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Abstract
Query optimizer is at the heart of the database systems. Cost-based optimizer studied in this paper is adopted in almost all 
current database systems. A cost-based optimizer introduces a plan enumeration algorithm to find a (sub)plan, and then 
uses a cost model to obtain the cost of that plan, and selects the plan with the lowest cost. In the cost model, cardinality, the 
number of tuples through an operator, plays a crucial role. Due to the inaccuracy in cardinality estimation, errors in cost 
model, and the huge plan space, the optimizer cannot find the optimal execution plan for a complex query in a reasonable 
time. In this paper, we first deeply study the causes behind the limitations above. Next, we review the techniques used to 
improve the quality of the three key components in the cost-based optimizer, cardinality estimation, cost model, and plan 
enumeration. We also provide our insights on the future directions for each of the above aspects.
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1 Introduction

Query optimizer is at the heart of relational database man-
agement systems (RDBMSes) and some big data process 
engines, e.g., SCOPE [7]. Given a query written in a declara-
tive language (e.g., SQL), the optimizer finds the most effi-
cient execution plan (also called physical plan) and feeds it 
to the executor. Thus, most of the time, the users only think 
over how to transform their requirements to a valid query 
without the need to analyze how to run the query efficiently. 
Almost all systems adopt a cost-based optimizer based on 
the architecture of System R [79] or Volcano/Cascades [26, 
27].

Figure 1 illustrates the three most important components 
in a cost-based optimizer: cardinality estimation (CE), cost 
model (CM), and plan enumeration (PE). CE uses statistics 

of data and some assumptions about data distribution, col-
umn correlation, and join relationship to get the number of 
tuples generated by an intermediate operator,1 which is also 
crucial for other search problems, e.g., [101, 102]. CM can 
be regarded as a complex function that maps the current 
state of database and estimated cardinalities to the cost of 
executing a (sub)plan. PE is an algorithm to explore the 
space of semantically equivalent join orders and find the 
optimal orders with minimal cost. There are two principal 
approaches to find an optimal join order: bottom-up join 
enumeration via dynamic programming and top-down join 
enumeration through memorization.

Theoretically, provided that the estimated cardinality and 
cost are accurate, and plan enumeration component can effi-
ciently walk through the huge search space, this architecture 
can obtain the optimal execution plan in a reasonable time. 
However, it fails in reality. Despite decades of work, cost-
based query optimizers still make mistakes on “difficult” 
queries due to the error in CE, the difficulty in building 
an accurate CM, and the pain in finding the optimal join 
orders (PE) for complex queries. The details are presented 
in Sect. 2, i.e., why the existing optimizer is still far from 
satisfaction.
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There are lots of research studies proposed to improve the 
capability of the optimizer. In this paper, we present a survey 
on them. Specifically, we review the publications which are 
proposed to improve the capabilities of the three key compo-
nents in the optimizer, i.e., CE, CM, PE.

This paper makes the following contributions: 

(1) We summarize the reasons why the CE, CM, and PE 
do not perform well (Sect. 2).

(2) We review the studies proposed to estimate cardinal-
ity more accurately. According to the techniques used, 
we categorize them into synopsis-based methods, 
sampling-based methods, and learning-based methods 
(Sect. 3).

(3) We review the work on improving the cost model. We 
classify them into three groups: improvement of the 
existing cost model, cost model alternatives, and per-
formance prediction for a single query (Sect. 4).

(4) We review the techniques used in plan enumeration and 
study the non-learning methods used to handle large 
queries. Besides, we review recent proposed methods, 
which adopt reinforcement learning to select the join 
order (Sect. 5).

(5) In Sects. 3–5, we present our insights on the future 
directions, respectively.

There are two related surveys. In Chaudhuri [8] reviews the 
work with non-learning methods on query optimizer. In the 
last two decades, many methods are proposed to improve the 
capability of the optimizer. It is necessary to review the new 
work. Recently, Zhou et al. [107] investigate how AI is intro-
duced in the different parts of DBMS, such as monitoring, 
tuning, and optimizer. In this paper, we focus on the query 
optimizer and give a comprehensive survey on the three key 
components of the optimizer. We summarize the learning-
based and non-learning methods at the same time, review 
these work in details, and present possible future directions 
for each of them.

2  Why Key Components in Optimizer are 
Still Not Accurate?

In this section, we summarize the reasons why the cardi-
nality estimation, cost model, and plan enumeration do 
not perform well, respectively. The studies reviewed in 
this paper try to improve the quality of the optimizer by 
handling these shortages.

2.1  Cardinality Estimation

Cardinality estimation is the ability to estimate the tuples 
generated by an operator and is used in the cost model to 
calculate the cost of that operator. Lohman [61] points out 
that the cost model can introduce errors of at most 30%, 
while the cardinality estimation can easily introduce errors 
of many orders of magnitude. Leis et al. [55] experimen-
tally revisit the components, CE, CM, and PE in the clas-
sical optimizers with complex workloads. They focus on 
the quality of the physical plan on multi-join queries and 
get the same conclusion with Lohman.

The errors in cardinality estimation are mainly intro-
duced in three cases: 

(1) Error in single table with predications Database sys-
tems usually take histograms as the approximate distri-
bution of data. Histograms are smaller than the origi-
nal data. Thus, it cannot represent the true distribution 
entirely and some assumptions (e.g., uniformity on a 
single attribute, independence assumption among dif-
ferent attributes) are proposed. When those assump-
tions are not hold, estimation errors occur, leading to 
sub-optimal plans. The correlation among attributes in 
a table is not unusual. Multi-histograms have been pro-
posed. However, it suffers from a large storage size.

Fig. 1  Query optimizer archi-
tecture. IS, HJ, NL, and TS 
refer to index scan, hash join, 
nestloop join, and table scan
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(2) Error in multi-join queries Correlations possibly exist 
in columns from different tables. However, there is 
no efficient way to get synopses between two or more 
tables. Inclusion principle has been introduced for this 
case. The cardinality of a join operator is calculated 
using the inclusion principle with cardinalities of its 
children. It has large errors when the assumption is not 
held. Besides, for a complex query with multiple tables, 
the estimation errors can propagate and amplify from 
the leaves to root of the plan. The optimizers of com-
mercial and open-source database systems still struggle 
in cardinality estimation for mult-join queries [55].

(3) Error in user defined function Most of database systems 
support the user-defined function (UDF). When a UDF 
exists in the condition, there is no general method to 
estimate how many tuples satisfying it [8].

