
Vol:.(1234567890)

Data Science and Engineering (2021) 6:86–101
https://doi.org/10.1007/s41019-020-00149-7

1 3

A Survey on Advancing the DBMS Query Optimizer: Cardinality
Estimation, Cost Model, and Plan Enumeration

Hai Lan1 · Zhifeng Bao1 · Yuwei Peng2

Received: 3 July 2020 / Revised: 21 November 2020 / Accepted: 26 November 2020 / Published online: 15 January 2021
© The Author(s) 2021

Abstract
Query optimizer is at the heart of the database systems. Cost-based optimizer studied in this paper is adopted in almost all
current database systems. A cost-based optimizer introduces a plan enumeration algorithm to find a (sub)plan, and then
uses a cost model to obtain the cost of that plan, and selects the plan with the lowest cost. In the cost model, cardinality, the
number of tuples through an operator, plays a crucial role. Due to the inaccuracy in cardinality estimation, errors in cost
model, and the huge plan space, the optimizer cannot find the optimal execution plan for a complex query in a reasonable
time. In this paper, we first deeply study the causes behind the limitations above. Next, we review the techniques used to
improve the quality of the three key components in the cost-based optimizer, cardinality estimation, cost model, and plan
enumeration. We also provide our insights on the future directions for each of the above aspects.

Keywords Query optimizer · Cardinality estimation · Cost model · Plan enumeration

1 Introduction

Query optimizer is at the heart of relational database man-
agement systems (RDBMSes) and some big data process
engines, e.g., SCOPE [7]. Given a query written in a declara-
tive language (e.g., SQL), the optimizer finds the most effi-
cient execution plan (also called physical plan) and feeds it
to the executor. Thus, most of the time, the users only think
over how to transform their requirements to a valid query
without the need to analyze how to run the query efficiently.
Almost all systems adopt a cost-based optimizer based on
the architecture of System R [79] or Volcano/Cascades [26,
27].

Figure 1 illustrates the three most important components
in a cost-based optimizer: cardinality estimation (CE), cost
model (CM), and plan enumeration (PE). CE uses statistics

of data and some assumptions about data distribution, col-
umn correlation, and join relationship to get the number of
tuples generated by an intermediate operator,1 which is also
crucial for other search problems, e.g., [101, 102]. CM can
be regarded as a complex function that maps the current
state of database and estimated cardinalities to the cost of
executing a (sub)plan. PE is an algorithm to explore the
space of semantically equivalent join orders and find the
optimal orders with minimal cost. There are two principal
approaches to find an optimal join order: bottom-up join
enumeration via dynamic programming and top-down join
enumeration through memorization.

Theoretically, provided that the estimated cardinality and
cost are accurate, and plan enumeration component can effi-
ciently walk through the huge search space, this architecture
can obtain the optimal execution plan in a reasonable time.
However, it fails in reality. Despite decades of work, cost-
based query optimizers still make mistakes on “difficult”
queries due to the error in CE, the difficulty in building
an accurate CM, and the pain in finding the optimal join
orders (PE) for complex queries. The details are presented
in Sect. 2, i.e., why the existing optimizer is still far from
satisfaction.

 * Yuwei Peng
 ywpeng@whu.edu.cn

 Hai Lan
 hai.lan@rmit.edu.au

 Zhifeng Bao
 zhifeng.bao@rmit.edu.au

1 RMIT University, Melbourne, Australia
2 Wuhan University, Wuhan, China

1 In some context, the cardinality in the database area refers to dis-
tinct count [34].

http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-020-00149-7&domain=pdf

87A Survey on Advancing the DBMS Query Optimizer: Cardinality Estimation, Cost Model, and Plan…

1 3

There are lots of research studies proposed to improve the
capability of the optimizer. In this paper, we present a survey
on them. Specifically, we review the publications which are
proposed to improve the capabilities of the three key compo-
nents in the optimizer, i.e., CE, CM, PE.

This paper makes the following contributions:

(1) We summarize the reasons why the CE, CM, and PE
do not perform well (Sect. 2).

(2) We review the studies proposed to estimate cardinal-
ity more accurately. According to the techniques used,
we categorize them into synopsis-based methods,
sampling-based methods, and learning-based methods
(Sect. 3).

(3) We review the work on improving the cost model. We
classify them into three groups: improvement of the
existing cost model, cost model alternatives, and per-
formance prediction for a single query (Sect. 4).

(4) We review the techniques used in plan enumeration and
study the non-learning methods used to handle large
queries. Besides, we review recent proposed methods,
which adopt reinforcement learning to select the join
order (Sect. 5).

(5) In Sects. 3–5, we present our insights on the future
directions, respectively.

There are two related surveys. In Chaudhuri [8] reviews the
work with non-learning methods on query optimizer. In the
last two decades, many methods are proposed to improve the
capability of the optimizer. It is necessary to review the new
work. Recently, Zhou et al. [107] investigate how AI is intro-
duced in the different parts of DBMS, such as monitoring,
tuning, and optimizer. In this paper, we focus on the query
optimizer and give a comprehensive survey on the three key
components of the optimizer. We summarize the learning-
based and non-learning methods at the same time, review
these work in details, and present possible future directions
for each of them.

2 Why Key Components in Optimizer are
Still Not Accurate?

In this section, we summarize the reasons why the cardi-
nality estimation, cost model, and plan enumeration do
not perform well, respectively. The studies reviewed in
this paper try to improve the quality of the optimizer by
handling these shortages.

2.1 Cardinality Estimation

Cardinality estimation is the ability to estimate the tuples
generated by an operator and is used in the cost model to
calculate the cost of that operator. Lohman [61] points out
that the cost model can introduce errors of at most 30%,
while the cardinality estimation can easily introduce errors
of many orders of magnitude. Leis et al. [55] experimen-
tally revisit the components, CE, CM, and PE in the clas-
sical optimizers with complex workloads. They focus on
the quality of the physical plan on multi-join queries and
get the same conclusion with Lohman.

The errors in cardinality estimation are mainly intro-
duced in three cases:

(1) Error in single table with predications Database sys-
tems usually take histograms as the approximate distri-
bution of data. Histograms are smaller than the origi-
nal data. Thus, it cannot represent the true distribution
entirely and some assumptions (e.g., uniformity on a
single attribute, independence assumption among dif-
ferent attributes) are proposed. When those assump-
tions are not hold, estimation errors occur, leading to
sub-optimal plans. The correlation among attributes in
a table is not unusual. Multi-histograms have been pro-
posed. However, it suffers from a large storage size.

Fig. 1 Query optimizer archi-
tecture. IS, HJ, NL, and TS
refer to index scan, hash join,
nestloop join, and table scan

88 H. Lan et al.

1 3

(2) Error in multi-join queries Correlations possibly exist
in columns from different tables. However, there is
no efficient way to get synopses between two or more
tables. Inclusion principle has been introduced for this
case. The cardinality of a join operator is calculated
using the inclusion principle with cardinalities of its
children. It has large errors when the assumption is not
held. Besides, for a complex query with multiple tables,
the estimation errors can propagate and amplify from
the leaves to root of the plan. The optimizers of com-
mercial and open-source database systems still struggle
in cardinality estimation for mult-join queries [55].

(3) Error in user defined function Most of database systems
support the user-defined function (UDF). When a UDF
exists in the condition, there is no general method to
estimate how many tuples satisfying it [8].

2.2 Cost Model

Cost-based optimizers use a cost model to generate the esti-
mate of cost for a (sub)query. The cost of (sub)plan is the
sum of costs of all operators in it.

The cost of an operator depends on the hardware where
the database is deployed, the operator’s implementation, the
number of tuples processed by the operator, and the cur-
rent database state (e.g., data in the buffer, concurrent que-
ries) [64]. Thus, a large number of magic numbers should
be determined when combining all factors, and errors in car-
dinality estimation also affect the quality of the cost model.
Furthermore, when the cost-based optimizer is deployed in
a distributed or parallel database, the cloud environment,
or the cross-platform query engines, the complexity of cost
model is increasing dramatically. Moreover, even with the
true cardinality, the cost estimation of a query is not linear
to the running time, which may lead to a suboptimal execu-
tion plan [45, 81].

2.3 Plan Enumeration

Plan enumeration algorithm is used to find the optimal join
order from the space of semantically equivalent join orders
such that the query cost is minimized. It has been proven to
be an NP-hard problem [41]. Exhaustive query plan enumer-
ation is a prohibitive task for large databases with multi-join
queries. Thus, it is crucial to explore the right search space
which should consist of the optimal join orders or approxi-
mately optimal join orders and design an efficient enumera-
tion algorithm. The join trees in the search space could be
zigzag trees, left-deep trees, right-deep trees, and bushy trees
or the subset of them. Different systems consider different
forms of join tree. There are three enumeration algorithms
in traditional database systems: (1) bottom up join enumera-
tion via dynamic programming (DP) (e.g., System R [79]),

(2) top-down join enumeration through memorization (e.g.,
Volcano/Cascades [26, 27]), and (3) randomized algorithms
(e.g., genetic algorithm in PostgreSQL [77] with numerous
tables joining).

