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Abstract
The existing Key Aggregate Searchable Encryption (KASE) schemes allow searches on the encrypted dataset using a single 
query trapdoor, with a feature to delegate the search rights of multiple files using a constant size key. However, the operations 
required to generate the ciphertext and decrypt it in these schemes incur higher computational costs, due to the computation-
ally expensive pairing operations in encryption/decryption. This makes the use of such schemes in resource-constrained 
devices, such as Radio Frequency Identification Devices, Wireless Sensor Network nodes, Internet of Things nodes, infea-
sible. Motivated with the goal to reduce the computational cost, in this paper, we propose a Revocable Online/Offline KASE 
(R-OO-KASE) scheme, based on the idea of splitting the encryption/decryption operations into two distinct phases: online 
and offline. The offline phase computes the majority of costly operations when the device is on an electrical power source. 
The online phase generates final output with the minimal computational cost when the message (or ciphertext) and keywords 
become known. In addition, the proposed scheme R-OO-KASE also offers multi-keyword search capability and allows the 
data owners to revoke the delegated rights at any point in time, the two features are not supported in the existing schemes. 
The security analysis and empirical evaluations show that the proposed scheme is efficient to use in resource-constrained 
devices and provably secure as compared to the existing KASE schemes.

Keywords  Searchable encryption · Data sharing · Data retrieval · Cloud server · Multi-keyword search · Online/offline 
encryption · Revocation

Mathematics Subject Classification  94A60 · 68P25

1  Introduction

Cloud computing services are often resorted to, with an 
aim to reduce the overhead of data management and data 
processing at the user side. However, when the data are out-
sourced and stored on a remote cloud, it is often desired to 
encrypt the same in order to protect the data from unauthor-
ized access. One of the issues associated with encryption 
is that the accessibility and usability of encrypted data are 
definitely lowered since the latter would require the decryp-
tion of data before being put to use. There are two distinct 
threads of research pursued in the literature with respect 
to addressing this issue of improving the usability of the 

encrypted data viz. (1) carrying out arbitrary computations 
on the encrypted data using homomorphic encryption [8] 
or (2) devising operation by which the encrypted data can, 
at least, be searched for the desired keyword value, to be 
present or not. Our focus in this paper is on the latter, i.e., on 
Searchable Encryption (SE) [28]. The SE schemes, typically 
consist of three distinct entities with distinct roles as shown 
in Fig. 1. An SE cryptosystem allows a server to search 
given query keyword(s) on encrypted data on behalf of the 
user without learning information about the plaintext data.

However, secure sharing of the search rights for the 
selected dataset is not an easy task for the data owner, since 
it is often desired to encrypt different document sets using 
different encryption keys, for confidentiality and privacy 
considerations. Therefore, the sharing of search rights of 
the dataset using the existing SE methods [2, 5, 9, 28–30] 
require efficient management and distribution of more than 
one key. Specifically, to delegate the search and access rights 
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over set S of files encrypted under different keys, a data 
owner is required to share |S| number of keys. This solution 
is not practically deployable for two major reasons. Firstly, 
the number of secret keys grows linearly with the number of 
files, and it incurs storage as well as communication over-
head of O(|S|) . Therefore, a data owner is required to store, 
manage and distribute a large number of keys, proportional 
to the number of shared files. In addition, an authorized 
user is required to generate and submit multiple trapdoors 
in order to search through all of the shared data. Secondly, 
if a key assigned to a user needs to be revoked later, then 
the data owner is required to re-encrypt the corresponding 
subset of data and distribute a new set of keys to the author-
ized users. This makes the scheme inefficient and difficult 
to scale.

