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Abstract
Nowadays, data integration must often manage noisy data, also containing attribute values written in natural language such 
as product descriptions or book reviews. In the data integration process, Entity Linkage has the role of identifying records 
that contain information referring to the same object. Modern Entity Linkage methods, in order to reduce the dimension 
of the problem, partition the initial search space into “blocks” of records that can be considered similar according to some 
metrics, comparing then only the records belonging to the same block and thus greatly reducing the overall complexity of 
the algorithm. In this paper, we propose two automatic blocking strategies that, differently from the traditional methods, aim 
at capturing the semantic properties of data by means of recent deep learning frameworks. Both methods, in a first phase, 
exploit recent research on tuple and sentence embeddings to transform the database records into real-valued vectors; in a 
second phase, to arrange the tuples inside the blocks, one of them adopts approximate nearest neighbourhood algorithms, 
while the other one uses dimensionality reduction techniques combined with clustering algorithms. We train our blocking 
models on an external, independent corpus, and then, we directly apply them to new datasets in an unsupervised fashion. 
Our choice is motivated by the fact that, in most data integration scenarios, no training data are actually available. We tested 
our systems on six popular datasets and compared their performances against five traditional blocking algorithms. The test 
results demonstrated that our deep-learning-based blocking solutions outperform standard blocking algorithms, especially 
on textual and noisy data.
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1 Introduction

The integration of data coming from different sources is today 
of paramount importance: companies, hospitals, government 
agencies, banks and many other actors, in order to carry out 
their everyday activities, need to merge several datasets, e.g. 
customers databases or patient and pathology records.

Integrating data in these scenarios may be relatively sim-
ple, especially when the data sources have clean and stand-
ard attributes, but with the increased use of internet-based 
services like e-commerce, web sites for comparing prod-
ucts or online libraries, data integration is becoming more 
challenging. These services deal with data that is typically 
noisy and that contains attribute values written in natural 
language, such as product descriptions or book reviews. 
Indeed, integrating such data is hard because of the difficul-
ties in managing dirty values and in extracting semantics 
out of long textual values written in natural language. In 
particular, a very challenging stage of the integration lies 
in identifying which records from the several source data-
sets represent the same concept, or the same entity, i.e. the 
activity known as Entity Linkage, or Entity Resolution. In 
the past, this task has been addressed by applying pairwise 
matching algorithms over the Cartesian product of the 
records provided by two input sources. However, the current 
disruptive growth in dataset sizes makes the problem intrac-
table, since, when the number and the sizes of the datasets 
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to be integrated increase, the memory space, and the time 
needed to apply this approach become rapidly prohibitive; 
already in the simple case of the integration of two databases 
the number of comparisons grows quadratically with respect 
to the data sets sizes. Modern Entity Resolution methods, 
in order to reduce the dimension of the problem, partition 
the initial search space into blocks within which the com-
parisons are performed, thus greatly reducing the number of 
matches and the overall complexity of the algorithm. Block-
ing methods apply functions and algorithms to filter out the 
tuple pairs that are clearly not matching from the potential 
comparisons. Traditional blocking schemes use hand-tuned 
functions to generate the blocks and place the tuples inside 
them accordingly. In other words, all the records are passed 
through a blocking function(s), and each tuple is assigned 
to a bucket based on its blocking key value (BKV). One can 
clearly understand that the quality of the entity linkage (and 
thus ultimately of the entire data integration activity) is pro-
foundly influenced by the blocking phase, both in efficiency, 
as the blocking phase should grant better time and memory 
consumptions with respect to a naïve Cartesian product 
approach, and in effectiveness, since this phase should find 
as many true matching pairs as possible.

To better understand the traditional blocking process, let 
us consider the sample datasets reported in Tables 1 and 2.

In this case, a traditional blocking method using as block-
ing function BKV = f (Gender) = Gender would group 
together only the tuples belonging to the same source data-
base, since the two datasets A and B use two different sets 
of values for expressing the attribute Gender. This exam-
ple shows a big problem that affects traditional blocking 
schemes: they ignore the semantics of the attribute values 
and leverage only the lexicon. Other shortcomings of tra-
ditional blocking methods include: (i) the sensitivity to 
morphological variations and data quality issues, (ii) the 
fact that designing appropriate blocking functions is time-
consuming and cumbersome and (iii) the need to design 
dedicated blocking strategies for each new dataset. With the 

ever-increasing need to process, analyze and integrate large 
datasets that contain noisy and long textual values (espe-
cially if in natural language), new solutions that exploit also 
semantic information can be of great help.

The two blocking systems we propose are based on the 
fact that, in case the datasets to be merged contain noisy 
values or texts written in natural language, a method that lev-
erages only the morphological aspects of the attributes is not 
enough and not effective; therefore, we aim to capture word 
and sentence meanings. Both our algorithms consist of two 
key phases: first we transform the records of the datasets to 
be integrated into real-valued vectors, exploiting techniques 
such as word and sentence embeddings1 [10, 24], and then, 
to generate the blocks, in one case we apply to these vectors 
an innovative blocking technique, based on locality-sensitive 
hashing (LSH) [33], while in the second case we first pro-
ject the numeric representation of the tuples onto a lower-
dimensional space and then exploit conventional clustering 
algorithms to create the blocks.

In this work, we want to keep the entire blocking phase 
within an unsupervised setting, thus without training the 
neural networks responsible for building the embeddings on 
the actual datasets to be merged. This choice stems from the 
evidence that a labelled training set generated on the actual 
data to be merged is typically difficult to find, and thus, an 
unsupervised approach makes the task more feasible. To 
achieve this scope, we exploit pre-trained word embeddings 
such as GloVe [28] and fastText [23] and train the recurrent 
neural network (RNN) [14] responsible for composing the 
sentence embeddings on a separate available big dataset: the 
SNLI corpus [6].

Our work builds upon research published in DeepeR [12], 
where the authors were among the first to investigate the 
application of tuple embeddings along the entire entity link-
age pipeline. Our system, however, is focused on the block-
ing phase and adopts a different paradigm for this specific 
task. More specifically, our contributions are:

– Differently from DeepeR [12], we apply an unsupervised 
approach to blocking: the models are trained on an exter-
nal corpus and then used on new datasets directly, with-
out the need of being retrained on the specific datasets 
to be integrated. This choice has the great advantage of 
not needing any labelled dataset, or in the case it is not 
available, to ask the user to manually label the training 
data.

– Differently from traditional blocking algorithms, our sys-
tems implement an automated approach to blocking: our 

Table 1  Database A

ID Name Surname Gender

a1 John Smith Man
a2 Robert Sandy Man
a3 Christine Faulkner Woman

Table 2  Database B ID Name Surname Gender

b1 Robertt Sandy Male
b2 kristine Fawkner Female
b3 Johnny Smith Male

1 These are natural language processing (NLP) well-known tech-
niques that encode semantic information in the numeric representa-
tion they produce.
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embedding models, after being trained on the external 
corpus, simply require to scan the input tuples to produce 
the blocks. Our solutions, consequently, ease the difficult 
and cumbersome definition of the blocking functions that 
are used in traditional blocking schemes and make the 
systems more portable across the datasets.

– We present two unsupervised blocking algorithms able 
of exploiting the semantics of the records on which they 
operate.

– Combining well-tested and widely adopted data mining, 
machine learning and deep learning methods, we devise 
two automated unsupervised blocking techniques that 
consistently outperform five of the most used blocking 
methods [7].