Plan enumeration suffers from three limitations: (1) the
errors in cardinality estimation and cost model, (2) the rules
used to prune the search space, and (3) dealing with the
queries with large number of tables. When a query touches a
large number of tables, optimizers have to sacrifice optimal-
ity and employ heuristics to keep optimization time reason-
able, like genetic algorithm in PostgreSQL, greedy method
in DB2, which usually generates poor plans.

We should notice the errors in cardinality will propa-
gate to the cost model and lead to suboptimal join order.
Eliminating or reducing the errors in cardinality is the first
step to build a capable optimizer as Lohman [61] says “The
root of all evil, the Achilles Heel of query optimization, is
the estimation of the size of intermediate results, known as
cardinalities”.

In the following three sections, we summarize the
research efforts made to handle limitations in CE, CM, and
PE, i.e., how to make the query optimizer good.

3 Cardinality Estimation

At present, there are three major strategies for cardinality
estimation as shown in Fig. 2. We only list some representa-
tive work for each category. Every method tries to approxi-
mate the distribution of data well with less storage. Some
proposed methods combine different techniques, e.g., [91,
92].

3.1 Synopsis‑Based Methods

Synopsis-based methods introduce new data structures to
record the statistics information. Histogram and sketch are
the widely adopted forms. A survey on synopses has been
proposed in 2012 [10], which focuses on distinguishing
aspects of synopses that are pertinent to approximate query
processing (AQP).

3.1.1 Histogram

There are two histogram types: 1-dimensional and d-dimen-
sional histograms, where d ≥ 2 . d-dimensional histograms
can capture the correlation between different attributes.

A 1-dimensional histogram on attribute a is constructed
by partitioning the sorted tuples into B(≥ 1) mutually dis-
joint subsets, called buckets and approximates the frequen-
cies and values in each bucket in some common fashion,
e.g., uniform distribution and continuous values. A d-dimen-
sional histogram on an attribute group A is constructed by

89A Survey on Advancing the DBMS Query Optimizer: Cardinality Estimation, Cost Model, and Plan…

1 3

partitioning the joint data distribution of A. Because there
is no order between different attributes, the partition rule
needs to be more intricate. Ioannidis [43] present a com-
prehensive survey on histograms following the classifica-
tion method in [76]. Gunopulos et al. [29] also propose a
survey in 2003, which focuses on the work used to estimate
the selectivity over multiple attributes. They summarize the
multi-dimensional histograms and kernel density estimators.
After 2003, the work in histograms can be divided into three
categories: (1) fast algorithm for histogram construction [1,
28, 32, 33, 42]; (2) new partition methods to divide the data
into different buckets to achieve better accuracy [14, 58, 88];
(3) histogram construction based on query feedback [47, 57,
83]. Query feedback methods are also summarized in [10]
(Section 3.5.1.2) and readers can refer to it for details.

Guha et al. [28] analyze the previous algorithm, VODP
[44] and find some calculations on the minimal sum-
of-squared-errors (SSE) can be reduced. They design
an efficient algorithm AHistL-Δ with time complexity
O(n + B3(lg n + �

−2)) while VODP takes O(n2B) , where n
is the domain size, B is the number of buckets, and � is a
precision parameter. Halim et al. [32, 33] propose GDY, a
fast histogram construction algorithm based on greedy local
search. GDY generates good sample boundaries, which
then are used to construct B final partitions optimally using
VODP. This study compares GDY variants with AHistL-Δ
[28] in minimizing the total errors of all the buckets and
shows its superiority in resolving the efficiency-quality
trade-off. Instead of scanning the whole dataset [28, 42]
design a greedy algorithm to construct the histogram on

the random samples from dataset with time complexity
O((B5∕�8) log2 n) and sample complexity O((B∕�)2 log n) .
[1] study the same problem with [42] and propose a merg-
ing algorithm with time complexity O(1∕�2) . Methods in
[1, 28, 42] can be extended to approximate distributions by
piecewise polynomials.

Considering the tree-based indexes divide the data into
different segments (nodes), which is quite similar with buck-
ets in the histogram, Eavis and Lopez [14] build the multi-
dimensional histogram based on R-tree. They first build a
native R-tree histogram on the Hilbert sort of data and then
propose a sliding window algorithm to enhance the naive
histogram under a new proposed metric, which seeks to
minimize the dead space between bucket points. Lin et al.
[58] design a two-level histogram for one attribute, which is
quite similar to the idea of the B-tree index. The first level
is used to locate which leaf histograms to be used, and the
leaf histograms store the statistics information. To et al. [88]
construct a histogram based on the principle of minimizing
the entropy reduction of the histogram. They design two
different histograms for the equality queries and an incre-
mental algorithm to construct the histogram. However, it
only considers the one-dimensional histogram and does not
handle range queries well.

3.1.2 Sketch

Sketch models a column as a vector or matrix to calculate
the distinct count (e.g., HyperLogLog [21]) or frequency of
tuples (e.g., Count Min [11]) on a value. Rusu and Dobra

Fig. 2 A classification of cardi-
nality estimation methods

90 H. Lan et al.

1 3

[78] summarize how to use different sketches to estimate the
join size. This work considers the case of two tables (or data
streams) without filters. The basic idea of them is: (1) build-
ing the sketch (a vector or matrix) on the join attribute, while
ignoring all the other attributes, (2) estimating the join size
based on the multiplication of the vectors or matrices. These
methods only support the equi-join and join on single col-
umn. As shown in [94], a possible method introducing one
filter in sketch is to build an imaginary table which only con-
sists of the join value of tuples which satisfy the filter. How-
ever, this makes the estimation drastically worse. Skimmed
sketch [24] is based on the idea of bifocal sampling [23] to
estimate the join size. However, it requires knowing frequen-
cies of the most frequent join attribute values. Recent work
[6] on join size estimation introduces the sketch to record
the degree of a value.

3.1.3 Other Techniques

TuG [82] is a graph-based synopsis. The node of TuG repre-
sents a set of tuples from the same table or a set of values for
the same attribute. The edge represents the join relationship
between different tables or between attributes and values.
The authors adopt a three-step algorithm to construct TuG
and introduce the histogram to summarize the value distri-
bution in a node. When a new query comes, the selectivity
is estimated by traversing TuG. The construction process is
quite time-consuming and cannot be used in a large dataset.
Without the relationship between different tables, TuG can-
not be built.

3.2 Sampling‑Based Methods

Synopsis-based methods are quite difficult to capture the
correlation between different tables. Some researchers try to
use a specific sampling strategy to collect a set of samples
(tuples) from tables, and then run the (sub)query over sam-
ples to estimate the cardinality. As long as the distribution
of the obtained samples is close to the original data, the
cardinality estimation is believable. Thus, lots of work have
been proposed to design a good sampling approach, from
independent sampling to correlated sampling technique.
Sampling-based methods also are summarized in [10]. After
2011, there are numerous studies that utilize the sampling
techniques. Different with [10], we mainly summarize the
new work. Moreover, we review the work according to their
publishing time and present the relationship between them,
i.e., which shortages of the previous work the later work
tries to overcome.

Haas et al. [30] analyze the six different fixed-step (a pre-
defined sample size) sampling methods for the equi-join que-
ries. They conclude that if there are some indexes built on
join keys, page-level sampling combining the index is the

best way. Otherwise, the page-level cross-product sampling
is the most efficient way. Then, the authors extend the fixed-
step methods to fixed-precision procedures.

Ganguly et al. [23] introduce bifocal sampling to esti-
mate the size of an equi-join. They classify values of the
join attribute in each relation into two groups, sparse (s)
and dense (d) based on their frequencies. Thus, the join type
between tuples can be s–s, s–d, d–s, and d–d. The authors
first adopt t_cross sampling [30] to estimate the join size
of d–d, then adopt t_index to estimate the join size of the
remaining cases, and finally add all the estimation as the join
size estimation. However, it needs an extra pass to determine
the frequencies of different values and needs indexes to esti-
mate the join size for s–s, s–d, and d–s. Without indexes, the
process is time-consuming.

End-biased sampling [15] stores the (v, fv) if fv ≥ T ,
where v is a value in the join attribute domain, fv is the
number of tuples with value v , and T is a defined thresh-
old. It applies a hash function h(v) ∶ v ↦ [0, 1] . If h(v) ≤ fv

T
 ,

it stores (v, fv) or not. Different tables adopt the same hash
function to correlate their sampling decisions for tuples with
low frequencies. Then, the join size can be estimated using
stored (v, fv) pairs. However, it only supports equi-join on
two tables and cannot handle other filter conditions. Notice,
end-bias sampling is quite similar to bifocal sampling. The
difference is: the former uses a hash function to sample cor-
related tuples and the latter uses the indexes. Both of them
require an extra pass through the data to compute the fre-
quencies of the join attribute values.

