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Abstract
The size of textual data continues to grow along with the need for timely and cost-effective analysis, while the growth of 
computation power cannot keep up with the growth of data. The delays when processing huge textual data can negatively 
impact user activity and insight. This calls for a paradigm shift from blocking fashion to progressive processing. In this paper, 
we propose a sample-based progressive processing model that focuses on term frequency calculation on text. The model is 
based on an incremental execution engine and will calculate a series of approximate results for a single query in a progres-
sive way to provide a smooth trade-off between accuracy and latency. As a part, we proposed a new variant of the bootstrap 
technique to quantify result error progressively. We implemented this method in our system called Parrot on top of Apache 
Spark and used real-world data to test its performance. Experiments demonstrate that our method is 2.4×–19.7× faster to 
get a result within 1% error while the confidence interval always covers the accurate results very well.

Keywords Approximate query processing · Text data analytics · Term frequency · Bootstrap

1 Introduction

A huge amount of textual data is increasingly produced on 
the Internet. In twitter, for example, more than 500 million 
tweets were published per day in 2017.1 These data are of great 

analytic values across many fields including hot topic analysis, 
social public sentiment, etc. Compared to structured data, tex-
tual data contains more semantic information such as term fre-
quency and tf-idf whereas existing SQL aggregation functions 
focused mainly on numerical values, and, thus, are not suitable. 
And due to the non-correlated relationship between documents, 
people have much less priori about the distribution of words, 
especially on a subset. Analyzing textual data through a col-
lection of fixed workload becomes unrealistic. Therefore, the 
way of interactive exploration becomes popular. The interactive 
exploration tool gives the user opportunities to continuously 
approach the final goal by iteratively executing queries using 
varying predicates [7]. A key requirement of these tools is the 
ability to provide query results at “human speed”. Previous lit-
erature [31] has demonstrated that a great delay can negatively 
impact user activity and insight discovery. However, the term 
frequency calculation on a 100GB text collection costs more 
than 10 minutes in our experiment.

For analyzing structured data, lots of previous works 
attempt to speed up query execution through Data Cube or 
AQP (Approximate Query Processing) techniques. For data 
cube [10] and its successors, e.g., imMens [21] and Nano-
Cubes [20], they either suffer from the curse of dimensionality 
or restrict the number of attributes that can be filtered at the 
same time. When limited by response time and computing 
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resources, AQP systems (e.g., AQUA [2], IDEA [9], Ver-
dictDB [23]) only return a single approximate result regardless 
of how long the user waits. However, there is an increasing 
need for interactive human-driven exploratory analysis, whose 
desired accuracy or the time-criticality cannot be known a 
priori and change dynamically based on unquantifiable human 
factors [29]. Besides, due to the difference in data structure, 
these technologies cannot be migrated to apply to text data 
easily. For semi-structured and unstructured data, state-of-the-
art solutions are based on the content management system or 
cube structures, such as ElasticSearch [1] and Text Cube [19]. 
ElasticSearch supports simple queries with key-value based 
filtering as well as full-text searching for fuzzy matching over 
the entire dataset. However, it doesn’t have good support for 
ad-hoc queries on subset and cannot return an accurate term 
frequency on a subset through the termvectors API. Text Cube 
uses techniques to pre-aggregate data and gives the user the 
possibility to make a semantic navigation in data dimensions 
[5]. Text Cube can significantly reduce query latency, but it 
requires extensive preprocessing and suffer from the curse of 
dimensionality.

The universality and the demand for performance moti-
vate us to utilize sampling techniques to return approximate 
answers to shorten response latency. However, approximate 
answers are most useful when accompanied by accuracy 
guarantees. Most commonly, the accuracy is guaranteed by 
error estimation, which comes in the form of the confidence 
interval (a.k.a., “error bound”) [18]. The error estimation 
can be reported directly to users, who can factor the uncer-
tainty of the query results in their analysis and decisions. 
Many methods have been proposed for producing reliable 
error bounds—the earliest is closed-form estimates based on 
either the central limit theorem (CLT) [26] or large devia-
tion inequalities such as Hoeffding bounds [12]. Unfortu-
nately, these techniques either compute an error bound much 
wider than the real which lost guidance to users or require 
data to follow the normal distribution while the distribu-
tion of terms frequency often obeys the Zipf law [6]. This 
has motivated the use of resampling methods like bootstrap 
[30], which requires no such normal distribution and can be 
applied to arbitrary queries. However, traditional bootstrap 
and its variant, variational subsampling technique proposed 
by VerdictDB [23] remain high complexity in our progres-
sive execution model due to lots of duplicate computation.

In this paper, we first present a new query formulation 
by extending SQL grammar with UDF (user-defined func-
tion) for term frequency analysis on text data. Then, we pro-
pose a sample-based progressive process model to continu-
ously refine the approximate result in the user-think period. 
Longer the waiting time becomes, the more accurate the 
result will be. As a part of our progressive execution model, 
we present a new error estimation method, progressive boot-
strap. Moreover, to achieve a good performance over rare 

words, we present a new low-overhead sampling method, 
Tail Sampling . Compared to our previous work, we make the 
following extensions: (1) we propose a method to maintain 
the pre-computed samples for data updates; (2) we propose 
an optimized progressive bootstrap method for efficiency; 
(3) we introduce the workflow and the components of Par-
rot in more detail and extend the experiment to study the 
convergence rate of Parrot. In summary, this paper makes 
the following contributions:

• We propose a new query formulation that extends SQL 
grammar with UDF to support term frequency calcula-
tion on text data.

• We apply AQP techniques to get the approximate result 
to shorten the response latency on large text datasets.

• We present a sample-based progressive execution model 
and a progressive bootstrap method to continuously 
refine the approximate result. We also propose a method 
to maintain the pre-computed samples to adapt to the 
data updates.

• We integrate these methods into the system called Par-
rot. Experiments show that Parrot can provide a smooth 
trade-off between accuracy and latency while the quanti-
fied error bound covers the accurate result well.

This paper is organized as follows. Section 2 introduces an 
overview of Parrot. Section 3 describes Parrot’s sample-
based progressive processing. Section 4 explains how our 
progressive error estimation works. Section 5 presents our 
experiments. Finally, we review the related work in Sect. 6 
and conclude this paper in Sect. 7.

2  Overview

2.1  System Architecture

Parrot is placed between the user and an off-the-shelf data-
base. The user submits queries through any application that 
issues SQL queries to Parrot and obtains the result directly 
from Parrot without interacting with the underlying data-
base. Parrot communicates with the underlying text col-
lection for accessing and processing data when sampling. 
Figure 1 shows the workflow and internal components of 
Parrot, which contains two stages, online and offline. In the 
offline phase, the sample preparation module first normal-
izes data into a unified format which is JSON-based with a 
“text” attribute to store text, a “desc” object to store other 
attributes, and a “words” array to store words that appeared 
in the text. In Parrot, we use Stanford NLP2 and Jieba3 to 

2 https ://stanf ordnl p.githu b.io/CoreN LP/.
3 https ://githu b.com/fxsjy /jieba .
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do word segmentation. Then samplers build different types 
of sample set which is a logical concept and composed of 
multiple sample blocks. Each diagonal filled box in Fig. 1 
represents a sample block that stores a part of the original 
data. The data stored in each block of one sample set are 
distinct. At runtime, the query parser and analyzer analyze 
the issued SQL and generate a progressive execution plan. 
The execution plan contains two parts—a reference to the 
best sample set which is chosen according to our sample 
planner and an error estimation instance. Then the execution 
engine fetches blocks from the best sample set and calculates 
the result in the progressive mode which means that the user 
will receive an approximate result within a short time and 
the approximate result will be continuously refined until the 
whole sample set has been processed or Parrot is stopped 
by manual. Meanwhile, Parrot uses progressive bootstrap 
to estimate the error by the confidence interval according to 
a given confidence level. Generally, the width of the confi-
dence interval can reflect the accuracy of the current result.