2.2  Cost Model

Cost-based optimizers use a cost model to generate the esti-
mate of cost for a (sub)query. The cost of (sub)plan is the 
sum of costs of all operators in it.

The cost of an operator depends on the hardware where 
the database is deployed, the operator’s implementation, the 
number of tuples processed by the operator, and the cur-
rent database state (e.g., data in the buffer, concurrent que-
ries) [64]. Thus, a large number of magic numbers should 
be determined when combining all factors, and errors in car-
dinality estimation also affect the quality of the cost model. 
Furthermore, when the cost-based optimizer is deployed in 
a distributed or parallel database, the cloud environment, 
or the cross-platform query engines, the complexity of cost 
model is increasing dramatically. Moreover, even with the 
true cardinality, the cost estimation of a query is not linear 
to the running time, which may lead to a suboptimal execu-
tion plan [45, 81].

2.3  Plan Enumeration

Plan enumeration algorithm is used to find the optimal join 
order from the space of semantically equivalent join orders 
such that the query cost is minimized. It has been proven to 
be an NP-hard problem [41]. Exhaustive query plan enumer-
ation is a prohibitive task for large databases with multi-join 
queries. Thus, it is crucial to explore the right search space 
which should consist of the optimal join orders or approxi-
mately optimal join orders and design an efficient enumera-
tion algorithm. The join trees in the search space could be 
zigzag trees, left-deep trees, right-deep trees, and bushy trees 
or the subset of them. Different systems consider different 
forms of join tree. There are three enumeration algorithms 
in traditional database systems: (1) bottom up join enumera-
tion via dynamic programming (DP) (e.g., System R [79]), 

(2) top-down join enumeration through memorization (e.g., 
Volcano/Cascades [26, 27]), and (3) randomized algorithms 
(e.g., genetic algorithm in PostgreSQL [77] with numerous 
tables joining).

Plan enumeration suffers from three limitations: (1) the 
errors in cardinality estimation and cost model, (2) the rules 
used to prune the search space, and (3) dealing with the 
queries with large number of tables. When a query touches a 
large number of tables, optimizers have to sacrifice optimal-
ity and employ heuristics to keep optimization time reason-
able, like genetic algorithm in PostgreSQL, greedy method 
in DB2, which usually generates poor plans.

We should notice the errors in cardinality will propa-
gate to the cost model and lead to suboptimal join order. 
Eliminating or reducing the errors in cardinality is the first 
step to build a capable optimizer as Lohman [61] says “The 
root of all evil, the Achilles Heel of query optimization, is 
the estimation of the size of intermediate results, known as 
cardinalities”.

In the following three sections, we summarize the 
research efforts made to handle limitations in CE, CM, and 
PE, i.e., how to make the query optimizer good.

3  Cardinality Estimation

At present, there are three major strategies for cardinality 
estimation as shown in Fig. 2. We only list some representa-
tive work for each category. Every method tries to approxi-
mate the distribution of data well with less storage. Some 
proposed methods combine different techniques, e.g., [91, 
92].

3.1  Synopsis‑Based Methods

Synopsis-based methods introduce new data structures to 
record the statistics information. Histogram and sketch are 
the widely adopted forms. A survey on synopses has been 
proposed in 2012 [10], which focuses on distinguishing 
aspects of synopses that are pertinent to approximate query 
processing (AQP).

3.1.1  Histogram

There are two histogram types: 1-dimensional and d-dimen-
sional histograms, where d ≥ 2 . d-dimensional histograms 
can capture the correlation between different attributes.

A 1-dimensional histogram on attribute a is constructed 
by partitioning the sorted tuples into B(≥ 1) mutually dis-
joint subsets, called buckets and approximates the frequen-
cies and values in each bucket in some common fashion, 
e.g., uniform distribution and continuous values. A d-dimen-
sional histogram on an attribute group A is constructed by 
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partitioning the joint data distribution of A. Because there 
is no order between different attributes, the partition rule 
needs to be more intricate. Ioannidis [43] present a com-
prehensive survey on histograms following the classifica-
tion method in [76]. Gunopulos et al. [29] also propose a 
survey in 2003, which focuses on the work used to estimate 
the selectivity over multiple attributes. They summarize the 
multi-dimensional histograms and kernel density estimators. 
After 2003, the work in histograms can be divided into three 
categories: (1) fast algorithm for histogram construction [1, 
28, 32, 33, 42]; (2) new partition methods to divide the data 
into different buckets to achieve better accuracy [14, 58, 88]; 
(3) histogram construction based on query feedback [47, 57, 
83]. Query feedback methods are also summarized in [10] 
(Section 3.5.1.2) and readers can refer to it for details.

Guha et al. [28] analyze the previous algorithm, VODP 
[44] and find some calculations on the minimal sum-
of-squared-errors (SSE) can be reduced. They design 
an efficient algorithm AHistL-Δ with time complexity 
O(n + B3(lg n + �

−2)) while VODP takes O(n2B) , where n 
is the domain size, B is the number of buckets, and � is a 
precision parameter. Halim et al. [32, 33] propose GDY, a 
fast histogram construction algorithm based on greedy local 
search. GDY generates good sample boundaries, which 
then are used to construct B final partitions optimally using 
VODP. This study compares GDY variants with AHistL-Δ 
[28] in minimizing the total errors of all the buckets and 
shows its superiority in resolving the efficiency-quality 
trade-off. Instead of scanning the whole dataset [28, 42] 
design a greedy algorithm to construct the histogram on 

the random samples from dataset with time complexity 
O((B5∕�8) log2 n) and sample complexity O((B∕�)2 log n) . 
[1] study the same problem with [42] and propose a merg-
ing algorithm with time complexity O(1∕�2) . Methods in 
[1, 28, 42] can be extended to approximate distributions by 
piecewise polynomials.

Considering the tree-based indexes divide the data into 
different segments (nodes), which is quite similar with buck-
ets in the histogram, Eavis and Lopez [14] build the multi-
dimensional histogram based on R-tree. They first build a 
native R-tree histogram on the Hilbert sort of data and then 
propose a sliding window algorithm to enhance the naive 
histogram under a new proposed metric, which seeks to 
minimize the dead space between bucket points. Lin et al. 
[58] design a two-level histogram for one attribute, which is 
quite similar to the idea of the B-tree index. The first level 
is used to locate which leaf histograms to be used, and the 
leaf histograms store the statistics information. To et al. [88] 
construct a histogram based on the principle of minimizing 
the entropy reduction of the histogram. They design two 
different histograms for the equality queries and an incre-
mental algorithm to construct the histogram. However, it 
only considers the one-dimensional histogram and does not 
handle range queries well.