– We compare the performances of our systems with some 
of the most consolidated blocking paradigms on six 
popular real-world datasets, commonly used to evaluate 
blocking schemes. Additionally, we provide a wide range 
of experimental results to study empirically the differ-
ences of the architectural choices of our systems.

2  State of the Art

We now describe the traditional blocking algorithms that 
can be considered the standard and most frequently adopted 
approaches [7, 26].

Standard blocking is the easiest of the traditional algo-
rithms. Once the blocking function is defined, this method 
positions inside the same bucket all the records with equal 
BKV. The peculiarity of this method is that each tuple is 
inserted into one bucket only, while the other traditional 
techniques can potentially put a record into several blocks.

This method presents two main drawbacks: (i) it is not 
robust w.r.t. noisy values, (ii) it is not suitable when the 
distribution of BKVs is very skewed as the buckets sizes 
would be too diverse.

Sorted neighbourhood blocking [15] uses the BKVs gen-
erated by the blocking function(s) to sort the tuples in the 
databases. Once the datasets are sorted, a sliding window 
with a fixed size w ( w > 1 ) is passed over the source records 
and the blocks are generated by the tuples that fall in the 
window step by step. This method presents two main prob-
lems: (i) dataset sorting is sensitive to the prefixes of the 
BKVs; for instance, if the sorting function corresponds to 
the name attribute of the records, then very similar values 
such as ’carl’ and ’karl’ that may refer to the same person 
but with a typographical error will end up in distant posi-
tions in the sorting scheme, (ii) choosing a proper value for 
w is not trivial.

Q-gram blocking is specifically designed to face the errors 
and variations in attribute values [3]. To account for them, 
the method generates variations of the BKVs. Each record is 

then inserted into both its original bucket (the original BKV) 
and in all the derived buckets (variations on the original 
BKV). To build the new BKVs, the algorithm generates all 
the q-grams (substring of length q) of the original BKVs. To 
generate the actual new BKVs, a recursive approach is used: 
from the list l (of size k) of the q-grams of the original BKV, 
new lists are generated by iteratively removing from l one 
q-gram at a time. These new lists will be of size k − 1 . This 
procedure is repeated on each of the newly generated lists, 
and it stops when the last built lists are shrunk to a minimum 
length s defined as s = max(1, ⌊k ∗ t⌋) . In this formula, k is 
the size of q-gram list of the original BKV, t ( 0 ≤ t < 1 ) is 
a user-defined parameter to decide the minimum length of 
the newly generated q-gram sub-lists. Finally from each of 
the generated sub-lists, a new BKV is obtained by the con-
catenation of its q-gram elements. This algorithm, even if it 
can capture variations in attribute values, is very expensive 
in both time and memory consumption, especially when the 
original BKVs are long.

Suffix Blocking [2] is based on ideas similar to the q-gram 
blocking. Here, however, instead of considering all the 
q-grams, only some suffixes of the original values are used. 
To build the new blocks, two parameters are needed: lmin 
which corresponds to the minimum length of the suffix sub-
strings that are generated, and bmax , used to discard blocks 
whose number of records exceed this threshold.

Canopy cluster blocking [22] adopts a clustering approach 
to blocking: it groups together the records based on how 
similar their BKVs are. This blocking scheme is specified 
by two elements: the similarity function used to express 
the closeness of the BKVs and the actual algorithm used 
to group the records. The most commonly used similarity 
function is the Jaccard measure, which basically indicates 
the percentage of q-grams two BKVs have in common. Rel-
atively to the clustering algorithm, an iterative clustering 
procedure is used.

All algorithms presented can be considered traditional 
blocking methods, and they all suffer, to different extent, 
from the problems presented in the introduction.

3  Methodology

Our blocking schemes are logically composed of two phases: 
first, an embedding module is responsible for transforming 
the records into real-valued vectors, and second, a blocking 
module actually produces the buckets from these numerical 
vectors (Fig. 1).

The embedding architectures we present are very similar 
to the ones presented in [12]; however, there are important 
variations in the implementation of the embedding layer, 
the main difference being that our RNNs are trained on an 
external corpus, the SNLI corpus, and not on the actual 
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datasets to be merged. This unsupervised approach is moti-
vated by the following considerations. First, as noticed, in 
many applications no training data are available, and this 
choice makes our technique more realistic. Secondly, this 
paradigm ensures fairer evaluation tests because the tradi-
tional blocking methods to which we compare ours are not 
tuned on the datasets.

In our work, we also want to study from an empirical 
point of view the differences in applying word and character-
level embedding models. In particular, fastText is used as 
word embedding in the paper [25] but in that work the block-
ing phase is not faced. In this work, we decide to include 
both fastText and GloVe. The authors of [12] consider only 
the latter instead.

Finally, we decide to implement several RNNs with 
different sizes because we want to see whether different 
levels of complexity lead to noticeable variations in the 
performances.

4  Embedding Architectures

We now illustrate the two solutions that we adopt to imple-
ment the embedding layer. This layer receives as input the 
records of the datasets to be merged and outputs their vecto-
rial representation.

In the rest of the paper, we use the following notation: 
given a tuple t with n attributes 

{
Ai

}
i=1,…,n

 , the symbol 
�(t[Ak]) represents the numerical representation of the attrib-
ute value t[Ak] , while the numerical value of the entire tuple 
is �(t) ; given a generic word w, its embedding representation 
will be indicated with �(w).

At their core, both the embedding architectures we pro-
pose make use of pre-trained word embeddings, i.e. fastText 
or GloVe: each word w of each attribute value t[Ak] is trans-
formed into a real-valued vector �(w) . The fastText model 
we use is crawl-300d-2M-subword [23] where each word is 
represented as a 300-dimensional vector and the corpus on 

which it was trained is Common Crawl2. Regarding GloVe, 
we use the model glove.840B.300d [28] and again each word 
is represented as a 300-dimensional vector and the training 
corpus was still Common Crawl. Once the single words are 
transformed, what differentiates the two architectures con-
cerns how the single word embeddings are composed first to 
represent the attribute value (i.e. how to build �(t[Ak]) ) and 
eventually the entire record (how to produce �(t)).

4.1  Average‑Based Architecture

With this approach, also adopted in [12], when a tuple t with 
n attributes arrives at the embedding layer, each of its attrib-
utes 

{
Ak

}
k=1,…,n

 is treated independently from the others. 
First, we use a tokenizer to split the attribute value t[Ak] into 
its component words 

{
wi

}
i=1,…,p

 . In our implementation, we 
use the standard NLTK tokenizer available in the NLTK mod-
ule3. In the case one attribute is empty (i.e. there is a missing 
value) we insert the placeholder word “unk”. Then, each of 
these words is mapped to a 300-dimensional vector by 
applying the pre-trained word embedding model. The attrib-
ute vector representation �(t[Ak]) is given by simply averag-
ing the vectors of the component words. The tuple vector �(t) 
is finally obtained by the concatenation of all the n attribute 
vectors, (�(t[A1]),… , �(t[An])) . Speaking of tuple size, 
|�(t)| = d ∗ n where d is the attribute vector dimension (in 
our case it is d = 300 ) and n is the number of attributes.

This composition method has the advantage of being easy 
to implement, but it can lead to huge vector sizes when the 
data sources have a long list of attributes.

4.2  RNN‑Based Architecture

This second approach to embedding is more refined and its 
use is motivated by some considerations.