In the remainder of this paper, we use T to represent the 
underlying text collection, Ts to represent a sample set, |T| 
to represent the cardinality of T and bi to represent the i-th 
block. Actually, a sample set Ts is built by a sampler with 
a group of specified parameters applied on the underlying 
text data T.

2.2  Query Formulation

We extend the standard SQL grammar with UDF (user-
defined function) to support analysis for text collections. 
Here is an example of inquiring the frequency of word bank 
in the text attribute. The date range is limited between Jan. 
1, 2018 and Jan. 31, 2018.

SELECT FREQ(‘text’, ‘bank’)
FROM news
WHERE  date BETWEEN ‘2018-01-01’ AND 

‘2018-01-31’

The FREQ function is to get the frequency of one word. 
It needs two parameters—the first one refers to the text 
attribute and the other refers to the issued word. The FREQ 
function is similar to a standard count aggregation after 
group-by. We support selecting multiple terms frequencies 
or using other select clauses in a mixture of FREQ in one 
single SQL. In addition to the FREQ function, we also sup-
port the TF-IDF which is a numerical statistic widely used in 
information retrieval. Since the core of the two functions is 
both about term frequency, we will focus on FREQ function 
in the following sections.

Parrot also integrates some third-party algorithms and 
systems to process accurate queries. Taking the TOP-K 
function as an example, the operator aims to find the k most 
frequent words. To tackle this operator, we integrate the 
ListMerge algorithm [32] into Parrot. ListMerge is based 
on threshold-style (TA-style) algorithms to answer top-k 
aggregation queries and has a superior performance on a 
large number of lists.

As a middleware, Parrot also supports to tackle queries 
directly to the backend database. To achieve that, the user 
just needs to precede the query with the bypass keyword, 
e.g., BYPASS SELECT FREQ(‘text’, ‘bank’) FROM 
news. Then, Parrot sends the query to the backend data-
base without any query rewriting or extra processing. This 
approach can be used for all other queries, such as “create 
table”, etc.

2.3  Quantifying Result Error

The query engine refines the approximate result as more data 
is proceeded. Our error estimation is in the form of confi-
dence interval with a given confidence level associated with 
the continuously updated result. For example, the confidence 
interval [3.5, 5.5] with the confidence level 95% means that 
we have 95% confidence to ensure that the accurate result 
will fall into the interval [3.5, 5.5]. In our progressive execu-
tion model, the expected performance is that the width of 

Fig. 1  System overview of Parrot
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confidence intervals asymptotically converges from a rela-
tive large value to 0.

Currently, there are three widely-used methods in AQP 
system to do error estimation: closed-form estimates based 
on either the central limit theorem (CLT) [26], large devia-
tion inequalities such as Hoeffding bounds [12], and the 
bootstrap [8, 30]. As discussed before, the Zip-F law of 
natural languages motivated us to use bootstrap techniques 
in our method. However, the traditional bootstrap needs 
to recompute the aggregate on many resamples (usually a 
large number, e.g., 100 or 1000), where each resample is 
a simple random sample (with replacement) of the origi-
nal sample. Suppose the original sample size is n and the 
number of resamples is m, then the time complexity for 
one round of traditional bootstrap is O(n ⋅ m) . VerdictDB 
[23] proposed a variational subsampling technique, which 
uses subsamples instead of resamples, to embed the entire 
bootstrap process into the single query with a bit more 
overhead. The time complexity for one round of varian-
tional subsampling bootstrap reduces to O(n). However, 
in our progressive execution model, the query will be 
executed for many rounds (e.g., 100 or 1000), where each 
round means a new block of data is being proceeded. Sup-
pose there are p rounds in total, then the Verdict bootstrap 
has a high time complexity of O(n ⋅ p) through the whole 
process.

Considering that re-generating subsamples in each 
round needs to scan all past blocks, it’s very time-con-
suming and contains lots of duplicate computations. In 
fact, we can apply some optimizations to avoid re-gen-
erating all subsamples when new block data has been 
proceeded. Our new bootstrap method, progressive boot-
strap, has a lower time complexity of O(

√
n ⋅ m ⋅ p) . At 

the expense of that, the progressive bootstrap requires an 
additional memory cost (i.e. O(

√
n ⋅ m ) to store the entire 

subsamples. Since the size is proportional to the square 
root of n, the memory cost is usually a limited value. 
The progressive bootstrap algorithm will be described in 
detail in Sect. 4.

3  Sample‑Based Progressive Processing

In this section, we first show how we prepare samples by 
three samplers offline. Then we will introduce our online 
sample planner about how to pick the best sample set for 
execution. Finally, we explain the workflow of our execu-
tion engine, which utilizes delta computation to minimize 
re-computation.

3.1  Sample Storage

Sample storage is the module responsible for sample storage 
and provides the foundation for execution engine to progres-
sively and parallel proceed sample data. As shown in Fig. 2, 
the structure of block storage contains two levels. The first 
level is called sample set, which is a logical concept that organ-
izes data into block form. When executing, the driver fetches 
blocks from one specified sample set and calculate the result 
progressively. The second level is sample block. Each diagonal 
filled box in Fig. 2 represents a sample block which stores a 
part of original data. The sample blocks are distributed sepa-
rately from each other among the storage devices. The data 
stored in each block is distinct. In this section, we use T to rep-
resent the underlying text collection, Ts to represent a sample 
set, |T| to represent the cardinality of T, bi to represent the i-th 
block and B to represent the number of blocks in the sample 
set. Actually, a sample set Ts is built by a sampler with a group 
of specified parameters applied on the underlying text data T.

3.2  Offline Sample Preparation

Uniform Sampler

Give the number of blocks B, uniform sampler scans the 
underlying dataset and generate a random integer in [1, B] 
for each document. The random integer represents the block 
to which the document will be assigned. Each document 
will be attached with an extra attribute—� , to represent the 
weight of that document. Then the sampler groups document 

Fig. 2  The storage form of samples in Parrot
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by the generated integer and output into the corresponding 
block in block storage. The set of all outputing blocks is 
called a uniform sample set. In uniform sample set, the � 
of each document has the same value, i.e., 1/|T|. Both each 
single block and any combinations of these blocks could be 
seen as an independent uniform sample. The union data of 
all blocks is equivalent to the original dataset.

In the query execution phase, when the uniform sample 
is chosen, the query engine reads blocks sequentially in the 
sample set and calculates them in parallel. Whenever a block 
calculation ends, the partial result of current block will be 
merged into the global result. And then move to the next 
block. This process is repeated until all blocks have been 
calculated or manually interrupted.