3.1.2  Sketch

Sketch models a column as a vector or matrix to calculate 
the distinct count (e.g., HyperLogLog [21]) or frequency of 
tuples (e.g., Count Min [11]) on a value. Rusu and Dobra 

Fig. 2  A classification of cardi-
nality estimation methods
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[78] summarize how to use different sketches to estimate the 
join size. This work considers the case of two tables (or data 
streams) without filters. The basic idea of them is: (1) build-
ing the sketch (a vector or matrix) on the join attribute, while 
ignoring all the other attributes, (2) estimating the join size 
based on the multiplication of the vectors or matrices. These 
methods only support the equi-join and join on single col-
umn. As shown in [94], a possible method introducing one 
filter in sketch is to build an imaginary table which only con-
sists of the join value of tuples which satisfy the filter. How-
ever, this makes the estimation drastically worse. Skimmed 
sketch [24] is based on the idea of bifocal sampling [23] to 
estimate the join size. However, it requires knowing frequen-
cies of the most frequent join attribute values. Recent work 
[6] on join size estimation introduces the sketch to record 
the degree of a value.

3.1.3  Other Techniques

TuG [82] is a graph-based synopsis. The node of TuG repre-
sents a set of tuples from the same table or a set of values for 
the same attribute. The edge represents the join relationship 
between different tables or between attributes and values. 
The authors adopt a three-step algorithm to construct TuG 
and introduce the histogram to summarize the value distri-
bution in a node. When a new query comes, the selectivity 
is estimated by traversing TuG. The construction process is 
quite time-consuming and cannot be used in a large dataset. 
Without the relationship between different tables, TuG can-
not be built.

3.2  Sampling‑Based Methods

Synopsis-based methods are quite difficult to capture the 
correlation between different tables. Some researchers try to 
use a specific sampling strategy to collect a set of samples 
(tuples) from tables, and then run the (sub)query over sam-
ples to estimate the cardinality. As long as the distribution 
of the obtained samples is close to the original data, the 
cardinality estimation is believable. Thus, lots of work have 
been proposed to design a good sampling approach, from 
independent sampling to correlated sampling technique. 
Sampling-based methods also are summarized in [10]. After 
2011, there are numerous studies that utilize the sampling 
techniques. Different with [10], we mainly summarize the 
new work. Moreover, we review the work according to their 
publishing time and present the relationship between them, 
i.e., which shortages of the previous work the later work 
tries to overcome.

Haas et al. [30] analyze the six different fixed-step (a pre-
defined sample size) sampling methods for the equi-join que-
ries. They conclude that if there are some indexes built on 
join keys, page-level sampling combining the index is the 

best way. Otherwise, the page-level cross-product sampling 
is the most efficient way. Then, the authors extend the fixed-
step methods to fixed-precision procedures.

Ganguly et al. [23] introduce bifocal sampling to esti-
mate the size of an equi-join. They classify values of the 
join attribute in each relation into two groups, sparse (s) 
and dense (d) based on their frequencies. Thus, the join type 
between tuples can be s–s, s–d, d–s, and d–d. The authors 
first adopt t_cross sampling [30] to estimate the join size 
of d–d, then adopt t_index to estimate the join size of the 
remaining cases, and finally add all the estimation as the join 
size estimation. However, it needs an extra pass to determine 
the frequencies of different values and needs indexes to esti-
mate the join size for s–s, s–d, and d–s. Without indexes, the 
process is time-consuming.

End-biased sampling [15] stores the (v, fv) if fv ≥ T  , 
where v is a value in the join attribute domain, fv is the 
number of tuples with value v , and T  is a defined thresh-
old. It applies a hash function h(v) ∶ v ↦ [0, 1] . If h(v) ≤ fv

T
 , 

it stores (v, fv) or not. Different tables adopt the same hash 
function to correlate their sampling decisions for tuples with 
low frequencies. Then, the join size can be estimated using 
stored (v, fv) pairs. However, it only supports equi-join on 
two tables and cannot handle other filter conditions. Notice, 
end-bias sampling is quite similar to bifocal sampling. The 
difference is: the former uses a hash function to sample cor-
related tuples and the latter uses the indexes. Both of them 
require an extra pass through the data to compute the fre-
quencies of the join attribute values.

Yu et al. [105] introduce correlated sampling as a part of 
CS2 algorithm. They (1) choose one of the tables in a join 
graph as the source table R1 , (2) use a random sampling 
method to obtain sample set S1 for R1 (mark R1 as visited), 
(3) follow an unvisited edge < Ri,Rj > ( Ri is visited) in the 
join graph and collect the tuples from Rj which are joinable 
with tuples in Si as Sj , and (4) estimate the join size over 
the samples. To support the query without source tables, 
they propose a reverse estimator, which tracks to the source 
tables to estimate the join size. However, due to the walking 
through the join graph many times, it is time-consuming 
without indexes. Furthermore, it requires an unpredictable 
large space to store the samples.

Vengerov et  al. [94] propose a correlated sampling 
method without the prior knowledge of frequencies of 
join attributes, like in [15, 23]. A tuple with join value 
v is included in the sample set if h(v) < p , where p =

n

T
 , 

h(v) is a hash function similar in [15], n is the sample size, 
and T  is the table size. Then, we can use obtained sam-
ples to estimate the join size and handle specified filter 
conditions. Furthermore, the authors extend the method 
into more tables join and complex join conditions. In most 
cases, the correlated sampling has lower variance than 
independent Bernoulli sampling (t_cross), but when the 
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values of many join attributes occur with large frequen-
cies, the Bernoulli sampling is better. One possible solu-
tion the authors propose is to adopt a one-pass algorithm 
to detect the values with high frequencies, which is back 
to the method in [15].

Through experiments, Chen and Yi [9] conclude that 
there does not exist one sampling method suitable for all 
cases. They propose a two-level sampling method, which 
is based on the independent Bernoulli sampling, end-bias 
sampling [15], and correlated sampling [94]. Level-one 
sampling samples a value v from join attribute domain 
into value set ( V  ), if h(v) < pv . h is a hash function simi-
lar to [15], pv is a defined probability for value v . Before 
level-two sampling, they sample a random tuple, called the 
sentry, for every v in V  into tuple set. Level-two sampling 
samples tuples with value v ( v ∈ V  ) with probability q . 
Then, we can estimate the join size by using the tuple 
samples. Obviously, the first level is a correlated sampling 
and the second level is independent Bernoulli sampling. 
The authors analyze how to set the pv and q according to 
different join types and the frequencies of values in join 
attributes.