Fig. 1  Structure of our blocking 
systems

2 https ://commo ncraw l.org/the-data/.
3 https ://www.nltk.org/_modul es/nltk/token ize.html.

https://commoncrawl.org/the-data/
https://www.nltk.org/_modules/nltk/tokenize.html
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First, representing an attribute value by simply aver-
aging its component words embeddings—as the previous 
solution—means ignoring the order of the words. This is 
generally not an issue when there are atomic values or 
few words in an attribute, but when long textual elements 
are present it becomes more important. Indeed, the order 
of words helps when there are attributes that encapsulate 
multiword content such as descriptions or specifications 
of products. The RNN architecture embeds words order 
naturally in its implementation.

Second, the previous embedding approach cannot cap-
ture semantic relationships among attributes: to build the 
final tuple vector �(t) , it employs a simple concatenation of 
the component attribute vectors. In some cases, however, 
being able to link the semantics of nearby attributes can 
be useful to better capture the overall representation of 
an entity. Consider the two records representing the same 
person reported in Tables 3 and 4.

Information about the postcode value “2602” is for-
mally placed in different attributes, and the second record 
has a missing value. By adopting a simple averaging 
approach, vectors �(tA[Address]) and �(tB[Address]) (as well 
as �(tA[Postcode]) and �(tB[Postcode]) ) will likely be very 
different and by later using the concatenation of such vec-
tors the relationship between postcode and address would 
not be exploited. The RNN architecture as will be shortly 
shown, instead, considers the attributes as a sequence 
and so if adjacent attributes have related meanings it can 
encapsulate better the dependencies.

Third, another shortcoming of the average-based solu-
tion that motivates the RNN-based approach concerns the 
embedding sizes. As said, when using an average approach 
the tuple embeddings are proportional to the number of 
attributes n of the sources, and this can easily lead to very 
big embedding vectors. As we will analyze more in detail 
later, working on high-dimensional data requires caution 
and some algorithms do not perform well in such setting 
[13, 33]. With the RNN-based architecture, the size of the 
resulting tuple vectors is fixed a priori and is independent 
of the number of attributes.

As suggested in [12], we use both uni- and bidirectional 
recurrent neural networks (RNNs) with long short-term 
memory (LSTM) cells [16]. In the following discussion, 
we refer to this family of models with the term RNN-
LSTM architectures. However, to actually implement these 
nets we do not follow the approach described in the paper 
[12] because, as anticipated, the authors train the models 
directly on the datasets to be integrated in a supervised 
fashion.

To devise our models, we are instead inspired by the 
recent studies made by the Facebook AI research team in 
their paper [10] about sentence embedding models. Among 
the several solutions they investigate, they propose a model, 
named Infersent, a bi-LSTM net which transforms sentences 
written in natural language into their corresponding numeri-
cal representation. The authors show the strong results of 
this model on several tasks and in particular for semantic 
textual similarity applied in unsupervised settings. Our uni- 
and bi-LSTM nets are consequently implemented with the 
same architectures described in that paper for analogous 
models, and partially readapting the code the authors kindly 
release at [9]. In our work, however, we extend the analysis 
of these models with both fastText and GloVe and with a 
greater set of network sizes.

This is interesting because fastText and GloVe handle 
words not present in their vocabulary in different ways. 
GloVe replaces the missing words with the default value 
“unk”, while fastText, exploiting sub-word embeddings, is 
able to assign a numeric representation also to words not 
present in its vocabulary; for this reason, fastText is usually 
regarded as a character level embedding method.

4.2.1  Preliminary Information on RNN

We now provide the ideas and the description of the two 
RRN models we use, to understand how they work, and then, 
we explain how they are applied to our task.

In Fig. 2, the architecture of a uni-LSTM net is presented.
In the picture, wi represents the word embedding obtained 

by applying either fastText or GloVe on the corresponding 
source word. The ��⃗hi rectangle is the hidden state of the 
LSTM layer when input is word i. This layer comprises n 
LSTM cells that implement the memory of the net. It is 
this memory that captures the dependencies among the pro-
cessed vectors.

As can be seen from the picture, when a new word vec-
tor �������⃗wn+1 is presented at the net also the ���⃗hn internal state 
is considered to produce the new hidden state ������⃗hn+1 . This 
means that the net keeps track of the input vectors that have 
passed previously through its layers and past computations 
influence the present evaluation. The final representation of 
the sentence �⃗u is given by the last hidden state of the net ���⃗hm:

Table 3  Tuple t
A

ID Name Surname Address Postcode

a1 John Smith 42 Miller St 2602

Table 4  Tuple t
B

ID Name Surname Address Postcode

b3 Johnny Smith 42 Miller street 2602
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Let us now analyze the second RNN-based reference archi-
tecture, the bi-LSTM net.

The bi-LSTM net (Fig. 3) is composed of two uni-
LSTM nets: a forward and a backward uni-LSTM net. The 
former scans the source sentence in direct order (from left 
to right), whereas the latter in reverse order (from right to 
left). The forward NN generates the hidden state vectors 

(1)���⃗hm = ������������⃗LSTMm(w1,… ,wm)
��⃗hi and the backward produces �⃖�hi . At each step, the overall 
hidden state hi of the bi-LSTM net is given by the con-
catenation of ��⃗hi  and �⃖�hi  . Scanning m words thus produces 
a sequence of m states {hi}|i=1,…,m.

Finally, to obtain the sentence embedding �⃗u a max-
pooling function is applied across {hi}|i=1,…,m : simply the 
maximum value over each dimension, across the all steps 
i, is selected.

Fig. 2  uni-LSTM network

Fig. 3  bi-LSTM network
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When using the bi-LSTM net, the size of the resulting 
embedding vectors is exactly the double of the one produced 
by the uni-LSTM because of the double scan of the source 
sentence.

4.2.2  Sentence Embeddings Composition Methods

Given these premises, it is now possible to describe how 
these models actually perform our embedding task. When a 
tuple t with n attributes arrives at the embedding layer, each 
attribute value t[Ak] undergoes the tokenizer which splits it 
into its component words 

{
wi

}
i=1,…,p

 . Each of these words 
is mapped to a 300-dimensional vector by applying the pre-
trained word embedding model (fastText or GloVe), which 
yields the words embeddings 

{
�(wi)

}
i=1,…,p

 . After each 
word vector �(w) is generated, it is given as input to the 
RNN-LSTM, which processes it and produces an internal 
hidden state. At the end of the current attribute value t[Ak] , 
the process is repeated from the first word of the adjacent 
attribute Ak+1 seamlessly. This continuous feeding of the net 
ensures the first two appealing “properties” discussed above: 
since the tuple is processed as a single long sentence, the 
process guarantees to encode both the words order and the 
possible semantic relationships among adjacent attributes. 
The final tuple embedding vector �(t) is obtained after the 
scan and process of the last word of the last attribute value, 
and its computation follows the procedure previously 
described for the uni-LSTM or bi-LSTM networks: in the 
uni-LSTM case, the tuple vector coincides with the last hid-
den state ���⃗hm , while when using a bi-LSTM net it is the out-
put of the max pooling function applied over the dimensions 
across all internal states. For a deeper understanding of how 
uni- and bidirectional LSTM nets work, we refer the reader 
to [10] and [12].

Another important advantage with RNN-LSTM archi-
tecture is that it is possible to control and fix the size of 
the embedding tuples a priori. This holds because the 
dimensionality of the vectors is determined by the number 
of LSTM cells we put in the RNN hidden layer, and this 
is a design decision one takes before actually applying the 
model. In our work, we implement RNNs with 300, 1024 
and 2048 LSTM cells, and so in the tests we will evaluate 
the results with tuple embeddings whose sizes are 300, 1024, 
2048 when applying the uni-LSTM nets and 600, 2048 and 
4096 when using bi-LSTMs.

