
Vol:.(1234567890)

Data Science and Engineering (2021) 6:20–38
https://doi.org/10.1007/s41019-020-00146-w

1 3

Blocking Techniques for Entity Linkage: A Semantics‑Based Approach

Fabio Azzalini1,2 · Songle Jin1 · Marco Renzi1 · Letizia Tanca1

Received: 27 June 2020 / Revised: 26 September 2020 / Accepted: 5 October 2020 / Published online: 3 November 2020
© The Author(s) 2020

Abstract
Nowadays, data integration must often manage noisy data, also containing attribute values written in natural language such
as product descriptions or book reviews. In the data integration process, Entity Linkage has the role of identifying records
that contain information referring to the same object. Modern Entity Linkage methods, in order to reduce the dimension
of the problem, partition the initial search space into “blocks” of records that can be considered similar according to some
metrics, comparing then only the records belonging to the same block and thus greatly reducing the overall complexity of
the algorithm. In this paper, we propose two automatic blocking strategies that, differently from the traditional methods, aim
at capturing the semantic properties of data by means of recent deep learning frameworks. Both methods, in a first phase,
exploit recent research on tuple and sentence embeddings to transform the database records into real-valued vectors; in a
second phase, to arrange the tuples inside the blocks, one of them adopts approximate nearest neighbourhood algorithms,
while the other one uses dimensionality reduction techniques combined with clustering algorithms. We train our blocking
models on an external, independent corpus, and then, we directly apply them to new datasets in an unsupervised fashion.
Our choice is motivated by the fact that, in most data integration scenarios, no training data are actually available. We tested
our systems on six popular datasets and compared their performances against five traditional blocking algorithms. The test
results demonstrated that our deep-learning-based blocking solutions outperform standard blocking algorithms, especially
on textual and noisy data.

Keywords Data integration · Entity linkage · Blocking · Deep learning

1 Introduction

The integration of data coming from different sources is today
of paramount importance: companies, hospitals, government
agencies, banks and many other actors, in order to carry out
their everyday activities, need to merge several datasets, e.g.
customers databases or patient and pathology records.

Integrating data in these scenarios may be relatively sim-
ple, especially when the data sources have clean and stand-
ard attributes, but with the increased use of internet-based
services like e-commerce, web sites for comparing prod-
ucts or online libraries, data integration is becoming more
challenging. These services deal with data that is typically
noisy and that contains attribute values written in natural
language, such as product descriptions or book reviews.
Indeed, integrating such data is hard because of the difficul-
ties in managing dirty values and in extracting semantics
out of long textual values written in natural language. In
particular, a very challenging stage of the integration lies
in identifying which records from the several source data-
sets represent the same concept, or the same entity, i.e. the
activity known as Entity Linkage, or Entity Resolution. In
the past, this task has been addressed by applying pairwise
matching algorithms over the Cartesian product of the
records provided by two input sources. However, the current
disruptive growth in dataset sizes makes the problem intrac-
table, since, when the number and the sizes of the datasets

 * Fabio Azzalini
 fabio.azzalini@polimi.it

 Songle Jin
 songle.jin@mail.polimi.it

 Marco Renzi
 marco.renzi@mail.polimi.it

 Letizia Tanca
 letizia.tanca@polimi.it
 http://tanca.faculty.polimi.it/

1 Politecnico di Milano, Milan, Italy
2 Center for Analysis Decisions and Society, Human

Technopole, Milan, Italy

http://orcid.org/0000-0003-0631-2120
https://orcid.org/0000-0003-2607-3171
http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-020-00146-w&domain=pdf

21Blocking Techniques for Entity Linkage: A Semantics-Based Approach

1 3

to be integrated increase, the memory space, and the time
needed to apply this approach become rapidly prohibitive;
already in the simple case of the integration of two databases
the number of comparisons grows quadratically with respect
to the data sets sizes. Modern Entity Resolution methods,
in order to reduce the dimension of the problem, partition
the initial search space into blocks within which the com-
parisons are performed, thus greatly reducing the number of
matches and the overall complexity of the algorithm. Block-
ing methods apply functions and algorithms to filter out the
tuple pairs that are clearly not matching from the potential
comparisons. Traditional blocking schemes use hand-tuned
functions to generate the blocks and place the tuples inside
them accordingly. In other words, all the records are passed
through a blocking function(s), and each tuple is assigned
to a bucket based on its blocking key value (BKV). One can
clearly understand that the quality of the entity linkage (and
thus ultimately of the entire data integration activity) is pro-
foundly influenced by the blocking phase, both in efficiency,
as the blocking phase should grant better time and memory
consumptions with respect to a naïve Cartesian product
approach, and in effectiveness, since this phase should find
as many true matching pairs as possible.

To better understand the traditional blocking process, let
us consider the sample datasets reported in Tables 1 and 2.

In this case, a traditional blocking method using as block-
ing function BKV = f (Gender) = Gender would group
together only the tuples belonging to the same source data-
base, since the two datasets A and B use two different sets
of values for expressing the attribute Gender. This exam-
ple shows a big problem that affects traditional blocking
schemes: they ignore the semantics of the attribute values
and leverage only the lexicon. Other shortcomings of tra-
ditional blocking methods include: (i) the sensitivity to
morphological variations and data quality issues, (ii) the
fact that designing appropriate blocking functions is time-
consuming and cumbersome and (iii) the need to design
dedicated blocking strategies for each new dataset. With the

ever-increasing need to process, analyze and integrate large
datasets that contain noisy and long textual values (espe-
cially if in natural language), new solutions that exploit also
semantic information can be of great help.

The two blocking systems we propose are based on the
fact that, in case the datasets to be merged contain noisy
values or texts written in natural language, a method that lev-
erages only the morphological aspects of the attributes is not
enough and not effective; therefore, we aim to capture word
and sentence meanings. Both our algorithms consist of two
key phases: first we transform the records of the datasets to
be integrated into real-valued vectors, exploiting techniques
such as word and sentence embeddings1 [10, 24], and then,
to generate the blocks, in one case we apply to these vectors
an innovative blocking technique, based on locality-sensitive
hashing (LSH) [33], while in the second case we first pro-
ject the numeric representation of the tuples onto a lower-
dimensional space and then exploit conventional clustering
algorithms to create the blocks.

In this work, we want to keep the entire blocking phase
within an unsupervised setting, thus without training the
neural networks responsible for building the embeddings on
the actual datasets to be merged. This choice stems from the
evidence that a labelled training set generated on the actual
data to be merged is typically difficult to find, and thus, an
unsupervised approach makes the task more feasible. To
achieve this scope, we exploit pre-trained word embeddings
such as GloVe [28] and fastText [23] and train the recurrent
neural network (RNN) [14] responsible for composing the
sentence embeddings on a separate available big dataset: the
SNLI corpus [6].

Our work builds upon research published in DeepeR [12],
where the authors were among the first to investigate the
application of tuple embeddings along the entire entity link-
age pipeline. Our system, however, is focused on the block-
ing phase and adopts a different paradigm for this specific
task. More specifically, our contributions are:

– Differently from DeepeR [12], we apply an unsupervised
approach to blocking: the models are trained on an exter-
nal corpus and then used on new datasets directly, with-
out the need of being retrained on the specific datasets
to be integrated. This choice has the great advantage of
not needing any labelled dataset, or in the case it is not
available, to ask the user to manually label the training
data.

– Differently from traditional blocking algorithms, our sys-
tems implement an automated approach to blocking: our

Table 1 Database A

ID Name Surname Gender

a1 John Smith Man
a2 Robert Sandy Man
a3 Christine Faulkner Woman

Table 2 Database B ID Name Surname Gender

b1 Robertt Sandy Male
b2 kristine Fawkner Female
b3 Johnny Smith Male

1 These are natural language processing (NLP) well-known tech-
niques that encode semantic information in the numeric representa-
tion they produce.

22 F. Azzalini et al.

1 3

embedding models, after being trained on the external
corpus, simply require to scan the input tuples to produce
the blocks. Our solutions, consequently, ease the difficult
and cumbersome definition of the blocking functions that
are used in traditional blocking schemes and make the
systems more portable across the datasets.

– We present two unsupervised blocking algorithms able
of exploiting the semantics of the records on which they
operate.

– Combining well-tested and widely adopted data mining,
machine learning and deep learning methods, we devise
two automated unsupervised blocking techniques that
consistently outperform five of the most used blocking
methods [7].