Wang and Chan [95] extend [9] to a more general frame-
work in terms of five parameters. Based on the new frame-
work, they propose a new class of correlated sampling meth-
ods, called CSDL, which is based on the discrete learning 
algorithm. A variant of CSDL, CSDL-Opt has outperformed 
[9] when the samples are small or join value density is small.

Wu et al. [99] adopt the online sampling to correct the 
possible errors in the plan generated by the optimizers.

3.3  Learning‑Based Methods

Due to the capability of the learning-based methods, many 
researchers have introduced a learning-based model to cap-
ture the distribution and correlations of data. We classify 
them into: (1) supervised methods, (2) unsupervised meth-
ods (Table 1).

3.3.1  Supervised Methods

Malik et al. [63] group queries into templates and adopt 
machine learning techniques (e.g., linear regression model, 
tree models) to learn the distribution of query result sizes for 
each family. The features used in it include query attributes, 
constants, operators, aggregates, and arguments to UDFs.

Park et al. [75] propose a model, QuickSel, in query-
driven paradigm, which is similar to [47, 57, 83], to estimate 
the selectivity of one query. Instead of adopting the histo-
grams, QuickSel introduces the uniform mixture models to 
represent the distribution of the data. They train the model 
by minimizing the mean squared error between the mixture 
model and a uniform distribution.

Tzoumas et al. [91, 92] build a Bayesian network and 
decompose the complex statistics over multiple attributes 
into small one-/two-dimensional statistics, which means 
the model captures dependencies between two relations at 
most. They build the histograms for these small dimensional 
statistics and adopt a dynamic programming to calculate 
the selectivity for the new queries. Different with previous 
method [25], it can handle more general joins and has a 

Table 1  Learning-based methods for cardinality estimation

References Model Model count Encoding Multi-columns Multi-tables UDF Workload shift

[63] LR 1 Model/1 Template Predicates, arguments ✓ ✓ ✓ ×

[75] MixModel 1 Model Predicates ✓ × × ✓

[91, 92] BN 1 Model predicates ✓ ✓ × ×

[31] BN 1 Model/1 Table Predicates ✓ × × ×

[53] NN 1 Model/1 UDF Arguments × × ✓ ×

[60] NN 1 Model Predicates ✓ × × ×

[100] NN/PR/MLR 1 Model/1 Subquery Predicates, input cardinalities ✓ ✓ ✓ ×

[49] MSCN 1 Model Predicates, tables, joins ✓ ✓ × ×

[13] Tree-Ensemble/NN 1 Model Predicates ✓ × × ×

[96, 97] NN 1 Model/1 Template Predicates ✓ ✓ × ×

[74] DNN/RNN/Tree 1 Model Predicates, tables, joins ✓ ✓ × ×

[85] tree-LSTM 1 Model Predicate, operator, metadata ✓ ✓ × ×

[38] KDE 1 Model Samples ✓ × × ✓

[48] KDE 1 Model Samples ✓ ✓ × ✓

1 Model/1 Table
[40] SPN 1 Model Tuples; predicates ✓ ✓ × ✓

[35, 104] Autoregression 1 Model Tuples; predicates ✓ × × ✓

[103] Autoregression 1 Model Tuples; predicates ✓ ✓ × ✓
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more efficient construction algorithm because of capturing 
smaller dependencies. However, the authors do not verify 
their method with multiple tables join and in large dataset. 
Moreover, constructing the two-dimensional statistics with 
attributes from different tables needs the join operation. Hal-
ford et al. [31] also introduce a method based on Bayesian 
network. To construct the model quickly, they only factorize 
the distribution of attributes inside each relation and use the 
previous assumptions for joins. However, they do not present 
how well their method compared with [91, 92].

Lakshmi and Zhou [53] first introduce the NN into the 
cardinality estimation of user defined function (UDF), 
which the histograms and other statistics cannot support. 
They design a two-layer neural network (NN) and employ 
the back propagation to update the model.

Liu et  al. [60] formalize a selectivity function, 
Sel ∶ R2N

↦ R, (l1, u1,… , ln, un) ↦ c , where N is the num-
ber of attributes, li and ui is the lower and upper bound on i th 
attribute for a query. They employ a 3-layer NN to learn the 
selectivity function. To support > and <, they add 2N small 
NNs to produce li and ui.

Wu et al. [100] use a learning-based method for workload 
in shared clouds, where the queries are often recurring and 
overlapping in nature. They first extract overlapping sub-
graph templates in multiple query graphs. Then, they learn 
the cardinality models for those sub-graph templates.

Kipf et al. [49] introduce the multi-set convolutional 
network (MSCN) model to estimate the cardinality of cor-
related joins. They represent a query as a collection of a set 
of tables T  , joins J , and predicts P and build the separate 
2-layer NN for each of them. Then, the outputs of three NNs 
are concatenated after the averaging operation and fed into 
the final output network. Deep sketch [50] is built on [49] 
and is a wrapper of it.

Dutt et al. [13] formalize the estimation as a function 
similar to [60], and they consider it as a regression prob-
lem. They adopt two different approaches for the regression 
problem, NN-based methods and tree-based ensembles. Dif-
ferent with [60], the authors also use histograms and domain 
knowledge (e.g., AVI, EBO, and MinSel) as the extra fea-
tures in the models, which improve the estimation accuracy. 
Due to the domain knowledge quickly updated when the 
data distribution changes, the model is robust to the updates 
on the datasets.

Woltmann et al. [96] think building a single NN, called 
global model, over the entire database schema has the 
sparse encoding and needs numerous samples to train 
the model. Thus, they build different models, called local 
models, for different query templates. Every local model 
adopts multi-layer perceptrons (MLP) to produce the car-
dinality estimation. To collect the true cardinality, many 
sample queries are issued during the training process, 
which is time-consuming. Furthermore, Woltmann et al. 

[97] introduce the method of pre-aggregating the base data 
using the data cube concept and execute the example que-
ries over this pre-aggregated data.

Ortiz et al. [74] empirically analyze various of deep learn-
ing approaches used in cardinality estimation, including 
deep neural network (DNN) and recurrent neural network 
(RNN). The DNN model is similar with [96]. To adopt RNN 
model, the authors focus on left-deep plans and model a 
query as a series of actions. Every action represents an oper-
ation (i.e., selection or join). In each timestamp t , the model 
receives two inputs: xt , the encoding of t th of operation, and 
ht−1 , the generated hidden state from timestamp t − 1 , which 
can be regarded as the encoding of a subquery and captures 
the important details about the intermediate results.

