
Vol.:(0123456789)1 3

Data Science and Engineering (2021) 6:1–19
https://doi.org/10.1007/s41019-020-00144-y

Parrot: A Progressive Analysis System on Large Text Collections

Yazhong Zhang1,2 · Hanbing Zhang1,2 · Zhenying He1,2 · Yinan Jing1,2 · Kai Zhang1,2 · X. Sean Wang1,2,3

Received: 1 June 2020 / Revised: 20 August 2020 / Accepted: 5 October 2020 / Published online: 22 October 2020
© The Author(s) 2020

Abstract
The size of textual data continues to grow along with the need for timely and cost-effective analysis, while the growth of
computation power cannot keep up with the growth of data. The delays when processing huge textual data can negatively
impact user activity and insight. This calls for a paradigm shift from blocking fashion to progressive processing. In this paper,
we propose a sample-based progressive processing model that focuses on term frequency calculation on text. The model is
based on an incremental execution engine and will calculate a series of approximate results for a single query in a progres-
sive way to provide a smooth trade-off between accuracy and latency. As a part, we proposed a new variant of the bootstrap
technique to quantify result error progressively. We implemented this method in our system called Parrot on top of Apache
Spark and used real-world data to test its performance. Experiments demonstrate that our method is 2.4×–19.7× faster to
get a result within 1% error while the confidence interval always covers the accurate results very well.

Keywords Approximate query processing · Text data analytics · Term frequency · Bootstrap

1 Introduction

A huge amount of textual data is increasingly produced on
the Internet. In twitter, for example, more than 500 million
tweets were published per day in 2017.1 These data are of great

analytic values across many fields including hot topic analysis,
social public sentiment, etc. Compared to structured data, tex-
tual data contains more semantic information such as term fre-
quency and tf-idf whereas existing SQL aggregation functions
focused mainly on numerical values, and, thus, are not suitable.
And due to the non-correlated relationship between documents,
people have much less priori about the distribution of words,
especially on a subset. Analyzing textual data through a col-
lection of fixed workload becomes unrealistic. Therefore, the
way of interactive exploration becomes popular. The interactive
exploration tool gives the user opportunities to continuously
approach the final goal by iteratively executing queries using
varying predicates [7]. A key requirement of these tools is the
ability to provide query results at “human speed”. Previous lit-
erature [31] has demonstrated that a great delay can negatively
impact user activity and insight discovery. However, the term
frequency calculation on a 100GB text collection costs more
than 10 minutes in our experiment.

For analyzing structured data, lots of previous works
attempt to speed up query execution through Data Cube or
AQP (Approximate Query Processing) techniques. For data
cube [10] and its successors, e.g., imMens [21] and Nano-
Cubes [20], they either suffer from the curse of dimensionality
or restrict the number of attributes that can be filtered at the
same time. When limited by response time and computing

The preliminary version of this work was published at the
International Conference on Database Systems for Advanced
Applications (DASFAA) 2020.

 * Yinan Jing
 jingyn@fudan.edu.cn

 Yazhong Zhang
 zhangyz17@fudan.edu.cn

 Hanbing Zhang
 hbzhang17@fudan.edu.cn

 Zhenying He
 zhenying@fudan.edu.cn

 Kai Zhang
 zhangk@fudan.edu.cn

 X. Sean Wang
 xywangcs@fudan.edu.cn

1 School of Computer Science, Fudan University, Shanghai,
China

2 Shanghai Key Laboratory of Data Science, Shanghai, China
3 Shanghai Institute of Intelligent Electronics and Systems,

Shanghai, China 1 http://www.inter netli vesta ts.com/twitt er-stati stics /.

http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-020-00144-y&domain=pdf
http://www.internetlivestats.com/twitter-statistics/

2 Y. Zhang et al.

1 3

resources, AQP systems (e.g., AQUA [2], IDEA [9], Ver-
dictDB [23]) only return a single approximate result regardless
of how long the user waits. However, there is an increasing
need for interactive human-driven exploratory analysis, whose
desired accuracy or the time-criticality cannot be known a
priori and change dynamically based on unquantifiable human
factors [29]. Besides, due to the difference in data structure,
these technologies cannot be migrated to apply to text data
easily. For semi-structured and unstructured data, state-of-the-
art solutions are based on the content management system or
cube structures, such as ElasticSearch [1] and Text Cube [19].
ElasticSearch supports simple queries with key-value based
filtering as well as full-text searching for fuzzy matching over
the entire dataset. However, it doesn’t have good support for
ad-hoc queries on subset and cannot return an accurate term
frequency on a subset through the termvectors API. Text Cube
uses techniques to pre-aggregate data and gives the user the
possibility to make a semantic navigation in data dimensions
[5]. Text Cube can significantly reduce query latency, but it
requires extensive preprocessing and suffer from the curse of
dimensionality.

The universality and the demand for performance moti-
vate us to utilize sampling techniques to return approximate
answers to shorten response latency. However, approximate
answers are most useful when accompanied by accuracy
guarantees. Most commonly, the accuracy is guaranteed by
error estimation, which comes in the form of the confidence
interval (a.k.a., “error bound”) [18]. The error estimation
can be reported directly to users, who can factor the uncer-
tainty of the query results in their analysis and decisions.
Many methods have been proposed for producing reliable
error bounds—the earliest is closed-form estimates based on
either the central limit theorem (CLT) [26] or large devia-
tion inequalities such as Hoeffding bounds [12]. Unfortu-
nately, these techniques either compute an error bound much
wider than the real which lost guidance to users or require
data to follow the normal distribution while the distribu-
tion of terms frequency often obeys the Zipf law [6]. This
has motivated the use of resampling methods like bootstrap
[30], which requires no such normal distribution and can be
applied to arbitrary queries. However, traditional bootstrap
and its variant, variational subsampling technique proposed
by VerdictDB [23] remain high complexity in our progres-
sive execution model due to lots of duplicate computation.

In this paper, we first present a new query formulation
by extending SQL grammar with UDF (user-defined func-
tion) for term frequency analysis on text data. Then, we pro-
pose a sample-based progressive process model to continu-
ously refine the approximate result in the user-think period.
Longer the waiting time becomes, the more accurate the
result will be. As a part of our progressive execution model,
we present a new error estimation method, progressive boot-
strap. Moreover, to achieve a good performance over rare

words, we present a new low-overhead sampling method,
Tail Sampling . Compared to our previous work, we make the
following extensions: (1) we propose a method to maintain
the pre-computed samples for data updates; (2) we propose
an optimized progressive bootstrap method for efficiency;
(3) we introduce the workflow and the components of Par-
rot in more detail and extend the experiment to study the
convergence rate of Parrot. In summary, this paper makes
the following contributions:

• We propose a new query formulation that extends SQL
grammar with UDF to support term frequency calcula-
tion on text data.

• We apply AQP techniques to get the approximate result
to shorten the response latency on large text datasets.

• We present a sample-based progressive execution model
and a progressive bootstrap method to continuously
refine the approximate result. We also propose a method
to maintain the pre-computed samples to adapt to the
data updates.

• We integrate these methods into the system called Par-
rot. Experiments show that Parrot can provide a smooth
trade-off between accuracy and latency while the quanti-
fied error bound covers the accurate result well.

This paper is organized as follows. Section 2 introduces an
overview of Parrot. Section 3 describes Parrot’s sample-
based progressive processing. Section 4 explains how our
progressive error estimation works. Section 5 presents our
experiments. Finally, we review the related work in Sect. 6
and conclude this paper in Sect. 7.

2 Overview

2.1 System Architecture

Parrot is placed between the user and an off-the-shelf data-
base. The user submits queries through any application that
issues SQL queries to Parrot and obtains the result directly
from Parrot without interacting with the underlying data-
base. Parrot communicates with the underlying text col-
lection for accessing and processing data when sampling.
Figure 1 shows the workflow and internal components of
Parrot, which contains two stages, online and offline. In the
offline phase, the sample preparation module first normal-
izes data into a unified format which is JSON-based with a
“text” attribute to store text, a “desc” object to store other
attributes, and a “words” array to store words that appeared
in the text. In Parrot, we use Stanford NLP2 and Jieba3 to

2 https ://stanf ordnl p.githu b.io/CoreN LP/.
3 https ://githu b.com/fxsjy /jieba .

https://stanfordnlp.github.io/CoreNLP/
https://github.com/fxsjy/jieba

3Parrot: A Progressive Analysis System on Large Text Collections

1 3

do word segmentation. Then samplers build different types
of sample set which is a logical concept and composed of
multiple sample blocks. Each diagonal filled box in Fig. 1
represents a sample block that stores a part of the original
data. The data stored in each block of one sample set are
distinct. At runtime, the query parser and analyzer analyze
the issued SQL and generate a progressive execution plan.
The execution plan contains two parts—a reference to the
best sample set which is chosen according to our sample
planner and an error estimation instance. Then the execution
engine fetches blocks from the best sample set and calculates
the result in the progressive mode which means that the user
will receive an approximate result within a short time and
the approximate result will be continuously refined until the
whole sample set has been processed or Parrot is stopped
by manual. Meanwhile, Parrot uses progressive bootstrap
to estimate the error by the confidence interval according to
a given confidence level. Generally, the width of the confi-
dence interval can reflect the accuracy of the current result.