In order to use these RNN-LSTM nets, a prior train-
ing phase is necessary to estimate their parameters. The 

(2)

���⃗hm = ������������⃗LSTMm(w1,… ,wm)

�⃖��hm = �⃖�����������LSTMm(w1,… ,wm)

hm = [ ���⃗hm,
�⃖��hm]

RNN-LSTM nets of our embedding layer are trained on the 
labelled external SNLI corpus [6] before being applied to 
the test datasets. This dataset is one of the largest labelled 
sources specifically designed to force semantics understand-
ing and thus a good candidate for our solution.

5  Blocking Algorithms

Now that we have a numerical representation we need to 
detect similar tuples and put them in the same block. This is 
the goal of the second step of our blocking systems, where, 
exploiting two different methods, we actually group records 
into the buckets. Since the first step transforms the records 
into vectors with the appealing property that tuples related in 
the meaning are projected onto vectors that are close to each 
other, the algorithms we use exploit this geometrical prox-
imity to block them. We now present two blocking methods 
that take as input the vectors constructed in the previous step 
and produce groups of semantically similar records.

The first one is based on locality-sensitive hashing (LSH) 
[33] and multiprobe LSH [20], two popular techniques, that 
belong to the family of algorithms used in approximate 
nearest-neighbour (ANN) search problems.

The second blocking method we present first exploits 
dimensionality reduction techniques such as principal com-
ponent analysis (PCA) [17] and t-distributed stochastic 
neighbour embedding (t-SNE) [21] to create a low-dimen-
sional searching space and then employs standard and well-
adopted clustering algorithms to arrange records into blocks.

5.1  Approximate Nearest‑Neighbour‑Based 
Blocking

ANN search is the problem of finding similar vectors in a 
n-dimensional space. ANN techniques are typically pre-
ferred over traditional exact nearest-neighbour algorithms 
when the dimensionality of the vectors to be compared is 
high like in our case and therefore poses efficiency problems 
[33].

5.1.1  Preliminary Information on LSH Methods

Locality-Sensitive Hashing: this algorithm aims at finding 
a hash function h that satisfies two requirements: (i) items 
that are (semantically) close should have the same hash 
value h(x) with “high” probability P1 and (ii) points that are 
distant should have the same value h(x) with “low” prob-
ability P2 . The ultimate goal of the h function is indeed to 
group together (with the same hash value) those items that 
are close, or equivalently, similar. A popular paradigm is 
to choose as h a probabilistic binary function, for exam-
ple h(x) ∈ {−1,+1} . We then generate K distinct hash 
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functions h1, h2,… , hK with hi ∈ H and apply these func-
tions in order, to each tuple x to be analyzed. Each tuple 
x is consequently assigned to the sequence of the outputs 
g(x) = {h1(x), h2(x),… , hK(x)} . This ordered sequence g(x) 
is named the hash code of tuple x, and it is used to identify 
that record.

Since for large values of K the likelihood that similar 
records get the same K-dimensional hash code is reduced, 
typically several hash codes are computed for each tuple. To 
do so, one builds L hashes g1(x), g2(x),… , gL(x) , where each 
gi(x) is a K-sized vector obtained applying the ith sequence 
of probabilistic binary functions on tuple x. The set of hash 
codes {gi(y)}|y=1,…,N applied to entire set of N vectors is 
generally named hash table.

Multiprobe LSH: in the standard LSH implementation 
described above, one considers as similar all the records 
that fall in the same group (that is those having the same 
hash code in any of the L tables). Using several hash tables 
increases the likelihood that similar records fall into the 
same block but it also comes with the side effect that more 
tuples, possibly distant or unrelated, are put in the same 
bucket.

Multiprobe LSH [20] is a variation of standard LSH that 
aims at reducing the number L of hash tables but without the 
loss of nearest neighbours. Instead of building a large num-
ber of hash tables, multiprobe LSH builds probing sequences 
of the hash codes. The first step consists in building the hash 
tables as in standard LSH but in a smaller number. Then, in 
each hash table, all the “similar” hash codes are grouped 
together, and the elements contained in them are merged into 
the same bucket list because they are considered “similar”. 
What is crucial is how to locate similar hash codes. To do 
so, the probing sequences are used: for each target hash code 
gi(x) = {h1(x), h2(x),… , hK(x)} contained in a hash table 
T  , its probing sequence is composed of those hash codes 
gm(x)|m=1,…,p ∈ T  whose hamming distance from gi(x) is 
at maximum s, where s is a specified scalar parameter. In 
simple words, multiprobe LSH clusters the K-dimensional 
hash codes generated by the application of the K hash func-
tions of a hash table T  based on their hamming distances. 
This is not a pure partitioning clustering, however, because 
the same hash code can be put into several groups.

5.1.2  Blocks Building

The critical point of the LSH algorithm is to define proper 
hashing functions {hi}|i=1,…,K . As the authors of [12], we 
derive these hash functions using the random hyperplanes 
method. This method consists in choosing K random hyper-
planes through the origin in the N-dimensional space in 
which the embedding tuples are projected. Each hyperplane 
divides the space into two parts, an “upper” and a “lower” 
region. Depending on the relative position of the tuple vector 

x with respect to the ith hyperplane, the vector is assigned a 
value +1 (“upper” region) or −1 (“lower” region) in position 
i of its hash code. The position of vector x is evaluated with 
respect to each of the K hyperplanes, and consequently, a 
K-sized hash code is generated. To increase the likelihood 
that similar records get the same hash code, we compute 
several hash codes are for each tuple. Given the hash tables, 
then all the records sharing the same K-dimensional code 
in any of the L tables are considered “similar” and put into 
the same group.

The approach exploiting multiprobe LSH is strictly 
related to the one just described. We still use the random 
hyperplanes method, but in this case a smaller number of 
hash tables are generated. Alternatively, in order to increase 
the likelihood that similar records are placed in the same 
block, all the hash codes whose distance is less than or equal 
to a pre-specified parameter s are grouped and their lists of 
tuples are merged.

5.2  Clustering‑Based Blocking

The second blocking method we present uses conventional 
clustering algorithms to partition the embedding vectors 
received as input into buckets of similar records. In order 
to choose the most appropriate clustering algorithm, in our 
experimental analysis we test and compare four of them: 
hierarchical clustering, K-Means, DBSCAN, and Birch.

Before presenting how the different clustering algorithms 
place the input vectors in distinct blocks, we need to address 
the challenges posed by the high dimensionality of the data 
and therefore explain how to pre-process the embedding vec-
tors and transform them in such a way that the four cluster-
ing algorithms can effectively analyze them.

The biggest challenge faced while clustering high-dimen-
sional data is that traditional distance measures often used in 
conventional clustering algorithms become useless [19] due 
to the problem known as the Curse of Dimensionality [4]. 
This term is actually used to refer to four sub-problems: (i) 
multiple dimensions are difficult to visualize and enumerate 
due to the exponential number of possible values related to 
each dimension; (ii) measures like proximity, distance, or 
neighbourhood risk to become meaningless in high-dimen-
sional spaces, since in some applications it can happen that 
the relative distance of the farthest point and the nearest 
point converges to 0 as the dimensionality grows [1]; (iii) 
among the many available features, a high number of irrel-
evant ones is to be expected: these useless dimensions can 
be related to “noise” and thus interfere with the clustering 
discovery task making it more difficult and prone to errors; 
(iv) due to the high number of attributes in the dataset, some 
of them may be correlated.