The most efficient proposition pertaining to our problem 
statement, to the best of our knowledge, is made in [4]. Key-
Aggregate Searchable Encryption (KASE) [4] combines 
the searchable encryption scheme with group data shar-
ing. KASE [4] is proposed to reduce the number of keys 
required to be shared for the delegation of search rights over 
the set of data. KASE inherits the property of Key Aggre-
gate Encryption (KAE) [3], i.e., to delegate search rights on 
dataset S, the data owner requires to share a single aggregate 
key with a user. In addition, a user is required to submit a 
single aggregate trapdoor (instead of a group of trapdoors) 
to the cloud server for searching a keyword over |S| number 
of shared files. Despite the advantage of the secure delega-
tion of search rights using a key of constant size, the exist-
ing KASE schemes [4, 13, 18–24, 31, 32, 34, 35] still face 

issues when deploying them into real-time scenarios, as we 
discuss further, here.

1.1 � Motivation

In a practical data sharing system based on cloud storage, the 
user can upload or retrieve the data from a different possible 
devices such as Personal Computer (PC), mobile device, 
sensor nodes (especially in the Internet of Things (IoT) 
applications) [4]. The constant size of the aggregate key 
makes the KASE scheme more suitable for devices having 
limited storage resources, such as smart cards, IoT sensors. 
However, the existing KASE schemes [4, 13, 18–21, 31] use 
two pairing operations to generate a keyword ciphertext for 
each keyword to be attached with the document. Similarly, 
for decryption of ciphertext pairing operations are required. 
The authors of [25] show that for different security levels 
(i.e., for 80 bits, 112 bits and 128 bits) and prime order 
groups, the pairing operation (on random group elements) 
requires significantly more time and power resource as com-
pared to the group exponentiation (of a random group ele-
ment with a random exponent) and multiplication operation. 
Therefore, the limited power resource of sensor nodes in IoT 
deployment does not support the expensive computational 
cost of the existing KASE schemes [4, 13, 18–21, 31]. The 
expensive computational cost of encryption and decryption 
phases make the existing KASE [4, 13, 18–21, 31] schemes 
infeasible to use in power-constrained devices. Therefore, 
the KASE schemes [22, 34, 35] propose different solutions 
to generate keyword ciphertext without using expensive 
pairing operations and make the schemes practical for the 

Fig. 1   The system model of SE. Steps: (1) The data owner uploads a 
ciphertext (i.e., encrypted message + related keywords list) onto the 
storage server. (2) The data owner shares a searchable secret key with 
the user. (3) The data user constructs a searchable trapdoor using a 

secret key. The data user sends a trapdoor to the server. (4) The search 
server applies a trapdoor on the ciphertext. The server returns the 
search results to the query requesting user
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resource-limited environment. However, if the data owner 
wants to attach a set of keywords ������⃗KW = {KW1,… ,KWq} 
with a document docl , then the encryption algorithm in the 
existing KASE [4, 13, 18–22, 24, 31, 32, 34, 35] schemes 
generate |������⃗KW| different keyword ciphertexts. Formally, to 
attach a set of keywords ������⃗KW with a document docl , the stor-
age overhead of resultant ciphertext Cl is O(|������⃗KW|) , with 
a communication cost of O(|������⃗KW|) , as a user has to store 
|������⃗KW| number of keyword ciphertexts to the cloud server 
[36]. Therefore, if the data owner frequently uploads data-
set from the power-constrained device, the required com-
putational, communication overhead and its impact on 
power-constrained device negate the advantages of KASE 
[4, 13, 18–22, 24, 31, 32, 34, 35]. Hence, devising the KASE 
scheme to work on resource-limited devices, with the battery 
as the only source of power is non-trivial.

In addition, the existing KASE schemes [4, 13, 18–22, 
24, 31, 32, 34] do not support revocation of delegated rights. 
The revocation refers to the process of taking away the 
delegated privileges. As the access of users in the system 
changes dynamically, and it requires KASE to support user 
revocation securely while not affecting the legitimate users’ 
access to the shared files. If the receiver of delegated rights 
leaves the system, or if the data is used differently than the 
data owner agreed, the delegated rights need to be revoked 
by the data owner. Therefore, Zhou et al. [35] propose the 
solution for revocable KASE. However, the KASE scheme 
proposed in [35] requires the data owner to generate and dis-
tribute the new set of keys to the non-revoked users in each 
time period. Specifically, the data owner maintains a list of 
authorized users. The authorized users registered in the data 
owner’s list can receive a new pair of authorized keys from 
the data owner. Therefore, it consumes more overhead at the 
data owner side to generate as well as distribute keys peri-
odically to each authorized user of the system. This paper 
also aims to design revocable KASE scheme which will be 
efficient for resource-limited environment.