In the remainder of this paper, we use T to represent the
underlying text collection, Ts to represent a sample set, |T|
to represent the cardinality of T and bi to represent the i-th
block. Actually, a sample set Ts is built by a sampler with
a group of specified parameters applied on the underlying
text data T.

2.2 Query Formulation

We extend the standard SQL grammar with UDF (user-
defined function) to support analysis for text collections.
Here is an example of inquiring the frequency of word bank
in the text attribute. The date range is limited between Jan.
1, 2018 and Jan. 31, 2018.

SELECT FREQ(‘text’, ‘bank’)
FROM news
WHERE date BETWEEN ‘2018-01-01’ AND

‘2018-01-31’

The FREQ function is to get the frequency of one word.
It needs two parameters—the first one refers to the text
attribute and the other refers to the issued word. The FREQ
function is similar to a standard count aggregation after
group-by. We support selecting multiple terms frequencies
or using other select clauses in a mixture of FREQ in one
single SQL. In addition to the FREQ function, we also sup-
port the TF-IDF which is a numerical statistic widely used in
information retrieval. Since the core of the two functions is
both about term frequency, we will focus on FREQ function
in the following sections.

Parrot also integrates some third-party algorithms and
systems to process accurate queries. Taking the TOP-K
function as an example, the operator aims to find the k most
frequent words. To tackle this operator, we integrate the
ListMerge algorithm [32] into Parrot. ListMerge is based
on threshold-style (TA-style) algorithms to answer top-k
aggregation queries and has a superior performance on a
large number of lists.

As a middleware, Parrot also supports to tackle queries
directly to the backend database. To achieve that, the user
just needs to precede the query with the bypass keyword,
e.g., BYPASS SELECT FREQ(‘text’, ‘bank’) FROM
news. Then, Parrot sends the query to the backend data-
base without any query rewriting or extra processing. This
approach can be used for all other queries, such as “create
table”, etc.

2.3 Quantifying Result Error

The query engine refines the approximate result as more data
is proceeded. Our error estimation is in the form of confi-
dence interval with a given confidence level associated with
the continuously updated result. For example, the confidence
interval [3.5, 5.5] with the confidence level 95% means that
we have 95% confidence to ensure that the accurate result
will fall into the interval [3.5, 5.5]. In our progressive execu-
tion model, the expected performance is that the width of

Fig. 1 System overview of Parrot

4 Y. Zhang et al.

1 3

confidence intervals asymptotically converges from a rela-
tive large value to 0.

Currently, there are three widely-used methods in AQP
system to do error estimation: closed-form estimates based
on either the central limit theorem (CLT) [26], large devia-
tion inequalities such as Hoeffding bounds [12], and the
bootstrap [8, 30]. As discussed before, the Zip-F law of
natural languages motivated us to use bootstrap techniques
in our method. However, the traditional bootstrap needs
to recompute the aggregate on many resamples (usually a
large number, e.g., 100 or 1000), where each resample is
a simple random sample (with replacement) of the origi-
nal sample. Suppose the original sample size is n and the
number of resamples is m, then the time complexity for
one round of traditional bootstrap is O(n ⋅ m) . VerdictDB
[23] proposed a variational subsampling technique, which
uses subsamples instead of resamples, to embed the entire
bootstrap process into the single query with a bit more
overhead. The time complexity for one round of varian-
tional subsampling bootstrap reduces to O(n). However,
in our progressive execution model, the query will be
executed for many rounds (e.g., 100 or 1000), where each
round means a new block of data is being proceeded. Sup-
pose there are p rounds in total, then the Verdict bootstrap
has a high time complexity of O(n ⋅ p) through the whole
process.

Considering that re-generating subsamples in each
round needs to scan all past blocks, it’s very time-con-
suming and contains lots of duplicate computations. In
fact, we can apply some optimizations to avoid re-gen-
erating all subsamples when new block data has been
proceeded. Our new bootstrap method, progressive boot-
strap, has a lower time complexity of O(

√
n ⋅ m ⋅ p) . At

the expense of that, the progressive bootstrap requires an
additional memory cost (i.e. O(

√
n ⋅ m) to store the entire

subsamples. Since the size is proportional to the square
root of n, the memory cost is usually a limited value.
The progressive bootstrap algorithm will be described in
detail in Sect. 4.

3 Sample‑Based Progressive Processing

In this section, we first show how we prepare samples by
three samplers offline. Then we will introduce our online
sample planner about how to pick the best sample set for
execution. Finally, we explain the workflow of our execu-
tion engine, which utilizes delta computation to minimize
re-computation.

3.1 Sample Storage

Sample storage is the module responsible for sample storage
and provides the foundation for execution engine to progres-
sively and parallel proceed sample data. As shown in Fig. 2,
the structure of block storage contains two levels. The first
level is called sample set, which is a logical concept that organ-
izes data into block form. When executing, the driver fetches
blocks from one specified sample set and calculate the result
progressively. The second level is sample block. Each diagonal
filled box in Fig. 2 represents a sample block which stores a
part of original data. The sample blocks are distributed sepa-
rately from each other among the storage devices. The data
stored in each block is distinct. In this section, we use T to rep-
resent the underlying text collection, Ts to represent a sample
set, |T| to represent the cardinality of T, bi to represent the i-th
block and B to represent the number of blocks in the sample
set. Actually, a sample set Ts is built by a sampler with a group
of specified parameters applied on the underlying text data T.

3.2 Offline Sample Preparation

Uniform Sampler

Give the number of blocks B, uniform sampler scans the
underlying dataset and generate a random integer in [1, B]
for each document. The random integer represents the block
to which the document will be assigned. Each document
will be attached with an extra attribute—� , to represent the
weight of that document. Then the sampler groups document

Fig. 2 The storage form of samples in Parrot

5Parrot: A Progressive Analysis System on Large Text Collections

1 3

by the generated integer and output into the corresponding
block in block storage. The set of all outputing blocks is
called a uniform sample set. In uniform sample set, the �
of each document has the same value, i.e., 1/|T|. Both each
single block and any combinations of these blocks could be
seen as an independent uniform sample. The union data of
all blocks is equivalent to the original dataset.

In the query execution phase, when the uniform sample
is chosen, the query engine reads blocks sequentially in the
sample set and calculates them in parallel. Whenever a block
calculation ends, the partial result of current block will be
merged into the global result. And then move to the next
block. This process is repeated until all blocks have been
calculated or manually interrupted.

Stratified Sampler
Stratified sampler optimizes queries over rare subpopula-

tions by applying a biased sampling on different groups [4].
Given a column set C and a number k, stratified sampling
ensures that at least k documents pass through for every dis-
tinct value of the columns in C4.

To satisfy progressive query execution, our stratified sam-
pler needs to ensure that each sample block has almost the
same and enough number of documents. If we use a fixed
k value for all blocks, the block size will be less and less as
there exist less and less groups of C . Uncertain sizes among
sample blocks will cause unsmooth in progressive execution.

Our approach is to dynamically adjust k to an appropri-
ate value to make the block size be the most close to the
expected. Suppose the cardinality of each block is set to |b|.
At first, we collect the underlying dataset’s cardinality of
each group on the given column set C . Suppose there are m
groups and the cardinality of i-th group is represented by |ci| .
Then we try to minimum the value of diff in Formula 1 by
binary searching an appropriate value k = k̂ in the range of
[1, |b|]. The time complexity of this step is O(m ⋅ log2 |b|) .
As in practical, there are usually hundreds or thousands of
groups, the method is effective. Since we get the appropriate
value of k (i.e., k̂), we apply a Bernoulli sampling for each
group individually. For the i-th group, the sampling prob-
ability is set to min(|ci|, k̂)∕|ci| . All the chosen documents by
the Bernoulli sampling will output into the new block with
an extra attribute w setting to 1∕|ci| to record the weight. And
they will be removed from the original dataset. Then update
the left cardinalities for each group. The above process will
be repeated until there is no left document (i.e. the cardinal-
ity of all groups is 0).

(1)diff =
|||||

m∑

i=1

min(|ci|, k) − |b|
|||||

Besides, the stratified sampler will record the disappearance
block (abbr. d-block) for each group in the above process.
The d-block of a group refers to the block number that after
outputting to that block, the remaining cardinality of this
group reduces to 0. The reason to record it is to maximize
the number of documents selected by the query in the sam-
ple within the same time. It’s based on a simple observa-
tion that the cardinality of a group in the i-th block (i.e., bi)
is no more than that in the j-th block (i.e., bj) if (1) i ≤ j ,
and (2) j < d − block . Thus, for a specified group Ω and its
d − blockΩ , traversing from d − blockΩ to 1 (in reverse order)
will maximum the query selecting number.