Yu et al. [105] introduce correlated sampling as a part of
CS2 algorithm. They (1) choose one of the tables in a join
graph as the source table R1 , (2) use a random sampling
method to obtain sample set S1 for R1 (mark R1 as visited),
(3) follow an unvisited edge < Ri,Rj > (Ri is visited) in the
join graph and collect the tuples from Rj which are joinable
with tuples in Si as Sj , and (4) estimate the join size over
the samples. To support the query without source tables,
they propose a reverse estimator, which tracks to the source
tables to estimate the join size. However, due to the walking
through the join graph many times, it is time-consuming
without indexes. Furthermore, it requires an unpredictable
large space to store the samples.

Vengerov et al. [94] propose a correlated sampling
method without the prior knowledge of frequencies of
join attributes, like in [15, 23]. A tuple with join value
v is included in the sample set if h(v) < p , where p =

n

T
 ,

h(v) is a hash function similar in [15], n is the sample size,
and T is the table size. Then, we can use obtained sam-
ples to estimate the join size and handle specified filter
conditions. Furthermore, the authors extend the method
into more tables join and complex join conditions. In most
cases, the correlated sampling has lower variance than
independent Bernoulli sampling (t_cross), but when the

91A Survey on Advancing the DBMS Query Optimizer: Cardinality Estimation, Cost Model, and Plan…

1 3

values of many join attributes occur with large frequen-
cies, the Bernoulli sampling is better. One possible solu-
tion the authors propose is to adopt a one-pass algorithm
to detect the values with high frequencies, which is back
to the method in [15].

Through experiments, Chen and Yi [9] conclude that
there does not exist one sampling method suitable for all
cases. They propose a two-level sampling method, which
is based on the independent Bernoulli sampling, end-bias
sampling [15], and correlated sampling [94]. Level-one
sampling samples a value v from join attribute domain
into value set (V), if h(v) < pv . h is a hash function simi-
lar to [15], pv is a defined probability for value v . Before
level-two sampling, they sample a random tuple, called the
sentry, for every v in V into tuple set. Level-two sampling
samples tuples with value v (v ∈ V) with probability q .
Then, we can estimate the join size by using the tuple
samples. Obviously, the first level is a correlated sampling
and the second level is independent Bernoulli sampling.
The authors analyze how to set the pv and q according to
different join types and the frequencies of values in join
attributes.

Wang and Chan [95] extend [9] to a more general frame-
work in terms of five parameters. Based on the new frame-
work, they propose a new class of correlated sampling meth-
ods, called CSDL, which is based on the discrete learning
algorithm. A variant of CSDL, CSDL-Opt has outperformed
[9] when the samples are small or join value density is small.

Wu et al. [99] adopt the online sampling to correct the
possible errors in the plan generated by the optimizers.

3.3 Learning‑Based Methods

Due to the capability of the learning-based methods, many
researchers have introduced a learning-based model to cap-
ture the distribution and correlations of data. We classify
them into: (1) supervised methods, (2) unsupervised meth-
ods (Table 1).

3.3.1 Supervised Methods

Malik et al. [63] group queries into templates and adopt
machine learning techniques (e.g., linear regression model,
tree models) to learn the distribution of query result sizes for
each family. The features used in it include query attributes,
constants, operators, aggregates, and arguments to UDFs.

Park et al. [75] propose a model, QuickSel, in query-
driven paradigm, which is similar to [47, 57, 83], to estimate
the selectivity of one query. Instead of adopting the histo-
grams, QuickSel introduces the uniform mixture models to
represent the distribution of the data. They train the model
by minimizing the mean squared error between the mixture
model and a uniform distribution.

Tzoumas et al. [91, 92] build a Bayesian network and
decompose the complex statistics over multiple attributes
into small one-/two-dimensional statistics, which means
the model captures dependencies between two relations at
most. They build the histograms for these small dimensional
statistics and adopt a dynamic programming to calculate
the selectivity for the new queries. Different with previous
method [25], it can handle more general joins and has a

Table 1 Learning-based methods for cardinality estimation

References Model Model count Encoding Multi-columns Multi-tables UDF Workload shift

[63] LR 1 Model/1 Template Predicates, arguments ✓ ✓ ✓ ×

[75] MixModel 1 Model Predicates ✓ × × ✓

[91, 92] BN 1 Model predicates ✓ ✓ × ×

[31] BN 1 Model/1 Table Predicates ✓ × × ×

[53] NN 1 Model/1 UDF Arguments × × ✓ ×

[60] NN 1 Model Predicates ✓ × × ×

[100] NN/PR/MLR 1 Model/1 Subquery Predicates, input cardinalities ✓ ✓ ✓ ×

[49] MSCN 1 Model Predicates, tables, joins ✓ ✓ × ×

[13] Tree-Ensemble/NN 1 Model Predicates ✓ × × ×

[96, 97] NN 1 Model/1 Template Predicates ✓ ✓ × ×

[74] DNN/RNN/Tree 1 Model Predicates, tables, joins ✓ ✓ × ×

[85] tree-LSTM 1 Model Predicate, operator, metadata ✓ ✓ × ×

[38] KDE 1 Model Samples ✓ × × ✓

[48] KDE 1 Model Samples ✓ ✓ × ✓

1 Model/1 Table
[40] SPN 1 Model Tuples; predicates ✓ ✓ × ✓

[35, 104] Autoregression 1 Model Tuples; predicates ✓ × × ✓

[103] Autoregression 1 Model Tuples; predicates ✓ ✓ × ✓

92 H. Lan et al.

1 3

more efficient construction algorithm because of capturing
smaller dependencies. However, the authors do not verify
their method with multiple tables join and in large dataset.
Moreover, constructing the two-dimensional statistics with
attributes from different tables needs the join operation. Hal-
ford et al. [31] also introduce a method based on Bayesian
network. To construct the model quickly, they only factorize
the distribution of attributes inside each relation and use the
previous assumptions for joins. However, they do not present
how well their method compared with [91, 92].

Lakshmi and Zhou [53] first introduce the NN into the
cardinality estimation of user defined function (UDF),
which the histograms and other statistics cannot support.
They design a two-layer neural network (NN) and employ
the back propagation to update the model.

Liu et al. [60] formalize a selectivity function,
Sel ∶ R2N

↦ R, (l1, u1,… , ln, un) ↦ c , where N is the num-
ber of attributes, li and ui is the lower and upper bound on i th
attribute for a query. They employ a 3-layer NN to learn the
selectivity function. To support > and <, they add 2N small
NNs to produce li and ui.

Wu et al. [100] use a learning-based method for workload
in shared clouds, where the queries are often recurring and
overlapping in nature. They first extract overlapping sub-
graph templates in multiple query graphs. Then, they learn
the cardinality models for those sub-graph templates.

Kipf et al. [49] introduce the multi-set convolutional
network (MSCN) model to estimate the cardinality of cor-
related joins. They represent a query as a collection of a set
of tables T , joins J , and predicts P and build the separate
2-layer NN for each of them. Then, the outputs of three NNs
are concatenated after the averaging operation and fed into
the final output network. Deep sketch [50] is built on [49]
and is a wrapper of it.

Dutt et al. [13] formalize the estimation as a function
similar to [60], and they consider it as a regression prob-
lem. They adopt two different approaches for the regression
problem, NN-based methods and tree-based ensembles. Dif-
ferent with [60], the authors also use histograms and domain
knowledge (e.g., AVI, EBO, and MinSel) as the extra fea-
tures in the models, which improve the estimation accuracy.
Due to the domain knowledge quickly updated when the
data distribution changes, the model is robust to the updates
on the datasets.

Woltmann et al. [96] think building a single NN, called
global model, over the entire database schema has the
sparse encoding and needs numerous samples to train
the model. Thus, they build different models, called local
models, for different query templates. Every local model
adopts multi-layer perceptrons (MLP) to produce the car-
dinality estimation. To collect the true cardinality, many
sample queries are issued during the training process,
which is time-consuming. Furthermore, Woltmann et al.

[97] introduce the method of pre-aggregating the base data
using the data cube concept and execute the example que-
ries over this pre-aggregated data.

Ortiz et al. [74] empirically analyze various of deep learn-
ing approaches used in cardinality estimation, including
deep neural network (DNN) and recurrent neural network
(RNN). The DNN model is similar with [96]. To adopt RNN
model, the authors focus on left-deep plans and model a
query as a series of actions. Every action represents an oper-
ation (i.e., selection or join). In each timestamp t , the model
receives two inputs: xt , the encoding of t th of operation, and
ht−1 , the generated hidden state from timestamp t − 1 , which
can be regarded as the encoding of a subquery and captures
the important details about the intermediate results.

Sun and Li [85] introduce a tree-LSTM model to learn
a representation of an operator and add an estimation layer
upon the tree-LSTM model to estimate the cardinality and
cost simultaneously.