Sun and Li [85] introduce a tree-LSTM model to learn 
a representation of an operator and add an estimation layer 
upon the tree-LSTM model to estimate the cardinality and 
cost simultaneously.

3.3.2  Unsupervised Methods

Heimel et al. [38] introduce the Kernel Density Estimator 
(KDE) into estimating the selectivity on single table with 
multiple predicates. They first adopt the Gaussian Kernel 
and the bandwidth obtained by a certain rule to construct 
the initial KDE, and then, they use the history queries to 
choose the optimal bandwidth by minimize the estimation 
error using initial KDE. To support the shifts in workload 
and dataset, they update the bandwidth after each incom-
ing query and design the new sample maintenance method 
for insert-only workload and updates/deletions workload. 
Furthermore, in Kiefer et al. [48] extend the method into 
estimating the selectivity of join. They design two differ-
ent models: single model over the join samples and the 
models over the base tables, which does not need the join 
operation and estimates the selectivity of join with the 
independent assumption.

Yang et al. [104] propose a model called Naru, which 
adopts the deep autoregressive model to produce n condi-
tional densities P̂(xi|x<i) on a set of n-dimensional tuples. 
Then, they estimate the selectivity using the product rule:

To support range conditions, they introduce a progressive 
sampling method by sampling points from more meaningful 
region according to the trained autoregressive model, which 
is robust to the skewed data. Furthermore, they adopt the 
wildcard-skipping to handle wildcard condition.

(1)

P̂(�) = P̂(x1, x2,… , xn)

= P̂(xn|x1,… , xn−1)P̂(xn−1|x1,… , xn−2)…

P̂(x2|x1)P̂(x1)
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Hasan et al. [35] also adopt the deep autoregressive models 
and introduce an adaptive sampling method to support range 
queries. Compared with the Naru, the authors adopt the binary 
encoding method and the sampling process runs parallelly, 
which leads the model is smaller than Naru and makes the 
inference faster. Besides, it can incorporate with the workload 
by assigning the tuples with weights according to the workload 
when defining the cross-entropy loss function.

Hilprecht et al. [40] introduce the Relational Sum Product 
Network (RSPN) to capture the distribution of single attrib-
utes and the joint probability distribution. They focus on Tree-
SPNs, where one leaf is the approximation of a single attrib-
ute, and the internal node is Sum node (splitting the rows into 
clusters) or Product node (splitting the columns of one cluster). 
To support cardinality estimation of join, they build the RSPN 
over the join results.

Yang et al. [103] extend their previous work, Naru, to sup-
port joins. They build an autoregressive model over the full 
outer join of all tables. They introduce the lossless column 
factorization for large-cardinality columns and employ the join 
count table to support any queries on the subset of tables.

3.4  Our Insights

3.4.1  Summaries

The basic histogram types (e.g., equi-width, equi-depth, 
d-dimensional) have been introduced before 2000. Recent 

studies mainly focus on how to quickly construct the histo-
grams and to improve the accuracy of them. Updating the 
histograms by query feedback is a good approach to improve 
the quality of histograms. However, there are still two limita-
tions in the histograms: (1) the storage size increases dra-
matically when building a d-dimensional histograms; (2) 
histograms cannot capture the correlation between attributes 
from different tables. If building a histogram for the attrib-
utes from different tables, the join operation is required, like 
in [91, 92] and it is difficult to update this histogram. Sketch 
can be used to estimate the distinct count of an attribute or 
the cardinality of equi-join results. However, it cannot sup-
port more general cases well, e.g., join with filters. Synopsis-
based methods cannot estimate the size of final or interme-
diate relations when one or both of the child relations is an 
intermediate relation.

Sampling is a good approach to capture the correlations 
between different tables. However, when the tuples in tables 
have been updated, the samples may become out-of-date. 
Sampling-based methods also suffer from the storage used to 
store the samples and the time used to retrieve the samples, 
especially when the original data is numerous. Furthermore, 
current sampling methods only support the equi-join.

The supervised learning methods are mostly query-
driven, which means the model is trained for a specific work-
load. If the workload shifts, the model needs to be retrained. 
Thus, the data-driven (unsupervised learning) approaches 
come out, which still can estimate the cardinality even if the 
workload shifts. As shown in [104] (Section 6.3), Naru is 
robust to workload shift, while MSCN and KDE are sensi-
tive to the training queries. Moreover, both of the supervised 
and unsupervised learning methods suffer from the data 
change. As presented in [103] (Section 7.6) and [85] (Sec-
tion 7.5), both of them are sensitive to data change and the 
models will be updated in an incremental mode or retrained 
from scratch. However, they only consider that new tuples 
are appended into one table and there does not exist delete 
or update operation.

Due to the difference in the experiment settings, we 
only present a preliminary comparison between the meth-
ods for cardinality estimation as shown in Table 2. Some-
times, the size of learning-based methods is still not small 

Table 2  A preliminary comparison in different methods for cardinality estimation

Methods Workload 
shift

Data change Update time Storage usage Multi-col-
umns

Multi-tables

1-histogram [43] × × Short Small × ×

d-histogram [29] × × Short Large ✓ ×

Sampling [9, 95, 99] ✓ × Medium Large ✓ ✓

Supervised learning [49, 85] × × Long Small ✓ ✓

Unsupervised learning [40, 103] ✓ × Long Small ✓ ✓

Fig. 3  A classification of cost estimation methods
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as presented in [103]. The state-of-the-art method is [103], 
which shows superiority compared with other methods in 
their experiments.

3.4.2  Possible Future Directions

There are several possible directions as follows: 

(1) Learning-based methods Many studies on cardinal-
ity estimation are learning-based methods in last two 
years. The learning-based models currently integrated 
a real system are the light model or one model for one 
(sub-)query graph [13, 100], which can be trained and 
updated quickly. However, the accuracy and general-
ity of these models are limited. More complex models 
(achieve a better accuracy) still suffer from the long 
training time and update time. Training time is influ-
enced by the hardware. For example, it only takes sev-
eral minutes in [103], while it is 13 h in [85] using 
a GPU with relatively poor performance. A database 
instance, especially in the cloud environment, is in a 
resource-constrained environment. How to train the 
model efficiently should be considered. The interaction 
between the models and the optimizer also needs to be 
considered, which should not be with too much over-
head on the database systems [13]. As presented above, 
current proposed methods for data change cannot han-
dle delete or update operation. A possible method is to 
adopt the idea of active learning to update the model 
[62].