In the query execution phase, when stratified sample
is chosen, the execution will first retrieve the maximum
d-block (d − blockmax) of all groups included in the query.
Then the execution reads all blocks from d − blockmax to 1
(in reverse order) and calculates them in parallel. For exam-
ple, suppose the query is SELECT FREQ(’bank’) FROM
news WHERE date=’2018-01-01’ OR date=’2018-01-02’
and the d-block values for groups ’2018-01-01’ and ’2018-
01-02’ are 100 and 150 respectively. Then the traversal order
is from d − blockmax = 150 to 1.

Tail Sampler
Queries over rare words occur frequently in the interac-
tive data exploration, but often lead to large errors due to
small hitting size. Many existing indexing techniques (e.g.,
B-trees, sorting database cracking [14]) organize all docu-
ment without regarding for the semantic frequency in textual
data, resulting in unnecessary overhead. While before men-
tioned samplers, uniform sampler and stratified sampler, can
already provide good results even over rare subpopulations.
Besides, these indexing techniques destroy the randomness
property that our progressive execution model requires. It’s
also prohibitively expensive to mess up the documents order
at runtime. Thus, we propose a low-overhead partial sampler
which works offline to optimize query accuracy over rare
words.

In general, Tail Sampler aims to improve the performance
for queries over rare words. That is, if a word is frequent
enough for uniform or stratified sample to provide a good
performance, the word will not be included in tail sample.
Otherwise, tail sampler collects these rare words and the
documents in which these words appear. As different rare
words may appear in the same document, it’s unnecessary
to pick documents for each rare word individually. Tail
Sampler first determines whether a given document is rare.
Then the sampler constructs the sample set on the subset of
all rare documents. We use two parameters tail threshold �
and overhead � , to quantify the limit of tail tampler. Before
introducing the construction process, we need to prepare an
inverted index for each word.

4 Precisely, at least min(k, number of documents for that distinct
value).

6 Y. Zhang et al.

1 3

Suppose the collection contains 3 documents:
D1 = “it is a bank”
D2 = “it is what it is”
D3 = “what is it”
The inverted index and appearance times will be built as

following (Table 1):
After that, we get not only an inverted index, but also

the statistics information of each word’s appearance, i.e.,
the appearance times for each word. We define the rar-
ity of word � , as the proportion of appearance document
cardinality to the total document cardinality. The rarity of
document � equals to the minimum word rarity it contains
(Table 2).

Table 1 Inverted index

a Bank Is It What

Index {1} {1} {1, 2, 3} {1, 2, 3} {2, 3}
Times 1 1 3 3 2

Table 2 Rarities of the document

Document Rarest word Rarity (�)

D
1

Bank 1/3
D

2
What 2/3

D
3

What 2/3

Algorithm 1: Tail Sampling
Input: text collection T , tail threshold τ , sample overhead λ
Output: tail sample set Ts, rare words set W

1 initialize Ts = {}, W = {} Ds = {};
2 build inverted index for each word in T ;
3 foreach word ∈ inverted index do
4 n = number of documents which this word appears in;
5 γword = n/|T | ;
6 end
7 sort words by γ in ascending order;
8 foreach word in ascending order of γ do
9 if γword <= τ then

10 Dw = documents which this word appears in;
11 if |Ds union Dw|/|T| ≤ λ then
12 Ds = Ds + Dw;
13 W = W + word;
14 end
15 end
16 end
17 build Ts based on Ds by uniform sampler;
18 return Ts and W

Then to return, tail threshold � refers to the maximum
rarity � of document allowed to be included into tail sam-
ple. An intuition is that the bigger � is, the more document
and rare words would be included into sample. But it may
also cause the increment of sample size which will slow
down the interaction execution speed. However, when � is
set to a small value, though sample size is under control,
the improvement is limited, as lots of rare words might not
be included. In fact, it is much relevant to textual data dis-
tribution and workload about how to set an appropriate �
value. Another parameter is sample overhead � . It’s a value
in [0, 1] and indicate the upper bound of the tail sample
size. That is, whatever � is, the final size ratio of tail sample
set to original dataset is less or equal than � . The reason
why we need this parameter is make a trade-off between the
coverage of rare words and the execution performance. The
detailed construction algorithm of tail sampler is shown in
Algorithm 1. The input contains text collection T and two
parameters—tail threshold � and sample overhead � . With
these inputs, tail sampler firstly builds the inverted index for
each word in T. Then for each word, we calculate �word (line
3–5). Next, we scan words in the ascending order of � . For
each word, if � ≤ � , and the size ratio not exceeds � , then
add the word into the set of rare words and add documents
in which the word appears into the sample document set,
Ds , without duplicates (line 7-12). Finally, the tail sampler
builds the tail sample set Ts based on the Ds by the uniform
sampler. In the query execution phase, when tail sample is
chosen, the execution reads blocks sequentially and calcu-
lates them in parallel, similar to uniform sample.

7Parrot: A Progressive Analysis System on Large Text Collections

1 3

3.3 SQL Parser

The SQL parser in Parrot is responsible for parsing the
issued SQL and fetching the logical operators (e.g., pro-
jections, selections, joins, etc.). Then the SQL will be
rewritten to a collection of new SQL statements that can be
executed on the underlying database to perform progressive
processing.

The parsing process contains three stages. The first stage
is to generate the AST (abstract syntax tree). This part is
implemented through Antlr4 [24]. We extend Spark SQL
grammar with our customized rules to support new opera-
tors introduced by Parrot. The second stage is to fetch logical
operators from the issued SQL. In Spark, the AstBuilder is
the class for parsing SQL. It uses Antlr4 visitor tree-walking
mechanism to perform walk on the generated AST. In Parrot,
we inherit AstBuilder and override the visitFunctionCall
method to extract logical operators and route the AST of
different operators to different handlers. For example, the
SQL with TOP-K operator will be passed to the ListMerge
[32] algorithm, while FREQ and TF-IDF will be passed to
the third stage.

In the third stage, the issued SQL will be rewritten. Here
is a Parrot’s query rewriting example for a simple FREQ
query. Given the below input query:

5 The number of generated queries is equal to the number of blocks
of the selected sample plan.

SELECT FREQ(‘text’, ‘bank’)
FROM news
WHERE date BETWEEN ‘2018-01-01’ AND ‘2018-01-31’

Parrots rewrites the above query as follows:

SELECT FREQ(‘text’, ‘bank’) / SUM (ω) AS freq
FROM %news%
WHERE date BETWEEN ‘2018-01-01’ AND ‘2018-01-31’

In such queries, the result of the aggregation function
will be scaled up according to the value of SUM(�) which
means the total weight of documents calculated in the sam-
ple. The parameter

�
 is generated in the offline sample prep-

aration phase which has been introduced in Sect. 3.2. The
table name “news” in the “from” clause will be enclosed
in percent signs. After selecting a sample plan, Parrot will

generate a collection of queries5 based on the issued SQL.
In each generated query, the table name will be rewritten to
the block name.

3.4 Online Sample Planning

A sample plan is composed of a reference to a sample set
with some extra information (e.g., traversal order of the cho-
sen sample set). Parrot’s sample planner aims to find the best
sample set for the query, i.e., the sample plan that results in
the lowest approximation errors within the same latency. Our
strategy is based on the selectivity which is defined as the
ratio (1) the number of documents selected by the query, to
(2) the number of documents read by the query. At runtime,
the response time increases with more number of documents
being read and the error decreases with more number of
documents WHERE/GROUP BY clause selects. For this,
Parrot generates many possible sample plans (called candi-
date plans) and selects the best.

3.4.1 Candidate Plans

In the first step, Parrot’s sample planner generates candi-
date plans. Candidate plans are the set which contains all
sample sets that can be used to answer the issued query.

8 Y. Zhang et al.

1 3

For the uniform sample, it is always a candidate sample
even if it may cause poor performance. There are two situ-
ations for a sample set that cannot be used to answer the
query: (1) For a stratified sample set, if ��� ⊇ ��� , then it
is a candidate sample set. The SCS (sample column set) is
the column set that stratified sampler builds on. The QCS
(query column set) is the set of all columns that appears in
the WHERE/GROUP BY clauses; (2) For the tail sample
set, if the concerned word of the query belong to the rare
word of the sample, then it is a candidate sample set.

3.4.2 Selecting a Plan

Parrot’s plan selection relies on the selectivity. We meas-
ure the selectivity of a sample set based on two criteria:
sampling strategy and matching degree. First we discuss the
sampling strategy. In brief, we say that tail sample is bet-
ter than stratified sample and both of them are better than
uniform sample. Here are the reasons: (1) Tail sampler only
include documents that have rare words and can reduce
the total size of the sample set. Thus, for rare words, the
selectivity is the highest; (2) Stratified sampler gives dif-
ferent groups different traveral orders. The traversal order
of stratified sample set is from d − blockG to 1. For a rare
subpopulation, its d − blockrare is a small value (only appear
in the first few blocks). Thus the total size of the sample
data for the query will decrease. For a popular subpopula-
tion, its d − blockpopular is a large value. As the number of
blocks increases, the number of groups decreases and the
proportion of that popular group increases. The selectivity
also increases. Therefore, for all sorts of groups, stratified
sample can provide a higher selectivity than uniform sam-
ple; (3) Uniform sampler simply spilts original dataset into
multiple blocks to support progressive execution. Thus the
selectivity equals to that of original dataset and is the lowest.