There are different revocation schemes proposed in the 
literature viz. strong and weak revocations, cascading and 
non-cascading revocations, rule-based, role-based and user-
based revocations, direct and indirect revocations (for fur-
ther details see [33]). However, in the previous revocation 
schemes, if the shared documents are modified or if the del-
egated rights for the shared documents needs to be revoked, 
the data owner is required to outsource the list of revoked 
users (or the list of revocation rule or revocation policy) and 
the corresponding revoked document id (docID) set. How-
ever, the idea of uploading the revocation list in the plain 
form on the cloud server can trigger security threats (one 
can change docID or revoked user’s identity in the list). We 
cannot ignore the user’s privacy and security of the revoca-
tion list in the public cloud storage system.

Furthermore, the existing KASE schemes only support a 
single keyword search. To perform a conjunctive keyword 
search using the existing KASE schemes [4, 13, 18–22, 31, 
32, 34, 35], the user requires to submit different trapdoors for 
each individual keyword to the server. The server performs 
a search for each of the keywords separately and returns the 
intersection of all the results. This approach leaks informa-
tion about which documents contain each individual key-
word and may allow the server to learn information about 
the documents and it’s related keywords. Specifically, for 
searching a set of keywords ��⃗Q = {Q1,… ,Qp} over shared 
dataset, the existing KASE schemes [4, 13, 18–22, 31, 32, 
34, 35] require |��⃗Q| = p number of trapdoors. This results in 
a communication cost of O(|��⃗Q|) and a computational cost 
of O(|��⃗Q|) at both the cloud server and user (query genera-
tor) sides. Therefore, to improve the system usability, query 
expressiveness and system performance (in terms of accu-
racy, communication and computational cost), KASE must 
support multiple keywords search using a single query 
trapdoor.

The issues in the existing KASE schemes makes it non-
trivial to design a KASE scheme that meets the following 
requirements viz. : revocation of delegated rights, multi-
keyword search using a single trapdoor and minimal online 
computational overhead with minimal energy usage at both 
the data owner and the users’ sides simultaneously.

1.2 � Our Contributions

The contributions of this paper are summarized as follows:

•	 Energy Efficient KASE Utilizing the notion of KASE, we 
design a KASE scheme that is suitable for resource-con-
strained devices, as we split costly operations of encryp-
tion and decryption into two phases: online and offline. 
In the offline phase, the user performs expensive pairing 
and exponentiation operations required in the encryption/
decryption. In the online phase, i.e., when the device is 
moving on (not connected to power source), the user can 
generate the final output with the minimal computational 
cost. Additionally, instead of using expensive pairing 
operation, we use exponentiation operation to generate 
the keyword ciphertext.

•	 Multi-Keyword Search We enhance the existing KASE 
schemes and improve their query expressiveness by sup-
porting multi-keyword searches over the shared dataset 
using a trapdoor of constant size.

•	 Revocation With the proposed scheme, we offer the 
revocation of delegated rights, without affecting other 
users in the system. The user is not allowed to search the 
encrypted data by the old trapdoor computed from the 
old secret key if his search privileges are revoked. The 
proposed scheme supports fine-grained revocation of the 
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delegated rights on document level, instead of coarse-
grained all-or-nothing access.

•	 Improve Query Performance The proposed KASE 
scheme allows searching over the shared dataset S using 
a single trapdoor Tr that a query requester submits to the 
cloud server. The existing KASE schemes [4, 13, 18–21, 
31, 32, 34, 35] require |S| number of trapdoors to search 
over shared dataset S, as the existing KASE schemes 
generate Trl for each l ∈ S using the given trapdoor Tr. 
Here, Trl is the adjusted trapdoor that is used to search 
over document docl in the KASE schemes [4, 13, 18–21, 
31, 32, 34, 35]. (Detailed comparison of performance 
analysis is done in Sect. 7)

•	 Efficiency In the proposed R-OO-KASE scheme, the size 
of the aggregate key is constant, i.e., it consists of sin-
gle-group elements irrespective of the number of shared 
documents. Similarly, the query trapdoor and keyword 
ciphertext are also of constant size irrespective of the 
number of keywords.