Stratified Sampler
Stratified sampler optimizes queries over rare subpopula-

tions by applying a biased sampling on different groups [4]. 
Given a column set C and a number k, stratified sampling 
ensures that at least k documents pass through for every dis-
tinct value of the columns in C4.

To satisfy progressive query execution, our stratified sam-
pler needs to ensure that each sample block has almost the 
same and enough number of documents. If we use a fixed 
k value for all blocks, the block size will be less and less as 
there exist less and less groups of C . Uncertain sizes among 
sample blocks will cause unsmooth in progressive execution.

Our approach is to dynamically adjust k to an appropri-
ate value to make the block size be the most close to the 
expected. Suppose the cardinality of each block is set to |b|. 
At first, we collect the underlying dataset’s cardinality of 
each group on the given column set C . Suppose there are m 
groups and the cardinality of i-th group is represented by |ci| . 
Then we try to minimum the value of diff in Formula 1 by 
binary searching an appropriate value k = k̂ in the range of 
[1, |b|]. The time complexity of this step is O(m ⋅ log2 |b|) . 
As in practical, there are usually hundreds or thousands of 
groups, the method is effective. Since we get the appropriate 
value of k (i.e., k̂ ), we apply a Bernoulli sampling for each 
group individually. For the i-th group, the sampling prob-
ability is set to min(|ci|, k̂)∕|ci| . All the chosen documents by 
the Bernoulli sampling will output into the new block with 
an extra attribute w setting to 1∕|ci| to record the weight. And 
they will be removed from the original dataset. Then update 
the left cardinalities for each group. The above process will 
be repeated until there is no left document (i.e. the cardinal-
ity of all groups is 0).

(1)diff =
|||||

m∑

i=1

min(|ci|, k) − |b|
|||||

Besides, the stratified sampler will record the disappearance 
block (abbr. d-block) for each group in the above process. 
The d-block of a group refers to the block number that after 
outputting to that block, the remaining cardinality of this 
group reduces to 0. The reason to record it is to maximize 
the number of documents selected by the query in the sam-
ple within the same time. It’s based on a simple observa-
tion that the cardinality of a group in the i-th block (i.e., bi ) 
is no more than that in the j-th block (i.e., bj ) if (1) i ≤ j , 
and (2) j < d − block . Thus, for a specified group Ω and its 
d − blockΩ , traversing from d − blockΩ to 1 (in reverse order) 
will maximum the query selecting number.

In the query execution phase, when stratified sample 
is chosen, the execution will first retrieve the maximum 
d-block ( d − blockmax ) of all groups included in the query. 
Then the execution reads all blocks from d − blockmax to 1 
(in reverse order) and calculates them in parallel. For exam-
ple, suppose the query is SELECT FREQ(’bank’) FROM 
news WHERE date=’2018-01-01’ OR date=’2018-01-02’ 
and the d-block values for groups ’2018-01-01’ and ’2018-
01-02’ are 100 and 150 respectively. Then the traversal order 
is from d − blockmax = 150 to 1.

Tail Sampler
Queries over rare words occur frequently in the interac-
tive data exploration, but often lead to large errors due to 
small hitting size. Many existing indexing techniques (e.g., 
B-trees, sorting database cracking [14]) organize all docu-
ment without regarding for the semantic frequency in textual 
data, resulting in unnecessary overhead. While before men-
tioned samplers, uniform sampler and stratified sampler, can 
already provide good results even over rare subpopulations. 
Besides, these indexing techniques destroy the randomness 
property that our progressive execution model requires. It’s 
also prohibitively expensive to mess up the documents order 
at runtime. Thus, we propose a low-overhead partial sampler 
which works offline to optimize query accuracy over rare 
words.

In general, Tail Sampler aims to improve the performance 
for queries over rare words. That is, if a word is frequent 
enough for uniform or stratified sample to provide a good 
performance, the word will not be included in tail sample. 
Otherwise, tail sampler collects these rare words and the 
documents in which these words appear. As different rare 
words may appear in the same document, it’s unnecessary 
to pick documents for each rare word individually. Tail 
Sampler first determines whether a given document is rare. 
Then the sampler constructs the sample set on the subset of 
all rare documents. We use two parameters tail threshold � 
and overhead � , to quantify the limit of tail tampler. Before 
introducing the construction process, we need to prepare an 
inverted index for each word.

4 Precisely, at least min(k, number of documents for that distinct 
value).
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Suppose the collection contains 3 documents:
D1 = “it is a bank”
D2 = “it is what it is”
D3 = “what is it”
The inverted index and appearance times will be built as 

following (Table 1):
After that, we get not only an inverted index, but also 

the statistics information of each word’s appearance, i.e., 
the appearance times for each word. We define the rar-
ity of word � , as the proportion of appearance document 
cardinality to the total document cardinality. The rarity of 
document � equals to the minimum word rarity it contains 
(Table 2).

Table 1  Inverted index

a Bank Is It What

Index {1} {1} {1, 2, 3} {1, 2, 3} {2, 3}
Times 1 1 3 3 2

Table 2  Rarities of the document

Document Rarest word Rarity ( �)

D
1

Bank 1/3
D

2
What 2/3

D
3

What 2/3

Algorithm 1: Tail Sampling
Input: text collection T , tail threshold τ , sample overhead λ
Output: tail sample set Ts, rare words set W

1 initialize Ts = {}, W = {} Ds = {};
2 build inverted index for each word in T ;
3 foreach word ∈ inverted index do
4 n = number of documents which this word appears in;
5 γword = n/|T | ;
6 end
7 sort words by γ in ascending order;
8 foreach word in ascending order of γ do
9 if γword <= τ then

10 Dw = documents which this word appears in;
11 if |Ds union Dw|/|T| ≤ λ then
12 Ds = Ds + Dw;
13 W = W + word;
14 end
15 end
16 end
17 build Ts based on Ds by uniform sampler;
18 return Ts and W

Then to return, tail threshold � refers to the maximum 
rarity � of document allowed to be included into tail sam-
ple. An intuition is that the bigger � is, the more document 
and rare words would be included into sample. But it may 
also cause the increment of sample size which will slow 
down the interaction execution speed. However, when � is 
set to a small value, though sample size is under control, 
the improvement is limited, as lots of rare words might not 
be included. In fact, it is much relevant to textual data dis-
tribution and workload about how to set an appropriate � 
value. Another parameter is sample overhead � . It’s a value 
in [0, 1] and indicate the upper bound of the tail sample 
size. That is, whatever � is, the final size ratio of tail sample 
set to original dataset is less or equal than � . The reason 
why we need this parameter is make a trade-off between the 
coverage of rare words and the execution performance. The 
detailed construction algorithm of tail sampler is shown in 
Algorithm 1. The input contains text collection T and two 
parameters—tail threshold � and sample overhead � . With 
these inputs, tail sampler firstly builds the inverted index for 
each word in T. Then for each word, we calculate �word (line 
3–5). Next, we scan words in the ascending order of � . For 
each word, if � ≤ � , and the size ratio not exceeds � , then 
add the word into the set of rare words and add documents 
in which the word appears into the sample document set, 
Ds , without duplicates (line 7-12). Finally, the tail sampler 
builds the tail sample set Ts based on the Ds by the uniform 
sampler. In the query execution phase, when tail sample is 
chosen, the execution reads blocks sequentially and calcu-
lates them in parallel, similar to uniform sample.
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3.3  SQL Parser

The SQL parser in Parrot is responsible for parsing the 
issued SQL and fetching the logical operators (e.g., pro-
jections, selections, joins, etc.). Then the SQL will be 
rewritten to a collection of new SQL statements that can be 
executed on the underlying database to perform progressive 
processing.