The above-stated challenges make it difficult to cluster 
the embedding vectors into blocks of records; in particular, 
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the fact that distance measures become less effective in 
high-dimensional spaces somehow neutralizes the appeal-
ing property of our vectors: they are created in such a way 
that semantically similar tuples are placed close to each 
other in the high-dimensional space. In order to exploit this 
appealing characteristic, we need to project the vectors onto 
a lower-dimensional space, which can better describe the 
similarity of records belonging to the same group.

We now present the two dimensionality reduction tech-
niques used in our methodology: principal component analy-
sis (PCA) and t-distributed stochastic neighbour embedding 
(t-SNE).

Principal Component Analysis: this method performs an 
orthogonal projection of the data onto a linear space with a 
lower number of dimensions; the lower-dimensional space 
is called principal sub-space. The projection is performed 
in such a way that the variance of the projected data is 

maximized and thus maintaining as much as possible the 
information present in the original dataset, in our case the 
embedding vectors [5, 17].

t-distributed Stochastic Neighbour Embedding: this 
method consists in a nonlinear dimensionality reduction 
transformation of a high-dimensional input dataset into a 
low-dimension output space of two or three dimensions. 
This is achieved by minimizing the divergence between the 
distribution that measures pairwise similarities of the input 
objects and a distribution that measures pairwise similarities 
of the corresponding low-dimensional points [21].

Contrary to traditional linear dimensionality reduction 
techniques, such as PCA, t-SNE is capable of capturing both 
the local and the global structures of the high-dimensional 
data; this results in a transformation where similar vectors 
are modelled by nearby points and dissimilar vectors are 
modelled by distant points.

Fig. 4  Visualization of the t-SNE dimensionality reduction technique applied to the Cora dataset
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Figure 4 shows the result of t-SNE applied to the embed-
ding vectors generated from the Cora dataset4. We can see 
how well t-SNE managed to project the original embeddings, 
whose size is 4096, onto a bi-dimensional space. (For clarity 
only the first 300 records of the dataset are represented.)

Although t-SNE delivers overall good results, a deeper 
analysis shows some weakness of this algorithm: for 
instance, if we take into consideration the green cluster in 
the bottom right section of Fig. 4, where most of the “cesa” 
records have been placed, we can notice two criticalities: 
(i) the cluster is split into two parts and (ii) it contains an 
outlier: “cohen1998”, that should have been positioned in 
the light-blue cluster in the bottom left part of the figure. 
This is a problem because, once we have placed an element 
into a block, it will not be compared with elements outside 
this block, and in this case we would not be able to link the 
misplaced “cohen1998” record to its true entity. These are 
well-known problems of t-SNE; in fact, it has been shown 
that: (i) the visualized clusters produced by t-SNE can be 
strongly influenced by the parametrization of the algorithm, 
(ii) such clusters may even appear in non-clustered data. To 
overcome these challenges, in our methodology, we merge 
the clusters discovered by t-SNE into bigger cluster, with the 
ultimate goal of placing all the records that refer to the same 
entity in the same block; at the same time, we are careful 
not to generate too large blocks, which would jeopardize the 
usefulness of the blocking phase. Despite the problems we 
have just analyzed, as can be seen in the figure, the dimen-
sionality reduction operated by t-SNE still represents a good 
starting point to be followed by a clustering algorithm and 
creates the final blocks.

Clustering Phase: once we have projected the embed-
dings onto a lower-dimensional space, either by using PCA 
or by using t-SNE, we can apply clustering algorithms to 
partition the records into groups of similar tuples.

We now briefly present how each of the four conven-
tional clustering algorithms we tested in our methodology 
can arrange the records inside the buckets.

– Hierarchical Clustering: in its agglomerative variant 
[31], this algorithm assembles the clusters by recursively 
partitioning the vectors in a bottom-up fashion. Initially, 
each record is assigned to a cluster of its own; then, 
at each iteration of the algorithm, clusters are merged 
until the desired hierarchical structure is achieved. The 
resulting structure, describing how the clusters have been 
combined through the iterations, and their respective 
similarity are called a dendrogram. A clustering of the 

data is obtained by cutting the dendrogram at a height 
corresponding to the desired similarity level or to the 
desired number of clusters. In order to decide which clus-
ters should be merged at each iteration, two measures 
are needed, the first specifying the distance between two 
records and the second specifying how far are two clus-
ters placed from each other; we selected the Euclidean 
distance for the former and the Ward Linkage criterion 
[34] for the latter .

– K-Means: this algorithm partitions the records into K 
clusters, each identified by its centre, computed as the 
mean of the vectors’ coordinates assigned to that cluster. 
Initially, the algorithm randomly chooses K centres; then, 
at each iteration, the records are assigned to the nearest 
cluster centre, and once all of them have been assigned, 
the cluster centres are recomputed and the algorithm con-
tinues with the following iterations until convergence is 
reached [31]. We use the Euclidean distance to determine 
how far records are from the cluster centres.

– DBSCAN: this algorithm can detect clusters of arbitrary 
shape by analyzing the density surrounding each record. 
More specifically, a cluster is defined as an area of high 
density delimited by areas of low density. To discover the 
clusters, two parameters are needed: the neighbourhood 
size, specifying the minimum number of records required 
to form a dense region, and eps, the maximum distance 
between two records in order for them to be considered 
as belonging to the same neighbourhood [31].

– Birch: thanks to its ability to find good clustering solu-
tions with just one scan of the data, this clustering algo-
rithm represents a very effective solution for dealing with 
very large datasets. This algorithm is composed of two 
main phases: it first loads the records into the memory 
by building the cluster feature tree (CF tree), a lossless 
compression of the data, that through the use of appropri-
ate summary statistics, manages to preserve the clusters 
structure originally present in the records, then any of 
the existing clustering algorithms can be applied to the 
leaves of the CF tree to obtain the actual clusters [36].

6  Experimental Results

We tested our blocking systems on six popular datasets with 
two objectives: first to compare their performances against 
five traditional blocking algorithms and second to under-
stand how the several architectural variants we implemented 
differ among each other. Since every blocking algorithm has 
its own set of parameters, we also define how these are set 
for the tests.

4 The Cora dataset, containing information about research articles—
represented by their bibliographic references—is presented and ana-
lyzed in the experimental section of this paper.
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6.1  Datasets

The blocking algorithms are tested on six publicly avail-
able datasets that are commonly adopted to evaluate entity 
linkage and blocking schemes [7, 12, 18, 27]. These are: 
Restaurant dataset [30], Census dataset [30], Cora dataset 
[30], DBLP-ACM datasets [11], Amazon-Google Products 
datasets [11] and Abt-Buy datasets [11].

The first two datasets represent the “easy” task: they 
are structured and mostly clean with very few typos and 
missing values. On these datasets, traditional blocking 
techniques show strong results as reported in [7].

Cora is still a well-structured dataset, but it has some 
quality issues as will be discussed later in the results. Res-
taurant is a set of tuples with restaurant names, addresses, 
cities, phones and food styles taken from Fodor and Zagat 
restaurant guides. Census is a dataset generated by the 
US Census Bureau including information such as first and 
last names, middle initials, zip codes and street addresses. 
Cora contains records about machine learning articles with 
many attributes as publication name, publication year, 
authors name, venue, etc. DBLP-ACM are well-structured 
bibliographic data sources regarding computer science 
conferences. Among the shared fields there is a relatively 
long textual attribute title, but its values are fixed and the 
same between the two sources so on these sets traditional 
blocking models are expected to perform well anyways.