To the best of our knowledge, ours is the first scheme which 
offers all the above-mentioned features all together.

1.3 � Outline of the Paper

The rest of the paper is organized as follows: First, we 
review some background knowledge and related work in 
Sect. 2. The preliminaries are given in Sect. 3. The problem 
statement and overview of the proposed scheme, frame-
work, the system model and the security model are defined 
in Sect. 4. We give a concrete construction of the proposed 
R-OO-KASE scheme in Sect. 5. The security analysis of 
the R-OO-KASE scheme is discussed in Sect. 6. The theo-
retical and empirical analysis is made in Sects. 7 and  8, 
respectively. Conclusion and future extensions are provided 
in Sect. 9. References are at the end.

2 � Related Work

Key Aggregate Encryption (KAE) [3], derives its roots from 
the seminal work on broadcast encryption by Boneh et.al. 
[1]. KAE may essentially be considered as a dual notion of 
broadcast encryption [1]. In broadcast encryption, a single 
ciphertext is broadcast among multiple users, each of whom 
may decrypt the same using their own individual private 
keys. In KAE, a single aggregate key is distributed among 
multiple users in order to delegate access rights on the data-
set. For broadcast encryption, the focus is on having shorter 
ciphertexts and low overhead individual decryption keys, 
while in KAE, the focus is on having short ciphertexts and 
low overhead aggregate keys.

In KAE, ciphertexts are associated with an index i, given 
by data owner at the time of encryption. Therefore, if data 
owner wants to delegate access rights of set S (set of cipher-
texts’ indices) of ciphertexts, then he can generate a single 
key kagg of constant size by aggregating secret keys of all the 
ciphertexts in the set S. The user can decrypt any ciphertext 
using a single aggregate key if the index of ciphertext is 
within set S.

Further, to retrieve selected data from outsourced dataset 
and simultaneously delegate the search rights of selected 
dataset using a single aggregate key, the first solution for 
KASE is proposed in [4]. In a KASE scheme, the data owner 
requires sharing a single aggregate key to a user for del-
egating search rights over a set of documents and the user 
requires submitting a single trapdoor for searching over the 
shared dataset.

The CLW16 scheme proposed in [4] is the first solu-
tion for KASE. However, the formal security proof against 
keyword guessing attack (to prove trapdoor privacy) and 
chosen keyword attack (to prove keyword ciphertext pri-
vacy) are not given for the CLW16 scheme. Moreover, the 
CLW16 scheme is insecure against cross-pairing attack and 
do not provide trapdoor privacy, as discussed in [14]. Zhou 
et al. in [34] show the attack on CLW16 scheme, in which 
the attacker can guess the authorized user’s key with the 
help of insider adversary. Further, the CLW16 scheme is 
not scalable because the system parameters in the Cui’s 
scheme [4] are strictly bounded by the value of n (number 
of documents belong to the data owner). Specifically, if the 
data owner generates ciphertexts beyond predefined limit 
n, he must request additional key pairs in such case. If the 
data owner wants to delegate the search rights of cipher-
texts { C1,Cn,Cn+1 }, then he is required to share two differ-
ent aggregate keys, i.e., kagg1 for { C1,Cn } and kagg2 for Cn+1 . 
Therefore, the predefined bound on the maximum number 
of possible ciphertext classes at the time of system setup 
makes the CLW16 scheme impractical for real-time use. In 
the CLW16 scheme, when a user submits aggregate trap-
door Tr to the cloud server to carry out searching over a set 
S of files, the server first requires to run Adjust algorithm. 
The adjust algorithm generates trapdoor Trl for each index 
l ∈ S using submitted trapdoor Tr before searching. Here, Trl 
is the actual trapdoor that is used to search over document 
docl . This trapdoor transformation adds additional compu-
tational cost at server side before searching over dataset S. 
The CLW16 scheme does not support searching over multi-
owner data using a single key of constant size. Formally, in 
a multi-owner setting, a user can have multiple aggregate 
keys {kagg1 ,… , kagg�} received from different data owners. 
Therefore, to search across multi-owner dataset, the CLW16 
scheme requires user to submit {Tr1,… , Tr�} different trap-
doors to the cloud server. This results in a system with O(�) 
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communication overhead on the user side and O(�) storage 
as well as computational overhead on the server side.