The parsing process contains three stages. The first stage 
is to generate the AST (abstract syntax tree). This part is 
implemented through Antlr4 [24]. We extend Spark SQL 
grammar with our customized rules to support new opera-
tors introduced by Parrot. The second stage is to fetch logical 
operators from the issued SQL. In Spark, the AstBuilder is 
the class for parsing SQL. It uses Antlr4 visitor tree-walking 
mechanism to perform walk on the generated AST. In Parrot, 
we inherit AstBuilder and override the visitFunctionCall 
method to extract logical operators and route the AST of 
different operators to different handlers. For example, the 
SQL with TOP-K operator will be passed to the ListMerge 
[32] algorithm, while FREQ and TF-IDF will be passed to 
the third stage.

In the third stage, the issued SQL will be rewritten. Here 
is a Parrot’s query rewriting example for a simple FREQ 
query. Given the below input query:

5 The number of generated queries is equal to the number of blocks 
of the selected sample plan.

SELECT FREQ(‘text’, ‘bank’)
FROM news
WHERE date BETWEEN ‘2018-01-01’ AND ‘2018-01-31’

Parrots rewrites the above query as follows:

SELECT FREQ(‘text’, ‘bank’) / SUM (ω) AS freq
FROM %news%
WHERE date BETWEEN ‘2018-01-01’ AND ‘2018-01-31’

In such queries, the result of the aggregation function 
will be scaled up according to the value of SUM(� ) which 
means the total weight of documents calculated in the sam-
ple. The parameter 

�
 is generated in the offline sample prep-

aration phase which has been introduced in Sect. 3.2. The 
table name “news” in the “from” clause will be enclosed 
in percent signs. After selecting a sample plan, Parrot will 

generate a collection of queries5 based on the issued SQL. 
In each generated query, the table name will be rewritten to 
the block name.

3.4  Online Sample Planning

A sample plan is composed of a reference to a sample set 
with some extra information (e.g., traversal order of the cho-
sen sample set). Parrot’s sample planner aims to find the best 
sample set for the query, i.e., the sample plan that results in 
the lowest approximation errors within the same latency. Our 
strategy is based on the selectivity which is defined as the 
ratio (1) the number of documents selected by the query, to 
(2) the number of documents read by the query. At runtime, 
the response time increases with more number of documents 
being read and the error decreases with more number of 
documents WHERE/GROUP BY clause selects. For this, 
Parrot generates many possible sample plans (called candi-
date plans) and selects the best.

3.4.1  Candidate Plans

In the first step, Parrot’s sample planner generates candi-
date plans. Candidate plans are the set which contains all 
sample sets that can be used to answer the issued query. 
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For the uniform sample, it is always a candidate sample 
even if it may cause poor performance. There are two situ-
ations for a sample set that cannot be used to answer the 
query: (1) For a stratified sample set, if ��� ⊇ ��� , then it 
is a candidate sample set. The SCS (sample column set) is 
the column set that stratified sampler builds on. The QCS 
(query column set) is the set of all columns that appears in 
the WHERE/GROUP BY clauses; (2) For the tail sample 
set, if the concerned word of the query belong to the rare 
word of the sample, then it is a candidate sample set.

3.4.2  Selecting a Plan

Parrot’s plan selection relies on the selectivity. We meas-
ure the selectivity of a sample set based on two criteria: 
sampling strategy and matching degree. First we discuss the 
sampling strategy. In brief, we say that tail sample is bet-
ter than stratified sample and both of them are better than 
uniform sample. Here are the reasons: (1) Tail sampler only 
include documents that have rare words and can reduce 
the total size of the sample set. Thus, for rare words, the 
selectivity is the highest; (2) Stratified sampler gives dif-
ferent groups different traveral orders. The traversal order 
of stratified sample set is from d − blockG to 1. For a rare 
subpopulation, its d − blockrare is a small value (only appear 
in the first few blocks). Thus the total size of the sample 
data for the query will decrease. For a popular subpopula-
tion, its d − blockpopular is a large value. As the number of 
blocks increases, the number of groups decreases and the 
proportion of that popular group increases. The selectivity 
also increases. Therefore, for all sorts of groups, stratified 
sample can provide a higher selectivity than uniform sam-
ple; (3) Uniform sampler simply spilts original dataset into 
multiple blocks to support progressive execution. Thus the 
selectivity equals to that of original dataset and is the lowest.

We then take matching degree into account. For stratified 
sample, the matching degree is defined as |���|∕|���| . The 
planner chooses the sample set which has the highest degree. 
If there exists more than one stratified sample set that have 
the same degree, the planner chooses the sample set which 
has the smallest d − block for the query. For tail sample, we 
choose the sample set which has the smallest overhead � as 
it has the highest selectivity among them.

Here is an example to explain our sample planning work-
flow. Suppose we have built 4 samples—one uniform sam-
ple, one stratified sample on location, one stratified sam-
ple on location and date, one tail sample with � = 0.001 
and � = 0.1 . And suppose the issued query is SELECT 
FREQ(‘bank’) FROM news WHERE location=‘Tokyo’ 
and the concerned word “bank” doesn’t not belong to rare 
words of the tail sample. Then the candidate plans will 
include three references which are to the uniform sample 
and two stratified samples, as they all can be used to answer 

the query. In plan selecting, first we take sampling strategy 
into account. As stratified samples have higher selectivity 
than the uniform sample, we filter out the uniform sample at 
first. Then we consider the matching degree of two stratified 
samples. Obviously, the stratified sample on location has a 
higher matching degree and is picked with the traversal order 
from d − blockTokyo downto 1.

3.5  Query Execution Model

Since processing a large dataset in blocking fashion can eas-
ily exceed interactive requirements, our execution engine 
needs to use techniques to compute a frequency result �̂�S

word
 

on a relatively small sample. Here the word refers to the con-
cerned word in FREQ function, S refers to the sample, and 
|S| refers to the cardinality of S. Then, by maximum likeli-
hood estimation (MLE) [27], we can produce an approxima-
tion �̂�MLE

word
 of the accurate result �word:

Intuitively, this approximation �̂�MLE
word

 represents the estimated 
frequency of the word in each document of the dataset. Mul-
tiplying a frequency estimate �̂�MLE

word
 by the total number |T| of 

documents in the full dataset will therefore yield an approxi-
mate frequency for the word:

Our execution engine works in progressive fashion. The 
process contains many rounds, where each round means a 
new block data is being proceeded and a refined result will 
be returned after proceeding. The number of rounds equals 
to the number of blocks in the best sample set for the query. 
The guiding design principle behind Parrot is to take full 
advantage of delta computation to minimize re-computa-
tion. In other words, before the i-th round, suppose we have 
finished proceeding data Si−1 (i.e., Si−1 = b1 ∪ b2 ∪ ... ∪ bi−1 
where bi refers to the i-th block) and get an approximate 
result �̂�Si−1

word
 . Then, instead of computing query on Si , we uti-

lize the fact that Si = Si−1 + bi and calculate �̂�Si
word

 from the 
previous result �̂�Si−1

word
 by a delta query �̂�bi

word
 . The intuition is 

that computing �bi and merging into previous result would 
be much faster than directly computing �̂�Si

word
 since �̂�Si−1

word
 has 

been computed before. The result refinement formulation is 
shown as Formula 4:

Similar intuition is shared by online aggregation (OLA) [13, 
29] and incremental view maintenance [11, 17, 22], with 

(2)�̂�MLE
word

=
�̂�S
word

|S|

(3)�̂�T
word

= �̂�MLE
word

⋅ |T|

(4)�̂�T
word

=

(
�̂�
Si−1
word

+ �̂�
bi
word

|Si−1| + |bi|

)
⋅ |T|
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slight differences in the definition of bi : for Parrot, bi is the 
data of the i-th block which contains documents in the same 
format; while for delta view maintenance and streaming sys-
tems, bi can also include deletion of old data.

3.6  Data Appends

When new textual data is arriving, Parrot needs to keep the 
sample fresh and results accurate enough. As resampling is 
a very costly process, we try to adopt incremental update 
as far as possible. All three types of sample sets, i.e., uni-
form sample set, stratified sample set, and tail sample set, 
are amenable to the data append.

3.6.1  Uniform Sample Set

For the uniform sample set, the sample updating strategy is 
straightforward, since given the number of blocks B, Parrot 
samples all documents independently. When a new batch of 
data arrives, Parrot can simply generates a random number 
in [1, B] for each document and append to existing sample 
blocks.

3.6.2  Stratified Sample Set

For the stratified sample set, the sample updating strategy 
is more complex. When a new batch arrives, there are two 
cases for updating a stratified sample set. The first is that 
the number of documents increases more, and the number 
of groups increases less or not, which means that the k value 
becomes larger. We difine the new k value as k′ and k′ is 
greater than k. For this case, we first group the documents in 
the batch based on the column set C . Then for each block in 
the stratified sample set, we perform Bernoulli sampling in 
parallel according to the increased number ( k� − k ) of each 
group in the new batch. The second case is that the num-
ber of documents increases less, but the number of groups 
increases more, which means that the k value becomes 
smaller. We difine the new k value as k′ and k′ is less than 
k. For this case, we also group the documents in the batch 
based on the column set C . As the k becomes smaller, there 
is no need to append documents for each group from the 
new batch to the sample block. However, it is very costly 
to remove documents for each group according to the 
decreased number ( k − k� ) as it needs to scan the whole sam-
ple set. Thus, we divide the documents in the new batch into 
two parts based on whether the group has appeared before. 
For documents in groups which have appeared before, we 
append them to sample blocks starting from the d − block

-th block. For documents in groups which have not appeared 
before, we append them to sample blocks starting from the 
1st block. The Bernoulli sampling probability is based on the 

k′ and the population of each group and updating process is 
similar to stratified sampling described in Sect. 3.2.

3.6.3  Tail Sample Set

For the tail sample set, the sample updating strategy contains 
two steps: (1) include all rare words of the new batch into 
the rare words list; and (2) include all documents of the 
new batch which contains at least one rare word into the tail 
sample set. In the first step, the tail sampler scans all words 
that hasn’t appeared before in the new batch. For each word, 
the tail sampler calculates its rarity and compares it with the 
tail threshold � . If it is less, tail sampler will append it into 
the rare words list. In the second step, the tail sampler picks 
out all documents which contains at least one rare word. 
Then update the original tail sample set by assigning a block 
number to each rare document of the new batch and append 
them to existing sample blocks correspondingly.

However, there may still exist one problem. Due to when 
updating, only the original rare words list and the words in 
the new batch are considered, the tail sample set may miss 
some rare words which should be included in the rare words 
list. But this will not affect the correctness, because it will 
only reduce the coverage of the rare words list. In the online 
phase, only when queries are related to the rare words list, 
Parrot chooses to use tail sample set to answer. This problem 
cannot be completely solved by incremental updating unless 
by periodic resampling.

4  Error Estimation

In this section, we describe Parrot’s novel error estimation 
technique. Previous interactive exploration system engines, 
especially those that support skewed data analysis, have 
relied on bootstrap [15], which belongs to a family of error 
estimation techniques called resampling [16]. Resampling 
techniques, despite various optimizations [3, 25], are still too 
expensive to be implemented at a middleware layer.

Inspired by variational subsampling bootstrap [23] in 
VerdictDB, we propose a new variant, called progressive 
bootstrap, to apply a fast bootstrap method for progressive 
query execution. In the remainder of this section, we will 
start from traditional bootstrap and subsampling bootstrap 
(Sect. 4.1). Then we introduce our method, progressive boot-
strap (Sect. 4.2) in detail.

4.1  Traditional Bootstrap and Variational 
Subsampling Bootstrap

Bootstrap is the state-of-the-art error estimation mechanism 
used by previous AQP engines. The key idea of Bootstrap is 
that, in order to use S (sample) to replace D (origin dataset), 
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one can also draw samples from S instead of D to compose 
the distribution of S.

Let � be the result of an aggregate function (e.g., mean, 
sum) on N real values x1, ..., xN (e.g., values of a particular 
column). Let a random sample with size n of these N values 
and �̂� be an estimator of � . In error estimation, we need to 
measure the quality (i.e., expected error) of the estimate. To 
achieve that, bootstrap recomputes the aggregate on many 
resamples, where each resample is a random sample (with 
replacement) of the original sample. In traditional boot-
strap, the size of a resample is the same as the sample itself. 
Some of the elements might be missing and some might be 
repeated, but the total number remains as n. Bootstrap will 
construct m such resamples (m is usually a large number, 
e.g., 100 or 1000). Let �̂�j be the value of the estimator com-
puted on the jth resample. Then bootstrap uses �̂�1,… , �̂�m to 
construct an empirical distribution of the sample statistics, 
which can then be used to compute a confidence interval. 
Let �̂�0 be the estimator’s value on the original sample itself, 
and t� be the �-quantile of �̂�0 − �̂�j . Then, the 1 − � confidence 
interval can be computed as:

Variational subsampling bootstrap, which relaxes some of 
the requirements of traditional bootstrap, are presented by 
VerdictDB. It still retains the statistical correctness of tradi-
tional subsampling, while becomes significantly more effi-
cient. It follows a procedure similar to bootstrap, but with 
three key differences: (1) instead of full resamples, it uses 
subsamples which are much smaller, (2) instead of drawing 
tuples from the original sample with replacement, subsam-
pling draws tuples without replacement, and (3) allowing 
each tuple to belong to, at most one subsample. In other 
words, a subsample is also a random sample of the origi-
nal sample, but without replacement, and of size ns where 
ns ≪ n . In general, ns must be chosen such that it satisfies 
the following two conditions: (1) ns → ∞ as n → ∞ , and (2) 
ns∕n → 0 as n → ∞ . Thus the bootstrap process is simplified 
as: for each tuple, system only needs to generate a single ran-
dom number to determine which subsample it belongs to (if 
any), and then perform the aggregation only once per tuple, 
instead of repeating m times. Computing the 1 − � confi-
dence interval is similar to traditional, but requires a scaling:

(5)[�̂�0 − t1−𝛼∕2, �̂�0 − t𝛼∕2]

(6)[�̂�0 − t1−𝛼∕2 ⋅
√
ns∕n, �̂�0 − t𝛼∕2 ⋅

√
ns∕n].