– We compare the performances of our systems with some
of the most consolidated blocking paradigms on six
popular real-world datasets, commonly used to evaluate
blocking schemes. Additionally, we provide a wide range
of experimental results to study empirically the differ-
ences of the architectural choices of our systems.

2 State of the Art

We now describe the traditional blocking algorithms that
can be considered the standard and most frequently adopted
approaches [7, 26].

Standard blocking is the easiest of the traditional algo-
rithms. Once the blocking function is defined, this method
positions inside the same bucket all the records with equal
BKV. The peculiarity of this method is that each tuple is
inserted into one bucket only, while the other traditional
techniques can potentially put a record into several blocks.

This method presents two main drawbacks: (i) it is not
robust w.r.t. noisy values, (ii) it is not suitable when the
distribution of BKVs is very skewed as the buckets sizes
would be too diverse.

Sorted neighbourhood blocking [15] uses the BKVs gen-
erated by the blocking function(s) to sort the tuples in the
databases. Once the datasets are sorted, a sliding window
with a fixed size w (w > 1) is passed over the source records
and the blocks are generated by the tuples that fall in the
window step by step. This method presents two main prob-
lems: (i) dataset sorting is sensitive to the prefixes of the
BKVs; for instance, if the sorting function corresponds to
the name attribute of the records, then very similar values
such as ’carl’ and ’karl’ that may refer to the same person
but with a typographical error will end up in distant posi-
tions in the sorting scheme, (ii) choosing a proper value for
w is not trivial.

Q-gram blocking is specifically designed to face the errors
and variations in attribute values [3]. To account for them,
the method generates variations of the BKVs. Each record is

then inserted into both its original bucket (the original BKV)
and in all the derived buckets (variations on the original
BKV). To build the new BKVs, the algorithm generates all
the q-grams (substring of length q) of the original BKVs. To
generate the actual new BKVs, a recursive approach is used:
from the list l (of size k) of the q-grams of the original BKV,
new lists are generated by iteratively removing from l one
q-gram at a time. These new lists will be of size k − 1 . This
procedure is repeated on each of the newly generated lists,
and it stops when the last built lists are shrunk to a minimum
length s defined as s = max(1, ⌊k ∗ t⌋) . In this formula, k is
the size of q-gram list of the original BKV, t (0 ≤ t < 1) is
a user-defined parameter to decide the minimum length of
the newly generated q-gram sub-lists. Finally from each of
the generated sub-lists, a new BKV is obtained by the con-
catenation of its q-gram elements. This algorithm, even if it
can capture variations in attribute values, is very expensive
in both time and memory consumption, especially when the
original BKVs are long.

Suffix Blocking [2] is based on ideas similar to the q-gram
blocking. Here, however, instead of considering all the
q-grams, only some suffixes of the original values are used.
To build the new blocks, two parameters are needed: lmin
which corresponds to the minimum length of the suffix sub-
strings that are generated, and bmax , used to discard blocks
whose number of records exceed this threshold.

Canopy cluster blocking [22] adopts a clustering approach
to blocking: it groups together the records based on how
similar their BKVs are. This blocking scheme is specified
by two elements: the similarity function used to express
the closeness of the BKVs and the actual algorithm used
to group the records. The most commonly used similarity
function is the Jaccard measure, which basically indicates
the percentage of q-grams two BKVs have in common. Rel-
atively to the clustering algorithm, an iterative clustering
procedure is used.

All algorithms presented can be considered traditional
blocking methods, and they all suffer, to different extent,
from the problems presented in the introduction.

3 Methodology

Our blocking schemes are logically composed of two phases:
first, an embedding module is responsible for transforming
the records into real-valued vectors, and second, a blocking
module actually produces the buckets from these numerical
vectors (Fig. 1).

The embedding architectures we present are very similar
to the ones presented in [12]; however, there are important
variations in the implementation of the embedding layer,
the main difference being that our RNNs are trained on an
external corpus, the SNLI corpus, and not on the actual

23Blocking Techniques for Entity Linkage: A Semantics-Based Approach

1 3

datasets to be merged. This unsupervised approach is moti-
vated by the following considerations. First, as noticed, in
many applications no training data are available, and this
choice makes our technique more realistic. Secondly, this
paradigm ensures fairer evaluation tests because the tradi-
tional blocking methods to which we compare ours are not
tuned on the datasets.

In our work, we also want to study from an empirical
point of view the differences in applying word and character-
level embedding models. In particular, fastText is used as
word embedding in the paper [25] but in that work the block-
ing phase is not faced. In this work, we decide to include
both fastText and GloVe. The authors of [12] consider only
the latter instead.

Finally, we decide to implement several RNNs with
different sizes because we want to see whether different
levels of complexity lead to noticeable variations in the
performances.

4 Embedding Architectures

We now illustrate the two solutions that we adopt to imple-
ment the embedding layer. This layer receives as input the
records of the datasets to be merged and outputs their vecto-
rial representation.

In the rest of the paper, we use the following notation:
given a tuple t with n attributes

{
Ai

}
i=1,…,n

 , the symbol
�(t[Ak]) represents the numerical representation of the attrib-
ute value t[Ak] , while the numerical value of the entire tuple
is �(t) ; given a generic word w, its embedding representation
will be indicated with �(w).

At their core, both the embedding architectures we pro-
pose make use of pre-trained word embeddings, i.e. fastText
or GloVe: each word w of each attribute value t[Ak] is trans-
formed into a real-valued vector �(w) . The fastText model
we use is crawl-300d-2M-subword [23] where each word is
represented as a 300-dimensional vector and the corpus on

which it was trained is Common Crawl2. Regarding GloVe,
we use the model glove.840B.300d [28] and again each word
is represented as a 300-dimensional vector and the training
corpus was still Common Crawl. Once the single words are
transformed, what differentiates the two architectures con-
cerns how the single word embeddings are composed first to
represent the attribute value (i.e. how to build �(t[Ak])) and
eventually the entire record (how to produce �(t)).

4.1 Average‑Based Architecture

With this approach, also adopted in [12], when a tuple t with
n attributes arrives at the embedding layer, each of its attrib-
utes

{
Ak

}
k=1,…,n

 is treated independently from the others.
First, we use a tokenizer to split the attribute value t[Ak] into
its component words

{
wi

}
i=1,…,p

 . In our implementation, we
use the standard NLTK tokenizer available in the NLTK mod-
ule3. In the case one attribute is empty (i.e. there is a missing
value) we insert the placeholder word “unk”. Then, each of
these words is mapped to a 300-dimensional vector by
applying the pre-trained word embedding model. The attrib-
ute vector representation �(t[Ak]) is given by simply averag-
ing the vectors of the component words. The tuple vector �(t)
is finally obtained by the concatenation of all the n attribute
vectors, (�(t[A1]),… , �(t[An])) . Speaking of tuple size,
|�(t)| = d ∗ n where d is the attribute vector dimension (in
our case it is d = 300) and n is the number of attributes.

This composition method has the advantage of being easy
to implement, but it can lead to huge vector sizes when the
data sources have a long list of attributes.

4.2 RNN‑Based Architecture

This second approach to embedding is more refined and its
use is motivated by some considerations.

Fig. 1 Structure of our blocking
systems

2 https ://commo ncraw l.org/the-data/.
3 https ://www.nltk.org/_modul es/nltk/token ize.html.

https://commoncrawl.org/the-data/
https://www.nltk.org/_modules/nltk/tokenize.html

24 F. Azzalini et al.

1 3

First, representing an attribute value by simply aver-
aging its component words embeddings—as the previous
solution—means ignoring the order of the words. This is
generally not an issue when there are atomic values or
few words in an attribute, but when long textual elements
are present it becomes more important. Indeed, the order
of words helps when there are attributes that encapsulate
multiword content such as descriptions or specifications
of products. The RNN architecture embeds words order
naturally in its implementation.

Second, the previous embedding approach cannot cap-
ture semantic relationships among attributes: to build the
final tuple vector �(t) , it employs a simple concatenation of
the component attribute vectors. In some cases, however,
being able to link the semantics of nearby attributes can
be useful to better capture the overall representation of
an entity. Consider the two records representing the same
person reported in Tables 3 and 4.