3.3.2 Unsupervised Methods

Heimel et al. [38] introduce the Kernel Density Estimator
(KDE) into estimating the selectivity on single table with
multiple predicates. They first adopt the Gaussian Kernel
and the bandwidth obtained by a certain rule to construct
the initial KDE, and then, they use the history queries to
choose the optimal bandwidth by minimize the estimation
error using initial KDE. To support the shifts in workload
and dataset, they update the bandwidth after each incom-
ing query and design the new sample maintenance method
for insert-only workload and updates/deletions workload.
Furthermore, in Kiefer et al. [48] extend the method into
estimating the selectivity of join. They design two differ-
ent models: single model over the join samples and the
models over the base tables, which does not need the join
operation and estimates the selectivity of join with the
independent assumption.

Yang et al. [104] propose a model called Naru, which
adopts the deep autoregressive model to produce n condi-
tional densities P̂(xi|x<i) on a set of n-dimensional tuples.
Then, they estimate the selectivity using the product rule:

To support range conditions, they introduce a progressive
sampling method by sampling points from more meaningful
region according to the trained autoregressive model, which
is robust to the skewed data. Furthermore, they adopt the
wildcard-skipping to handle wildcard condition.

(1)

P̂(�) = P̂(x1, x2,… , xn)

= P̂(xn|x1,… , xn−1)P̂(xn−1|x1,… , xn−2)…

P̂(x2|x1)P̂(x1)

93A Survey on Advancing the DBMS Query Optimizer: Cardinality Estimation, Cost Model, and Plan…

1 3

Hasan et al. [35] also adopt the deep autoregressive models
and introduce an adaptive sampling method to support range
queries. Compared with the Naru, the authors adopt the binary
encoding method and the sampling process runs parallelly,
which leads the model is smaller than Naru and makes the
inference faster. Besides, it can incorporate with the workload
by assigning the tuples with weights according to the workload
when defining the cross-entropy loss function.

Hilprecht et al. [40] introduce the Relational Sum Product
Network (RSPN) to capture the distribution of single attrib-
utes and the joint probability distribution. They focus on Tree-
SPNs, where one leaf is the approximation of a single attrib-
ute, and the internal node is Sum node (splitting the rows into
clusters) or Product node (splitting the columns of one cluster).
To support cardinality estimation of join, they build the RSPN
over the join results.

Yang et al. [103] extend their previous work, Naru, to sup-
port joins. They build an autoregressive model over the full
outer join of all tables. They introduce the lossless column
factorization for large-cardinality columns and employ the join
count table to support any queries on the subset of tables.

3.4 Our Insights

3.4.1 Summaries

The basic histogram types (e.g., equi-width, equi-depth,
d-dimensional) have been introduced before 2000. Recent

studies mainly focus on how to quickly construct the histo-
grams and to improve the accuracy of them. Updating the
histograms by query feedback is a good approach to improve
the quality of histograms. However, there are still two limita-
tions in the histograms: (1) the storage size increases dra-
matically when building a d-dimensional histograms; (2)
histograms cannot capture the correlation between attributes
from different tables. If building a histogram for the attrib-
utes from different tables, the join operation is required, like
in [91, 92] and it is difficult to update this histogram. Sketch
can be used to estimate the distinct count of an attribute or
the cardinality of equi-join results. However, it cannot sup-
port more general cases well, e.g., join with filters. Synopsis-
based methods cannot estimate the size of final or interme-
diate relations when one or both of the child relations is an
intermediate relation.

Sampling is a good approach to capture the correlations
between different tables. However, when the tuples in tables
have been updated, the samples may become out-of-date.
Sampling-based methods also suffer from the storage used to
store the samples and the time used to retrieve the samples,
especially when the original data is numerous. Furthermore,
current sampling methods only support the equi-join.

The supervised learning methods are mostly query-
driven, which means the model is trained for a specific work-
load. If the workload shifts, the model needs to be retrained.
Thus, the data-driven (unsupervised learning) approaches
come out, which still can estimate the cardinality even if the
workload shifts. As shown in [104] (Section 6.3), Naru is
robust to workload shift, while MSCN and KDE are sensi-
tive to the training queries. Moreover, both of the supervised
and unsupervised learning methods suffer from the data
change. As presented in [103] (Section 7.6) and [85] (Sec-
tion 7.5), both of them are sensitive to data change and the
models will be updated in an incremental mode or retrained
from scratch. However, they only consider that new tuples
are appended into one table and there does not exist delete
or update operation.

Due to the difference in the experiment settings, we
only present a preliminary comparison between the meth-
ods for cardinality estimation as shown in Table 2. Some-
times, the size of learning-based methods is still not small

Table 2 A preliminary comparison in different methods for cardinality estimation

Methods Workload
shift

Data change Update time Storage usage Multi-col-
umns

Multi-tables

1-histogram [43] × × Short Small × ×

d-histogram [29] × × Short Large ✓ ×

Sampling [9, 95, 99] ✓ × Medium Large ✓ ✓

Supervised learning [49, 85] × × Long Small ✓ ✓

Unsupervised learning [40, 103] ✓ × Long Small ✓ ✓

Fig. 3 A classification of cost estimation methods

94 H. Lan et al.

1 3

as presented in [103]. The state-of-the-art method is [103],
which shows superiority compared with other methods in
their experiments.

3.4.2 Possible Future Directions

There are several possible directions as follows:

(1) Learning-based methods Many studies on cardinal-
ity estimation are learning-based methods in last two
years. The learning-based models currently integrated
a real system are the light model or one model for one
(sub-)query graph [13, 100], which can be trained and
updated quickly. However, the accuracy and general-
ity of these models are limited. More complex models
(achieve a better accuracy) still suffer from the long
training time and update time. Training time is influ-
enced by the hardware. For example, it only takes sev-
eral minutes in [103], while it is 13 h in [85] using
a GPU with relatively poor performance. A database
instance, especially in the cloud environment, is in a
resource-constrained environment. How to train the
model efficiently should be considered. The interaction
between the models and the optimizer also needs to be
considered, which should not be with too much over-
head on the database systems [13]. As presented above,
current proposed methods for data change cannot han-
dle delete or update operation. A possible method is to
adopt the idea of active learning to update the model
[62].

(2) Hybrid methods Query-driven methods are sensitive
to workload. Although data-driven methods can sup-
port more queries, it may not achieve the best accuracy
for all queries. How to combine two methods in these
two different catalogs is a possible direction. Actually,
the previous query-feedback histogram is an instance
of this case. Another interesting thing is that utilizing
the query feedback information will help the model be
aware of the data change.

(3) Experimental Study Although many methods have
been proposed, it lacks of experimental studies to
verify these methods. Different methods have differ-
ent characteristics as shown in Table 2. It is crucial to
conduct a comprehensive experimental study for pro-
posed methods. We think the following aspects should
be included: (1) is it easy to integrate the method into a
real database system; (2) what is the performance of the
method under different workload patterns (e.g., static
or dynamic workload, OLTP or OLAP) and different
data scales and distributions; (3) researchers should
pay attention to the trade-off between storage usage
and accuracy of candidate estimation and the trade-off
between efficiency of model update and the accuracy.

4 Cost Model

In this section, we present the researches proposed to solve
the limitations in the cost model. We classify the meth-
ods into three groups: (1) improving the capability of the
existed cost model, (2) building a new cost model, and (3)
predicting the query performance. We include the work
on the single query performance prediction, because the
cost used in the optimizer is the metric for performance.
These methods are possibly integrated into the cost-based
optimizer and replace the cost model to estimation the cost
of a (sub)plan, like in [67]. However, we do not consider
the query performance prediction under concurrent con-
text (e.g., [108]). On the one hand, the concurrent queries
existing during the optimization may be quite different
with queries during the execution process. On the other
hand, it also needs to collect more information than the
model predicting the performance of a single query. We
list the representative work of in the cost model in Fig. 3.

4.1 Quality Improvement of Existing Cost Model

Several studies try to estimate the cost of UDF [3, 36,
37]. Boulos and Ono [3] execute the UDF several times
with different input values, collect the different costs, and
then use these costs to build a multi-dimensional histo-
gram. The histogram is stored in a tree structure. When
estimating the UDF with specific parameters, traverse the
tree top-down to get the estimated cost to locate the leaf
with similar parameters with inputs. However, this method
needs to know the upper and lower bounds of every param-
eter and it cannot solve the complex relation between input
parameters and the costs. Unlike the static histogram used
in [3], He et al. [36] introduce a dynamic quadtree-based
approach to store the UDF execution information. When
a query is executed, the actual cost of executing the UDF
is used to update the cost model. He et al. [37] introduce a
memory-limited K-nearest neighbors (MLKNN) method.
They design a data structure, called PData, to store the
execution cost and a multidimensional index used for fast
retrieval k nearest PData for a given query point (param-
eter in UDF) and fast insertion of new PData.

Liu and Blanas [59] introduce a cost model for hash-
based join for main-memory database. They model the
response time of a query as being proportional to the
number of operations weighted by the costs of four basic
access patterns. They first adopt the microbenchmarks to
get the cost of each access pattern and then model the
cost of sequential scan, hash join, hash join with different
orders by the basic access patterns.