(2) Hybrid methods Query-driven methods are sensitive 
to workload. Although data-driven methods can sup-
port more queries, it may not achieve the best accuracy 
for all queries. How to combine two methods in these 
two different catalogs is a possible direction. Actually, 
the previous query-feedback histogram is an instance 
of this case. Another interesting thing is that utilizing 
the query feedback information will help the model be 
aware of the data change.

(3) Experimental Study Although many methods have 
been proposed, it lacks of experimental studies to 
verify these methods. Different methods have differ-
ent characteristics as shown in Table 2. It is crucial to 
conduct a comprehensive experimental study for pro-
posed methods. We think the following aspects should 
be included: (1) is it easy to integrate the method into a 
real database system; (2) what is the performance of the 
method under different workload patterns (e.g., static 
or dynamic workload, OLTP or OLAP) and different 
data scales and distributions; (3) researchers should 
pay attention to the trade-off between storage usage 
and accuracy of candidate estimation and the trade-off 
between efficiency of model update and the accuracy.

4  Cost Model

In this section, we present the researches proposed to solve 
the limitations in the cost model. We classify the meth-
ods into three groups: (1) improving the capability of the 
existed cost model, (2) building a new cost model, and (3) 
predicting the query performance. We include the work 
on the single query performance prediction, because the 
cost used in the optimizer is the metric for performance. 
These methods are possibly integrated into the cost-based 
optimizer and replace the cost model to estimation the cost 
of a (sub)plan, like in [67]. However, we do not consider 
the query performance prediction under concurrent con-
text (e.g., [108]). On the one hand, the concurrent queries 
existing during the optimization may be quite different 
with queries during the execution process. On the other 
hand, it also needs to collect more information than the 
model predicting the performance of a single query. We 
list the representative work of in the cost model in Fig. 3.

4.1  Quality Improvement of Existing Cost Model

Several studies try to estimate the cost of UDF [3, 36, 
37]. Boulos and Ono [3] execute the UDF several times 
with different input values, collect the different costs, and 
then use these costs to build a multi-dimensional histo-
gram. The histogram is stored in a tree structure. When 
estimating the UDF with specific parameters, traverse the 
tree top-down to get the estimated cost to locate the leaf 
with similar parameters with inputs. However, this method 
needs to know the upper and lower bounds of every param-
eter and it cannot solve the complex relation between input 
parameters and the costs. Unlike the static histogram used 
in [3], He et al. [36] introduce a dynamic quadtree-based 
approach to store the UDF execution information. When 
a query is executed, the actual cost of executing the UDF 
is used to update the cost model. He et al. [37] introduce a 
memory-limited K-nearest neighbors (MLKNN) method. 
They design a data structure, called PData, to store the 
execution cost and a multidimensional index used for fast 
retrieval k nearest PData for a given query point (param-
eter in UDF) and fast insertion of new PData.

Liu and Blanas [59] introduce a cost model for hash-
based join for main-memory database. They model the 
response time of a query as being proportional to the 
number of operations weighted by the costs of four basic 
access patterns. They first adopt the microbenchmarks to 
get the cost of each access pattern and then model the 
cost of sequential scan, hash join, hash join with different 
orders by the basic access patterns.

Most of the previous cost models only consider the 
execution cost, which may be not reasonable in the cloud 
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environments. The users of the cloud database systems 
care about the economic cost. Karampaglis et  al. [46] 
first propose a bi-objective query cost model, which is 
used to derive running time and monetary cost together 
in the multi-cloud environment. They model the execu-
tion time based on the method in [98]. For economic cost 
estimation, they first model the charging policies and esti-
mate the monetary cost by combining the policy and time 
estimation.

4.2  Cost Model Alternatives

The cost model is a function mapping the (sub)plan with 
annotated information to a scalar (cost). Because a neural 
network on data primarily approximates the unknown under-
lying mapping function from inputs to outputs, most of the 
methods used to replace the origin cost model are learning-
based, especially NN-based.

Boulos et al. [4] firstly introduce the neural network for 
cost evaluation. They design two different models: a single 
large neural network for every query type and a single small 
neural network for every operator. In the first model, they 
also train another model to classify a query in a certain type. 
The output of the first model is the cost of a (sub)plan, while 
the second model needs to add up the outputs from small 
models to get the cost.

Sun and Li [85] adopt a tree-LSTM model to learn the 
presentation of an operator and add an estimation layer upon 
the tree-LSTM model to estimate the cost of the query plan.

Due to the difficulty in collecting statistics and the needs 
of picking the resources in big data systems, particularly in 
modern cloud data services, Siddiqui et al. [81] propose a 
learning-based cost model and integrate it into the optimizer 
of SCOPE [7]. They build large number of small models 
to predict the costs of common (sub)queries, which are 
extracted from the workload history. The features encoded 
into the models are quite similar with [100]. Moreover, to 
support resource-aware query planning, they add number 
of partitions allocated to the operator into the features. In 
order to improve the coverage of the models, they introduce 
operator-input models and operator-subgraphApprox models 
and employ a meta-ensemble model to combine the models 
above as the final model.

4.3  Query Performance Prediction

The performance of the one query mainly refers to the 
latency. Wu et al. [98] adopt an offline profiling to calibrate 
the coefficients in the cost model under a specific hardware 
and software conditions. Then, they adopt the sampling 
method to obtain the true cardinalities of the physical opera-
tors to predict the execution times.

Ganapathi et al. [22] adopt the kernel canonical correla-
tion analysis (KCCA) into the resource estimation, e.g., CPU 
time. They only model the plan level information, e.g., the 
number of each physical operator type and their cardinality, 
which is too vulnerable.

To estimate the resources (CPU time and logical I/O 
times), Li et al. [56] train a boosted regression tree for every 
operator in the database and the consumption of the plan is 
the sum of the operators’. To make the model more robust, 
they train a separate scaling function for every operator and 
combine scaling functions with the regression models to 
handle the cases when the data distribution, size, or queries’ 
parameters are quite different with the training data. Differ-
ent with [22], this is an operator-level model.

Akdere et al. [2] propose the learning-based models to 
predict the query performance. They first design a plan-level 
model if the workload is known in advance and an operator-
level model. Considering the plan-level model makes highly 
accurate prediction and the operator-level generalizes well, 
for queries with low operator-level prediction accuracy, 
they train models for specific query subplans using plan-
level modeling and compose both types of models to predict 
the performance of the entire plan. However, the models 
adopted are linear.