Information about the postcode value “2602” is for-
mally placed in different attributes, and the second record
has a missing value. By adopting a simple averaging
approach, vectors �(tA[Address]) and �(tB[Address]) (as well
as �(tA[Postcode]) and �(tB[Postcode])) will likely be very
different and by later using the concatenation of such vec-
tors the relationship between postcode and address would
not be exploited. The RNN architecture as will be shortly
shown, instead, considers the attributes as a sequence
and so if adjacent attributes have related meanings it can
encapsulate better the dependencies.

Third, another shortcoming of the average-based solu-
tion that motivates the RNN-based approach concerns the
embedding sizes. As said, when using an average approach
the tuple embeddings are proportional to the number of
attributes n of the sources, and this can easily lead to very
big embedding vectors. As we will analyze more in detail
later, working on high-dimensional data requires caution
and some algorithms do not perform well in such setting
[13, 33]. With the RNN-based architecture, the size of the
resulting tuple vectors is fixed a priori and is independent
of the number of attributes.

As suggested in [12], we use both uni- and bidirectional
recurrent neural networks (RNNs) with long short-term
memory (LSTM) cells [16]. In the following discussion,
we refer to this family of models with the term RNN-
LSTM architectures. However, to actually implement these
nets we do not follow the approach described in the paper
[12] because, as anticipated, the authors train the models
directly on the datasets to be integrated in a supervised
fashion.

To devise our models, we are instead inspired by the
recent studies made by the Facebook AI research team in
their paper [10] about sentence embedding models. Among
the several solutions they investigate, they propose a model,
named Infersent, a bi-LSTM net which transforms sentences
written in natural language into their corresponding numeri-
cal representation. The authors show the strong results of
this model on several tasks and in particular for semantic
textual similarity applied in unsupervised settings. Our uni-
and bi-LSTM nets are consequently implemented with the
same architectures described in that paper for analogous
models, and partially readapting the code the authors kindly
release at [9]. In our work, however, we extend the analysis
of these models with both fastText and GloVe and with a
greater set of network sizes.

This is interesting because fastText and GloVe handle
words not present in their vocabulary in different ways.
GloVe replaces the missing words with the default value
“unk”, while fastText, exploiting sub-word embeddings, is
able to assign a numeric representation also to words not
present in its vocabulary; for this reason, fastText is usually
regarded as a character level embedding method.

4.2.1 Preliminary Information on RNN

We now provide the ideas and the description of the two
RRN models we use, to understand how they work, and then,
we explain how they are applied to our task.

In Fig. 2, the architecture of a uni-LSTM net is presented.
In the picture, wi represents the word embedding obtained

by applying either fastText or GloVe on the corresponding
source word. The ��⃗hi rectangle is the hidden state of the
LSTM layer when input is word i. This layer comprises n
LSTM cells that implement the memory of the net. It is
this memory that captures the dependencies among the pro-
cessed vectors.

As can be seen from the picture, when a new word vec-
tor �������⃗wn+1 is presented at the net also the ���⃗hn internal state
is considered to produce the new hidden state ������⃗hn+1 . This
means that the net keeps track of the input vectors that have
passed previously through its layers and past computations
influence the present evaluation. The final representation of
the sentence �⃗u is given by the last hidden state of the net ���⃗hm:

Table 3 Tuple t
A

ID Name Surname Address Postcode

a1 John Smith 42 Miller St 2602

Table 4 Tuple t
B

ID Name Surname Address Postcode

b3 Johnny Smith 42 Miller street 2602

25Blocking Techniques for Entity Linkage: A Semantics-Based Approach

1 3

Let us now analyze the second RNN-based reference archi-
tecture, the bi-LSTM net.

The bi-LSTM net (Fig. 3) is composed of two uni-
LSTM nets: a forward and a backward uni-LSTM net. The
former scans the source sentence in direct order (from left
to right), whereas the latter in reverse order (from right to
left). The forward NN generates the hidden state vectors

(1)���⃗hm = ������������⃗LSTMm(w1,… ,wm)
��⃗hi and the backward produces �⃖�hi . At each step, the overall
hidden state hi of the bi-LSTM net is given by the con-
catenation of ��⃗hi and �⃖�hi . Scanning m words thus produces
a sequence of m states {hi}|i=1,…,m.

Finally, to obtain the sentence embedding �⃗u a max-
pooling function is applied across {hi}|i=1,…,m : simply the
maximum value over each dimension, across the all steps
i, is selected.

Fig. 2 uni-LSTM network

Fig. 3 bi-LSTM network

26 F. Azzalini et al.

1 3

When using the bi-LSTM net, the size of the resulting
embedding vectors is exactly the double of the one produced
by the uni-LSTM because of the double scan of the source
sentence.

4.2.2 Sentence Embeddings Composition Methods

Given these premises, it is now possible to describe how
these models actually perform our embedding task. When a
tuple t with n attributes arrives at the embedding layer, each
attribute value t[Ak] undergoes the tokenizer which splits it
into its component words

{
wi

}
i=1,…,p

 . Each of these words
is mapped to a 300-dimensional vector by applying the pre-
trained word embedding model (fastText or GloVe), which
yields the words embeddings

{
�(wi)

}
i=1,…,p

 . After each
word vector �(w) is generated, it is given as input to the
RNN-LSTM, which processes it and produces an internal
hidden state. At the end of the current attribute value t[Ak] ,
the process is repeated from the first word of the adjacent
attribute Ak+1 seamlessly. This continuous feeding of the net
ensures the first two appealing “properties” discussed above:
since the tuple is processed as a single long sentence, the
process guarantees to encode both the words order and the
possible semantic relationships among adjacent attributes.
The final tuple embedding vector �(t) is obtained after the
scan and process of the last word of the last attribute value,
and its computation follows the procedure previously
described for the uni-LSTM or bi-LSTM networks: in the
uni-LSTM case, the tuple vector coincides with the last hid-
den state ���⃗hm , while when using a bi-LSTM net it is the out-
put of the max pooling function applied over the dimensions
across all internal states. For a deeper understanding of how
uni- and bidirectional LSTM nets work, we refer the reader
to [10] and [12].

Another important advantage with RNN-LSTM archi-
tecture is that it is possible to control and fix the size of
the embedding tuples a priori. This holds because the
dimensionality of the vectors is determined by the number
of LSTM cells we put in the RNN hidden layer, and this
is a design decision one takes before actually applying the
model. In our work, we implement RNNs with 300, 1024
and 2048 LSTM cells, and so in the tests we will evaluate
the results with tuple embeddings whose sizes are 300, 1024,
2048 when applying the uni-LSTM nets and 600, 2048 and
4096 when using bi-LSTMs.

In order to use these RNN-LSTM nets, a prior train-
ing phase is necessary to estimate their parameters. The

(2)

���⃗hm = ������������⃗LSTMm(w1,… ,wm)

�⃖��hm = �⃖�����������LSTMm(w1,… ,wm)

hm = [���⃗hm,
�⃖��hm]

RNN-LSTM nets of our embedding layer are trained on the
labelled external SNLI corpus [6] before being applied to
the test datasets. This dataset is one of the largest labelled
sources specifically designed to force semantics understand-
ing and thus a good candidate for our solution.

5 Blocking Algorithms

Now that we have a numerical representation we need to
detect similar tuples and put them in the same block. This is
the goal of the second step of our blocking systems, where,
exploiting two different methods, we actually group records
into the buckets. Since the first step transforms the records
into vectors with the appealing property that tuples related in
the meaning are projected onto vectors that are close to each
other, the algorithms we use exploit this geometrical prox-
imity to block them. We now present two blocking methods
that take as input the vectors constructed in the previous step
and produce groups of semantically similar records.

The first one is based on locality-sensitive hashing (LSH)
[33] and multiprobe LSH [20], two popular techniques, that
belong to the family of algorithms used in approximate
nearest-neighbour (ANN) search problems.

The second blocking method we present first exploits
dimensionality reduction techniques such as principal com-
ponent analysis (PCA) [17] and t-distributed stochastic
neighbour embedding (t-SNE) [21] to create a low-dimen-
sional searching space and then employs standard and well-
adopted clustering algorithms to arrange records into blocks.

5.1 Approximate Nearest‑Neighbour‑Based
Blocking

ANN search is the problem of finding similar vectors in a
n-dimensional space. ANN techniques are typically pre-
ferred over traditional exact nearest-neighbour algorithms
when the dimensionality of the vectors to be compared is
high like in our case and therefore poses efficiency problems
[33].