Most of the previous cost models only consider the
execution cost, which may be not reasonable in the cloud

95A Survey on Advancing the DBMS Query Optimizer: Cardinality Estimation, Cost Model, and Plan…

1 3

environments. The users of the cloud database systems
care about the economic cost. Karampaglis et al. [46]
first propose a bi-objective query cost model, which is
used to derive running time and monetary cost together
in the multi-cloud environment. They model the execu-
tion time based on the method in [98]. For economic cost
estimation, they first model the charging policies and esti-
mate the monetary cost by combining the policy and time
estimation.

4.2 Cost Model Alternatives

The cost model is a function mapping the (sub)plan with
annotated information to a scalar (cost). Because a neural
network on data primarily approximates the unknown under-
lying mapping function from inputs to outputs, most of the
methods used to replace the origin cost model are learning-
based, especially NN-based.

Boulos et al. [4] firstly introduce the neural network for
cost evaluation. They design two different models: a single
large neural network for every query type and a single small
neural network for every operator. In the first model, they
also train another model to classify a query in a certain type.
The output of the first model is the cost of a (sub)plan, while
the second model needs to add up the outputs from small
models to get the cost.

Sun and Li [85] adopt a tree-LSTM model to learn the
presentation of an operator and add an estimation layer upon
the tree-LSTM model to estimate the cost of the query plan.

Due to the difficulty in collecting statistics and the needs
of picking the resources in big data systems, particularly in
modern cloud data services, Siddiqui et al. [81] propose a
learning-based cost model and integrate it into the optimizer
of SCOPE [7]. They build large number of small models
to predict the costs of common (sub)queries, which are
extracted from the workload history. The features encoded
into the models are quite similar with [100]. Moreover, to
support resource-aware query planning, they add number
of partitions allocated to the operator into the features. In
order to improve the coverage of the models, they introduce
operator-input models and operator-subgraphApprox models
and employ a meta-ensemble model to combine the models
above as the final model.

4.3 Query Performance Prediction

The performance of the one query mainly refers to the
latency. Wu et al. [98] adopt an offline profiling to calibrate
the coefficients in the cost model under a specific hardware
and software conditions. Then, they adopt the sampling
method to obtain the true cardinalities of the physical opera-
tors to predict the execution times.

Ganapathi et al. [22] adopt the kernel canonical correla-
tion analysis (KCCA) into the resource estimation, e.g., CPU
time. They only model the plan level information, e.g., the
number of each physical operator type and their cardinality,
which is too vulnerable.

To estimate the resources (CPU time and logical I/O
times), Li et al. [56] train a boosted regression tree for every
operator in the database and the consumption of the plan is
the sum of the operators’. To make the model more robust,
they train a separate scaling function for every operator and
combine scaling functions with the regression models to
handle the cases when the data distribution, size, or queries’
parameters are quite different with the training data. Differ-
ent with [22], this is an operator-level model.

Akdere et al. [2] propose the learning-based models to
predict the query performance. They first design a plan-level
model if the workload is known in advance and an operator-
level model. Considering the plan-level model makes highly
accurate prediction and the operator-level generalizes well,
for queries with low operator-level prediction accuracy,
they train models for specific query subplans using plan-
level modeling and compose both types of models to predict
the performance of the entire plan. However, the models
adopted are linear.

Marcus and Papaemmanouil [66] introduce a plan-struc-
ture neural network to predict the query’s latency. They
design a small neural network, called neural unit, for every
logic operator and any instance of the same logic operator
shares the same network. Then, these neural units are com-
bined into a tree shape according to the plan tree. The output
of one neural unit consists of two parts, the latency of cur-
rent operator and the information sent to its parent node. The
latency of the root neural unit of a plan is the plan’s latency.

Neo [67] is a learning-based query optimizer, which
introduces a neural network, called value network, to esti-
mate the latency of (sub)plan. The query-level encoding
(join graph and columns with predicts) is fed through sev-
eral full-connected layers and then concatenated with the
plan level encoding, which is a tree vector to represent the
physical plan. Next, the concatenated vector is fed into a
tree convolution and another several full-connected layers
to predict the latency of the input physical plan.

4.4 Our Insights

4.4.1 Summaries

The methods trying to improve the existing cost model focus
on different aspects, e.g., UDFs, hash join in main memory.
These studies leave us an important lesson: when introduc-
ing a new logical or physical operator, or re-implementing
the existing physical operators, we should consider how
to add them into the optimization process and design the

96 H. Lan et al.

1 3

corresponding cost estimation formulas for them (e.g., [54,
70]).

Leaning-based methods adopt the model to capture the
complex relationship between cost and the factors, while
the traditional cost model is defined as a certain formula
by the database experts. The NN-based methods used to
predict the performance, estimate cost, and estimate car-
dinality in Sect. 3.3.1 are quite similar in the features and
models selection. For example, Sun and Li [85] use the
same model to estimate the cost and cardinality and Neo
[67] uses the latency (performance) of (sub)plan as the cost.
A model, which is able to capture the data itself, operator
level information, and subplan information, can predict the
cost accurately. For example, the work [85], one of the state-
of-the-art methods, adopts the tree-LSTM model to capture
the information mentioned above. However, all of them are
supervised methods. If the workload shifts or the data is
updated the models need to be retrained from the scratch.

4.4.2 Possible Future Directions

There are two possible directions as follows:

(1) Cloud database systems The users of the cloud database
systems need to meet their latency or throughput at the
lowest price. Integrating the economic cost of running
queries into the cost model is a possible direction. It is
interesting to consider these related information into
the cost model. For example, Siddiqui et al. [81] con-
sider the number of container into their cost model.

(2) Learning-based methods Learning-based methods to
estimate the cost also suffer from the same problems
with methods in cardinality estimation (Sect. 3.4.2).
The model that has been adopted in a real system is a
light model [81]. The trade-off between accuracy and
training time is still a problem. The possible solutions
adopted in cardinality estimation also can be used in
the cost model.

5 Plan Enumeration

In this section, we present the researches published to handle
the problems in plan enumeration. We classify the work on
plan enumeration into two groups: non-learning methods
and learning-based methods.

5.1 Non‑Learning Methods

Steinbrunn et al. [84] proposed a representative survey for
selecting an optimal join orders. Thus, we mainly focus on
the researches after 1997.

5.1.1 Dynamic Programming

Selinger et al. [79] propose a dynamic programming algo-
rithm to select the optimal join order for a given conjunc-
tive query. They generate the plan in the order of increas-
ing size and restrict the search space to left-deep trees,
which significantly speeds up the optimization. Vance and
Maier [93] propose a dynamic programming algorithm to
find the optimal join order by considering different partial
table sets. They use it to generate the optimal bushy tree
join trees containing cross-products. Selinger et al. and
Vance and Maier [79, 93] are generate-and-test paradigm
and most of the operations are used to check whether the
subgraphs are connected and two subgraphs are combina-
tive. Thus, none of them meet the lower bound in [73].
Moerkotte and Neumann [68] propose a graph-based
Dynamic programming algorithm. They first introduce a
graph-based method to generate the connected subgraph.
Thus, it does not need to check out the connection and
combinations and perform more efficiently. Then, they
adopt DP over them for the generation of optimal bushy
tree without cross-products. Moerkotte and Neumann [69]
extend the method in [68] to deal with non-inner joins and
a more generalized graph, hyper graph, where join predi-
cates can involve more than two relations.

5.1.2 Top‑Down Strategies

TDMinCutLazy is the first efficient top-down join enu-
meration algorithm proposed by DeHaan and Tompa [12].
They utilize the idea of minimal cuts to partition a join
graph and introduce two different pruning strategies, pre-
dicted cost bounding and accumulated cost bounding into
top-down partitioning search, which can avoid exhaustive
enumeration. Top-down method is almost as efficient as
dynamic programming and has other tempting properties,
e.g., pruning and interesting order. Fender and Moerkotte
[17] propose an alternative top-down join enumeration
strategy (TDMinCutBranch). TDMinCutBranch intro-
duces a graph-based enumeration strategy which only
generates the valid join, i.e., cross-product free partitions,
unlike TDMinCutLazy which adopts a generate-and-test
approach. In the following year, Fender et al. [20] propose
another top-down enumeration strategy TDMinCutCon-
servative which is easier to implement and gives better
runtime performance in comparison to TDMinCutBranch.
Furthermore, Fender and Moerkotte [18, 19] present a gen-
eral framework to handle non-inner joins and a more gen-
eralized graph, hyper graph for top-down join enumera-
tion. RS-Graph, a new join transformation rule based on
top-down join enumeration, is presented in [80] to effi-
ciently generate the space of cross-product free join trees.