4.2  Progressive Bootstrap

The both two bootstrap methods introduced before, can 
obtain the confidence interval on a given sample and an 
unknown distribution of dataset. However, they only present 
the bootstrap for single time. While handling data increment, 
they need to repeat the whole bootstrap process entirely and 
causes lots of duplicate computation. Suppose the cardi-
nality of the sample set is n, the number of resamples is 
m, and there are p rounds in total, traditional bootstrap and 
variational subsampling bootstrap have unaffordable time 
complexity O(n ⋅ m ⋅ p) and O(n ⋅ p) respectively. Inspired by 
Verdict, we propose the progressive bootstrap by maintain-
ing all needed sub-samples through the progressive process 
to avoid duplicate resampling from past blocks. VerdictDB 
has proved that the bootstrap has the lowest error when the 
cardinality of each subsample equals to 

√
n . Thus, in the best 

case, the subsampling ratio is r = m ⋅

√
n∕n = m∕

√
n . As n 

grows (more and more data has proceeded), the ratio will 
drop. Therefore, if we have preserved all subsamples s (com-
posed of s1 , s2 , ..., sm ) and when new block bi is being pro-
ceeded, we can directly update subsamples based on s with bi 
instead of re-subsampling overall past data. For documents 
in bi , we apply a Bernoulli sampling with ratio ri = m∕

√
n . 

For maintained subsamples, let Ei refers to the event of a 
document being picked into subsamples at i-th round and we 
can also apply a Bernoulli sampling with ratio Δr calculated 
by conditional probability as shown in Formular 7.

Algorithm 2 gives a detailed illustration. The input includes 
the issued word set words in FREQ functions, the cardi-
nality of underlying dataset N, proceeded data Si−1 (i.e., 
b1 ∪ b2 ∪ ... ∪ bi−1 ), new block bi , past sub-samples s (com-
posed of s1 , s2,......, sm ), past counters c (c[word] for word and 
composed of c[word]1 , c[word]2 , ..., c[word]m ), confidence 
level � (e.g., 0.95), and the approximate result �̂� . Our algo-
rithm first filters out documents which should be excluded 
from the past subsamples (line 3–7) and update counters of 
each word for each subsample (line 8–10). Then it picks out 
documents which should be included into sub-samples from 
the new block (line 11–15) and update counters (line 16–18). 
Then for each word, we sort m counters in ascending order 
and collect the error bound �word according to the subsam-
ples distribution (line 19–21). Finally, return the updated 
subsamples, counters and error bound (line 22). Progressive 
bootstrap has a lower time complexity O(

√
n ⋅ m ⋅ p).

(7)Δr = P(Ei|Ei−1) =
P(Ei ∩ Ei−1)

P(Ei−1)
=

ri

ri−1
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Table 3  Selectivity of Q
1
–Q

9 Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Selectivity (%) 17.5 0.42 0.98 0.48 0.16 0.038

Algorithm 2: Progressive Bootstrap
Input: issued word set words, dataset cardinality N , proceeded data Si−1, new

block bi, past subsamples s, past counters c, confidence level α,
approximate result θ̂

Output: updated subsamples s′, updated counters c′, error bound σ
1 n′ = |Si−1|+ |bi|;
2 n′

s =
√
n′;

3 foreach document doc ∈ s do
4 suppose the document is in the ε-th subsample sε;
5 r = a random number in [0, n′);
6 if r < |bi| then
7 sε = sε - doc;
8 foreach word ∈ words do
9 f = word frequency in doc;

10 c[word]ε = c[word]ε - f ;
11 end
12 end
13 end
14 foreach document doc ∈ bi do
15 r = a random number in [0, n′);
16 ε = r/n′

s + 1;
17 if ε < m then
18 sε = sε + doc;
19 foreach word ∈ words do
20 f = word frequency in doc;
21 c[word]ε = c[word]ε + f ;
22 end
23 end
24 end
25 foreach word ∈ words do
26 sort c[word] in ascending order;
27 σword = [θ̂ − c[word]α/2 ·

√
n′
s/n

′ ·N/n′
s, θ̂ − c[word]1−α/2 ·

√
n′
s/n

′ ·N/n′
s];

28 end
29 return updated subsamples s′ = s, updated counters c′ = c and error bound σ;

4.3  Progressive Bootstrap with Rearrangement

Regardless of traditional bootstrap, variational bootstrap or 
progressive bootstrap, the core method is to estimate the 
error of the approximate result through resampling (sub-
sampling). For the first two bootstrap algorithms, each time 
of bootstrap is a complete execution of the entire process of 
resampling (subsampling) to construct the empirical distri-
bution on the whole past sample documents. For progressive 
bootstrap, it maintains all sub-samples continuously during 
the calculation process. In other words, every time the error 
is estimated, re-sampling will not be performed on the cur-
rent entire sample. This is the core reason why progressive 
bootstrap improves performance. However, in the actual 

experiment, we observe that due to the nonuniform distri-
bution of word frequency and the randomness of resampling, 
at certain times, the difference of results between subsam-
ples is very large. Moreover, this difference will continue 
throughout each iteration and makes the error bound difficult 
to converge.

For this reason, in each iteration, we introduce a process 
of rearrangement for progressive bootstrap. That is, each 
time the subsamples are maintained, progressive bootstrap 
rearranges subsamples to which each document belongs. 
This can avoid the imbalance of sub-samples caused by 
randomness, and will not cause the additional time over-
head meanwhile. Progressive bootstrap after rearrangement 
optimization is shown in Algorithm 3.
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Table 4  Selectivity of Q
1
–Q

9

Q
7

Q
8

Q
9

Selectivity (%) 6.58 2.95 0.53

Fig. 3  Time to get the first acceptable result

Algorithm 3: Progressive Bootstrap with Rearrangement
Input: issued word set words, dataset cardinality N , proceeded data Si−1, new

block bi, past subsamples s, past counters c, confidence level α,
approximate result θ̂

Output: updated subsamples s′, updated counters c′, error bound σ
1 n′ = |Si−1|+ |bi|;
2 n′

s =
√
n′;

3 foreach document doc ∈ s do
4 suppose the document is in the ε-th subsample sε;
5 r = a random number in [0, n′);
6 ε′ = r/n′

s + 1;
7 sε = sε - doc;
8 if r ≥ |bi| then
9 sε′ = sε′ + doc;

10 end
11 foreach word ∈ words do
12 f = word frequency in doc;
13 c[word]ε = c[word]ε - f ;
14 if r ≥ |bi| then
15 c[word]ε′ = c[word]ε′ + f ;
16 end
17 end
18 end
19 ... (the same as Algorithm 2 line 14 - 28) ...
20 return updated subsamples s′ = s, updated counters c′ = c and error bound σ;

Algorithm 3 gives a detailed illustration. The input and 
output are same as Algorithm 2. The main difference is the 
part of filtering out documents which should be excluded 
from the past subsamples (line 3–18). While filtering docu-
ments out, for each retained document, we will reassign the 
subsample which it belongs to (line 8–10). Then when updat-
ing word counters by subtracting the frequency of words 
contained in the document (line 11–17), we also update word 

counters by increasing the frequency to the reassign subsam-
ple counter (line 14–16). The following process is the same 
as line 14–28 of Algorithm 2. Finally, return the updated 
subsamples, counters and error bound (line 20). Progressive 
bootstrap with rearrangement has the same time complexity 
O(

√
n ⋅ m ⋅ p) as before. For the correctness of bootstrap with 

rearrangement, since it’s completely random to assign the 
subsample sequence number for each document, it doesn’t 
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matter whether there is a rearrangement or even multiple 
times of rearrangement in theory.