5.1.1 Preliminary Information on LSH Methods

Locality-Sensitive Hashing: this algorithm aims at finding
a hash function h that satisfies two requirements: (i) items
that are (semantically) close should have the same hash
value h(x) with “high” probability P1 and (ii) points that are
distant should have the same value h(x) with “low” prob-
ability P2 . The ultimate goal of the h function is indeed to
group together (with the same hash value) those items that
are close, or equivalently, similar. A popular paradigm is
to choose as h a probabilistic binary function, for exam-
ple h(x) ∈ {−1,+1} . We then generate K distinct hash

27Blocking Techniques for Entity Linkage: A Semantics-Based Approach

1 3

functions h1, h2,… , hK with hi ∈ H and apply these func-
tions in order, to each tuple x to be analyzed. Each tuple
x is consequently assigned to the sequence of the outputs
g(x) = {h1(x), h2(x),… , hK(x)} . This ordered sequence g(x)
is named the hash code of tuple x, and it is used to identify
that record.

Since for large values of K the likelihood that similar
records get the same K-dimensional hash code is reduced,
typically several hash codes are computed for each tuple. To
do so, one builds L hashes g1(x), g2(x),… , gL(x) , where each
gi(x) is a K-sized vector obtained applying the ith sequence
of probabilistic binary functions on tuple x. The set of hash
codes {gi(y)}|y=1,…,N applied to entire set of N vectors is
generally named hash table.

Multiprobe LSH: in the standard LSH implementation
described above, one considers as similar all the records
that fall in the same group (that is those having the same
hash code in any of the L tables). Using several hash tables
increases the likelihood that similar records fall into the
same block but it also comes with the side effect that more
tuples, possibly distant or unrelated, are put in the same
bucket.

Multiprobe LSH [20] is a variation of standard LSH that
aims at reducing the number L of hash tables but without the
loss of nearest neighbours. Instead of building a large num-
ber of hash tables, multiprobe LSH builds probing sequences
of the hash codes. The first step consists in building the hash
tables as in standard LSH but in a smaller number. Then, in
each hash table, all the “similar” hash codes are grouped
together, and the elements contained in them are merged into
the same bucket list because they are considered “similar”.
What is crucial is how to locate similar hash codes. To do
so, the probing sequences are used: for each target hash code
gi(x) = {h1(x), h2(x),… , hK(x)} contained in a hash table
T , its probing sequence is composed of those hash codes
gm(x)|m=1,…,p ∈ T whose hamming distance from gi(x) is
at maximum s, where s is a specified scalar parameter. In
simple words, multiprobe LSH clusters the K-dimensional
hash codes generated by the application of the K hash func-
tions of a hash table T based on their hamming distances.
This is not a pure partitioning clustering, however, because
the same hash code can be put into several groups.

5.1.2 Blocks Building

The critical point of the LSH algorithm is to define proper
hashing functions {hi}|i=1,…,K . As the authors of [12], we
derive these hash functions using the random hyperplanes
method. This method consists in choosing K random hyper-
planes through the origin in the N-dimensional space in
which the embedding tuples are projected. Each hyperplane
divides the space into two parts, an “upper” and a “lower”
region. Depending on the relative position of the tuple vector

x with respect to the ith hyperplane, the vector is assigned a
value +1 (“upper” region) or −1 (“lower” region) in position
i of its hash code. The position of vector x is evaluated with
respect to each of the K hyperplanes, and consequently, a
K-sized hash code is generated. To increase the likelihood
that similar records get the same hash code, we compute
several hash codes are for each tuple. Given the hash tables,
then all the records sharing the same K-dimensional code
in any of the L tables are considered “similar” and put into
the same group.

The approach exploiting multiprobe LSH is strictly
related to the one just described. We still use the random
hyperplanes method, but in this case a smaller number of
hash tables are generated. Alternatively, in order to increase
the likelihood that similar records are placed in the same
block, all the hash codes whose distance is less than or equal
to a pre-specified parameter s are grouped and their lists of
tuples are merged.

5.2 Clustering‑Based Blocking

The second blocking method we present uses conventional
clustering algorithms to partition the embedding vectors
received as input into buckets of similar records. In order
to choose the most appropriate clustering algorithm, in our
experimental analysis we test and compare four of them:
hierarchical clustering, K-Means, DBSCAN, and Birch.

Before presenting how the different clustering algorithms
place the input vectors in distinct blocks, we need to address
the challenges posed by the high dimensionality of the data
and therefore explain how to pre-process the embedding vec-
tors and transform them in such a way that the four cluster-
ing algorithms can effectively analyze them.

The biggest challenge faced while clustering high-dimen-
sional data is that traditional distance measures often used in
conventional clustering algorithms become useless [19] due
to the problem known as the Curse of Dimensionality [4].
This term is actually used to refer to four sub-problems: (i)
multiple dimensions are difficult to visualize and enumerate
due to the exponential number of possible values related to
each dimension; (ii) measures like proximity, distance, or
neighbourhood risk to become meaningless in high-dimen-
sional spaces, since in some applications it can happen that
the relative distance of the farthest point and the nearest
point converges to 0 as the dimensionality grows [1]; (iii)
among the many available features, a high number of irrel-
evant ones is to be expected: these useless dimensions can
be related to “noise” and thus interfere with the clustering
discovery task making it more difficult and prone to errors;
(iv) due to the high number of attributes in the dataset, some
of them may be correlated.

The above-stated challenges make it difficult to cluster
the embedding vectors into blocks of records; in particular,

28 F. Azzalini et al.

1 3

the fact that distance measures become less effective in
high-dimensional spaces somehow neutralizes the appeal-
ing property of our vectors: they are created in such a way
that semantically similar tuples are placed close to each
other in the high-dimensional space. In order to exploit this
appealing characteristic, we need to project the vectors onto
a lower-dimensional space, which can better describe the
similarity of records belonging to the same group.

We now present the two dimensionality reduction tech-
niques used in our methodology: principal component analy-
sis (PCA) and t-distributed stochastic neighbour embedding
(t-SNE).

Principal Component Analysis: this method performs an
orthogonal projection of the data onto a linear space with a
lower number of dimensions; the lower-dimensional space
is called principal sub-space. The projection is performed
in such a way that the variance of the projected data is

maximized and thus maintaining as much as possible the
information present in the original dataset, in our case the
embedding vectors [5, 17].

t-distributed Stochastic Neighbour Embedding: this
method consists in a nonlinear dimensionality reduction
transformation of a high-dimensional input dataset into a
low-dimension output space of two or three dimensions.
This is achieved by minimizing the divergence between the
distribution that measures pairwise similarities of the input
objects and a distribution that measures pairwise similarities
of the corresponding low-dimensional points [21].

Contrary to traditional linear dimensionality reduction
techniques, such as PCA, t-SNE is capable of capturing both
the local and the global structures of the high-dimensional
data; this results in a transformation where similar vectors
are modelled by nearby points and dissimilar vectors are
modelled by distant points.

Fig. 4 Visualization of the t-SNE dimensionality reduction technique applied to the Cora dataset

29Blocking Techniques for Entity Linkage: A Semantics-Based Approach

1 3

Figure 4 shows the result of t-SNE applied to the embed-
ding vectors generated from the Cora dataset4. We can see
how well t-SNE managed to project the original embeddings,
whose size is 4096, onto a bi-dimensional space. (For clarity
only the first 300 records of the dataset are represented.)

Although t-SNE delivers overall good results, a deeper
analysis shows some weakness of this algorithm: for
instance, if we take into consideration the green cluster in
the bottom right section of Fig. 4, where most of the “cesa”
records have been placed, we can notice two criticalities:
(i) the cluster is split into two parts and (ii) it contains an
outlier: “cohen1998”, that should have been positioned in
the light-blue cluster in the bottom left part of the figure.
This is a problem because, once we have placed an element
into a block, it will not be compared with elements outside
this block, and in this case we would not be able to link the
misplaced “cohen1998” record to its true entity. These are
well-known problems of t-SNE; in fact, it has been shown
that: (i) the visualized clusters produced by t-SNE can be
strongly influenced by the parametrization of the algorithm,
(ii) such clusters may even appear in non-clustered data. To
overcome these challenges, in our methodology, we merge
the clusters discovered by t-SNE into bigger cluster, with the
ultimate goal of placing all the records that refer to the same
entity in the same block; at the same time, we are careful
not to generate too large blocks, which would jeopardize the
usefulness of the blocking phase. Despite the problems we
have just analyzed, as can be seen in the figure, the dimen-
sionality reduction operated by t-SNE still represents a good
starting point to be followed by a clustering algorithm and
creates the final blocks.