We then take matching degree into account. For stratified
sample, the matching degree is defined as |���|∕|���| . The
planner chooses the sample set which has the highest degree.
If there exists more than one stratified sample set that have
the same degree, the planner chooses the sample set which
has the smallest d − block for the query. For tail sample, we
choose the sample set which has the smallest overhead � as
it has the highest selectivity among them.

Here is an example to explain our sample planning work-
flow. Suppose we have built 4 samples—one uniform sam-
ple, one stratified sample on location, one stratified sam-
ple on location and date, one tail sample with � = 0.001
and � = 0.1 . And suppose the issued query is SELECT
FREQ(‘bank’) FROM news WHERE location=‘Tokyo’
and the concerned word “bank” doesn’t not belong to rare
words of the tail sample. Then the candidate plans will
include three references which are to the uniform sample
and two stratified samples, as they all can be used to answer

the query. In plan selecting, first we take sampling strategy
into account. As stratified samples have higher selectivity
than the uniform sample, we filter out the uniform sample at
first. Then we consider the matching degree of two stratified
samples. Obviously, the stratified sample on location has a
higher matching degree and is picked with the traversal order
from d − blockTokyo downto 1.

3.5 Query Execution Model

Since processing a large dataset in blocking fashion can eas-
ily exceed interactive requirements, our execution engine
needs to use techniques to compute a frequency result �̂�S

word

on a relatively small sample. Here the word refers to the con-
cerned word in FREQ function, S refers to the sample, and
|S| refers to the cardinality of S. Then, by maximum likeli-
hood estimation (MLE) [27], we can produce an approxima-
tion �̂�MLE

word
 of the accurate result �word:

Intuitively, this approximation �̂�MLE
word

 represents the estimated
frequency of the word in each document of the dataset. Mul-
tiplying a frequency estimate �̂�MLE

word
 by the total number |T| of

documents in the full dataset will therefore yield an approxi-
mate frequency for the word:

Our execution engine works in progressive fashion. The
process contains many rounds, where each round means a
new block data is being proceeded and a refined result will
be returned after proceeding. The number of rounds equals
to the number of blocks in the best sample set for the query.
The guiding design principle behind Parrot is to take full
advantage of delta computation to minimize re-computa-
tion. In other words, before the i-th round, suppose we have
finished proceeding data Si−1 (i.e., Si−1 = b1 ∪ b2 ∪ ... ∪ bi−1
where bi refers to the i-th block) and get an approximate
result �̂�Si−1

word
 . Then, instead of computing query on Si , we uti-

lize the fact that Si = Si−1 + bi and calculate �̂�Si
word

 from the
previous result �̂�Si−1

word
 by a delta query �̂�bi

word
 . The intuition is

that computing �bi and merging into previous result would
be much faster than directly computing �̂�Si

word
 since �̂�Si−1

word
 has

been computed before. The result refinement formulation is
shown as Formula 4:

Similar intuition is shared by online aggregation (OLA) [13,
29] and incremental view maintenance [11, 17, 22], with

(2)�̂�MLE
word

=
�̂�S
word

|S|

(3)�̂�T
word

= �̂�MLE
word

⋅ |T|

(4)�̂�T
word

=

(
�̂�
Si−1
word

+ �̂�
bi
word

|Si−1| + |bi|

)
⋅ |T|

9Parrot: A Progressive Analysis System on Large Text Collections

1 3

slight differences in the definition of bi : for Parrot, bi is the
data of the i-th block which contains documents in the same
format; while for delta view maintenance and streaming sys-
tems, bi can also include deletion of old data.

3.6 Data Appends

When new textual data is arriving, Parrot needs to keep the
sample fresh and results accurate enough. As resampling is
a very costly process, we try to adopt incremental update
as far as possible. All three types of sample sets, i.e., uni-
form sample set, stratified sample set, and tail sample set,
are amenable to the data append.

3.6.1 Uniform Sample Set

For the uniform sample set, the sample updating strategy is
straightforward, since given the number of blocks B, Parrot
samples all documents independently. When a new batch of
data arrives, Parrot can simply generates a random number
in [1, B] for each document and append to existing sample
blocks.

3.6.2 Stratified Sample Set

For the stratified sample set, the sample updating strategy
is more complex. When a new batch arrives, there are two
cases for updating a stratified sample set. The first is that
the number of documents increases more, and the number
of groups increases less or not, which means that the k value
becomes larger. We difine the new k value as k′ and k′ is
greater than k. For this case, we first group the documents in
the batch based on the column set C . Then for each block in
the stratified sample set, we perform Bernoulli sampling in
parallel according to the increased number (k� − k) of each
group in the new batch. The second case is that the num-
ber of documents increases less, but the number of groups
increases more, which means that the k value becomes
smaller. We difine the new k value as k′ and k′ is less than
k. For this case, we also group the documents in the batch
based on the column set C . As the k becomes smaller, there
is no need to append documents for each group from the
new batch to the sample block. However, it is very costly
to remove documents for each group according to the
decreased number (k − k�) as it needs to scan the whole sam-
ple set. Thus, we divide the documents in the new batch into
two parts based on whether the group has appeared before.
For documents in groups which have appeared before, we
append them to sample blocks starting from the d − block

-th block. For documents in groups which have not appeared
before, we append them to sample blocks starting from the
1st block. The Bernoulli sampling probability is based on the

k′ and the population of each group and updating process is
similar to stratified sampling described in Sect. 3.2.

3.6.3 Tail Sample Set

For the tail sample set, the sample updating strategy contains
two steps: (1) include all rare words of the new batch into
the rare words list; and (2) include all documents of the
new batch which contains at least one rare word into the tail
sample set. In the first step, the tail sampler scans all words
that hasn’t appeared before in the new batch. For each word,
the tail sampler calculates its rarity and compares it with the
tail threshold � . If it is less, tail sampler will append it into
the rare words list. In the second step, the tail sampler picks
out all documents which contains at least one rare word.
Then update the original tail sample set by assigning a block
number to each rare document of the new batch and append
them to existing sample blocks correspondingly.

However, there may still exist one problem. Due to when
updating, only the original rare words list and the words in
the new batch are considered, the tail sample set may miss
some rare words which should be included in the rare words
list. But this will not affect the correctness, because it will
only reduce the coverage of the rare words list. In the online
phase, only when queries are related to the rare words list,
Parrot chooses to use tail sample set to answer. This problem
cannot be completely solved by incremental updating unless
by periodic resampling.

4 Error Estimation

In this section, we describe Parrot’s novel error estimation
technique. Previous interactive exploration system engines,
especially those that support skewed data analysis, have
relied on bootstrap [15], which belongs to a family of error
estimation techniques called resampling [16]. Resampling
techniques, despite various optimizations [3, 25], are still too
expensive to be implemented at a middleware layer.

Inspired by variational subsampling bootstrap [23] in
VerdictDB, we propose a new variant, called progressive
bootstrap, to apply a fast bootstrap method for progressive
query execution. In the remainder of this section, we will
start from traditional bootstrap and subsampling bootstrap
(Sect. 4.1). Then we introduce our method, progressive boot-
strap (Sect. 4.2) in detail.

4.1 Traditional Bootstrap and Variational
Subsampling Bootstrap

Bootstrap is the state-of-the-art error estimation mechanism
used by previous AQP engines. The key idea of Bootstrap is
that, in order to use S (sample) to replace D (origin dataset),

10 Y. Zhang et al.

1 3

one can also draw samples from S instead of D to compose
the distribution of S.

Let � be the result of an aggregate function (e.g., mean,
sum) on N real values x1, ..., xN (e.g., values of a particular
column). Let a random sample with size n of these N values
and �̂� be an estimator of � . In error estimation, we need to
measure the quality (i.e., expected error) of the estimate. To
achieve that, bootstrap recomputes the aggregate on many
resamples, where each resample is a random sample (with
replacement) of the original sample. In traditional boot-
strap, the size of a resample is the same as the sample itself.
Some of the elements might be missing and some might be
repeated, but the total number remains as n. Bootstrap will
construct m such resamples (m is usually a large number,
e.g., 100 or 1000). Let �̂�j be the value of the estimator com-
puted on the jth resample. Then bootstrap uses �̂�1,… , �̂�m to
construct an empirical distribution of the sample statistics,
which can then be used to compute a confidence interval.
Let �̂�0 be the estimator’s value on the original sample itself,
and t� be the �-quantile of �̂�0 − �̂�j . Then, the 1 − � confidence
interval can be computed as:

Variational subsampling bootstrap, which relaxes some of
the requirements of traditional bootstrap, are presented by
VerdictDB. It still retains the statistical correctness of tradi-
tional subsampling, while becomes significantly more effi-
cient. It follows a procedure similar to bootstrap, but with
three key differences: (1) instead of full resamples, it uses
subsamples which are much smaller, (2) instead of drawing
tuples from the original sample with replacement, subsam-
pling draws tuples without replacement, and (3) allowing
each tuple to belong to, at most one subsample. In other
words, a subsample is also a random sample of the origi-
nal sample, but without replacement, and of size ns where
ns ≪ n . In general, ns must be chosen such that it satisfies
the following two conditions: (1) ns → ∞ as n → ∞ , and (2)
ns∕n → 0 as n → ∞ . Thus the bootstrap process is simplified
as: for each tuple, system only needs to generate a single ran-
dom number to determine which subsample it belongs to (if
any), and then perform the aggregation only once per tuple,
instead of repeating m times. Computing the 1 − � confi-
dence interval is similar to traditional, but requires a scaling:

(5)[�̂�0 − t1−𝛼∕2, �̂�0 − t𝛼∕2]

(6)[�̂�0 − t1−𝛼∕2 ⋅
√
ns∕n, �̂�0 − t𝛼∕2 ⋅

√
ns∕n].