97A Survey on Advancing the DBMS Query Optimizer: Cardinality Estimation, Cost Model, and Plan…

1 3

5.1.3 Large Queries

For large queries, Greedy Operator Ordering [16] builds the
bushy join trees bottom-up by adding the most profitable
(with the smallest intermediate join size) joins first. To sup-
port large queries, Kossmann and Stocker [51] propose two
different incremental dynamic programming methods, IDP-1
and IDP-2. With a given size k, IDP-1 runs the algorithm in
[79] to construct the cheapest plan with that size and then
regards it as a base relation, and repeats the process. With a
given size k, in every iteration, IDP-2 first performs a greedy
algorithm to construct the join tree with k tables and then
runs DP on the generated join tree to produce the optimal
plan, regards the plan as a base relation, and then repeats
the process. Neumann [71] proposes a two-stage algorithm:
first, it performs the query simplification to restrict the query
graph by the greedy heuristic until the graph becomes trac-
table for DP, and then, it runs a DP algorithm to find the
optimal join orders for the simplified the join graph. Bruno
et al. [5] introduce enumerate-rank-merge framework which
generalizes and extends the previous heuristics [16, 86]. The
enumeration step considers the bushy trees. The ranking
step is used to evaluate the best join pair each step, which
adopts the min-size metric. The merging step constructs
the selected join pair. Neumann and Radke [72] divide the
queries into three types: small queries, medium, and large
queries according to their query graph type and the number
of tables. Then, they adopt DP to solve small queries, restrict
the DP by linearizing the search space for medium queries,
and use the idea in [51] for large queries.

5.1.4 Others

Trummer and Koch [89] transform the join ordering problem
into a mixed integer linear program to minimize the cost of
the plan and adopt the existing the MILP solvers to obtain
a linear join tree (left-deep tree). To satisfy the linear prop-
erties in MILP, they approximate the cost of scan and join
operations via linear functions.

Most of existed OLAP systems mainly focus on start/
snowfake join queries (PK-FK join relation) and generate
the left-deep binary join tree. When handling FK-FK joins,
like in TPC-DS (snowstorm schema), they inccur a large

number of intermediate results. Nam et al. [70] introduce a
new n-ary join operator, which extends the plan space. They
define the core graph to represent the FK-FK joins in the join
graph and adopt the n-ary join operator to process it. They
design a new cost model for this operator and integrate it
into an existed OLAP systems.

5.2 Learning‑Based Methods

All learning-based methods adopt the reinforcement learn-
ing (DL). In RL, an agent interacts with environment by
actions and rewards. At each step t , the agent uses a policy
� to choose an action at according to the current state st and
transitions to a new state st+1 . Then, the environment applies
the action at and returns a reward rt to the agent. The goal
of RL is to learn a policy � , a function that automatically
takes an action based on the current state, with the maximum
long-term reward. In join order selection, state is the current
sub-trees, and action is to combine two sub-trees, like in
Fig. 4. The reward of intermediate action is 0, and the reward
of the last action is the cost or latency of the query.

ReJoin [65] adopts the deep reinforcement learning
(DRL), which has widely been adopted in other areas, e.g.,
influence maximization [87], to identify the optimal join
orders. State in DRL represents the current subtrees. Each
action will combine two subtrees together into a single tree.
It uses cost obtained from the cost model in optimizer as
the reward. ReJoin encodes the tree structure of (sub)plan,
join predicates, and selection predicates in state. Different
with [65], Heitz and Stockinger [39] create a matrix to rep-
resent a table or a subquery in each row and adopt the cost
model in [55] to quickly obtain the cost of one query. DQ
[52] is also a DRL-based method. It uses one-hot vectors
to encode the visible attributes in the (sub)query. DQ also
encodes the choice of physical operator by adding another
one-hot vector. When training the model, DQ first uses the
cost observed from the cost model of the optimizer and then
fine-tunes the model with true running time. Yu et al. [106]
adopt DRL and tree-LSTM together for join order selection.
Different with the previous methods [39, 52, 65], tree-LSTM
can capture more the structure information of the query tree.
Similar with [52], they also use cost to train the model and
then switch to running time as feedback for fine-tuning.

Fig. 4 One possible join order
episode

98 H. Lan et al.

1 3

Notice, they also discuss how to handle the changes in the
database schema, e.g., adding/deleting the tables/columns.
SkinnerDB [90] adopts the UCT, a reinforcement learning
algorithm, and learns from the current query, while the pre-
vious learning-based join order methods are learning from
previous queries. It divides the execution of one query into
many small slices where different small slices may choose
the different join order and learn from the previous execu-
tion slices.

5.3 Our Insights

5.3.1 Summaries

The non-learning based studies focus on improving the effi-
ciency and the ability (to handle the more general join cases)
of the existing approaches. Compared with dynamic pro-
gramming approach, the top-down strategy is tempting due
to the better extensibility, e.g., adding new transformation
rules, branch-and-bound pruning. Both of them have been
implemented in many database systems.

Compared with the non-leaning methods, learning-based
approaches have a fast planning time. All learning-based
methods employ reinforcement learning. The main differ-
ences between them are: (1) choosing which information
as the state and how to encode them, (2) adopting which
models. A more complicated model with more related infor-
mation can achieve better performance. The state-of-the-
art method [106] adopts a tree-LSTM model similar with
[85] to generate the representation of a subplan. Due to the
inaccuracy in the cost model, it can improve the quality of
model by using the latency to fine-tune the model. Although
current state-of-the-art method [106] outperforms the non-
learning based methods as shown in their experiments, how
to integrate the learning-based method into the real system
must be solved.

5.3.2 Possible Future Directions

There are two possible directions as follows:

(1) Handle large queries All methods proposed to handle
large queries are DP-based methods in the bottom-up
manner. A question is remaining: how to make the
top-down search strategy support the large queries.
Besides, the state-of-art method for large queries [72]
cannot support the general join cases.

(2) Learning-based methods Current leaned methods only
focus on the PK-FK join and the join type is inner join.
How to handle the other join cases is a possible direc-
tion. None of the proposed methods have discussed
how to integrate them into a real system. In their
experiments, they implement the method as a separate

component to get the right join order, and then send to
the database. The database still needs to optimize it to
get the final physical plan. If a query has subquery, they
may interact multiple times. The reinforcement learn-
ing methods are trained in a certain environment, which
refers to a certain database in the join order selection
problem. How to handle the changes in the table sche-
mas and data is also a possible direction.

6 Conclusion

Cardinality estimation, cost model, and plan enumeration
play critical roles to generate an optimal execution plan in
a cost-based optimizer. In this paper, we review the work
proposed to improve their qualities, including the traditional
and learning-based methods. Besides, we provide possible
future directions, respectively.

We observe that more and more learning-based meth-
ods are introduced and outperform traditional methods.
However, they suffer from long training and updating time.
How to make the models robust to workload shifts and data
changes or to update models quickly is still an open ques-
tion. Traditional methods with theoretical guarantees are
widely adopted in real systems. There is a great possibility
of improving traditional methods with new algorithms and
data structures. Moreover, We believe the ideas behind the
traditional methods can be used to enhance the learning-
based methods.

Acknowledgements Zhifeng Bao is supported in part by ARC
DP200102611, DP180102050, and a Google Faculty Award.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

References

 1. Acharya J, Diakonikolas I, Hegde C, Li JZ, Schmidt L (2015)
Fast and near-optimal algorithms for approximating distributions
by histograms. In: PODS, pp 249–263

 2. Akdere M, Çetintemel U, Riondato M, Upfal E, Zdonik SB
(2012) Learning-based query performance modeling and pre-
diction. In: ICDE, pp 390–401

 3. Boulos J, Ono K (1999) Cost estimation of user-defined methods
in object-relational database systems. SIGMOD Rec 28(3):22–28

http://creativecommons.org/licenses/by/4.0/

99A Survey on Advancing the DBMS Query Optimizer: Cardinality Estimation, Cost Model, and Plan…

1 3

 4. Boulos J, Viemont Y, Ono K (1997) A neural networks
approach for query cost evaluation. Trans Inf Process Soc Jpn
38(12):2566–2575

 5. Bruno N, Galindo-Legaria C, Joshi M (2010) Polynomial heu-
ristics for query optimization. In: ICDE, pp 589–600

 6. Cai W, Balazinska M, Suciu D (2019) Pessimistic cardinality
estimation: tighter upper bounds for intermediate join cardinali-
ties. In: SIGMOD, pp 18–35

 7. Chaiken R, Jenkins B, Larson PÅ, Ramsey B, Shakib D, Weaver
S, Zhou J (2008) SCOPE: easy and efficient parallel processing
of massive data sets. VLDB 1(2):1265–1276

 8. Chaudhuri S (1998) An overview of query optimization in rela-
tional systems. ACM Press, New York, pp 34–43

 9. Chen Yu, Yi K (2017) Two-level sampling for join size estima-
tion. In: SIGMOD, pp 759–774

 10. Cormode G, Garofalakis MN, Haas PJ, Jermaine C (2012) Syn-
opses for massive data: samples, histograms, wavelets, sketches.
Found Trends Databases 4(1–3):1–294