Clustering Phase: once we have projected the embed-
dings onto a lower-dimensional space, either by using PCA
or by using t-SNE, we can apply clustering algorithms to
partition the records into groups of similar tuples.

We now briefly present how each of the four conven-
tional clustering algorithms we tested in our methodology
can arrange the records inside the buckets.

– Hierarchical Clustering: in its agglomerative variant
[31], this algorithm assembles the clusters by recursively
partitioning the vectors in a bottom-up fashion. Initially,
each record is assigned to a cluster of its own; then,
at each iteration of the algorithm, clusters are merged
until the desired hierarchical structure is achieved. The
resulting structure, describing how the clusters have been
combined through the iterations, and their respective
similarity are called a dendrogram. A clustering of the

data is obtained by cutting the dendrogram at a height
corresponding to the desired similarity level or to the
desired number of clusters. In order to decide which clus-
ters should be merged at each iteration, two measures
are needed, the first specifying the distance between two
records and the second specifying how far are two clus-
ters placed from each other; we selected the Euclidean
distance for the former and the Ward Linkage criterion
[34] for the latter .

– K-Means: this algorithm partitions the records into K
clusters, each identified by its centre, computed as the
mean of the vectors’ coordinates assigned to that cluster.
Initially, the algorithm randomly chooses K centres; then,
at each iteration, the records are assigned to the nearest
cluster centre, and once all of them have been assigned,
the cluster centres are recomputed and the algorithm con-
tinues with the following iterations until convergence is
reached [31]. We use the Euclidean distance to determine
how far records are from the cluster centres.

– DBSCAN: this algorithm can detect clusters of arbitrary
shape by analyzing the density surrounding each record.
More specifically, a cluster is defined as an area of high
density delimited by areas of low density. To discover the
clusters, two parameters are needed: the neighbourhood
size, specifying the minimum number of records required
to form a dense region, and eps, the maximum distance
between two records in order for them to be considered
as belonging to the same neighbourhood [31].

– Birch: thanks to its ability to find good clustering solu-
tions with just one scan of the data, this clustering algo-
rithm represents a very effective solution for dealing with
very large datasets. This algorithm is composed of two
main phases: it first loads the records into the memory
by building the cluster feature tree (CF tree), a lossless
compression of the data, that through the use of appropri-
ate summary statistics, manages to preserve the clusters
structure originally present in the records, then any of
the existing clustering algorithms can be applied to the
leaves of the CF tree to obtain the actual clusters [36].

6 Experimental Results

We tested our blocking systems on six popular datasets with
two objectives: first to compare their performances against
five traditional blocking algorithms and second to under-
stand how the several architectural variants we implemented
differ among each other. Since every blocking algorithm has
its own set of parameters, we also define how these are set
for the tests.

4 The Cora dataset, containing information about research articles—
represented by their bibliographic references—is presented and ana-
lyzed in the experimental section of this paper.

30 F. Azzalini et al.

1 3

6.1 Datasets

The blocking algorithms are tested on six publicly avail-
able datasets that are commonly adopted to evaluate entity
linkage and blocking schemes [7, 12, 18, 27]. These are:
Restaurant dataset [30], Census dataset [30], Cora dataset
[30], DBLP-ACM datasets [11], Amazon-Google Products
datasets [11] and Abt-Buy datasets [11].

The first two datasets represent the “easy” task: they
are structured and mostly clean with very few typos and
missing values. On these datasets, traditional blocking
techniques show strong results as reported in [7].

Cora is still a well-structured dataset, but it has some
quality issues as will be discussed later in the results. Res-
taurant is a set of tuples with restaurant names, addresses,
cities, phones and food styles taken from Fodor and Zagat
restaurant guides. Census is a dataset generated by the
US Census Bureau including information such as first and
last names, middle initials, zip codes and street addresses.
Cora contains records about machine learning articles with
many attributes as publication name, publication year,
authors name, venue, etc. DBLP-ACM are well-structured
bibliographic data sources regarding computer science
conferences. Among the shared fields there is a relatively
long textual attribute title, but its values are fixed and the
same between the two sources so on these sets traditional
blocking models are expected to perform well anyways.

The last two pairs of data sources are “challenging”:
they have long textual attributes (such as product descrip-
tion) written in natural language with plenty of variations.
Both tasks deal with e-commerce products and the sin-
gle sources have also duplicates inside each of them. In
Table 5, we summarize some of the key characteristics of
the datasets.

The “Task” column specifies the type of activity to be
performed: (i) Deduplication for finding duplicate tuples
that all belong to a single source and (ii) Linkage for find-
ing related tuples across two or more data sources. The
“Cartesian size” column contains the number of com-
parisons one would perform without blocking (n ∗ m
for the (entity) linkage task, n∗(n−1)

2
 for the deduplication

case, where n and m are the number of tuples in the (two)
source(s)).

6.2 Metrics

Two metrics are considered to assess the performances of
the blocking algorithms: Reduction ratio (RR) and Pair com-
pleteness (PC), which are the measures typically used in the
literature [3, 7, 8]. Following the notation of [8], RR and PC
are defined as:

where

– nM is the number of matching pairs generated without
blocking.

– n N is the number of non-matching pairs generated with-
out blocking.

– sM is the number of matching pairs generated with block-
ing.

– s N is the number of non-matching pairs generated with
blocking.

RR measures how much the blocking technique can reduce
the number of pair comparisons with respect to a naïve full
comparison approach.

The second metric, PC, measures instead the effective-
ness of the blocking method at not removing true matches
from the set of comparisons.

These metrics range in [0, 1], and they are typically in a
trade-off [8]: a high reduction ratio may come at the cost of
some missed true matches or vice versa a large pair com-
pleteness may require to compare also many unnecessary
pairs.

In some works, RR and PC are combined to assess the
overall blocking result. In [27], for example, the metrics are
multiplied � = RR ⋅ PC . In our tests to select the best result,
we use the harmonic mean of the two, � = 2 ⋅

RR⋅PC

RR+PC
.

6.3 Design of the Evaluation

We design our tests in order to analyze two aspects of our
blocking systems: first how they perform with respect to

(3)RR = 1.0 −
sM + s N

nM + n N

PC =
sM

nM

Table 5 Specifications of the
target datasets

Data set Task #Tuples #True matches #Attributes Cartesian size

Restaurant Deduplication 864 112 5 372816
Cora Deduplication 1295 17184 12 837865
Census Deduplication 841 327 5 353220
DBLP-ACM Linkage 2616-2294 2224 5 6001104
AMZN-GP Linkage 1363-3226 1300 5 4397038
ABT-BUY Linkage 1081-1092 1097 4 1180452

31Blocking Techniques for Entity Linkage: A Semantics-Based Approach

1 3

traditional blocking methods and second how the architec-
tural variants presented in methodology section of the paper
influence the final results.

We now review how the parameters are set in our tests,
distinguishing between the traditional methods and our
blocking schemes. For what concerns traditional block-
ing algorithms, parameter setting is done by hand, the best
results are obtained experimentally and then used in com-
parison with our blocking algorithm.

Traditional algorithms require a blocking function to
operate, and in our tests, for each dataset; we run the experi-
ments by applying iteratively one of the following functions:
attribute value, first n chars, last n chars (with n ∈ {2, 3, 4})
and Soundex phonetic encoding. The blocking function is
applied to every single attribute of the current dataset. In
standard blocking, the blocking function is the only vari-
able to be tested as no further parameters are defined for
this algorithm. In sorted neighbourhood blocking, for each
dataset the parameter window size w is varied in the range
w ∈ {2, 3, 4, 5} . Q-gram blocking is tested with q-gram size
q ∈ {3, 4, 5} and threshold t ∈ {0.6, 0.8} . In suffix blocking,
the minimum suffix length lmin ∈ {3, 4, 5} and maximum
block size bmax ∈ {20, 50} . Finally, the canopy cluster block-
ing algorithm is applied with the q-gram size q = 3.

Regarding our blocking system, we evaluate both the
average-based and the RNN-LSTM-based models described
in the methodology above, with the following parameters:
the number of LSTM cells ncells ∈ {300, 1024, 2048} and as
word embeddings both GloVe and fastText.