4.2 Progressive Bootstrap

The both two bootstrap methods introduced before, can
obtain the confidence interval on a given sample and an
unknown distribution of dataset. However, they only present
the bootstrap for single time. While handling data increment,
they need to repeat the whole bootstrap process entirely and
causes lots of duplicate computation. Suppose the cardi-
nality of the sample set is n, the number of resamples is
m, and there are p rounds in total, traditional bootstrap and
variational subsampling bootstrap have unaffordable time
complexity O(n ⋅ m ⋅ p) and O(n ⋅ p) respectively. Inspired by
Verdict, we propose the progressive bootstrap by maintain-
ing all needed sub-samples through the progressive process
to avoid duplicate resampling from past blocks. VerdictDB
has proved that the bootstrap has the lowest error when the
cardinality of each subsample equals to

√
n . Thus, in the best

case, the subsampling ratio is r = m ⋅

√
n∕n = m∕

√
n . As n

grows (more and more data has proceeded), the ratio will
drop. Therefore, if we have preserved all subsamples s (com-
posed of s1 , s2 , ..., sm) and when new block bi is being pro-
ceeded, we can directly update subsamples based on s with bi
instead of re-subsampling overall past data. For documents
in bi , we apply a Bernoulli sampling with ratio ri = m∕

√
n .

For maintained subsamples, let Ei refers to the event of a
document being picked into subsamples at i-th round and we
can also apply a Bernoulli sampling with ratio Δr calculated
by conditional probability as shown in Formular 7.

Algorithm 2 gives a detailed illustration. The input includes
the issued word set words in FREQ functions, the cardi-
nality of underlying dataset N, proceeded data Si−1 (i.e.,
b1 ∪ b2 ∪ ... ∪ bi−1), new block bi , past sub-samples s (com-
posed of s1 , s2,......, sm), past counters c (c[word] for word and
composed of c[word]1 , c[word]2 , ..., c[word]m), confidence
level � (e.g., 0.95), and the approximate result �̂� . Our algo-
rithm first filters out documents which should be excluded
from the past subsamples (line 3–7) and update counters of
each word for each subsample (line 8–10). Then it picks out
documents which should be included into sub-samples from
the new block (line 11–15) and update counters (line 16–18).
Then for each word, we sort m counters in ascending order
and collect the error bound �word according to the subsam-
ples distribution (line 19–21). Finally, return the updated
subsamples, counters and error bound (line 22). Progressive
bootstrap has a lower time complexity O(

√
n ⋅ m ⋅ p).

(7)Δr = P(Ei|Ei−1) =
P(Ei ∩ Ei−1)

P(Ei−1)
=

ri

ri−1

11Parrot: A Progressive Analysis System on Large Text Collections

1 3

Table 3 Selectivity of Q
1
–Q

9 Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Selectivity (%) 17.5 0.42 0.98 0.48 0.16 0.038

Algorithm 2: Progressive Bootstrap
Input: issued word set words, dataset cardinality N , proceeded data Si−1, new

block bi, past subsamples s, past counters c, confidence level α,
approximate result θ̂

Output: updated subsamples s′, updated counters c′, error bound σ
1 n′ = |Si−1|+ |bi|;
2 n′

s =
√
n′;

3 foreach document doc ∈ s do
4 suppose the document is in the ε-th subsample sε;
5 r = a random number in [0, n′);
6 if r < |bi| then
7 sε = sε - doc;
8 foreach word ∈ words do
9 f = word frequency in doc;

10 c[word]ε = c[word]ε - f ;
11 end
12 end
13 end
14 foreach document doc ∈ bi do
15 r = a random number in [0, n′);
16 ε = r/n′

s + 1;
17 if ε < m then
18 sε = sε + doc;
19 foreach word ∈ words do
20 f = word frequency in doc;
21 c[word]ε = c[word]ε + f ;
22 end
23 end
24 end
25 foreach word ∈ words do
26 sort c[word] in ascending order;
27 σword = [θ̂ − c[word]α/2 ·

√
n′
s/n

′ ·N/n′
s, θ̂ − c[word]1−α/2 ·

√
n′
s/n

′ ·N/n′
s];

28 end
29 return updated subsamples s′ = s, updated counters c′ = c and error bound σ;

4.3 Progressive Bootstrap with Rearrangement

Regardless of traditional bootstrap, variational bootstrap or
progressive bootstrap, the core method is to estimate the
error of the approximate result through resampling (sub-
sampling). For the first two bootstrap algorithms, each time
of bootstrap is a complete execution of the entire process of
resampling (subsampling) to construct the empirical distri-
bution on the whole past sample documents. For progressive
bootstrap, it maintains all sub-samples continuously during
the calculation process. In other words, every time the error
is estimated, re-sampling will not be performed on the cur-
rent entire sample. This is the core reason why progressive
bootstrap improves performance. However, in the actual

experiment, we observe that due to the nonuniform distri-
bution of word frequency and the randomness of resampling,
at certain times, the difference of results between subsam-
ples is very large. Moreover, this difference will continue
throughout each iteration and makes the error bound difficult
to converge.

For this reason, in each iteration, we introduce a process
of rearrangement for progressive bootstrap. That is, each
time the subsamples are maintained, progressive bootstrap
rearranges subsamples to which each document belongs.
This can avoid the imbalance of sub-samples caused by
randomness, and will not cause the additional time over-
head meanwhile. Progressive bootstrap after rearrangement
optimization is shown in Algorithm 3.

12 Y. Zhang et al.

1 3

Table 4 Selectivity of Q
1
–Q

9

Q
7

Q
8

Q
9

Selectivity (%) 6.58 2.95 0.53

Fig. 3 Time to get the first acceptable result

Algorithm 3: Progressive Bootstrap with Rearrangement
Input: issued word set words, dataset cardinality N , proceeded data Si−1, new

block bi, past subsamples s, past counters c, confidence level α,
approximate result θ̂

Output: updated subsamples s′, updated counters c′, error bound σ
1 n′ = |Si−1|+ |bi|;
2 n′

s =
√
n′;

3 foreach document doc ∈ s do
4 suppose the document is in the ε-th subsample sε;
5 r = a random number in [0, n′);
6 ε′ = r/n′

s + 1;
7 sε = sε - doc;
8 if r ≥ |bi| then
9 sε′ = sε′ + doc;

10 end
11 foreach word ∈ words do
12 f = word frequency in doc;
13 c[word]ε = c[word]ε - f ;
14 if r ≥ |bi| then
15 c[word]ε′ = c[word]ε′ + f ;
16 end
17 end
18 end
19 ... (the same as Algorithm 2 line 14 - 28) ...
20 return updated subsamples s′ = s, updated counters c′ = c and error bound σ;

Algorithm 3 gives a detailed illustration. The input and
output are same as Algorithm 2. The main difference is the
part of filtering out documents which should be excluded
from the past subsamples (line 3–18). While filtering docu-
ments out, for each retained document, we will reassign the
subsample which it belongs to (line 8–10). Then when updat-
ing word counters by subtracting the frequency of words
contained in the document (line 11–17), we also update word

counters by increasing the frequency to the reassign subsam-
ple counter (line 14–16). The following process is the same
as line 14–28 of Algorithm 2. Finally, return the updated
subsamples, counters and error bound (line 20). Progressive
bootstrap with rearrangement has the same time complexity
O(

√
n ⋅ m ⋅ p) as before. For the correctness of bootstrap with

rearrangement, since it’s completely random to assign the
subsample sequence number for each document, it doesn’t

13Parrot: A Progressive Analysis System on Large Text Collections

1 3

matter whether there is a rearrangement or even multiple
times of rearrangement in theory.

5 Experiment

5.1 Experiment Setup

We implemented the methods in our system—Parrot, and
the baseline—blocking, on top of Spark 2.4.3. The baseline
implements the same SQL parser and UDF as Parrot while
reads documents from the underlying collection directly.