Marcus and Papaemmanouil [66] introduce a plan-struc-
ture neural network to predict the query’s latency. They 
design a small neural network, called neural unit, for every 
logic operator and any instance of the same logic operator 
shares the same network. Then, these neural units are com-
bined into a tree shape according to the plan tree. The output 
of one neural unit consists of two parts, the latency of cur-
rent operator and the information sent to its parent node. The 
latency of the root neural unit of a plan is the plan’s latency.

Neo [67] is a learning-based query optimizer, which 
introduces a neural network, called value network, to esti-
mate the latency of (sub)plan. The query-level encoding 
(join graph and columns with predicts) is fed through sev-
eral full-connected layers and then concatenated with the 
plan level encoding, which is a tree vector to represent the 
physical plan. Next, the concatenated vector is fed into a 
tree convolution and another several full-connected layers 
to predict the latency of the input physical plan.

4.4  Our Insights

4.4.1  Summaries

The methods trying to improve the existing cost model focus 
on different aspects, e.g., UDFs, hash join in main memory. 
These studies leave us an important lesson: when introduc-
ing a new logical or physical operator, or re-implementing 
the existing physical operators, we should consider how 
to add them into the optimization process and design the 
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corresponding cost estimation formulas for them (e.g., [54, 
70]).

Leaning-based methods adopt the model to capture the 
complex relationship between cost and the factors, while 
the traditional cost model is defined as a certain formula 
by the database experts. The NN-based methods used to 
predict the performance, estimate cost, and estimate car-
dinality in Sect. 3.3.1 are quite similar in the features and 
models selection. For example, Sun and Li [85] use the 
same model to estimate the cost and cardinality and Neo 
[67] uses the latency (performance) of (sub)plan as the cost. 
A model, which is able to capture the data itself, operator 
level information, and subplan information, can predict the 
cost accurately. For example, the work [85], one of the state-
of-the-art methods, adopts the tree-LSTM model to capture 
the information mentioned above. However, all of them are 
supervised methods. If the workload shifts or the data is 
updated the models need to be retrained from the scratch.

4.4.2  Possible Future Directions

There are two possible directions as follows: 

(1) Cloud database systems The users of the cloud database 
systems need to meet their latency or throughput at the 
lowest price. Integrating the economic cost of running 
queries into the cost model is a possible direction. It is 
interesting to consider these related information into 
the cost model. For example, Siddiqui et al. [81] con-
sider the number of container into their cost model.

(2) Learning-based methods Learning-based methods to 
estimate the cost also suffer from the same problems 
with methods in cardinality estimation (Sect. 3.4.2). 
The model that has been adopted in a real system is a 
light model [81]. The trade-off between accuracy and 
training time is still a problem. The possible solutions 
adopted in cardinality estimation also can be used in 
the cost model.

5  Plan Enumeration

In this section, we present the researches published to handle 
the problems in plan enumeration. We classify the work on 
plan enumeration into two groups: non-learning methods 
and learning-based methods.

5.1  Non‑Learning Methods

Steinbrunn et al. [84] proposed a representative survey for 
selecting an optimal join orders. Thus, we mainly focus on 
the researches after 1997.

5.1.1  Dynamic Programming

Selinger et al. [79] propose a dynamic programming algo-
rithm to select the optimal join order for a given conjunc-
tive query. They generate the plan in the order of increas-
ing size and restrict the search space to left-deep trees, 
which significantly speeds up the optimization. Vance and 
Maier [93] propose a dynamic programming algorithm to 
find the optimal join order by considering different partial 
table sets. They use it to generate the optimal bushy tree 
join trees containing cross-products. Selinger et al. and 
Vance and Maier [79, 93] are generate-and-test paradigm 
and most of the operations are used to check whether the 
subgraphs are connected and two subgraphs are combina-
tive. Thus, none of them meet the lower bound in [73]. 
Moerkotte and Neumann [68] propose a graph-based 
Dynamic programming algorithm. They first introduce a 
graph-based method to generate the connected subgraph. 
Thus, it does not need to check out the connection and 
combinations and perform more efficiently. Then, they 
adopt DP over them for the generation of optimal bushy 
tree without cross-products. Moerkotte and Neumann [69] 
extend the method in [68] to deal with non-inner joins and 
a more generalized graph, hyper graph, where join predi-
cates can involve more than two relations.

5.1.2  Top‑Down Strategies

TDMinCutLazy is the first efficient top-down join enu-
meration algorithm proposed by DeHaan and Tompa [12]. 
They utilize the idea of minimal cuts to partition a join 
graph and introduce two different pruning strategies, pre-
dicted cost bounding and accumulated cost bounding into 
top-down partitioning search, which can avoid exhaustive 
enumeration. Top-down method is almost as efficient as 
dynamic programming and has other tempting properties, 
e.g., pruning and interesting order. Fender and Moerkotte 
[17] propose an alternative top-down join enumeration 
strategy (TDMinCutBranch). TDMinCutBranch intro-
duces a graph-based enumeration strategy which only 
generates the valid join, i.e., cross-product free partitions, 
unlike TDMinCutLazy which adopts a generate-and-test 
approach. In the following year, Fender et al. [20] propose 
another top-down enumeration strategy TDMinCutCon-
servative which is easier to implement and gives better 
runtime performance in comparison to TDMinCutBranch. 
Furthermore, Fender and Moerkotte [18, 19] present a gen-
eral framework to handle non-inner joins and a more gen-
eralized graph, hyper graph for top-down join enumera-
tion. RS-Graph, a new join transformation rule based on 
top-down join enumeration, is presented in [80] to effi-
ciently generate the space of cross-product free join trees.
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5.1.3  Large Queries

For large queries, Greedy Operator Ordering [16] builds the 
bushy join trees bottom-up by adding the most profitable 
(with the smallest intermediate join size) joins first. To sup-
port large queries, Kossmann and Stocker [51] propose two 
different incremental dynamic programming methods, IDP-1 
and IDP-2. With a given size k, IDP-1 runs the algorithm in 
[79] to construct the cheapest plan with that size and then 
regards it as a base relation, and repeats the process. With a 
given size k, in every iteration, IDP-2 first performs a greedy 
algorithm to construct the join tree with k tables and then 
runs DP on the generated join tree to produce the optimal 
plan, regards the plan as a base relation, and then repeats 
the process. Neumann [71] proposes a two-stage algorithm: 
first, it performs the query simplification to restrict the query 
graph by the greedy heuristic until the graph becomes trac-
table for DP, and then, it runs a DP algorithm to find the 
optimal join orders for the simplified the join graph. Bruno 
et al. [5] introduce enumerate-rank-merge framework which 
generalizes and extends the previous heuristics [16, 86]. The 
enumeration step considers the bushy trees. The ranking 
step is used to evaluate the best join pair each step, which 
adopts the min-size metric. The merging step constructs 
the selected join pair. Neumann and Radke [72] divide the 
queries into three types: small queries, medium, and large 
queries according to their query graph type and the number 
of tables. Then, they adopt DP to solve small queries, restrict 
the DP by linearizing the search space for medium queries, 
and use the idea in [51] for large queries.