The TZPCZJ16 scheme proposed in [19] provides the 
solution to search over multi-owners’ data using a single 
trapdoor and also allows verification of search result using 
an aggregate key. However, TZPCZJ16 scheme requires the 
auxiliary values having size in linear with the number of 
data owners while searching over multi-owner data. Further, 
the formal security proof against keyword guessing attack 
and chosen keyword attack are not given for the TZPCZJ16 
scheme. The TZPCZJ16 scheme follows the same construc-
tion as the CLW16 scheme. Therefore, the cross-pairing 
attack is possible on the TZPCZJ16 scheme as well.

The TZCZJ18 scheme proposed in [18] also provides the 
solution to search over multi-owners’ data using a single 
trapdoor. However, TZCZJ18 scheme requires the auxil-
iary values having size in linear with the number of data 
owners while searching over multi-owner data. Further, 
the TZCZJ18 scheme is not scalable and requires trapdoor 
transformation at server side before searching on requested 
dataset. Additionally, if the data owner wants to attach a 
set of keywords ������⃗KW = {KW1,…KWq} with a document 
docl , then the computational cost of the encryption algo-
rithm in the existing KASE [4, 18, 19] schemes increase 
linearly with the number of keywords attached with the 
ciphertext. Formally, to attach a set of keywords ������⃗KW  with a 
document docl , the storage overhead of resultant ciphertext 
Cl is O(|������⃗KW|) , with a communication cost of O(|������⃗KW|) . The 
user has to store |������⃗KW| number of keyword ciphertexts to the 
cloud server [36]. The expensive pairing operations used 
to generate a keyword ciphertext in the existing KASE [4, 
18, 19] schemes drain more energy and makes the schemes 
infeasible to use in power-constrained devices.

The ZZDWYG18 scheme proposed in [34] consider 
Industrial IoT (IIoT) application and propose KASE scheme 
in the file-centric framework for the IIoT application. The 
sensors in IIoT deployment usually have extremely limited 
hardware resource and do not support computation cost 
of pairing operations. Therefore, Zhou et al. [34] propose 
KASE scheme without using pairing computation operations 
in the encryption phase. However, the KASE scheme pro-
posed in [34] suffers from low performance. In this scheme, 
each user’s public key has 3n + 1 elements and secret has 
n + 3 elements. Here, n is the maximum number of docu-
ments held by a data owner.

The ZZWYL18 scheme proposed in [35] provides solu-
tion for fine-grained right revocation at document level in 
IoT environment. The ZZWYL18 scheme prove the key-
word confidentiality, query privacy and forward secrecy. The 
ZZWYL18 scheme generates keyword ciphertext without 
using expensive pairing operations and makes the scheme 
practical for resource limited environment.

The PJ18 scheme proposed in [22] supports search over 
multi-owners’ data using a single trapdoor of constant size. 
The PJ18 scheme also overcomes security issues of the exist-
ing KASE schemes [4, 18, 19] and prove the security against 
cross-pairing attack. Furthermore, the PJ18 scheme is scal-
able in such a way that the value n is kept variable and an 
aggregate key is independent of the value of n. The PJ18 
scheme allows searching over the shared dataset S using 
a single trapdoor Tr that a query requester submits to the 
cloud server. The scheme does not use Adjust algorithm for 
trapdoor transformation at the server side. The PJ18 scheme 
generates keyword ciphertext without using expensive pair-
ing operations and makes the scheme practical for resource 
limited environment. The PJ18 scheme also discuss the sce-
nario of federated cloud and shows how to use their scheme 
for delegation of search rights if data are stored on the feder-
ated cloud.