The last two pairs of data sources are “challenging”: 
they have long textual attributes (such as product descrip-
tion) written in natural language with plenty of variations. 
Both tasks deal with e-commerce products and the sin-
gle sources have also duplicates inside each of them. In 
Table 5, we summarize some of the key characteristics of 
the datasets.

The “Task” column specifies the type of activity to be 
performed: (i) Deduplication for finding duplicate tuples 
that all belong to a single source and (ii) Linkage for find-
ing related tuples across two or more data sources. The 
“Cartesian size” column contains the number of com-
parisons one would perform without blocking ( n ∗ m 
for the (entity) linkage task, n∗(n−1)

2
 for the deduplication 

case, where n and m are the number of tuples in the (two) 
source(s)).

6.2  Metrics

Two metrics are considered to assess the performances of 
the blocking algorithms: Reduction ratio (RR) and Pair com-
pleteness (PC), which are the measures typically used in the 
literature [3, 7, 8]. Following the notation of [8], RR and PC 
are defined as:

where

– nM is the number of matching pairs generated without 
blocking.

– n N is the number of non-matching pairs generated with-
out blocking.

– sM is the number of matching pairs generated with block-
ing.

– s N is the number of non-matching pairs generated with 
blocking.

RR measures how much the blocking technique can reduce 
the number of pair comparisons with respect to a naïve full 
comparison approach.

The second metric, PC, measures instead the effective-
ness of the blocking method at not removing true matches 
from the set of comparisons.

These metrics range in [0, 1], and they are typically in a 
trade-off [8]: a high reduction ratio may come at the cost of 
some missed true matches or vice versa a large pair com-
pleteness may require to compare also many unnecessary 
pairs.

In some works, RR and PC are combined to assess the 
overall blocking result. In [27], for example, the metrics are 
multiplied � = RR ⋅ PC . In our tests to select the best result, 
we use the harmonic mean of the two, � = 2 ⋅

RR⋅PC

RR+PC
.

6.3  Design of the Evaluation

We design our tests in order to analyze two aspects of our 
blocking systems: first how they perform with respect to 

(3)RR = 1.0 −
sM + s N

nM + n N

PC =
sM

nM

Table 5  Specifications of the 
target datasets

Data set Task #Tuples #True matches #Attributes Cartesian size

Restaurant Deduplication 864 112 5 372816
Cora Deduplication 1295 17184 12 837865
Census Deduplication 841 327 5 353220
DBLP-ACM Linkage 2616-2294 2224 5 6001104
AMZN-GP Linkage 1363-3226 1300 5 4397038
ABT-BUY Linkage 1081-1092 1097 4 1180452
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traditional blocking methods and second how the architec-
tural variants presented in methodology section of the paper 
influence the final results.

We now review how the parameters are set in our tests, 
distinguishing between the traditional methods and our 
blocking schemes. For what concerns traditional block-
ing algorithms, parameter setting is done by hand, the best 
results are obtained experimentally and then used in com-
parison with our blocking algorithm.

Traditional algorithms require a blocking function to 
operate, and in our tests, for each dataset; we run the experi-
ments by applying iteratively one of the following functions: 
attribute value, first n chars, last n chars (with n ∈ {2, 3, 4} ) 
and Soundex phonetic encoding. The blocking function is 
applied to every single attribute of the current dataset. In 
standard blocking, the blocking function is the only vari-
able to be tested as no further parameters are defined for 
this algorithm. In sorted neighbourhood blocking, for each 
dataset the parameter window size w is varied in the range 
w ∈ {2, 3, 4, 5} . Q-gram blocking is tested with q-gram size 
q ∈ {3, 4, 5} and threshold t ∈ {0.6, 0.8} . In suffix blocking, 
the minimum suffix length lmin ∈ {3, 4, 5} and maximum 
block size bmax ∈ {20, 50} . Finally, the canopy cluster block-
ing algorithm is applied with the q-gram size q = 3.

Regarding our blocking system, we evaluate both the 
average-based and the RNN-LSTM-based models described 
in the methodology above, with the following parameters: 
the number of LSTM cells ncells ∈ {300, 1024, 2048} and as 
word embeddings both GloVe and fastText.

For what regards the first of our blocking methods, to 
set the hash code size K and the number of hash tables L of 
the LSH algorithm, for each dataset we apply the theoreti-
cal formulae presented in [33]. While for choosing the hash 
functions, we proceed similar to [12]. For multiprobe LSH, 
we use the same K and L values but one more parameter is 
needed: the Hamming distance value s, this is set by hand 
and we test the algorithm with s ∈ {1, 2, 3} . The final results 
for LSH and multiprobe LSH are obtained by averaging the 
outcomes of 5 independent runs.

For what regards the second of our blocking methods, we 
set the number of components in PCA equals to 2. t-SNE 

being a more complex dimensionality reduction method 
needs three parameters to be accurately set: (i) as for PCA 
we set the number of components equal to 2, (ii) the per-
plexity score, a parameter controlling the number of near-
est neighbours considered from the algorithm, varied in the 
range {30, 35, 40, 45, 50}  and (iii) the early exaggeration 
score, a parameter controlling the space among the discov-
ered clusters, varied in the range {9, 12, 12, 15, 18} . Con-
cerning the conventional clustering algorithms, we varied 
the number of clusters between 5 and 50 for hierarchical 
clustering, K-Means and Birch, while we for DBSCAN we 
assigned eps equal to 0.5 and varied the neighbourhood size 
between 2 and 10.

All the algorithms are implemented in Python program-
ming language, and the tests are run on a Google Compute 
Engine5 instance with the following specifications:

– Operating system: Ubuntu 16.04.1 LTS (Xenial Xerus)
– CPU: 4 hyper-threaded cores Intel Xeon Processor 

@2Ghz
– RAM: 32 GB
– SSD storage: 60 GB

6.4  Test Results

We now first provide the results of the tests between our 
blocking systems and the traditional methods, and then, we 
investigate the impact of different architectural choices of 
our model.

6.4.1  Our System vs Traditional Blocking Algorithms

Reduction ratio, pair completeness and alpha: Tables 6 
and 7 illustrate the best results in terms of RR, PC and � 
obtained by each blocking algorithm on each of the six target 
datasets. Our methods are named:

Table 6  Blocking algorithms 
comparison on Restaurant, Cora 
and Census datasets

Restaurant Cora Census

RR PC � RR PC � RR PC �

Standard 0.9848 0.9464 0.9652 0.9659 0.7881 0.8679 0.9829 0.7703 0.8637
Suffix 0.99 0.875 0.9289 0.989 0.4441 0.6129 0.9829 0.7703 0.8637
Sorted N. 0.9848 0.9464 0.9652 0.9659 0.7881 0.8679 0.8976 0.8721 0.8847
Q-gram 0.9848 0.9464 0.9652 0.9464 0.8322 0.8856 0.9829 0.7703 0.8637
Canopy 0.9848 0.9464 0.9652 0.9659 0.7881 0.8679 0.9829 0.7703 0.8637
Emb–LSH 0.9432 0.9792 0.9608 0.9233 0.7626 0.8352 0.8945 0.9542 0.9234
Emb–Clust 0.9859 0.9464 0.9657 0.9635 0.887 0.9241 0.9006 0.9622 0.9304

5 https ://cloud .googl e.com/compu te/.

https://cloud.google.com/compute/
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– Emb–LSH the blocking system based on LSH and mul-
tiprobe LSH.