For what regards the first of our blocking methods, to
set the hash code size K and the number of hash tables L of
the LSH algorithm, for each dataset we apply the theoreti-
cal formulae presented in [33]. While for choosing the hash
functions, we proceed similar to [12]. For multiprobe LSH,
we use the same K and L values but one more parameter is
needed: the Hamming distance value s, this is set by hand
and we test the algorithm with s ∈ {1, 2, 3} . The final results
for LSH and multiprobe LSH are obtained by averaging the
outcomes of 5 independent runs.

For what regards the second of our blocking methods, we
set the number of components in PCA equals to 2. t-SNE

being a more complex dimensionality reduction method
needs three parameters to be accurately set: (i) as for PCA
we set the number of components equal to 2, (ii) the per-
plexity score, a parameter controlling the number of near-
est neighbours considered from the algorithm, varied in the
range {30, 35, 40, 45, 50} and (iii) the early exaggeration
score, a parameter controlling the space among the discov-
ered clusters, varied in the range {9, 12, 12, 15, 18} . Con-
cerning the conventional clustering algorithms, we varied
the number of clusters between 5 and 50 for hierarchical
clustering, K-Means and Birch, while we for DBSCAN we
assigned eps equal to 0.5 and varied the neighbourhood size
between 2 and 10.

All the algorithms are implemented in Python program-
ming language, and the tests are run on a Google Compute
Engine5 instance with the following specifications:

– Operating system: Ubuntu 16.04.1 LTS (Xenial Xerus)
– CPU: 4 hyper-threaded cores Intel Xeon Processor

@2Ghz
– RAM: 32 GB
– SSD storage: 60 GB

6.4 Test Results

We now first provide the results of the tests between our
blocking systems and the traditional methods, and then, we
investigate the impact of different architectural choices of
our model.

6.4.1 Our System vs Traditional Blocking Algorithms

Reduction ratio, pair completeness and alpha: Tables 6
and 7 illustrate the best results in terms of RR, PC and �
obtained by each blocking algorithm on each of the six target
datasets. Our methods are named:

Table 6 Blocking algorithms
comparison on Restaurant, Cora
and Census datasets

Restaurant Cora Census

RR PC � RR PC � RR PC �

Standard 0.9848 0.9464 0.9652 0.9659 0.7881 0.8679 0.9829 0.7703 0.8637
Suffix 0.99 0.875 0.9289 0.989 0.4441 0.6129 0.9829 0.7703 0.8637
Sorted N. 0.9848 0.9464 0.9652 0.9659 0.7881 0.8679 0.8976 0.8721 0.8847
Q-gram 0.9848 0.9464 0.9652 0.9464 0.8322 0.8856 0.9829 0.7703 0.8637
Canopy 0.9848 0.9464 0.9652 0.9659 0.7881 0.8679 0.9829 0.7703 0.8637
Emb–LSH 0.9432 0.9792 0.9608 0.9233 0.7626 0.8352 0.8945 0.9542 0.9234
Emb–Clust 0.9859 0.9464 0.9657 0.9635 0.887 0.9241 0.9006 0.9622 0.9304

5 https ://cloud .googl e.com/compu te/.

https://cloud.google.com/compute/

32 F. Azzalini et al.

1 3

– Emb–LSH the blocking system based on LSH and mul-
tiprobe LSH.

– Emb–Clust the blocking system based on dimensional-
ity reduction techniques and conventional clustering
algorithms.

The experiments on Restaurant and Census datasets
show competitive results between traditional methods
and our blocking systems, proving that embedding-based
models keep up on clean and simple datasets. On these
datasets, traditional blocking algorithms seem to have
an edge on RR but on the other hand embedding-based
models provide better PC. The only exception is on Cora
dataset where the q-gram blocking algorithm achieves a
6.9% better score for PC with respect to the Emb–LSH
model. We explain this result by inspecting the dataset.
This data source has serious quality issues on the major-
ity of the attributes: the column volume has 76% of miss-
ing values, the attribute address 77%, field note reaches
90% of missing values. The only clean attribute is title
and its values are mainly fixed with very little variations.
All the traditional blocking methods select this field to
filter the tuples, and without a prior imputation strategy it
becomes really hard to leverage semantic information out
of so many blank values. Despite the poor performance of
our first blocking method on the Cora dataset, our second
method, Emb–Clust, manages to outperform the q-gram
blocking algorithm; this is thanks to t-SNE, that, also in
this challenging conditions is able to build a bi-dimen-
sional projection where the points representing the same
entity are overall correctly grouped together.

Overall, the performances of traditional blocking algo-
rithms on these sets are aligned with those reported in [7]
and in [27].

Even though on DBLP-ACM the results are still bal-
anced, q-gram shows null values because it was not possible
to conclude the test: time and memory consumptions were
prohibitive. This is a known limitation of this type of block-
ing algorithm, as computing all the q-grams of long textual
values is expensive.

The most significant differences between our blocking
systems and the traditional approaches are on the tests on the
last two “challenging” datasets: AMZN-GP and ABT-BUY.
Our embedding-based models are slightly less efficient at
reducing the number of pair comparisons, but PC is much
higher than traditional methods. Even though a PC of 0.84
(obtained by one of our blocking methods on the AMZN-GP
dataset) is still a relatively poor result, the analysis suggests
that our models are good at capturing the semantic informa-
tion out of data. Supporting this insight are also the results
on ABT-BUY datasets on which we record the best perfor-
mances in two scenarios:

– Traditional models are free to choose the attribute and
blocking function giving the best result (Table 7). In this
case, they all go for the name attribute. This attribute is
relatively clean and easy for them to block on.

– Traditional models are forced to use as attribute the
description of products (Fig. 5). The values of this attrib-
ute are long textual descriptions written in natural lan-
guage plenty of variations.

As can be seen in Fig. 5, the PC performances are com-
pletely different, with an absolute win for the embedding-
based models. Overall, we consistently obtain the best PC,
while maintaining a RR close to the best result obtained by
traditional approaches. This is confirmed by the � score,
where our systems rank first on all the six datasets. We

Table 7 Blocking algorithms
comparison on DBLP-ACM,
AMZN-GP and ABT-BUY
datasets

DBLP-ACM AMZN-GP ABT-BUY

RR PC � RR PC � RR PC �

Standard 0.9996 0.8826 0.9374 0.9865 0.4661 0.6331 0.9793 0.6272 0.7646
Suffix 0.9964 0.9528 0.9741 0.9979 0.1792 0.3038 0.9935 0.4011 0.5714
Sorted N. 0.9974 0.9834 0.9903 0.9604 0.4308 0.5947 0.9371 0.8386 0.8851
Q-gram 0.0 0.0 0.0 0.9865 0.4661 0.6331 0.9424 0.8049 0.8682
Canopy 0.9959 0.9645 0.9799 0.9865 0.4661 0.6331 0.9793 0.6272 0.7646
Emb–LSH 0.9873 0.9946 0.9909 0.9436 0.7885 0.8591 0.9343 0.9088 0.9213
Emb–Clust 0.999 0.9820 0.9904 0.9277 0.8407 0.8821 0.9217 0.9024 0.9120

Fig. 5 RR and PC on ABT-BUY dataset forcing on description attrib-
ute

33Blocking Techniques for Entity Linkage: A Semantics-Based Approach

1 3

also think that often a high PC should be preferred w.r.t.
a high RR, since performing a few more comparisons
could be less expensive than actually missing data that
were positioned in the wrong block. The results match our
intuition that traditional blocking solutions work poorly
on noisy and textual datasets because of their inability to
leverage semantic information. By contrast, embedding-
based models exploit the meaning of words and sentences
and overall provide a more appropriate solution.

We can see that the conclusions we have just drawn
are confirmed by the results displayed in Table 8 where
we reported the average reduction ratio, pair complete-
ness and � that the blocking methods achieved over all the
datasets. In particular, it is possible to notice the consider-
able margin that our two algorithms have over the tradi-
tional blocking methods in terms of the harmonic mean �
between reduction ratio and pair completeness.

As far as our comparison between the two blocking
systems is concerned, they exhibit fairly similar perfor-
mances, with Emb–Clust taking an edge over Emb–LSH
because it scores slightly better in four of the six data-
sets, and overall gaining 1.79% in terms of � score. The
only exception to this evidence is constituted by the Cora
dataset, where Emb–Clust scores significantly better than
Emb–LSH.