The ZY18 scheme proposed in [21] provides solution for 
verification of search result using an aggregate key and user 
authentication. The cloud server can verify the legality of 
data user by authenticating whether data user’s identity is 
contained in the authorized users’ identity set. However, the 
solution proposed in [21] is not secure against impersonation 
attack. The ZY18 scheme does not give any formal proof to 
prove the security of the scheme. The ZY18 scheme is not 
scalable as the system parameters are bounded by the value 
of n. Further, the usage of Adjust algorithm in the ZY18 
scheme increases server search time because of trapdoor 
transformation process. The ZY18 scheme uses two pair-
ing operations to generate a keyword ciphertext for each 
keyword to be attached with the document, which makes 
the scheme impractical to be used in resource constraint 
environment.

The ZTPCJ18 scheme proposed in [20] provides verifica-
tion of search result using an aggregate key and also allows 
search over multi-owner data using a single trapdoor of con-
stant size. However, the ZTPCJ18 is suffering from same 
limitation as TZPCZJ16 scheme. The ZTPCJ18 scheme 
requires the auxiliary values having size in linear with the 
number of data owners while searching over multi-owner 
data. Further, the formal security proof against keyword 
guessing attack and chosen keyword attack are not given for 
the ZTPCJ18 scheme.

Yao et al. propose the first lattice-based KASE scheme in 
[32]. The lattice-based KASE [32] scheme provides security 
against quantum computing attacks and potential efficiency. 
Padhya et al. [23] propose a revocable KASE scheme with 
Break-The-Glass access control. The KASE [23] scheme 
provides a mechanism that can handle emergency situa-
tions where no authorized user exists to perform (or to del-
egate) a time-critical task. The KASE scheme proposed in 
[24] supports the conjunctive range and sort query on the 
encrypted dataset and enhances the query expressiveness of 
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the existing KASE [4, 13, 18–22, 32, 34, 35] schemes. As 
compared to the previous solutions, the KASE [24] scheme 
supports multi-dimensional, multi-keyword searches on the 
encrypted dataset using a single trapdoor. Wang et al. pro-
pose the verifiable KASE scheme in [31].

To the best of our knowledge, none of the existing KASE 
schemes is practically applicable for resource-constrained 
environment.

3 � Preliminaries

In this section, we review some basic assumptions and cryp-
tology concepts that we use throughout the paper.

3.1 � Bilinear Map

A pairing is a bilinear map defined over elliptic curve sub-
groups. Let G1 and G2 be two multiplicative cyclic elliptic 
curve subgroups of the same prime order p. Let GT be a 
multiplicative group, also of order p with identity element 
1. A mapping e : G1 × G2 → GT is said to be a bilinear map 
if it satisfies the following properties: 

1.	 Bilinearity for all P1 ∈ G1,Q1 ∈ G2, u, v ∈ Z∗
p
 , we have 

e(Pu
1
,Qv

1
 ) = e(P1,Q1)uv.

2.	 Non-degeneracy if P and Q be the generators for G1 and 
G2 respectively, then e(P, Q) ≠ 1.

3.	 Computability there is an efficient algorithm to compute 
e(P1,Q1) for any P1 ∈ G1,Q1 ∈ G2.

3.2 � Computational Assumption

Definition 1  DDH assumption The DDH problem in 
group G of prime order p (according to the security param-
eter) is a problem for input of a tuple ( g, ga, gb, gc,R ) 
where, a, b, c ∈ Zp be chosen at random and g be a gen-
erator of G, then to decide whether R= gabc or not. An 
algorithm A has advantage � in solving DDH prob-
lem in G if AdvDDH(A):=|Pr[A(g, ga, gb, gc, gabc) = 0]− 
Pr[A(g, ga, gb, gc,R) = 0]| ≥ �(�) . We say that the DDH 
assumption holds in G if no Probabilistic Polynomial Time 
(PPT) algorithm has an advantage of at least � in solving the 
DDH problem in G.