– Emb–Clust the blocking system based on dimensional-
ity reduction techniques and conventional clustering 
algorithms.

The experiments on Restaurant and Census datasets 
show competitive results between traditional methods 
and our blocking systems, proving that embedding-based 
models keep up on clean and simple datasets. On these 
datasets, traditional blocking algorithms seem to have 
an edge on RR but on the other hand embedding-based 
models provide better PC. The only exception is on Cora 
dataset where the q-gram blocking algorithm achieves a 
6.9% better score for PC with respect to the Emb–LSH 
model. We explain this result by inspecting the dataset. 
This data source has serious quality issues on the major-
ity of the attributes: the column volume has 76% of miss-
ing values, the attribute address 77%, field note reaches 
90% of missing values. The only clean attribute is title 
and its values are mainly fixed with very little variations. 
All the traditional blocking methods select this field to 
filter the tuples, and without a prior imputation strategy it 
becomes really hard to leverage semantic information out 
of so many blank values. Despite the poor performance of 
our first blocking method on the Cora dataset, our second 
method, Emb–Clust, manages to outperform the q-gram 
blocking algorithm; this is thanks to t-SNE, that, also in 
this challenging conditions is able to build a bi-dimen-
sional projection where the points representing the same 
entity are overall correctly grouped together.

Overall, the performances of traditional blocking algo-
rithms on these sets are aligned with those reported in [7] 
and in [27].

Even though on DBLP-ACM the results are still bal-
anced, q-gram shows null values because it was not possible 
to conclude the test: time and memory consumptions were 
prohibitive. This is a known limitation of this type of block-
ing algorithm, as computing all the q-grams of long textual 
values is expensive.

The most significant differences between our blocking 
systems and the traditional approaches are on the tests on the 
last two “challenging” datasets: AMZN-GP and ABT-BUY. 
Our embedding-based models are slightly less efficient at 
reducing the number of pair comparisons, but PC is much 
higher than traditional methods. Even though a PC of 0.84 
(obtained by one of our blocking methods on the AMZN-GP 
dataset) is still a relatively poor result, the analysis suggests 
that our models are good at capturing the semantic informa-
tion out of data. Supporting this insight are also the results 
on ABT-BUY datasets on which we record the best perfor-
mances in two scenarios:

– Traditional models are free to choose the attribute and 
blocking function giving the best result (Table 7). In this 
case, they all go for the name attribute. This attribute is 
relatively clean and easy for them to block on.

– Traditional models are forced to use as attribute the 
description of products (Fig. 5). The values of this attrib-
ute are long textual descriptions written in natural lan-
guage plenty of variations.

As can be seen in Fig. 5, the PC performances are com-
pletely different, with an absolute win for the embedding-
based models. Overall, we consistently obtain the best PC, 
while maintaining a RR close to the best result obtained by 
traditional approaches. This is confirmed by the � score, 
where our systems rank first on all the six datasets. We 

Table 7  Blocking algorithms 
comparison on DBLP-ACM, 
AMZN-GP and ABT-BUY 
datasets

DBLP-ACM AMZN-GP ABT-BUY

RR PC � RR PC � RR PC �

Standard 0.9996 0.8826 0.9374 0.9865 0.4661 0.6331 0.9793 0.6272 0.7646
Suffix 0.9964 0.9528 0.9741 0.9979 0.1792 0.3038 0.9935 0.4011 0.5714
Sorted N. 0.9974 0.9834 0.9903 0.9604 0.4308 0.5947 0.9371 0.8386 0.8851
Q-gram 0.0 0.0 0.0 0.9865 0.4661 0.6331 0.9424 0.8049 0.8682
Canopy 0.9959 0.9645 0.9799 0.9865 0.4661 0.6331 0.9793 0.6272 0.7646
Emb–LSH 0.9873 0.9946 0.9909 0.9436 0.7885 0.8591 0.9343 0.9088 0.9213
Emb–Clust 0.999 0.9820 0.9904 0.9277 0.8407 0.8821 0.9217 0.9024 0.9120

Fig. 5  RR and PC on ABT-BUY dataset forcing on description attrib-
ute
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also think that often a high PC should be preferred w.r.t. 
a high RR, since performing a few more comparisons 
could be less expensive than actually missing data that 
were positioned in the wrong block. The results match our 
intuition that traditional blocking solutions work poorly 
on noisy and textual datasets because of their inability to 
leverage semantic information. By contrast, embedding-
based models exploit the meaning of words and sentences 
and overall provide a more appropriate solution.

We can see that the conclusions we have just drawn 
are confirmed by the results displayed in Table 8 where 
we reported the average reduction ratio, pair complete-
ness and � that the blocking methods achieved over all the 
datasets. In particular, it is possible to notice the consider-
able margin that our two algorithms have over the tradi-
tional blocking methods in terms of the harmonic mean � 
between reduction ratio and pair completeness.

As far as our comparison between the two blocking 
systems is concerned, they exhibit fairly similar perfor-
mances, with Emb–Clust taking an edge over Emb–LSH 
because it scores slightly better in four of the six data-
sets, and overall gaining 1.79% in terms of � score. The 
only exception to this evidence is constituted by the Cora 
dataset, where Emb–Clust scores significantly better than 
Emb–LSH.

Comparison with DeepER: comparing our approach 
with the supervised method implemented by DeepeR [12], 
we can notice two different behaviours:

– When the systems are tested on the “easy” datasets, the 
two approaches show similar results both in terms of pair 
completeness and in terms of reduction ratio.

– When the systems are tested on the “challenging” 
datasets, DeepeR [12] outperforms our unsupervised 
approach, consistently achieving a pair completeness 
higher than 0.95, while our methods manage to obtain 
a pair completeness between 0.85 and 0.90; on the con-
trary, the reduction ratios remain comparable.

These results are to be expected, confirming that if labelled 
data are available, or the user is willing to produce them, a 
supervised approach can be beneficial. We do not see this 
difference in performance as a big drawback, in fact, when 
comparing our methods against the traditional methods we 
can see a much greater gap in the performances: when the 
traditional methods are tested on the “challenging” datasets, 
none of them is able to exceed a pair completeness of 0.5. 
Our methods perform significantly better, confirming that 
the semantics learned from the external independent corpus 
used for training our models actually made a substantial dif-
ference in improving the results over the traditional methods. 
Moreover, hand-labelling data is very expensive, and we 
believe that in many scenarios sacrificing 5 to 10% of the pair 
completeness can be acceptable when the cost of creating 
a manually labelled training set is taken into consideration.

Execution Time: despite the good results of our blocking 
schemes, tests confirmed that deep-learning-based models 
are very expensive in terms of time (and memory consump-
tion); this is a well-known pitfall of these models [25].

We show in Table 9 the average time needed (in seconds) 
to complete the blocking phase on each dataset. Despite both 
our methods taking longer than traditional blocking algo-
rithms, we can see a significant improvement in the time 
required by Emb-Clust to produce the blocks, with respect 
to time needed by Emb-LSH.

Since our tests are run on a single computing instance, 
we believe that by adopting a parallel and distributed com-
putation paradigm this blocking scheme can increase its 
efficiency by a wide margin.