5  Experiment

5.1  Experiment Setup

We implemented the methods in our system—Parrot, and 
the baseline—blocking, on top of Spark 2.4.3. The baseline 
implements the same SQL parser and UDF as Parrot while 
reads documents from the underlying collection directly. 

The baseline processes the data in a blocking fashion which 
means the user cannot get the feedback result until all data 
has been processed. When the SQL is submitted, the base-
line will parse the SQL and submit the job to the Spark clus-
ter. The data source of this job is the entire text collection. 
On the contrary, the data source of our method is a bunch 
of samples, which are much smaller than the entire text col-
lection. All the following experiments are performed on a 
10-node cluster (each with Intel Xeon E5-2620, 64GB RAM, 
and 1.77TB HDD) under Apache Spark 2.4.3 and Ubuntu 
Linux 14.04 LTS. Our data is stored in Hadoop distributed 
file system and organized in JSON format.

Fig. 4  The convergence of RE and RCI for Q
1
–Q

9
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5.1.1  Performance Metrics

Two metrics are used: (1) the relative error of the approxi-
mate result in each round; (2) the response latency for the 
first acceptable result. The relative error (RE) is calculated 
by RE = |�̂� − 𝜃|∕𝜃 where � is the accurate result and �̂� is the 
approximate result based on the sample. The relative confi-
dence interval (RCI) is calculated by RCI = (|𝜎x − 𝜎y|∕2)∕�̂� , 
where the [ �x , �y ] represents the error bound. When the RCI 
of an approximate result is less than the given (1% as default 
in our experiment), we say it is an acceptable result. The 
confidence level is set to 95% as default.

5.1.2  Synthetic Dataset

We use the mix of Reuters news dataset6 and Webhose Eng-
lish articles7 as our dataset. After data cleaning and word 
segmentation, this dataset is about 10.9GB and contains 
about 3 million documents. Then we scale up the data to 
100GB in proportion to ensure that the distribution and 
skewness are similar to the original. We built a uniform 
sample, a stratified sample on the date column, and a tail 
sample with � = 0.01 and � = 0.5 . The users could set these 
two values based on their requirements, while the smaller 
parameters make the faster convergence speed. We fix the 
block size of samples to 128MB. To evaluate the perfor-
mance, we use the following 6 queries: 

Q1:  SELECT FREQ(‘bank’) FROM news;

Q2:  SELECT FREQ(‘bank’) FROM news WHERE 
location=‘LONDON’;

Q3:  SELECT FREQ(‘government’) FROM news 
WHERE date BETWEEN ‘2015-10-01’ AND 
‘2015-10-31’;

Q4:  SELECT FREQ(‘president’) FROM news WHERE 
date BETWEEN ‘2008-01-01’ AND ‘2008-01-31’;

Q5:  SELECT FREQ(‘top-asia’) FROM news;
Q6:  SELECT FREQ(‘chronology-bird’) FROM news 

WHERE location <> ‘PARIS’;

Among them, Q1 , Q2 run on the uniform sample, Q3 , Q4 
run on the stratified sample as their where clauses are on 
date column and Q5 , Q6 run on the tail sample as words “top-
asia” and “chronology-bird” are very rare words. Selectivity 
of Q1 - Q6 is shown in Table 3. The lower the selectivity, the 
larger the error and oscillation of the approximate result may 
occur. As Q2–Q6 are on very rare sub-populations, these que-
ries can test the performance of all three kinds of samples 
comprehensively.

5.1.3  Real‑World Dataset

The second dataset is a real-world Chinese dataset, which 
comprises about 60 million articles from the Sina website 
with size 64GB. We built a uniform sample, a stratified sam-
ple on the channel column and a tail sample with � = 0.01 
and � = 0.5 . We fix the block size of samples to 128 MB. 
Then we use three queries, Q7–Q9,8 to evaluate the perfor-
mance. Selectivity of Q7–Q9 is shown in Table 4. In this 
experiment, Q7 , Q8 , Q9 run on the uniform sample, stratified 
sample and tail sample respectively. 

Fig. 5  Performance of bootstrap methods
Fig. 6  Performance on different data sizes

6 https ://trec.nist.gov/data/reute rs/reute rs.html.
7 https ://webho se.io/free-datas ets/engli sh-news-artic les/.

8 For convenience, we use English words with the same meaning in 
the paper.

https://trec.nist.gov/data/reuters/reuters.html
https://webhose.io/free-datasets/english-news-articles/
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Q7:  SELECT FREQ(‘Netizen’) FROM article WHERE 
LEN(text) < 1000;

Q8:  SELECT FREQ(‘Female’) FROM article WHERE 
channel=‘Health’;

Q9:  SELECT FREQ(‘Guangxu’) FROM article;

5.2  Experiment Results

5.2.1  Performance on Synthetic Dataset

In this experiment, we compare the performance between 
Parrot and baseline on the 100GB synthetic dataset by 
Q1–Q6 . As shown in Fig. 3a, the time cost to get the first 

Fig. 7  The convergence of RCI for Q
1
–Q

6
 on different data sizes

Fig. 8  Performance on different block sizes
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acceptable result of Parrot is much shorter than the base-
line since Parrot uses a sample-based progressive execu-
tion model. Taking Q1 as an example, Parrot costs about 
23 seconds whereas blocking takes more than 450 seconds. 
However, Parrot brings different improvements for differ-
ent queries. As we can see, Q1 , Q3 , Q4 have more improve-
ment than the other three. It’s mainly due to two reasons: 
(1) for queries running on the same sample set, queries with 
higher selectivity may faster converge to 1% RCI as more 
documents can be selected within the same time; and (2) for 
queries of very low selectivity, RCI by bootstrap is much 
harder to converge to 1% as too few documents may cause 
unstable distribution of subsamples. Low selectivity may 
also cause fluctuations of RCI through the progressive pro-
cess. Figure 4a–f show how RE and RCI converge during the 
execution process. The horizontal dotted line marks the 1% 
RCI. We can see that the RE and the RCI converge smoothly 
and fast except for some fluctuations when executing queries 
of very low selectivity (e.g. Q6 ). Besides, Parrot can return 
the first result in about 15 s for all of the six queries. The 
length of this period mainly depends on block size and we 
will evaluate it in later experiments. Furthermore, the red 
line in these figures represents the real relative error, while 
the two blue lines show the estimated error interval by our 
progressive bootstrap. If the red line is in between the two 
blue lines, we can say the error estimation is accurate. Thus, 
as shown in Fig. 4a–f, our progressive bootstrap can give an 
accurate error estimation in most cases.