 11. Cormode G, Muthukrishnan S (2004) An improved data stream
summary: the count-min sketch and its applications. In: LATIN
2004: theoretical informatics, 6th Latin American symposium,
Buenos Aires, Argentina, April 5–8, 2004, Proceedings, pp
29–38

 12. DeHaan D, Tompa FW (2007) Optimal top-down join enumera-
tion. In: SIGMOD, pp 785–796

 13. Dutt A, Wang C, Nazi A, Kandula S, Narasayya VR, Chaudhuri
S (2019) Selectivity estimation for range predicates using light-
weight models. VLDB 12(9):1044–1057

 14. Eavis T, Lopez A (2007) Rk-hist: an r-tree based histogram for
multi-dimensional selectivity estimation. In: CIKM, pp 475–484

 15. Estan C, Naughton FJ (2006) End-biased Samples for join car-
dinality estimation. In: ICDE, p 20

 16. Fegaras L (1998) A new heuristic for optimizing large queries.
In: DEXA, pp 726–735

 17. Fender P, Moerkotte G (2011) A new, highly efficient, and easy
to implement top-down join enumeration algorithm. In: ICDE,
pp 864–875

 18. Fender P, Moerkotte G (2013) Counter strike: generic top-down
join enumeration for hypergraphs. VLDB 6(14):1822–1833

 19. Fender P, Moerkotte G (2013) Top down plan generation: from
theory to practice. In: ICDE, pp 1105–1116

 20. Fender P, Moerkotte G, Neumann T, Leis V (2012) Effective and
robust pruning for top-down join enumeration algorithms. In:
ICDE, pp 414–425

 21. Flajolet P, Fusy E, Gandouet O, Meunier F (2007) HyperLogLog:
the analysis of a near-optimal cardinality estimation algorithm.
In: Discrete mathematics and theoretical computer science, pp
137–156

 22. Ganapathi A, Kuno HA, Dayal U, Wiener JL, Fox A, Jordan MI,
Patterson DA (2009) Predicting multiple metrics for queries: bet-
ter decisions enabled by machine learning. In: ICDE, pp 592–603

 23. Ganguly S, Gibbons PB, Matias Y, Silberschatz A (1996) Bifocal
sampling for skew-resistant join size estimation. In: SIGMOD,
pp 271–281

 24. Ganguly S, Garofalakis MN, Rastogi R (2004) EDB Processing
data-stream join aggregates using skimmed sketches. In: EDBT,
pp 569–586

 25. Getoor L, Taskar B, Koller D (2001) Selectivity estimation using
probabilistic models. In: SIGMOD, pp 461–472

 26. Graefe G (1995) The cascades framework for query optimization.
IEEE Data Eng. Bull. 18(3):19–29

 27. Graefe G, McKenna WJ (1993) The volcano optimizer generator:
extensibility and efficient search. In: Proceedings of the ninth
international conference on data engineering, April 19–23, 1993,
Vienna, Austria. IEEE Computer Society, pp 209–218

 28. Guha S, Koudas N, Shim K (2006) Approximation and streaming
algorithms for histogram construction problems. ACM Trans.
Database Syst. 31(1):396–438

 29. Gunopulos D, Kollios G, Tsotras VJ, Domeniconi C (2005)
Selectivity estimators for multidimensional range queries over
real attributes. VLDB J. 14(2):137–154

 30. Haas PJ, Naughton JF, Seshadri S, Swami AN (1993) Fixed-
precision estimation of join selectivity. In: PODS, pp 190–201

 31. Halford M, Saint-Pierre P, Morvan F (2019) An approach based
on Bayesian networks for query selectivity estimation. In: DAS-
FAA, pp 3–19

 32. Halim F, Karras P, Yap RHC (2009) Fast and effective histogram
construction. In: CIKM, pp 1167–1176

 33. Halim F, Karras P, Yap RHC (2010) Local search in histogram
construction. In: AAAI

 34. Harmouch H, Naumann F (2017) Cardinality estimation: an
experimental survey. Proc VLDB Endow 11(4):499–512

 35. Hasan S, Thirumuruganathan S, Augustine J, Koudas N, Das G
(2020) Deep learning models for selectivity estimation of multi-
attribute queries. In: SIGMOD, pp 1035–1050

 36. He Z, Lee BS, Snapp RR (2004) Self-tuning UDF cost modeling
using the memory-limited quadtree. EDBT 2992:513–531

 37. He Z, Lee BS, Snapp RR (2005) Self-tuning cost modeling of
user-defined functions in an object-relational DBMS. TODS
30(3):812–853

 38. Heimel M, Kiefer M, Markl V (2015) Self-tuning, GPU-accel-
erated kernel density models for multidimensional selectivity
estimation. In: SIGMOD, pp 1477–1492

 39. Heitz J, Stockinger K (2019) Join query optimization with deep
reinforcement learning algorithms. CoRR. arXiv:abs/1911.11689

 40. Hilprecht B, Schmidt A, Kulessa M, Molina A, Kersting K, Bin-
nig C (2020) DeepDB: learn from data, not from queries!. VLDB
13(7):992–1005

 41. Ibaraki T, Kameda T (1984) On the optimal nesting order
for computing N-relational joins. ACM Trans Database Syst
9(3):482–502

 42. Indyk P, Levi R, Rubinfeld R (2012) Approximating and testing
k-histogram distributions in sub-linear time. In: PODS, pp 15–22

 43. Ioannidis YE (2003) The history of histograms (abridged). In:
VLDB. Morgan Kaufmann, Los Altos, pp 19–30

 44. Jagadish HV, Koudas N, Muthukrishnan S, Poosala V, Sevcik
KC, Suel T (1998) Optimal histograms with quality guarantees.
In: VLDB, pp 275–286

 45. Kaoudi Z, Quiané-Ruiz J-A, Contreras-Rojas B, Pardo-Meza
R, Troudi A, Chawla S (2020) ML-based cross-platform query
optimization. In: ICDE, pp 1489–1500

 46. Karampaglis Z, Gounaris A, Manolopoulos Y (2014) A bi-objec-
tive cost model for database queries in a multi-cloud environ-
ment. In: MEDES, pp 109–116

 47. Kaushik R, Suciu D (2009) Consistent histograms in the presence
of distinct value counts. VLDB 2(1):850–861

 48. Kiefer M, Heimel M, Breß S, Markl V (2017) Estimating join
selectivities using bandwidth-optimized kernel density models.
VLDB 10(13):2085–2096

 49. Kipf A, Kipf T, Radke B, Leis V, Boncz PA, Alfons K (2019)
Learned cardinalities, estimating correlated joins with deep
learning. In: CIDR

 50. Kipf A, Vorona D, Müller J, Kipf T, Radke B, Leis V, Boncz P,
Neumann T, Kemper A (2019) Estimating cardinalities with deep
sketches. J CoRR. arXiv:abs/1904.08223

 51. Kossmann D (2000) Iterative dynamic programming: a new class
of query optimization algorithms. TODS 25(1):43–82

 52. Krishnan S, Yang Z, Goldberg K, Hellerstein JM, Stoica I (2018)
Learning to optimize join queries with deep reinforcement learn-
ing. CoRR. arXiv:abs/1808.03196

100 H. Lan et al.

1 3

 53. Lakshmi SM, Zhou S (1998) Selectivity estimation in extensible
databases—a neural network approach. In: VLDB, pp 623–627

 54. Leeka J, Rajan K (2019) Incorporating super-operators in big-
data query optimizers. VLDB 13(3):348–361

 55. Leis V, Gubichev A, Mirchev A, Boncz PA, Kemper A, Neu-
mann T (2015) How good are query optimizers, really? VLDB
9(3):204–215

 56. Li J, König AC, Narasayya VR, Chaudhuri S (2012) Robust esti-
mation of resource consumption for SQL queries using statistical
techniques. VLDB 5(11):1555–1566

 57. Lim L, Wang M, Vitter JS (2003) SASH: a self-adaptive histo-
gram set for dynamically changing workloads. In: VLDB, pp
369–380

 58. Lin X, Zeng X, Xiaowei P, Sun Y (2015) A cardinality esti-
mation approach based on two level histograms. J Inf Sci Eng
31(5):1733–1756

 59. Liu F, Blanas S (2015) Forecasting the cost of processing multi-
join queries via hashing for main-memory databases. In: Socc,
pp 153–166

 60. Liu H, Mingbin X, Ziting Yu, Corvinelli V, Zuzarte C (2015)
Cardinality estimation using neural networks. In: CASCON, pp
53–59

 61. Lohman G (2014) Is query optimization a “solved” problem?.
http://wp.sigmo d.org/?p=1075 Accessed 10 June 2020

 62. Ma L, Ding B, Das S, Swaminathan A (2020) Active learning for
ML enhanced database systems. In: SIGMOD, pp 175–191

 63. Malik T, Burns RC, Chawla NV (2007) A black-box approach to
query cardinality estimation. In: CIDR, pp 56–67

 64. Manegold S, Boncz PA, Kersten ML (2002) Generic database
cost models for hierarchical memory systems. In: VLDB, pp
191–202

