cost, which is to be evaluated experi-
mentally in the next section.

For CF algorithm, assume the pruning rate is rCF . CF 
algorithm firstly performs |U| times shortest path algorithm 
for latter computation of L(U, d) which takes O(|U||V|log|V|) 
time complexity. Selecting the initial meeting point takes 
O(cd) time. The first time of performing greedy search 
requires O(

∑�U�
i=1

(�Cui
� + 1)O(Greedy)) (O(Greedy) is 

the time complexity of the greedy neighbor search), 
while the second time of performing greedy search takes 
O(|U||cd|O(Greedy)) . The last stage of performing OSR 
algorithm takes ( 1 − rCF ) × |U||cd|O(OSR) . The filtering 
process of examining candidate POIs in cd takes O(rCF|cd|2) . 
In summary, the time complexity of CF algorithm is 
O(|U||V|log|V|) + O(cd) + O(

∑�U�
i=1

(�Cui
� + 1))O(Greedy) + 

O(|U||cd|)O(Greedy) + ( 1 − rCF)|U||cd|O(OSR) + rCF|cd|2.
For APS algorithm, we denote O(AOSRAPS) as 

the time complexity of the approximate OSR algo-
rithm used by APS algorithm and assume the prun-
ing rate is rAPS8 and the � parameter used is 
�APS  , the time complexity of APS algorithm is 
(1 − rAPS)|U||cd|(�APS × O(OSR) + (1 − �APS) × O(AOSRAPS))

.

8 � Experiments

In this section, we investigate the performance evaluation 
of our proposed algorithms. All the algorithms are imple-
mented in C++ and the experiments are conducted on a 
2.10 GHz Intel Xreon CPU with 128 GB RAM, using both 
two real (SNW and NW) and three synthetic datasets (DE, 
VT and ME). These five network datasets are obtained from 
[1] listed in Table 1, where the POIs in real datasets are cap-
tured from OpenStreetMap.9 Since DE, VT and ME datasets 
do not contain the POI information, we generate the POIs of 
8 categories randomly with the same density 0.01.

We conduct the performance evaluation in two aspects: 
(1) the efficiency (including the running time and pruning 
rate) of OSR-G algorithms—we compare the running time 
and pruning rate10 of the proposed OSR-G algorithms under 
various parameters ); and (2) the effectiveness of the approx-
imate OSR-G algorithm—we compare the approximation 
ratio of the approximate algorithm under various parameters. 
The parameters are summarized in Table 2, numbers in bold 
are the default settings except the |cd| parameter is done sep-
arately. Query user size |U| denotes the number of users in an 
OSR-G query. Query category size |C| denotes the number 
of categories for every user in an OSR-G query (this param-
eter of the approximate algorithm is 8). Tested algorithms 
include OSRB, CF, LBP-SP and APS. We randomly gen-
erate several groups of OSR-G queries by the parameters 
where each group of queries consists of 100 OSR-G que-
ries (20 queries for NW dataset). In each experiment, we 

Table 1   Road network datasets Network Vertices Edges

DE 48,812 119,004
VT 95,672 209,288
ME 187,315 412,352
SNW 158,181 183,865
NW 1,089,933 2,545,844

Table 2   Experiment settings

Parameter Values

|U| 4, 5, 6, 7, 8
|C| 3, 4, 5, 6, 7, 8
� 1.5, 2.0, 2.5, 3.0, 3.5, 4.0
� 0%, 12.5% ,25%, 50%, 100%
|c

d
| 10, 40, 200, 1000, 5000

8  The � parameter used is �
APS

 not greater than � , it affects r
APS

.

9  http://www.opens​treet​map.org.
10  Pruning rate is the ratio of meeting points that are not necessary to 
be examined.

http://www.openstreetmap.org
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test one parameter at a time (other parameters are fixed at 
their default values). The reported experimental results are 
obtained by averaging the processing time of queries, prun-
ing rates and approximation ratio. For space reasons, mostly 
we show only two figures per experiment.

8.1 � Efficiency: Running Time

In this section, we evaluate the running time of the proposed 
OSR-G algorithms under various parameters.

Running time versus different datasets In this experiment, 
we first compare the running time of all the OSR-G algo-
rithms on all datasets. Figure 3 shows that CF and LBP-SP 
algorithms outperform the OSRB algorithm and the approxi-
mate algorithm APS runs faster than all exact OSR-G algo-
rithms. That is because CF can exploit the circle property 
to do filtering and LBP-SP can utilize the lower bound to 
prune the unpromising meeting points while OSRB needs 
to examine all the candidate meeting points to assure the 
optimality. LBP-SP outperforms CF mainly due to the higher 
pruning rate. As expected, APS is much more efficient than 
the exact algorithms mainly because APS takes larger � than 
the exact algorithms (we can equally think the � in the exact 
algorithms is set 1, while � in approximate algorithms is set 
3) which makes it have stronger pruning rate than the exact 
algorithms. Since the baseline algorithm run relatively too 
long, we do not report the corresponding results in the fol-
lowing experimental figures.

Running time versus query user size |U|. We investigate 
the running time of the OSR-G algorithms by varying dif-
ferent query user sizes in Fig. 4. As shown in Fig. 4a on 
ME dataset, the query time of all the OSR-G algorithms 
increases as the user size of OSR-G queries increases. This 
is because the larger the query user size is, the more query 
overhead will be spent on executing OSR algorithms or 
approximate OSR algorithms. Similar result can be found 
in SNW dataset from Fig. 4b.