Comparison with DeepER: comparing our approach
with the supervised method implemented by DeepeR [12],
we can notice two different behaviours:

– When the systems are tested on the “easy” datasets, the
two approaches show similar results both in terms of pair
completeness and in terms of reduction ratio.

– When the systems are tested on the “challenging”
datasets, DeepeR [12] outperforms our unsupervised
approach, consistently achieving a pair completeness
higher than 0.95, while our methods manage to obtain
a pair completeness between 0.85 and 0.90; on the con-
trary, the reduction ratios remain comparable.

These results are to be expected, confirming that if labelled
data are available, or the user is willing to produce them, a
supervised approach can be beneficial. We do not see this
difference in performance as a big drawback, in fact, when
comparing our methods against the traditional methods we
can see a much greater gap in the performances: when the
traditional methods are tested on the “challenging” datasets,
none of them is able to exceed a pair completeness of 0.5.
Our methods perform significantly better, confirming that
the semantics learned from the external independent corpus
used for training our models actually made a substantial dif-
ference in improving the results over the traditional methods.
Moreover, hand-labelling data is very expensive, and we
believe that in many scenarios sacrificing 5 to 10% of the pair
completeness can be acceptable when the cost of creating
a manually labelled training set is taken into consideration.

Execution Time: despite the good results of our blocking
schemes, tests confirmed that deep-learning-based models
are very expensive in terms of time (and memory consump-
tion); this is a well-known pitfall of these models [25].

We show in Table 9 the average time needed (in seconds)
to complete the blocking phase on each dataset. Despite both
our methods taking longer than traditional blocking algo-
rithms, we can see a significant improvement in the time
required by Emb-Clust to produce the blocks, with respect
to time needed by Emb-LSH.

Since our tests are run on a single computing instance,
we believe that by adopting a parallel and distributed com-
putation paradigm this blocking scheme can increase its
efficiency by a wide margin.

Table 8 Average RR, PC and � over all the datasets

Method RR PC �

Standard 0.9832 0.7468 0.8386
Suffix 0.9916 0.6037 0.7091
Sorted N. 0.9572 0.8099 0.8646
Q-gram 0.9686 0.764 0.8305
Canopy 0.9825 0.7604 0.8457
Emb–LSH 0.9377 0.898 0.9151
Emb–Clust 0.9463 0.9212 0.933

Table 9 Execution times of the
blocking methods

Method Restaurant Cora Census DBLP-ACM AMZN-GP ABT-BUY

Standard 0.6888 2.7359 0.6638 3.1501 3.7234 1.3336
Suffix 0.7033 2.7442 0.6797 4.0099 3.1015 1.1457
Sorted N. 0.7056 2.667 0.7303 3.3683 6.1487 2.1025
Q-gram 7.5938 2.9335 7.6657 Unbounded 10.599 1.8767
Canopy 0.2925 2.9954 0.6993 1449.9015 4.1971 2.7381
Emb–LSH 19.1221 163.6499 142.2958 1080.6682 815.4097 402.2910
Emb–Clust 18.8836 33.1579 19.0854 254.7286 204.0034 73.7883

34 F. Azzalini et al.

1 3

We need also to take into consideration that our methods
consistently achieve the best pair completeness over all the
datasets, and often, forsaking time efficiency for a higher
pair completeness is considered acceptable, especially in
those cases where the quality of the information is regarded
as a crucial property of the result. In fact, after the blocking
phase, only the records inside the same block are compared
with each other, and thus, all the misplaced records cannot
be linked to their entity anymore. Additionally, the integra-
tion of the data sources is typically done at the beginning
of a data analysis project; as a result, we believe that it is
worth spending more time (few minutes) on the integration
phase, with the scope of having more precise and complete
data and hence significantly better performance during the
data analysis task.

6.4.2 Results for Different Architectural Choices

RNN-LSTM vs Average: one of the clearest results is the
difference in performances when comparing the RNN-
LSTM architectures with the simpler average scheme
(Fig. 6). The average-based architecture provides sufficient
results only on Restaurant and Census datasets where the
attribute values are clean and atomic or at most composed
of few words. When the textual values are longer, however
taking into account words order guarantees more refined
embeddings. This observation is particularly evident by
considering the outcomes on the “challenging” datasets,
Amazon-Google Products and Abt-Buy. On those sources,

the neural nets are capable of encoding the dependencies
among words and adjacent fields more effectively, thus
obtaining a substantial improvement on PC. Conversely
when many word embeddings are averaged, the resulting
vector is less discriminative.

LSTM vs bi-LSTM: another key evidence resulting
from the tests concerns the superiority of the bi-LSTM
architecture over the uni-LSTM model for the current task
(Fig. 7). bi-LSTM nets outperform the single LSTMs on
every dataset, especially in terms of PC, suggesting that
they generate better tuple representations. Similarly to the
previous set of tests, the gain in PC is more significant
when dealing with the complex datasets.

fastText vs GloVe: the two word embedding approaches
show similar results on Restaurant, DBLP-ACM and Cen-
sus. On the remaining datasets, however, GloVe is ahead
regarding the PC (Fig. 8). We explain this trend by rec-
ognizing greater generalization capabilities of GloVe on
these data sources.

The datasets about e-commerce products in particu-
lar contain codes, commercial names and brands which
are handled differently by the two embedding paradigms:
GloVe ignores the majority of them because they are
not in the dictionary of known words, whereas fastText
constructs new words embeddings by considering their
n-grams. However, brand names rarely convey semantics
about real-world entities, and this should explain why
fastText is not able to enrich the expressiveness of the
embeddings.

Fig. 6 RNN-LSTM vs average architecture performances

35Blocking Techniques for Entity Linkage: A Semantics-Based Approach

1 3

In other words, on these typologies of datasets a more
relaxed model that promotes generalization seems to be
more appropriate.

RNN-LSTM Sizes: test results presented in Fig. 9 show
the best performances obtained by using RNN-LSTM nets
with the following number of LSTM cells: 300, 1024 and
2048. As can be seen, most of the top scores are associated

with the 2048 variants of the nets, but in general the differ-
ences with respect to sizes are not crucial. Noting that the
number of LSTM cells defines the size of the embedding
tuples, this suggests that even with the smaller vector sizes
we can obtain good blocking results.

PCA vs t-SNE: Figure 10 displays the best results obtained
by our system when using the two dimensionality-reduction

Fig. 7 uni-LSTM vs bi-LSTM performances

Fig. 8 fastText vs GloVe performances

36 F. Azzalini et al.

1 3

techniques. It is clear that the results obtained by t-SNE are
superior to the ones achieved by PCA; we attribute the differ-
ence in performances to two factors: (i) as opposed to PCA,
the nonlinear projection performed by t-SNE better man-
ages to maintain the information encoded in the embedding
vectors , (ii) the clusters automatically discovered by t-SNE

represent a better starting point for the conventional cluster-
ing algorithms than the linear projection returned by PCA.

Conventional Clustering Algorithms Compared: the test
results presented in Fig. 11 show how overall the four clus-
tering methods achieve similar results, with two exceptions:
(i) the AMZN-GP dataset, where hierarchical clustering

Fig. 9 RNN size performances

Fig. 10 PCA vs t-SNE dimensionality reduction performances

37Blocking Techniques for Entity Linkage: A Semantics-Based Approach

1 3

scores a better reduction ratio and DBSCAN and Birch obtain
a better pair completeness and (ii) the DBLP-ACM dataset,
where K-Means did not manage to reach convergence in
acceptable time. A deeper inspection of these experimental
results showed a substantial drawback of K-Means: on all the
datasets it required a significantly longer time to complete
its computation, compared to the other three algorithms.
Specifically, with the scikit-learn6 implementation of the
four algorithms used in our system, Hierarchical Cluster-
ing, DBSCAN and Birch found the clusters in less than 1 s
on all the datasets, while K-Means required a time spanning
from 13 and 164 s. Given these considerations and being the
time complexity of Birch [36] linear, we suggest to use this
last algorithm in the final implementation of the Emb–Clust
blocking system.

6.4.3 Final Remarks on the Experiments

Given the experimental results, the final architecture we sug-
gest comprises the following components:

– Embedding architecture: RNN-based

– Network type: bi-LSTM
– RNN-LSTM size: 2048
– Word embeddings: GloVe

– Blocking method: clustering-based

– Dimensionality reduction technique: t-SNE
– Clustering method: Birch

Given the good results of our methods, we foresee their appli-
cation to a wide variety of scenarios; especially when no
labeled training datasets are provided and when asking a user
to manually create one is considered prohibitively expensive.