The baseline processes the data in a blocking fashion which
means the user cannot get the feedback result until all data
has been processed. When the SQL is submitted, the base-
line will parse the SQL and submit the job to the Spark clus-
ter. The data source of this job is the entire text collection.
On the contrary, the data source of our method is a bunch
of samples, which are much smaller than the entire text col-
lection. All the following experiments are performed on a
10-node cluster (each with Intel Xeon E5-2620, 64GB RAM,
and 1.77TB HDD) under Apache Spark 2.4.3 and Ubuntu
Linux 14.04 LTS. Our data is stored in Hadoop distributed
file system and organized in JSON format.

Fig. 4 The convergence of RE and RCI for Q
1
–Q

9

14 Y. Zhang et al.

1 3

5.1.1 Performance Metrics

Two metrics are used: (1) the relative error of the approxi-
mate result in each round; (2) the response latency for the
first acceptable result. The relative error (RE) is calculated
by RE = |�̂� − 𝜃|∕𝜃 where � is the accurate result and �̂� is the
approximate result based on the sample. The relative confi-
dence interval (RCI) is calculated by RCI = (|𝜎x − 𝜎y|∕2)∕�̂� ,
where the [�x , �y] represents the error bound. When the RCI
of an approximate result is less than the given (1% as default
in our experiment), we say it is an acceptable result. The
confidence level is set to 95% as default.

5.1.2 Synthetic Dataset

We use the mix of Reuters news dataset6 and Webhose Eng-
lish articles7 as our dataset. After data cleaning and word
segmentation, this dataset is about 10.9GB and contains
about 3 million documents. Then we scale up the data to
100GB in proportion to ensure that the distribution and
skewness are similar to the original. We built a uniform
sample, a stratified sample on the date column, and a tail
sample with � = 0.01 and � = 0.5 . The users could set these
two values based on their requirements, while the smaller
parameters make the faster convergence speed. We fix the
block size of samples to 128MB. To evaluate the perfor-
mance, we use the following 6 queries:

Q1: SELECT FREQ(‘bank’) FROM news;

Q2: SELECT FREQ(‘bank’) FROM news WHERE
location=‘LONDON’;

Q3: SELECT FREQ(‘government’) FROM news
WHERE date BETWEEN ‘2015-10-01’ AND
‘2015-10-31’;

Q4: SELECT FREQ(‘president’) FROM news WHERE
date BETWEEN ‘2008-01-01’ AND ‘2008-01-31’;

Q5: SELECT FREQ(‘top-asia’) FROM news;
Q6: SELECT FREQ(‘chronology-bird’) FROM news

WHERE location <> ‘PARIS’;

Among them, Q1 , Q2 run on the uniform sample, Q3 , Q4
run on the stratified sample as their where clauses are on
date column and Q5 , Q6 run on the tail sample as words “top-
asia” and “chronology-bird” are very rare words. Selectivity
of Q1 - Q6 is shown in Table 3. The lower the selectivity, the
larger the error and oscillation of the approximate result may
occur. As Q2–Q6 are on very rare sub-populations, these que-
ries can test the performance of all three kinds of samples
comprehensively.

5.1.3 Real‑World Dataset

The second dataset is a real-world Chinese dataset, which
comprises about 60 million articles from the Sina website
with size 64GB. We built a uniform sample, a stratified sam-
ple on the channel column and a tail sample with � = 0.01
and � = 0.5 . We fix the block size of samples to 128 MB.
Then we use three queries, Q7–Q9,8 to evaluate the perfor-
mance. Selectivity of Q7–Q9 is shown in Table 4. In this
experiment, Q7 , Q8 , Q9 run on the uniform sample, stratified
sample and tail sample respectively.

Fig. 5 Performance of bootstrap methods
Fig. 6 Performance on different data sizes

6 https ://trec.nist.gov/data/reute rs/reute rs.html.
7 https ://webho se.io/free-datas ets/engli sh-news-artic les/.

8 For convenience, we use English words with the same meaning in
the paper.

https://trec.nist.gov/data/reuters/reuters.html
https://webhose.io/free-datasets/english-news-articles/

15Parrot: A Progressive Analysis System on Large Text Collections

1 3

Q7: SELECT FREQ(‘Netizen’) FROM article WHERE
LEN(text) < 1000;

Q8: SELECT FREQ(‘Female’) FROM article WHERE
channel=‘Health’;

Q9: SELECT FREQ(‘Guangxu’) FROM article;

5.2 Experiment Results

5.2.1 Performance on Synthetic Dataset

In this experiment, we compare the performance between
Parrot and baseline on the 100GB synthetic dataset by
Q1–Q6 . As shown in Fig. 3a, the time cost to get the first

Fig. 7 The convergence of RCI for Q
1
–Q

6
 on different data sizes

Fig. 8 Performance on different block sizes

16 Y. Zhang et al.

1 3

acceptable result of Parrot is much shorter than the base-
line since Parrot uses a sample-based progressive execu-
tion model. Taking Q1 as an example, Parrot costs about
23 seconds whereas blocking takes more than 450 seconds.
However, Parrot brings different improvements for differ-
ent queries. As we can see, Q1 , Q3 , Q4 have more improve-
ment than the other three. It’s mainly due to two reasons:
(1) for queries running on the same sample set, queries with
higher selectivity may faster converge to 1% RCI as more
documents can be selected within the same time; and (2) for
queries of very low selectivity, RCI by bootstrap is much
harder to converge to 1% as too few documents may cause
unstable distribution of subsamples. Low selectivity may
also cause fluctuations of RCI through the progressive pro-
cess. Figure 4a–f show how RE and RCI converge during the
execution process. The horizontal dotted line marks the 1%
RCI. We can see that the RE and the RCI converge smoothly
and fast except for some fluctuations when executing queries
of very low selectivity (e.g. Q6). Besides, Parrot can return
the first result in about 15 s for all of the six queries. The
length of this period mainly depends on block size and we
will evaluate it in later experiments. Furthermore, the red
line in these figures represents the real relative error, while
the two blue lines show the estimated error interval by our
progressive bootstrap. If the red line is in between the two
blue lines, we can say the error estimation is accurate. Thus,
as shown in Fig. 4a–f, our progressive bootstrap can give an
accurate error estimation in most cases.

In summary, on the synthetic dataset, the first accept-
able result of Parrot is 2.4×–19.7× faster compared with
the blocking fashion. Besides, Parrot can provide a smooth
trade-off between accuracy and latency. That means the pro-
posed progressive execution model allows the user to get
feedback results in a short latency and get more and more
accurate results with waiting time getting longer and longer.
Only queries with very small selectivity may lead to some
fluctuations.

5.2.2 Performance on Rreal‑World Dataset

In this experiment, we compare the performance between
Parrot and baseline on the 64GB real-word dataset by Q7

–Q9 . As shown in Fig. 3b, Parrot can achieve 1% RCI at a
very fast speed compared to the blocking fashion. For dif-
ferent queries, Parrot brings different improvement due to
the same reasons as before. Figure 4g–i show how RE and
RCI smoothly and fast converge. For all of the three queries,
Parrot can return the first result in about 20 seconds. The
latency is different from that of the first six queries because
the two datasets have different deserialization costs. Through
the execution process, the relative error falls into the confi-
dence interval almost all the time, and hence our progressive
bootstrap can give an accurate error estimation.

In summary, on the real-world dataset, the first acceptable
result of Parrot is 5.7x–9.7x faster, compared with the block-
ing fashion. Besides, Parrot can provide a smooth trade-off
between accuracy and latency.

5.2.3 Performance of Bootstrap

In this experiment, we compare the performance of three dif-
ferent bootstrap methods—traditional bootstrap, variational
subsampling bootstrap, and progressive bootstrap. We run Q1
on the 100GB synthetic dataset and record the time cost of
the error estimation phase in each round from the beginning
until the first acceptable result returned. The average time
cost is shown in Fig. 5. We can see that traditional bootstrap
costs more than 128 seconds on average while it’s unaccep-
table in our interactive exploration scenario. The variational
subsampling bootstrap costs from 0.307 to 4.14 seconds with
an average of 2.0066 seconds. It’s fast in the first few rounds
and then becomes slower and slower with more and more
data being processed as its time complexity is proportional
to the amount of data that has been proceeded. Our progres-
sive bootstrap gets the best performance with an average cost
of 0.2957 seconds and can perform bootstrap within almost
a fixed time cost. The cost mainly depends on the block size.

5.2.4 Effect of Data Size

In this experiment, we evaluate the effect of text data size.
We use three text collections scaled from the synthetic
dataset with size 50GB, 100GB, and 150GB. We generate
samples of these three collections with the same parameters
and the fixed block size (i.e., 128MB). Then we run Q1–Q6 ,
both through Parrot and baseline. As shown in Fig. 6, the
time cost for baseline increases with the data size increases
(e.g., 100GB 452s vs. 150GB 766s for Q1) since it needs to
calculate on the entire dataset. We also find that the data size
has a limited effect on the time cost of the first acceptable
result (1% error bound) by Parrot (Fig. 6) and the confidence
interval of Parrot converges quickly (Fig. 7), because Parrot
mainly relies on a sufficient number of documents in the
sample to be processed. Therefore, Parrot can provide a good
and stable performance on large text collections.