3.3 � Notations

The list of notations used throughout the paper is given in 
Table 1.

4 � System Architecture and Security Model

In this section, we begin by discussing the overview of the 
proposed scheme. Then, we define the system model of the 
proposed R-OO-KASE scheme. We formally define the 
framework of the proposed scheme. Finally, we outline the 
game-based framework for formally proving the security of 
the proposed scheme.

4.1 � Problem Statement and Overview

For reducing the computation burden at both data owners 
and users’ side, several techniques for outsourcing computa-
tion of encryption and decryption operations are proposed 
in [10, 15–17, 37]. However, for outsourcing computa-
tions, the required communication cost is high, especially 

Table 1   Notations used in the proposed R-OO-KASE scheme

Term Meaning

� Security parameter
n Number of documents held by a data owner
B Bilinear map group system
SP System parameter
docl lth document
PubK Public parameters
pk Public key
msk Master secret key
l Index of document or file
S Subset S ⊆ {1,… , n} contains the indices of documents
KS Keyword space that involves m different keywords in the 

system
wi ith keyword
wi,j jth value of keyword wi from it’s Ni different possible values
��⃗Q Set of query keywords attached with the query trapdoor Tr

������⃗KW Set of keywords attached with the ciphertext C ���⃗KW

M Message or Plaintext
C Ciphertext
ICl Intermediate ciphertext of lth document
Cl
��⃗KW

Keyword ciphertext of lth document
ClM

Data ciphertext
ICli,j

Intermediate keyword ciphertext for wi,j keyword value
�l Public information related to ciphertext of lth document i.e., 

parameters C1 and C2

kagg Aggregate key
Tr Trapdoor used to search query keyword(s) within set ��⃗Q
R Search result
RLl Revocation list of lth document
Ul The set of revoked users’ identities for lth document
UQR Identity of query requester
� Multiplicative notation
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for resource-limited devices. Therefore, this paper aims to 
design a secure and efficient KASE scheme that allows the 
user to perform encryption and decryption operations on 
power-constrained devices.

In this paper, we propose a KASE scheme to reduce the 
computational overhead at both the data owners and users’ 
side, by splitting the encryption and decryption operations 
into two phases: online and offline, as shown in Fig. 2. The 
proposed scheme allows ciphertext preparation work done 
offline. Formally, in the proposed scheme, the resource-lim-
ited devices perform the expensive pairing and exponentia-
tion operations in offline mode (when devices are on electri-
cal power source), whereas performing the multiplication 
operations in online mode (when devices are deployed at 
real-time applications). In the proposed system, the offline 
phase will generate the intermediate ciphertext for each 
keyword in the system using the only public key. When the 
encryption algorithm later needs to encrypt a set ������⃗KW  of 

keywords, it selects keyword ciphertext for each KWi ∈
������⃗KW 

from the precomputed intermediate ciphertext and aggre-
gates it to generate a keyword ciphertext C ���⃗KW . The keyword 
ciphertext in the proposed scheme is having a constant size. 
The online encryption requires one multiplication in Zp for 
each keyword to be attached with the ciphertext instead of 
costly pairing operations. We remark that the work done in 
the offline phase is roughly equivalent to the work of the reg-
ular encryption algorithm in the existing KASE schemes [4, 
18–22, 34, 35]. Moreover, in the proposed KASE scheme, 
the communication cost of ciphertext is constant and inde-
pendent of number of keywords attached with the ciphertext. 
The constant communication cost of the ciphertext makes 
the proposed R-OO-KASE scheme practically applicable in 
the resource-constrained environment, with the battery as 
the only source of power. In a similar way, we reduce the 
computation overhead at the user side by precomputing the 