Fig. 11 Performances of the conventional clustering algorithms compared

6 https ://sciki t-learn .org/stabl e/modul es/clust ering .html.

https://scikit-learn.org/stable/modules/clustering.html

38 F. Azzalini et al.

1 3

7 Conclusions and Future Work

We presented two unsupervised blocking systems based on lev-
eraging the data semantics. Experimental results demonstrated
that our deep-learning-based blocking solutions outperform tra-
ditional algorithms, especially on textual and noisy datasets.
Additionally, our tests showed that training the neural networks
on external corpora and then plugging them in the blocking
system to build tuple embeddings produces good results.

Possible future work may include: (i) trying other, newly
released sentence-embedding models such as [29], (ii)
reducing the execution time of our blocking scheme adopt-
ing a parallel and distributed computation paradigm, (iii)
studying the applicability of our unsupervised approach on
a broader range of scenarios [32], (iv) experimenting with
more sophisticated clustering algorithms [35].

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

References

 1. Aggarwal CC, Hinneburg A, Keim DA (2001) On the surprising
behavior of distance metrics in high dimensional space. In: Inter-
national conference on database theory

 2. Aizawa A, Oyama K (2005) A fast linkage detection scheme for
multi-source information integration. In: WIRI

 3. Baxter R, Christen P, Churches T (2003) A comparison of fast
blocking methods for record linkage. In: KDD

 4. Bellman RE (2015) Adaptive control processes: a guided tour.
Princeton University Press, Princeton

 5. Bishop CM (2006) Pattern recognition and machine learning.
Springer, Berlin

 6. Bowman SR, Potts C, Manning CD, Angeli G, A large annotated
corpus for learning natural language inference. https ://nlp.stanf
ord.edu/proje cts/snli/

 7. Christen P (2011) A survey of indexing techniques for scalable
record linkage and deduplication

 8. Christen P (2012) Data matching. Concepts and techniques
for record linkage, entity resolution, and duplicate detection.
Springer, Berlin

 9. Conneau A, Kiela D, Schwenk H, Barrault L, Bordes A. https ://
githu b.com/faceb ookre searc h/Infer Sent

 10. Conneau A, Kiela D, Schwenk H, Barrault L, Bordes A (2018)
Supervised learning of universal sentence representations from
natural language inference data. arXiv :1705.02364

 11. Creative Commons license. https ://dbs.uni-leipz ig.de/en/resea rch/
proje cts/objec t_match ing/bench mark_datas ets_for_entit y_resol
ution

 12. Ebraheem M, Thirumuruganathan S, Joty S, Ouzzani M, Tang N
(2018) Distributed representations of tuples for entity resolution.
In: Proc. VLDB Endowment

 13. Gionis A, Indyk P, Motwani R (1999) Similarity search in high
dimensions via hashing. In: Proc. VLDB Endowment

 14. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT
press, Cambridge

 15. Hernandez MA, Stolfo SJ (1995) The merge-purge problem for
large databases. ACM SIGMOD

 16. Hochreiter S, Schmidhuber J (1997) Long short-term memory.
Neural Comput 9(8):1735–1780

 17. Hotelling H (1933) Analysis of a complex of statistical variables
into principal components. J Educ Psychol 24(6):417

 18. Koepcke H, Thor A, Rahm E (2010) Evaluation of entity resolu-
tion approaches on real-world match problems. In: Proc. VLDB
Endowment

 19. Kriegel HP, Kröger P, Zimek A (2009) Clustering high-dimen-
sional data: a survey on subspace clustering, pattern-based cluster-
ing, and correlation clustering. ACM Trans Knowl Discov Data
(TKDD) 3(1):1–58

 20. Lv Q, Josephson W, Wang Z, Charikar M, Li K (2007) Multi-
probe lsh: efficient indexing for high-dimensional similarity
search. In: Proc. VLDB Endowment

 21. Maaten LVD, Hinton G (2008) Visualizing data using t-SNE. J
Mach Learn Res 9:2579–2605

 22. McCallum A, Nigam K, Ungar LH (2000) Efficient clustering of
high-dimensional data sets with application to reference matching.
In: ACM SIGKDD

 23. Mikolov T, Grave E, Bojanowski P, Puhrsch C, Joulin A. https ://
fastt ext.cc/docs/en/engli sh-vecto rs.html

 24. Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013) Dis-
tributed representations of words and phrases and their composi-
tionality. In: Advances in neural information processing systems

 25. Mudgal S, Li H, Rekatsinas T, Doan A, Park Y, Krishnan G, Deep
R, Arcaute E, Raghavendra V (2018) Deep learning for entity
matching: a design space exploration. In: ACM SIGMOD

 26. Papadakis G, Skoutas D, Thanos E, Palpanas T (2019) A survey
of blocking and filtering techniques for entity resolution. arXiv
:1905.06167 v1

 27. Papadakis G, Svirsky J, Gal A, Palpanas T (2016) Comparative
analysis of approximate blocking techniques for entity linkage. In:
Proc. VLDB Endowment

 28. Pennington J, Socher R, Manning CD. https ://githu b.com/stanf
ordnl p/GloVe

 29. Perone CP, Silveira R, Paula TS (2018) Evaluation of sentence
embeddings in downstream and linguistic probing tasks. arXiv
:1806.06259

 30. RIDDLE repository. www.cs.utexa s.edu/users /ml/riddl e/data.html
 31. Rokach L, Maimon O (2005) Clustering methods. Data mining

and knowledge discovery handbook
 32. Thirumuruganathan S, Parambath SAP, Ouzzani M, Tang N, Joty

S (2018) Reuse and adaptation for entity resolution through trans-
fer learning. arXiv :1809.11084

 33. Wang J, Shen HT, Song J, Ji J (2014) Hashing for similarity
search: A survey. arXiv preprint arXiv :1408.2927

 34. Ward JH Jr (1963) Hierarchical grouping to optimize an objective
function. J Am Stat Assoc 58(301):236–244

 35. Xu R, Wunsch D (2005) Survey of clustering algorithms. IEEE
Trans Neural Netw 16(3):645–678

 36. Zhang T, Ramakrishnan R, Livny M (1996) BIRCH: an efficient
data clustering method for very large databases. ACM Sigmod
Rec 25(2):103–114

http://creativecommons.org/licenses/by/4.0/
https://nlp.stanford.edu/projects/snli/
https://nlp.stanford.edu/projects/snli/
https://github.com/facebookresearch/InferSent
https://github.com/facebookresearch/InferSent
http://arxiv.org/abs/1705.02364
https://dbs.uni-leipzig.de/en/research/projects/object_matching/benchmark_datasets_for_entity_resolution
https://dbs.uni-leipzig.de/en/research/projects/object_matching/benchmark_datasets_for_entity_resolution
https://dbs.uni-leipzig.de/en/research/projects/object_matching/benchmark_datasets_for_entity_resolution
https://fasttext.cc/docs/en/english-vectors.html
https://fasttext.cc/docs/en/english-vectors.html
http://arxiv.org/abs/1905.06167v1
http://arxiv.org/abs/1905.06167v1
https://github.com/stanfordnlp/GloVe
https://github.com/stanfordnlp/GloVe
http://arxiv.org/abs/1806.06259
http://arxiv.org/abs/1806.06259
http://www.cs.utexas.edu/users/ml/riddle/data.html
http://arxiv.org/abs/1809.11084
http://arxiv.org/abs/1408.2927

	Blocking Techniques for Entity Linkage: A Semantics-Based Approach
	Abstract
	1 Introduction
	2 State of the Art
	3 Methodology
	4 Embedding Architectures
	4.1 Average-Based Architecture
	4.2 RNN-Based Architecture
	4.2.1 Preliminary Information on RNN
	4.2.2 Sentence Embeddings Composition Methods

	5 Blocking Algorithms
	5.1 Approximate Nearest-Neighbour-Based Blocking
	5.1.1 Preliminary Information on LSH Methods
	5.1.2 Blocks Building

	5.2 Clustering-Based Blocking

	6 Experimental Results
	6.1 Datasets
	6.2 Metrics
	6.3 Design of the Evaluation
	6.4 Test Results
	6.4.1 Our System vs Traditional Blocking Algorithms
	6.4.2 Results for Different Architectural Choices
	6.4.3 Final Remarks on the Experiments

	7 Conclusions and Future Work
	References