Table 8  Average RR, PC and � over all the datasets

Method RR PC �

Standard 0.9832 0.7468 0.8386
Suffix 0.9916 0.6037 0.7091
Sorted N. 0.9572 0.8099 0.8646
Q-gram 0.9686 0.764 0.8305
Canopy 0.9825 0.7604 0.8457
Emb–LSH 0.9377 0.898 0.9151
Emb–Clust 0.9463 0.9212 0.933

Table 9  Execution times of the 
blocking methods

Method Restaurant Cora Census DBLP-ACM AMZN-GP ABT-BUY

Standard 0.6888 2.7359 0.6638 3.1501 3.7234 1.3336
Suffix 0.7033 2.7442 0.6797 4.0099 3.1015 1.1457
Sorted N. 0.7056 2.667 0.7303 3.3683 6.1487 2.1025
Q-gram 7.5938 2.9335 7.6657 Unbounded 10.599 1.8767
Canopy 0.2925 2.9954 0.6993 1449.9015 4.1971 2.7381
Emb–LSH 19.1221 163.6499 142.2958 1080.6682 815.4097 402.2910
Emb–Clust 18.8836 33.1579 19.0854 254.7286 204.0034 73.7883
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We need also to take into consideration that our methods 
consistently achieve the best pair completeness over all the 
datasets, and often, forsaking time efficiency for a higher 
pair completeness is considered acceptable, especially in 
those cases where the quality of the information is regarded 
as a crucial property of the result. In fact, after the blocking 
phase, only the records inside the same block are compared 
with each other, and thus, all the misplaced records cannot 
be linked to their entity anymore. Additionally, the integra-
tion of the data sources is typically done at the beginning 
of a data analysis project; as a result, we believe that it is 
worth spending more time (few minutes) on the integration 
phase, with the scope of having more precise and complete 
data and hence significantly better performance during the 
data analysis task.

6.4.2  Results for Different Architectural Choices

RNN-LSTM vs Average: one of the clearest results is the 
difference in performances when comparing the RNN-
LSTM architectures with the simpler average scheme 
(Fig. 6). The average-based architecture provides sufficient 
results only on Restaurant and Census datasets where the 
attribute values are clean and atomic or at most composed 
of few words. When the textual values are longer, however 
taking into account words order guarantees more refined 
embeddings. This observation is particularly evident by 
considering the outcomes on the “challenging” datasets, 
Amazon-Google Products and Abt-Buy. On those sources, 

the neural nets are capable of encoding the dependencies 
among words and adjacent fields more effectively, thus 
obtaining a substantial improvement on PC. Conversely 
when many word embeddings are averaged, the resulting 
vector is less discriminative.

LSTM vs bi-LSTM: another key evidence resulting 
from the tests concerns the superiority of the bi-LSTM 
architecture over the uni-LSTM model for the current task 
(Fig. 7). bi-LSTM nets outperform the single LSTMs on 
every dataset, especially in terms of PC, suggesting that 
they generate better tuple representations. Similarly to the 
previous set of tests, the gain in PC is more significant 
when dealing with the complex datasets.

fastText vs GloVe: the two word embedding approaches 
show similar results on Restaurant, DBLP-ACM and Cen-
sus. On the remaining datasets, however, GloVe is ahead 
regarding the PC (Fig. 8). We explain this trend by rec-
ognizing greater generalization capabilities of GloVe on 
these data sources.

The datasets about e-commerce products in particu-
lar contain codes, commercial names and brands which 
are handled differently by the two embedding paradigms: 
GloVe ignores the majority of them because they are 
not in the dictionary of known words, whereas fastText 
constructs new words embeddings by considering their 
n-grams. However, brand names rarely convey semantics 
about real-world entities, and this should explain why 
fastText is not able to enrich the expressiveness of the 
embeddings.

Fig. 6  RNN-LSTM vs average architecture performances
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In other words, on these typologies of datasets a more 
relaxed model that promotes generalization seems to be 
more appropriate.

RNN-LSTM Sizes: test results presented in Fig. 9 show 
the best performances obtained by using RNN-LSTM nets 
with the following number of LSTM cells: 300, 1024 and 
2048. As can be seen, most of the top scores are associated 

with the 2048 variants of the nets, but in general the differ-
ences with respect to sizes are not crucial. Noting that the 
number of LSTM cells defines the size of the embedding 
tuples, this suggests that even with the smaller vector sizes 
we can obtain good blocking results. 

PCA vs t-SNE: Figure 10  displays the best results obtained 
by our system when using the two dimensionality-reduction 

Fig. 7  uni-LSTM vs bi-LSTM performances

Fig. 8  fastText vs GloVe performances
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techniques. It is clear that the results obtained by t-SNE are 
superior to the ones achieved by PCA; we attribute the differ-
ence in performances to two factors: (i) as opposed to PCA, 
the nonlinear projection performed by t-SNE better man-
ages to maintain the information encoded in the embedding 
vectors , (ii) the clusters automatically discovered by t-SNE 

represent a better starting point for the conventional cluster-
ing algorithms than the linear projection returned by PCA.

Conventional Clustering Algorithms Compared: the test 
results presented in Fig. 11 show how overall the four clus-
tering methods achieve similar results, with two exceptions: 
(i) the AMZN-GP dataset, where hierarchical clustering 

Fig. 9  RNN size performances

Fig. 10  PCA vs t-SNE dimensionality reduction performances
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scores a better reduction ratio and DBSCAN and Birch obtain 
a better pair completeness  and (ii) the DBLP-ACM dataset, 
where K-Means did not manage to reach convergence in 
acceptable time. A deeper inspection of these experimental 
results showed a substantial drawback of K-Means: on all the 
datasets it required a significantly longer time to complete 
its computation, compared to the other three algorithms. 
Specifically, with the scikit-learn6 implementation of the 
four algorithms used in our system, Hierarchical Cluster-
ing, DBSCAN and Birch found the clusters in less than 1 s 
on all the datasets, while K-Means required a time spanning 
from 13 and 164 s. Given these considerations and being the 
time complexity of Birch [36] linear, we suggest to use this 
last algorithm in the final implementation of the Emb–Clust 
blocking system.

6.4.3  Final Remarks on the Experiments

Given the experimental results, the final architecture we sug-
gest comprises the following components:

– Embedding architecture: RNN-based

– Network type: bi-LSTM
– RNN-LSTM size: 2048
– Word embeddings: GloVe

– Blocking method: clustering-based

– Dimensionality reduction technique: t-SNE
– Clustering method: Birch

Given the good results of our methods, we foresee their appli-
cation to a wide variety of scenarios; especially when no 
labeled training datasets are provided and when asking a user 
to manually create one is considered prohibitively expensive.

Fig. 11  Performances of the conventional clustering algorithms compared

6 https ://sciki t-learn .org/stabl e/modul es/clust ering .html.

https://scikit-learn.org/stable/modules/clustering.html
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7  Conclusions and Future Work

We presented two unsupervised blocking systems based on lev-
eraging the data semantics. Experimental results demonstrated 
that our deep-learning-based blocking solutions outperform tra-
ditional algorithms, especially on textual and noisy datasets. 
Additionally, our tests showed that training the neural networks 
on external corpora and then plugging them in the blocking 
system to build tuple embeddings produces good results.

Possible future work may include: (i) trying other, newly 
released sentence-embedding models such as [29], (ii) 
reducing the execution time of our blocking scheme adopt-
ing a parallel and distributed computation paradigm, (iii) 
studying the applicability of our unsupervised approach on 
a broader range of scenarios [32], (iv) experimenting with 
more sophisticated clustering algorithms [35].

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.
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