Running time versus query category size |C|. Figure 5 
shows the running time with respect to the query category 
size. The running time of OSR-G algorithms increases as 
the query category size increases. For VT dataset in Fig. 5a, 
when the query category size increases, the query sequence 
of a user becomes larger. This leads to increasing the time 
of executing an OSR query or an approximate OSR query 
for every user in the group. Therefore, the larger query cat-
egory size costs more processing time of the OSR-G query. 
Figure 5b shows the similar results.

8.2 � Efficiency: Pruning Rate

In this section, we evaluate another aspect about the effi-
ciency: the pruning rate of the proposed algorithms under 
various parameters.

Pruning rate versus query user size |U|. We evaluate the 
pruning rate by varying query user size in Fig. 6. Figure 6b 
shows the pruning rates of all OSR-G algorithms remain 
relatively stable (no more than 1%) as the query user size 
increases. Recall that the meeting cost is determined by 
maximum cost of the last meeting user no matter how many 
users take part in an OSR-G query. Thus the pruning rate 
does not depend greatly on the query user size when the 
lower bound is tight enough. Note that the pruning rate of 
LBP-SP is higher than that of CF mainly for LBP-SP has 
good estimation ability which is faster to find the minimum 
’radius’ comparing to CF. Similar results can be seen from 
Fig. 6a.
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Pruning rate versus � and � . Figure 7a shows the effect 
of varying � on the pruning rates of the APS algorithm. In 
Fig. 7a, the pruning rate of APS increases dramatically as 
� increases. This is because the larger � is, the higher the 
pruning rate APS has. Similarly, we evaluate the pruning 
rate of APS by varying � in Fig. 7b. The pruning rate of 
APS increases only about 2% by varying � from 0% to 100% 
which is less significant comparing to increasing �.

8.3 � Effectiveness Evaluation

In this section, we evaluate the effectiveness of the approxi-
mate algorithm by varying � and �.

Approximation ratio versus � . We evaluate the effect of 
varying � on the approximation ratios of APS in Fig. 8a, the 
approximate ratio of APS increases greatly as � increases. 
Since the pruning rate of APS increases greatly as � increases, 

APS examines less points in the meeting category and returns 
an approximate solution more quickly with the increasing of 
the approximate ratio.

Approximation ratio versus � . Then we evaluate the effect 
of varying � on the approximation ratios of APS algorithm. 
As shown in Fig. 8b, the approximation ratios of APS algo-
rithm decreases as � increases. The approximate ratio of APS 
decreases greatly and converges to nearly 1.0 on SNW data-
set when � is 100%. Though the approximate ratio is mainly 
determined by the part of users who executing approximate 
OSR algorithms, as � increases, the percentage of approximate 
OSRs decreases which results in better approximate solutions.

8.4 � Evaluation of Effect on |cd|

Since the size of meeting category (i.e., |cd| ) is a key fac-
tor for OSR-G queries, we evaluate the effect (i.e., query 
time and pruning rate) corresponding to the size of cd . As 
shown in Fig. 9a, the query time of the exact algorithms is 
increasing as |cd| increases because they require to examine 
more candidate meeting POIs when increasing |cd| . While 
for the approximate algorithm APS, the query time starts 
to decrease when |cd| becomes larger. Because the prun-
ing rate of the approximate algorithms is quite high and is 
increasing, the number of actual examined candidate meet-
ing points is decreasing. The query time of APS algorithm 
increases slightly when |cd| is 5000 because the number of 
actual examined candidate meeting points increases (here 
the pruning rate of APS algorithm tends to converge to a 
point. That is, the increase of |cd| is faster than that of the 
pruning rate). In Fig. 9b, the pruning rates of all algorithms 
are increasing because the larger the size of the meeting 
POI category becomes, the more unpromising points can be 
pruned by CF, LBP-SP and APS algorithms.

9 � Conclusion

In this paper, we formulate a new query, namely, optimal 
sequenced route for group meetup (OSR-G) query, for find-
ing the optimal meeting point such that all users meet as 

Fig. 6   Pruning rate versus |U|
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soon as possible after each user visits a number of POIs. 
We carry out a systematic study on the OSR-G query. First, 
we propose the OSRB algorithm as a baseline to tackle 
OSR-G problem. To address the shortcomings of OSRB, 
we propose an upper bound based filtering algorithm (i.e., 
CF algorithm) which utilizes the circle property to filter 
unpromising meeting POIs. In contrast, we design a lower 
bound based pruning (LBP) algorithm, LBP-SP, which 
exploits the shortest path lower bound to prune unqualified 
meeting points to have efficient query processing. Moreover, 
we prove that any lower bound of an OSR can be plugged 
in the LBP algorithms which makes it serve as a general 
framework to design different algorithms when using dif-
ferent lower bounds. Furthermore, an approximate OSR-G 
algorithm, namely APS, is developed to accelerate OSR-G 
queries in large network datasets. Finally, a comprehensive 
performance evaluation is conducted to validate the pro-
posed ideas and demonstrate the efficiency and effectiveness 
of the proposed algorithms.

This work may lead towards several new directions for 
future work, e.g., top k OSR-G problem and more tighter 
lower bounds.
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