5.2.5 Effect of Block Size

In this experiment, we evaluate the effect of different
block sizes on the 100GB synthetic dataset. We con-
struct three groups of samples under the same parameters
except for the block size—64 MB, 128 MB, and 256MB,
respectively. We run Q1 by Parrot on the three groups
of samples and record the time cost of the first estimate
result, the average updating interval of result, and the pro-
cessed data within 100 seconds. We use b64 , b128 , b256 to

17Parrot: A Progressive Analysis System on Large Text Collections

1 3

represent the block sizes with 64MB, 128MB, and 256MB
respectively. Fig. 8a shows that smaller the block size,
the shorter the latency of the first estimate result will
be (e.g., b64 11.7s vs. b128 15.4s). Figure 8b shows that
the increment of block size cause longer result updating
interval (e.g., b64 0.558s vs. b128 0.759s). That’s because
smaller block size has less I/O and CPU cost for process-
ing each single block. Figure 8c shows that smaller block
size results in less data being processed within the same
time (e.g., b64 9.3GB vs. b128 13.1GB) since smaller block
size leads to more shuffle overhead. Therefore, it is a
trade-off between first-result latency, updating interval
and query accuracy.

6 Related Work

6.1 Interactive Exploration on Text

For structured data, lots of previous works attempt to speed
up query execution through AQP (Approximate Query Pro-
cessing) technique [2, 9, 23], which aims to find an approxi-
mate answer by samples [28] as close as to the exact answer
efficiently. While limited by response time and computing
resources, the before-mentioned AQP systems only return
a single approximate result. However, there is an increas-
ing need for interactive human-driven exploratory analy-
sis, whose desired accuracy cannot be known a priori and
change dynamically based on unquantifiable factors [29].
For semi-structured and unstructured data, the state-of-the-
art solutions are based on the content management system or
the cube structure, such as ElasticSearch [1] and Text Cube
[19]. ElasticSearch supports simple queries with key-value
based filtering as well as full-text searching for fuzzy match-
ing over the entire dataset. But it doesn’t have good support
for ad-hoc queries of term frequency on a subset. Text Cube
uses techniques to pre-aggregate data and gives the user the
possibility to make semantic navigation in the data dimen-
sion but requires extensive preprocessing and suffers from
the curse of dimensionality.

6.2 Error Estimation

To make approximate answers useful, lots of error estima-
tion techniques have been proposed—the earliest being
closed-form estimates based on either the central limit
theorem (CLT) [26] or large deviation inequalities such as
Hoeffding bounds [12]. These techniques either compute an
error bound much wider than the real which lost guidance to
users or require data to follow the normal distribution while
it’s not suitable for natural languages. Another estimation
technique, bootstrap [23, 30], can be applied to arbitrary
queries. However, before bootstrap techniques have poor

performance to apply in our progressive execution model
due to lots of duplicate computation.

7 Conclusion and Future Work

In this paper, we propose a new query formulation by
extending SQL grammar with UDF for term frequency cal-
culation on text data. We apply AQP techniques to return
an approximate result within a short time. We present a
sample-based progressive processing model and progres-
sive bootstrap to continuously refine the approximate result.
We implement these methods in the system called Parrot.
Experiment results show that Parrot is about 2.4×–19.7×
faster than the blocking fashion for the first acceptable result
and can provide a smooth trade-off between accuracy and
latency. Meanwhile, the quantified error bound covers the
accurate result well.

For future work, we will support more text analysis meth-
ods (e.g., LDA) and try to reduce the storage cost of the
pre-computed samples. In addition, we will introduce the
machine learning to Parrot. For example, we may train a
machine learning model that represents the pre-computed
samples to accelerate the query execution.

Acknowledgements This work is supported by the National Key R&D
Program of China (Nos. 2018YFB1004404 and 2018YFB1402600),
the NSFC (Nos. 61732004 and 61802066) and the Shanghai Sailing
Program (No. 18YF1401300).

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

References

 1. 7.4.2, E.S. (2019). https ://www.elast ic.co
 2. Acharya S, Gibbons PB, Poosala V, Ramaswamy S (1999) The

aqua approximate query answering system. In: Delis A, Faloutsos
C, Ghandeharizadeh S (eds) SIGMOD 1999, Proceedings ACM
SIGMOD international conference on management of data, June

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.elastic.co

18 Y. Zhang et al.

1 3

1–3, Philadelphia, Pennsylvania, USA, ACM Press, pp 574–576
(1999). https ://doi.org/10.1145/30418 2.30458 1

 3. Agarwal S, Milner H, Kleiner A, Talwalkar A, Jordan MI, Mad-
den S, Mozafari B, Stoica I (2014) Knowing when you’re wrong:
building fast and reliable approximate query processing systems.
In: Dyreson CE, Li F, Özsu MT (eds) International conference on
management of data, SIGMOD 2014, Snowbird, UT, USA, June
22–27, ACM, pp 481–492 (2014). https ://doi.org/10.1145/25885
55.25936 67

 4. Agarwal S, Mozafari B, Panda A, Milner H, Madden S, Stoica
I (2013) Blinkdb: queries with bounded errors and bounded
response times on very large data. In: Hanzálek Z, Härtig H,
Castro M, Kaashoek MF (eds) Eighth Eurosys conference 2013,
EuroSys ’13, Prague, Czech Republic, April 14–17, ACM, pp.
29–42 (2013). https ://doi.org/10.1145/24653 51.24653 55

 5. Bouakkaz M, Ouinten Y, Loudcher S, Strekalova Y (2017)
Textual aggregation approaches in OLAP context: a survey.
Int J Inf Manag 37(6):684–692. https ://doi.org/10.1016/j.ijinf
omgt.2017.06.005

 6. Corral A, Boleda G, Ferrer-i-Cancho R (2014) Zipf’s law for
word frequencies: word forms versus lemmas in long texts. CoRR
abs/1407.8322 (2014). arXiv : org/abs/1407.8322

 7. Dimitriadou K, Papaemmanouil O, Diao Y (2014) Interactive data
exploration based on user relevance feedback. In: Workshops pro-
ceedings of the 30th international conference on data engineering
workshops, ICDE 2014, Chicago, IL, USA, March 31–April 4,
2014, IEEE Computer Society, pp 292–295 (2014). https ://doi.
org/10.1109/ICDEW .2014.68183 43

 8. Efron B (1992) Bootstrap methods: another look at the jackknife.
In: Breakthroughs in statistics, Springer, pp 569–593

 9. Galakatos A, Crotty A, Zgraggen E, Binnig C, Kraska T (2017)
Revisiting reuse for approximate query processing. PVLDB
10(10):1142–1153. https ://doi.org/10.14778 /31154 04.31154 18.
http://www.vldb.org/pvldb /vol10 /p1142 -galak atos.pdf

 10. Gray J, Chaudhuri S, Bosworth A, Layman A, Reichart D, Ven-
katrao M, Pellow F, Pirahesh H (2007) Data cube: a relational
aggregation operator generalizing group-by, cross-tab, and sub-
totals. CoRR abs/cs/0701155. arXiv :org/abs/cs/07011 55

 11. Griffin T, Libkin L (1995) Incremental maintenance of views with
duplicates. In: Carey MJ, Schneider DA (eds) Proceedings of the
1995 ACM SIGMOD international conference on management of
data, San Jose, California, USA, May 22–25, 1995, ACM Press,
pp 328–339. https ://doi.org/10.1145/22378 4.22384 9

 12. Haas PJ, Haas PJ (1996) Hoeffding inequalities for join-selectivity
estimation and online aggregation. IBM

 13. Hellerstein JM, Haas PJ, Wang HJ (1997) Online aggregation.
In: Peckham J (ed) SIGMOD 1997, Proceedings ACM SIGMOD
international conference on management of data, May 13–15,
1997, Tucson, Arizona, USA, ACM Press, pp. 171–182. https ://
doi.org/10.1145/25326 0.25329 1

 14. Idreos S, Kersten ML, Manegold S (2007) Database cracking. In:
CIDR 2007, Third biennial conference on innovative data systems
research, Asilomar, CA, USA, January 7–10, 2007, Online Pro-
ceedings, pp 68–78. www.cidrd b.org. http://cidrd b.org/cidr2 007/
paper s/cidr0 7p07.pdf

 15. Jain AK, Dubes RC, Chen C (1987) Bootstrap techniques for error
estimation. IEEE Trans Pattern Anal Mach Intell 9(5):628–633.
https ://doi.org/10.1109/TPAMI .1987.47679 57

 16. Kleiner A, Talwalkar A, Sarkar P, Jordan MI (2012) The big data
bootstrap. In: Proceedings of the 29th international conference on
machine learning, ICML 2012, Edinburgh, Scotland, UK, June
26–July 1, 2012. icml.cc/Omnipress. http://icml.cc/2012/paper
s/861.pdf