 65. Marcus R, Papaemmanouil O (2018) Deep reinforcement learn-
ing for join order enumeration. In: aiDM@SIGMOD, pp 3:1–3:4

 66. Marcus RC, Papaemmanouil O (2019) Plan-structured deep neu-
ral network models for query performance prediction. VLDB
12(11):1733–1746

 67. Marcus RC, Negi P, Mao H, Zhang C, Alizadeh M, Kraska T,
Papaemmanouil O, Tatbul N (2019) Neo: a learned query opti-
mizer. VLDB 12(11):1705–1718

 68. Moerkotte G, Neumann T (2006) Analysis of two existing and
one new dynamic programming algorithm for the generation of
optimal bushy join trees without cross products. In: VLDB, pp
930–941

 69. Moerkotte G, Neumann T (2008) Dynamic programming strikes
back. In: SIGMOD, pp 539–552

 70. Nam Y-M, Han D, Kim M-S (2020) SPRINTER: a fast n-ary
join query processing method for complex OLAP queries. In:
SIGMOD, pp 2055–2070

 71. Neumann T (2009) Query simplification: graceful degradation
for join-order optimization. In: SIGMOD, pp 403–414

 72. Neumann T, Radke B (2018) Adaptive optimization of very large
join queries. In: SIGMOD, pp 677–692

 73. Ono K, Lohman GM (1990) Measuring the complexity of join
enumeration in query optimization. In: VLDB, pp 314–325

 74. Ortiz J, Balazinska M, Gehrke J, Keerthi SS (2019) An empiri-
cal analysis of deep learning for cardinality estimation. CoRR.
arXiv:abs/1905.06425

 75. Park Y, Zhong S, Mozafari B (2020) QuickSel: quick selectivity
learning with mixture models. In: SIGMOD, pp 1017–1033

 76. Poosala V, Ioannidis YE, Haas PJ, Shekita EJ (1996) Improved
histograms for selectivity estimation of range predicates. In: SIG-
MOD, pp 294–305

 77. PostgreSQL Database (2020) howpublished. http://www.postg
resql .org/

 78. Rusu F, Dobra A (2008) Sketches for size of join estimation.
ACM Trans Database Syst 33(3):15:1–15:46

 79. Selinger PG, Astrahan MM, Chamberlin DD, Lorie RA, Price
TG (1979) Access path selection in a relational database manage-
ment system. In: SIGMOD, pp 23–34

 80. Shanbhag A, Sudarshan S (2014) Optimizing join enumeration in
transformation-based query optimizers. VLDB 7(12):1243–1254

 81. Siddiqui T, Jindal A, Qiao S, Patel H, Le W (2020) Cost models
for big data query processing: learning, retrofitting, and our find-
ings. In: SIGMOD, pp 99–113

 82. Spiegel J, Polyzotis N (2006) Graph-based synopses for relational
selectivity estimation. In: SIGMOD, pp 205–216

 83. Srivastava U, Haas PJ, Markl V, Kutsch M, Tran TM (2006) ISO-
MER: consistent histogram construction using query feedback.
In: ICDE, p 39

 84. Steinbrunn M, Moerkotte G, Kemper A (1997) Heuristic and
randomized optimization for the join ordering problem. VLDB
J 6(3):191–208

 85. Sun J, Li G (2020) An end-to-end learning-based cost estimator.
VLDB 13(3):307–319

 86. Swami AN (1989) Optimization of large join queries: combin-
ing heuristic and combinatorial techniques. In: SIGMOD, pp
367–376

 87. Tian S, Mo S, Wang L, Peng Z (2020) Deep reinforcement learn-
ing-based approach to tackle topic-aware influence maximiza-
tion. Data Sci Eng 5(1):1–11

 88. To H, Chiang K, Shahabi C (2013) Entropy-based histograms for
selectivity estimation. In: CIKM, pp 1939–1948

 89. Trummer I, Koch C (2017) Solving the join ordering problem via
mixed integer linear programming. In: SIGMOD, pp 1025–1040

 90. Trummer I, Wang J, Maram D, Moseley S, Jo S, Antonakakis
J (2019) SkinnerDB: regret-bounded query evaluation via rein-
forcement learning. In: SIGMOD, pp 1153–1170

 91. Tzoumas K, Deshpande A, Jensen CS (2011) Lightweight
graphical models for selectivity estimation without independ-
ence assumptions. VLDB 4(11):852–863

 92. Tzoumas K, Deshpande A, Jensen CS (2013) Efficiently adapting
graphical models for selectivity estimation. VLDB J 22(1):3–27

 93. Vance B, Maier D (1996) Rapid bushy join-order optimization
with Cartesian products. In: SIGMOD, pp 35–46

 94. Vengerov D, Menck AC, Zaït M, Chakkappen S (2015) Join size
estimation subject to filter conditions. VLDB 8(12):1530–1541

 95. Wang TN, Chan C-Y (2020) Improved correlated sampling for
join size estimation. In: ICDE, pp 325–336

 96. Woltmann L, Hartmann C, Thiele M, Habich D, Lehner W
(2019) Cardinality estimation with local deep learning models.
In: aiDM@SIGMOD, pp 5:1–5:8

 97. Woltmann L, Hartmann C, Habich D, Lehner W (2020) Machine
learning-based cardinality estimation in DBMS on pre-aggre-
gated data. CoRR. arXiv:abs/2005.09367

 98. Wentao W, Chi Y, Zhu S, Tatemura J, Hacigümüs H, Naughton
JF (2013) Predicting query execution time: are optimizer cost
models really unusable?. In: ICDE, pp 1081–1092

 99. Wentao W, Naughton JF, Singh H (2016) Sampling-based query
re-optimization. In: SGMOD, pp 1721–1736

 100. Wu C, Jindal A, Amizadeh S, Patel H, Le W, Qiao S, Rao S
(2018) Towards a learning optimizer for shared clouds. VLDB
12(3):210–222

 101. Yang Y, Zhang W, Zhang Y, Lin X, Wang L (2019) Selectivity
estimation on set containment search. Data Sci Eng 4(3):254–268

 102. Yang Y, Zhang W, Zhang Y, Lin X, Wang L (2019) Selectivity
estimation on set containment search. In: DASFAA, Part I, pp
330–349

 103. Yang Z, Kamsetty A, Luan S, Liang E, Duan Y, Chen X, Stoica
I (2020) NeuroCard: one cardinality estimator for all tables.
CoRR. arXiv:abs/2006.08109

http://wp.sigmod.org/?p=1075
http://www.postgresql.org/
http://www.postgresql.org/

101A Survey on Advancing the DBMS Query Optimizer: Cardinality Estimation, Cost Model, and Plan…

1 3

 104. Yang Z, Liang E, Kamsetty A, Chenggang W, Duan Y, Chen
P, Abbeel P, Hellerstein JM, Krishnan S, Stoica I (2019) Deep
unsupervised cardinality estimation. VLDB 13(3):279–292

 105. Yu F, Hou W-C, Luo C, Che D, Zhu M (2013) CS2: a new data-
base synopsis for query estimation. In: SIGMOD, pp 469–480

 106. Yu X, Li G, Chai C, Tang N (2020) Reinforcement learning with
tree-LSTM for join order selection. In: ICDE, pp 1297–1308

 107. Zhou X, Chai C, Li G, SUN J (2020) Database meets artificial
intelligence a: survey. In: TKDE, pp 1–1

 108. Zhou X, Sun J, Li G, Feng J (2020) Query performance pre-
diction for concurrent queries using graph embedding. VLDB
13(9):1416–1428

	A Survey on Advancing the DBMS Query Optimizer: Cardinality Estimation, Cost Model, and Plan Enumeration
	Abstract
	1 Introduction
	2 Why Key Components in Optimizer are Still Not Accurate?
	2.1 Cardinality Estimation
	2.2 Cost Model
	2.3 Plan Enumeration

	3 Cardinality Estimation
	3.1 Synopsis-Based Methods
	3.1.1 Histogram
	3.1.2 Sketch
	3.1.3 Other Techniques

	3.2 Sampling-Based Methods
	3.3 Learning-Based Methods
	3.3.1 Supervised Methods
	3.3.2 Unsupervised Methods

	3.4 Our Insights
	3.4.1 Summaries
	3.4.2 Possible Future Directions

	4 Cost Model
	4.1 Quality Improvement of Existing Cost Model
	4.2 Cost Model Alternatives
	4.3 Query Performance Prediction
	4.4 Our Insights
	4.4.1 Summaries
	4.4.2 Possible Future Directions

	5 Plan Enumeration
	5.1 Non-Learning Methods
	5.1.1 Dynamic Programming
	5.1.2 Top-Down Strategies
	5.1.3 Large Queries
	5.1.4 Others

	5.2 Learning-Based Methods
	5.3 Our Insights
	5.3.1 Summaries
	5.3.2 Possible Future Directions

	6 Conclusion
	Acknowledgements
	References