5.1.4  Others

Trummer and Koch [89] transform the join ordering problem 
into a mixed integer linear program to minimize the cost of 
the plan and adopt the existing the MILP solvers to obtain 
a linear join tree (left-deep tree). To satisfy the linear prop-
erties in MILP, they approximate the cost of scan and join 
operations via linear functions.

Most of existed OLAP systems mainly focus on start/
snowfake join queries (PK-FK join relation) and generate 
the left-deep binary join tree. When handling FK-FK joins, 
like in TPC-DS (snowstorm schema), they inccur a large 

number of intermediate results. Nam et al. [70] introduce a 
new n-ary join operator, which extends the plan space. They 
define the core graph to represent the FK-FK joins in the join 
graph and adopt the n-ary join operator to process it. They 
design a new cost model for this operator and integrate it 
into an existed OLAP systems.

5.2  Learning‑Based Methods

All learning-based methods adopt the reinforcement learn-
ing (DL). In RL, an agent interacts with environment by 
actions and rewards. At each step t , the agent uses a policy 
� to choose an action at according to the current state st and 
transitions to a new state st+1 . Then, the environment applies 
the action at and returns a reward rt to the agent. The goal 
of RL is to learn a policy � , a function that automatically 
takes an action based on the current state, with the maximum 
long-term reward. In join order selection, state is the current 
sub-trees, and action is to combine two sub-trees, like in 
Fig. 4. The reward of intermediate action is 0, and the reward 
of the last action is the cost or latency of the query.

ReJoin [65] adopts the deep reinforcement learning 
(DRL), which has widely been adopted in other areas, e.g., 
influence maximization [87], to identify the optimal join 
orders. State in DRL represents the current subtrees. Each 
action will combine two subtrees together into a single tree. 
It uses cost obtained from the cost model in optimizer as 
the reward. ReJoin encodes the tree structure of (sub)plan, 
join predicates, and selection predicates in state. Different 
with [65], Heitz and Stockinger [39] create a matrix to rep-
resent a table or a subquery in each row and adopt the cost 
model in [55] to quickly obtain the cost of one query. DQ 
[52] is also a DRL-based method. It uses one-hot vectors 
to encode the visible attributes in the (sub)query. DQ also 
encodes the choice of physical operator by adding another 
one-hot vector. When training the model, DQ first uses the 
cost observed from the cost model of the optimizer and then 
fine-tunes the model with true running time. Yu et al. [106] 
adopt DRL and tree-LSTM together for join order selection. 
Different with the previous methods [39, 52, 65], tree-LSTM 
can capture more the structure information of the query tree. 
Similar with [52], they also use cost to train the model and 
then switch to running time as feedback for fine-tuning. 

Fig. 4  One possible join order 
episode
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Notice, they also discuss how to handle the changes in the 
database schema, e.g., adding/deleting the tables/columns. 
SkinnerDB [90] adopts the UCT, a reinforcement learning 
algorithm, and learns from the current query, while the pre-
vious learning-based join order methods are learning from 
previous queries. It divides the execution of one query into 
many small slices where different small slices may choose 
the different join order and learn from the previous execu-
tion slices.

5.3  Our Insights

5.3.1  Summaries

The non-learning based studies focus on improving the effi-
ciency and the ability (to handle the more general join cases) 
of the existing approaches. Compared with dynamic pro-
gramming approach, the top-down strategy is tempting due 
to the better extensibility, e.g., adding new transformation 
rules, branch-and-bound pruning. Both of them have been 
implemented in many database systems.

Compared with the non-leaning methods, learning-based 
approaches have a fast planning time. All learning-based 
methods employ reinforcement learning. The main differ-
ences between them are: (1) choosing which information 
as the state and how to encode them, (2) adopting which 
models. A more complicated model with more related infor-
mation can achieve better performance. The state-of-the-
art method [106] adopts a tree-LSTM model similar with 
[85] to generate the representation of a subplan. Due to the 
inaccuracy in the cost model, it can improve the quality of 
model by using the latency to fine-tune the model. Although 
current state-of-the-art method [106] outperforms the non-
learning based methods as shown in their experiments, how 
to integrate the learning-based method into the real system 
must be solved.

5.3.2  Possible Future Directions

There are two possible directions as follows: 

(1) Handle large queries All methods proposed to handle 
large queries are DP-based methods in the bottom-up 
manner. A question is remaining: how to make the 
top-down search strategy support the large queries. 
Besides, the state-of-art method for large queries [72] 
cannot support the general join cases.

(2) Learning-based methods Current leaned methods only 
focus on the PK-FK join and the join type is inner join. 
How to handle the other join cases is a possible direc-
tion. None of the proposed methods have discussed 
how to integrate them into a real system. In their 
experiments, they implement the method as a separate 

component to get the right join order, and then send to 
the database. The database still needs to optimize it to 
get the final physical plan. If a query has subquery, they 
may interact multiple times. The reinforcement learn-
ing methods are trained in a certain environment, which 
refers to a certain database in the join order selection 
problem. How to handle the changes in the table sche-
mas and data is also a possible direction.

6  Conclusion

Cardinality estimation, cost model, and plan enumeration 
play critical roles to generate an optimal execution plan in 
a cost-based optimizer. In this paper, we review the work 
proposed to improve their qualities, including the traditional 
and learning-based methods. Besides, we provide possible 
future directions, respectively.

We observe that more and more learning-based meth-
ods are introduced and outperform traditional methods. 
However, they suffer from long training and updating time. 
How to make the models robust to workload shifts and data 
changes or to update models quickly is still an open ques-
tion. Traditional methods with theoretical guarantees are 
widely adopted in real systems. There is a great possibility 
of improving traditional methods with new algorithms and 
data structures. Moreover, We believe the ideas behind the 
traditional methods can be used to enhance the learning-
based methods.
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