 17. Koch C, Ahmad Y, Kennedy O, Nikolic M, Nötzli A, Lupei D,
Shaikhha A (2014) Dbtoaster: higher-order delta processing for

dynamic, frequently fresh views. VLDB J 23(2):253–278. https
://doi.org/10.1007/s0077 8-013-0348-4

 18. Li K, Li G (2018) Approximate query processing: What is new
and where to go? A survey on approximate query processing.
Data Sci Eng 3(4):379–397. https ://doi.org/10.1007/s4101
9-018-0074-4

 19. Lin CX, Ding B, Han J, Zhu F, Zhao B (2008) Text cube: com-
puting IR measures for multidimensional text database analysis.
In: Proceedings of the 8th IEEE international conference on data
mining (ICDM 2008), December 15–19, 2008, Pisa, Italy, IEEE
Computer Society, pp 905–910 (2008). https ://doi.org/10.1109/
ICDM.2008.135

 20. Lins LD, Klosowski JT, Scheidegger CE (2013) Nanocubes for
real-time exploration of spatiotemporal datasets. IEEE Trans
Vis Comput Graph 19(12):2456–2465. https ://doi.org/10.1109/
TVCG.2013.179

 21. Liu Z, Jiang B, Heer J (2013) imMens: real-time visual query-
ing of big data. Comput Graph Forum 32(3):421–430. https ://doi.
org/10.1111/cgf.12129

 22. Palpanas T, Sidle R, Cochrane R, Pirahesh H (2002) Incremental
maintenance for non-distributive aggregate functions. In: Proceed-
ings of 28th international conference on very large data bases,
VLDB 2002, Hong Kong, August 20–23, 2002, Morgan Kauf-
mann, pp 802–813. https ://doi.org/10.1016/B978-15586 0869-
6/50076 -7. http://www.vldb.org/conf/2002/S22P0 4.pdf

 23. Park Y, Mozafari B, Sorenson J, Wang J (2018) Verdictdb: uni-
versalizing approximate query processing. In: Das G, Jermaine
CM, Bernstein PA (eds) Proceedings of the 2018 international
conference on management of data, SIGMOD conference 2018,
Houston, TX, USA, June 10–15, ACM, pp 1461–1476 (2018).
https ://doi.org/10.1145/31837 13.31969 05

 24. Parr T, Fisher K (2011) Ll(*): the foundation of the ANTLR
parser generator. In: Hall MW, Padua DA (eds) Proceedings of
the 32nd ACM SIGPLAN conference on programming language
design and implementation, PLDI 2011, San Jose, CA, USA, June
4–8, 2011, ACM, pp 425–436. https ://doi.org/10.1145/19934
98.19935 48

 25. Pol A, Jermaine C (2005) Relational confidence bounds are easy
with the bootstrap. In: Özcan F (ed) Proceedings of the ACM SIG-
MOD international conference on management of data, Baltimore,
Maryland, USA, June 14–16, 2005, ACM, pp 587–598. https ://
doi.org/10.1145/10661 57.10662 24

 26. Rice JA (2006) Mathematical statistics and data analysis. Cengage
Learning

 27. Rossi RJ (2018) Mathematical statistics: an introduction to likeli-
hood based inference. Wiley, New York

 28. Wu Z, Jing Y, He Z, Guo C, Wang XS (2019) Polytope: a flexible
sampling system for answering exploratory queries. World Wide
Web, pp 1–22

 29. Zeng K, Agarwal S, Stoica I (2016) iolap: managing uncertainty
for efficient incremental OLAP. In: Özcan F, Koutrika G, Mad-
den S (eds) Proceedings of the 2016 international conference on
management of data, SIGMOD Conference 2016, San Francisco,
CA, USA, June 26–July 01, ACM, pp 1347–1361 (2016). https ://
doi.org/10.1145/28829 03.29152 40

 30. Zeng K, Gao S, Mozafari B, Zaniolo C (2014) The analytical
bootstrap: a new method for fast error estimation in approximate
query processing. In: Dyreson CE, Li F, Özsu MT (eds) Interna-
tional conference on management of data, SIGMOD 2014, Snow-
bird, UT, USA, June 22–27, 2014, ACM, pp 277–288. https ://doi.
org/10.1145/25885 55.25885 79

 31. Zgraggen E, Galakatos A, Crotty A, Fekete J, Kraska T (2017)
How progressive visualizations affect exploratory analysis.
IEEE Trans Vis Comput Graph 23(8):1977–1987. https ://doi.
org/10.1109/TVCG.2016.26077 14

https://doi.org/10.1145/304182.304581
https://doi.org/10.1145/2588555.2593667
https://doi.org/10.1145/2588555.2593667
https://doi.org/10.1145/2465351.2465355
https://doi.org/10.1016/j.ijinfomgt.2017.06.005
https://doi.org/10.1016/j.ijinfomgt.2017.06.005
http://arxiv.org/abs/org/abs/1407.8322
https://doi.org/10.1109/ICDEW.2014.6818343
https://doi.org/10.1109/ICDEW.2014.6818343
https://doi.org/10.14778/3115404.3115418
http://www.vldb.org/pvldb/vol10/p1142-galakatos.pdf
http://arxiv.org/abs/org/abs/cs/0701155
https://doi.org/10.1145/223784.223849
https://doi.org/10.1145/253260.253291
https://doi.org/10.1145/253260.253291
http://www.cidrdb.org
http://cidrdb.org/cidr2007/papers/cidr07p07.pdf
http://cidrdb.org/cidr2007/papers/cidr07p07.pdf
https://doi.org/10.1109/TPAMI.1987.4767957
http://icml.cc/2012/papers/861.pdf
http://icml.cc/2012/papers/861.pdf
https://doi.org/10.1007/s00778-013-0348-4
https://doi.org/10.1007/s00778-013-0348-4
https://doi.org/10.1007/s41019-018-0074-4
https://doi.org/10.1007/s41019-018-0074-4
https://doi.org/10.1109/ICDM.2008.135
https://doi.org/10.1109/ICDM.2008.135
https://doi.org/10.1109/TVCG.2013.179
https://doi.org/10.1109/TVCG.2013.179
https://doi.org/10.1111/cgf.12129
https://doi.org/10.1111/cgf.12129
https://doi.org/10.1016/B978-155860869-6/50076-7
https://doi.org/10.1016/B978-155860869-6/50076-7
http://www.vldb.org/conf/2002/S22P04.pdf
https://doi.org/10.1145/3183713.3196905
https://doi.org/10.1145/1993498.1993548
https://doi.org/10.1145/1993498.1993548
https://doi.org/10.1145/1066157.1066224
https://doi.org/10.1145/1066157.1066224
https://doi.org/10.1145/2882903.2915240
https://doi.org/10.1145/2882903.2915240
https://doi.org/10.1145/2588555.2588579
https://doi.org/10.1145/2588555.2588579
https://doi.org/10.1109/TVCG.2016.2607714
https://doi.org/10.1109/TVCG.2016.2607714

19Parrot: A Progressive Analysis System on Large Text Collections

1 3

 32. Zhang S, Sun C, He Z (2016) Listmerge: accelerating top-k aggre-
gation queries over large number of lists. In: Navathe SB, Wu W,
Shekhar S, Du X, Wang XS, Xiong S (eds) Database systems for
advanced applications—21st international conference, DASFAA

2016, Dallas, TX, USA, April 16–19, 2016, Proceedings, Part
II, lecture notes in computer science, vol 9643, Springer, pp
67–81.https ://doi.org/10.1007/978-3-319-32049 -6_5

https://doi.org/10.1007/978-3-319-32049-6_5

	Parrot: A Progressive Analysis System on Large Text Collections
	Abstract
	1 Introduction
	2 Overview
	2.1 System Architecture
	2.2 Query Formulation
	2.3 Quantifying Result Error

	3 Sample-Based Progressive Processing
	3.1 Sample Storage
	3.2 Offline Sample Preparation
	3.3 SQL Parser
	3.4 Online Sample Planning
	3.4.1 Candidate Plans
	3.4.2 Selecting a Plan

	3.5 Query Execution Model
	3.6 Data Appends
	3.6.1 Uniform Sample Set
	3.6.2 Stratified Sample Set
	3.6.3 Tail Sample Set

	4 Error Estimation
	4.1 Traditional Bootstrap and Variational Subsampling Bootstrap
	4.2 Progressive Bootstrap
	4.3 Progressive Bootstrap with Rearrangement

	5 Experiment
	5.1 Experiment Setup
	5.1.1 Performance Metrics
	5.1.2 Synthetic Dataset
	5.1.3 Real-World Dataset

	5.2 Experiment Results
	5.2.1 Performance on Synthetic Dataset
	5.2.2 Performance on Rreal-World Dataset
	5.2.3 Performance of Bootstrap
	5.2.4 Effect of Data Size
	5.2.5 Effect of Block Size

	6 Related Work
	6.1 Interactive Exploration on Text
	6.2 Error Estimation

	7 Conclusion and Future Work
	Acknowledgements
	References