In summary, on the synthetic dataset, the first accept-
able result of Parrot is 2.4×–19.7× faster compared with 
the blocking fashion. Besides, Parrot can provide a smooth 
trade-off between accuracy and latency. That means the pro-
posed progressive execution model allows the user to get 
feedback results in a short latency and get more and more 
accurate results with waiting time getting longer and longer. 
Only queries with very small selectivity may lead to some 
fluctuations.

5.2.2  Performance on Rreal‑World Dataset

In this experiment, we compare the performance between 
Parrot and baseline on the 64GB real-word dataset by Q7

–Q9 . As shown in Fig. 3b, Parrot can achieve 1% RCI at a 
very fast speed compared to the blocking fashion. For dif-
ferent queries, Parrot brings different improvement due to 
the same reasons as before. Figure 4g–i show how RE and 
RCI smoothly and fast converge. For all of the three queries, 
Parrot can return the first result in about 20 seconds. The 
latency is different from that of the first six queries because 
the two datasets have different deserialization costs. Through 
the execution process, the relative error falls into the confi-
dence interval almost all the time, and hence our progressive 
bootstrap can give an accurate error estimation.

In summary, on the real-world dataset, the first acceptable 
result of Parrot is 5.7x–9.7x faster, compared with the block-
ing fashion. Besides, Parrot can provide a smooth trade-off 
between accuracy and latency.

5.2.3  Performance of Bootstrap

In this experiment, we compare the performance of three dif-
ferent bootstrap methods—traditional bootstrap, variational 
subsampling bootstrap, and progressive bootstrap. We run Q1 
on the 100GB synthetic dataset and record the time cost of 
the error estimation phase in each round from the beginning 
until the first acceptable result returned. The average time 
cost is shown in Fig. 5. We can see that traditional bootstrap 
costs more than 128 seconds on average while it’s unaccep-
table in our interactive exploration scenario. The variational 
subsampling bootstrap costs from 0.307 to 4.14 seconds with 
an average of 2.0066 seconds. It’s fast in the first few rounds 
and then becomes slower and slower with more and more 
data being processed as its time complexity is proportional 
to the amount of data that has been proceeded. Our progres-
sive bootstrap gets the best performance with an average cost 
of 0.2957 seconds and can perform bootstrap within almost 
a fixed time cost. The cost mainly depends on the block size.

5.2.4  Effect of Data Size

In this experiment, we evaluate the effect of text data size. 
We use three text collections scaled from the synthetic 
dataset with size 50GB, 100GB, and 150GB. We generate 
samples of these three collections with the same parameters 
and the fixed block size (i.e., 128MB). Then we run Q1–Q6 , 
both through Parrot and baseline. As shown in Fig. 6, the 
time cost for baseline increases with the data size increases 
(e.g., 100GB 452s vs. 150GB 766s for Q1 ) since it needs to 
calculate on the entire dataset. We also find that the data size 
has a limited effect on the time cost of the first acceptable 
result (1% error bound) by Parrot (Fig. 6) and the confidence 
interval of Parrot converges quickly (Fig. 7), because Parrot 
mainly relies on a sufficient number of documents in the 
sample to be processed. Therefore, Parrot can provide a good 
and stable performance on large text collections.

5.2.5  Effect of Block Size

In this experiment, we evaluate the effect of different 
block sizes on the 100GB synthetic dataset. We con-
struct three groups of samples under the same parameters 
except for the block size—64 MB, 128 MB, and 256MB, 
respectively. We run Q1 by Parrot on the three groups 
of samples and record the time cost of the first estimate 
result, the average updating interval of result, and the pro-
cessed data within 100 seconds. We use b64 , b128 , b256 to 
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represent the block sizes with 64MB, 128MB, and 256MB 
respectively. Fig. 8a shows that smaller the block size, 
the shorter the latency of the first estimate result will 
be (e.g., b64 11.7s vs. b128 15.4s). Figure 8b shows that 
the increment of block size cause longer result updating 
interval (e.g., b64 0.558s vs. b128 0.759s). That’s because 
smaller block size has less I/O and CPU cost for process-
ing each single block. Figure 8c shows that smaller block 
size results in less data being processed within the same 
time (e.g., b64 9.3GB vs. b128 13.1GB) since smaller block 
size leads to more shuffle overhead. Therefore, it is a 
trade-off between first-result latency, updating interval 
and query accuracy.

6  Related Work

6.1  Interactive Exploration on Text

For structured data, lots of previous works attempt to speed 
up query execution through AQP (Approximate Query Pro-
cessing) technique [2, 9, 23], which aims to find an approxi-
mate answer by samples [28] as close as to the exact answer 
efficiently. While limited by response time and computing 
resources, the before-mentioned AQP systems only return 
a single approximate result. However, there is an increas-
ing need for interactive human-driven exploratory analy-
sis, whose desired accuracy cannot be known a priori and 
change dynamically based on unquantifiable factors [29]. 
For semi-structured and unstructured data, the state-of-the-
art solutions are based on the content management system or 
the cube structure, such as ElasticSearch [1] and Text Cube 
[19]. ElasticSearch supports simple queries with key-value 
based filtering as well as full-text searching for fuzzy match-
ing over the entire dataset. But it doesn’t have good support 
for ad-hoc queries of term frequency on a subset. Text Cube 
uses techniques to pre-aggregate data and gives the user the 
possibility to make semantic navigation in the data dimen-
sion but requires extensive preprocessing and suffers from 
the curse of dimensionality.

6.2  Error Estimation

To make approximate answers useful, lots of error estima-
tion techniques have been proposed—the earliest being 
closed-form estimates based on either the central limit 
theorem (CLT) [26] or large deviation inequalities such as 
Hoeffding bounds [12]. These techniques either compute an 
error bound much wider than the real which lost guidance to 
users or require data to follow the normal distribution while 
it’s not suitable for natural languages. Another estimation 
technique, bootstrap [23, 30], can be applied to arbitrary 
queries. However, before bootstrap techniques have poor 

performance to apply in our progressive execution model 
due to lots of duplicate computation.

7  Conclusion and Future Work

In this paper, we propose a new query formulation by 
extending SQL grammar with UDF for term frequency cal-
culation on text data. We apply AQP techniques to return 
an approximate result within a short time. We present a 
sample-based progressive processing model and progres-
sive bootstrap to continuously refine the approximate result. 
We implement these methods in the system called Parrot. 
Experiment results show that Parrot is about 2.4×–19.7× 
faster than the blocking fashion for the first acceptable result 
and can provide a smooth trade-off between accuracy and 
latency. Meanwhile, the quantified error bound covers the 
accurate result well.

For future work, we will support more text analysis meth-
ods (e.g., LDA) and try to reduce the storage cost of the 
pre-computed samples. In addition, we will introduce the 
machine learning to Parrot. For example, we may train a 
machine learning model that represents the pre-computed 
samples to accelerate the query execution.
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