Fig. 2   The system model of online/offline KASE. Steps: (1) In the 
offline encryption phase, the data owner computes intermediate 
ciphertexts using the only public key. Most of the high computa-
tional cost operations (i.e., pairing, exponentiation) without know-
ing the message and keywords are done at this phase. (2) At the time, 
the data owner receives the message and it’s related keywords set for 
the encryption, the data owner selects one intermediate ciphertext 
and runs Online Encrypt() algorithm. The data owner generates a 
final ciphertext C for a given message and keywords set, with mini-
mal computation overhead. (3) The data owner sends the ciphertexts 
onto the storage server. (4) The data owner delegates search and 
access rights over the selected dataset by generating and sharing an 

aggregate key with other user(s). (5) Using an aggregate key, the data 
user can precompute the parameters that are required to decrypt the 
ciphertexts within a range of the shared dataset. (6) To search over 
the shared dataset, the data user generates a query trapdoor using 
an aggregate key and a set of query keywords. The data user sends 
the query trapdoor to the search server. (7) The server performs a 
search over stored encrypted data using a given query trapdoor. The 
server returns search results to the query requester. The user retrieves 
matching documents that are satisfying given the search query from 
the storage server. (8) In the online phase, the data user decrypts 
the ciphertexts using an aggregate key and precomputed parameters 
(which are generated in the offline phase)
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parameters required for decryption in the offline phase and 
keeping the online computation task very less. In the pro-
posed R-OO-KASE scheme, the online phase of the decryp-
tion requires three pairing operations to be done.

Another potential advantage of splitting work this way is 
that in some applications, the online and offline work can be 
performed on different devices. Hence, one might perform 
the offline tasks for several encryptions on a high-end server 
and store these intermediate ciphertexts on a sensor device 
such that the resource-constrained device is not required to 
perform full encryption.

The proposed scheme also allows the data owner to 
revoke delegated rights of selected users within set Ul over 
lth document, without affecting the users’ rights over the rest 
of the shared documents. The data owner generates the revo-
cation list RLl for lth document using his master-secret key 
msk and set of revoked users’ identities Ul . The cloud server 
checks the user’s authorization each time when he receives 
search and data access requests for any stored document. 
If the identity of the query requester UQR matches with the 
revocation list RLl , then the failure state is returned to the 
user, otherwise, the cloud server performs the search pro-
cess over lth document. Furthermore, the proposed scheme 
supports fine-grained revocation of the delegated rights on 
document level, instead of coarse-grained all-or-nothing 
access. Additionally, the data owner generates a revocation 
list using the master-secret key, and there is a very negligible 
probability that an adversary can get the master-secret key of 
the data-owner. Thus, any malicious user without having the 
master-secret key cannot modify or generate a new revoca-
tion list. The revocation in the proposed scheme does not 
affect the non-revoked users, as they do not require to update 
their corresponding delegated keys, which greatly reduces 
the expensive cost of key updates and the overhead of key 
delegate authority. The proposed scheme also preserves user 
privacy along with the revocation of delegated rights.

4.2 � Assumptions

The keyword space contains m different keywords, i.e., 
KS = {w1,w2,… ,wm} . Each keyword wi contains Ni pos-
sible values and wi,j represents the jth value of keyword 
wi . However, the number of keywords are not bounded, 
one can add new keywords after system initialization. Let 
we assume that there are total X users in the system and 
U = {U1,… ,UX} is a set of all users’ identities. Therefore, 
each cloud user can be uniquely identified by his assigned 
identity Uid ∈ U . Additionally, Ul ⊂ U represents the set of 
revoked users’ identities for lth document, where Uli

∈ Ul 
represents an identity of user whose delegated rights needs 
to be revoked over lth document. The revocation list Ul may 
be empty, which means there is no user whose delegated 
rights needs to be revoked over lth document.

4.3 � System Model

The proposed R-OO-KASE scheme mainly consists of four 
parties: (i) the trusted authority, (ii) the cloud server, (iii) the 
data owner and (iv) the users (Fig. 3).

The interactions among involved parties in the proposed 
R-OO-KASE scheme are as follows: 

	 (1)	 The data owner who wants to outsource his data 
{ doc1,… , docn } on the cloud server and share mul-
tiple files with others through the cloud server, first 
performs Setup() to initialize the system parameters. 
At the time of system initialization, the trusted author-
ity assigns every cloud user a unique identity Uid ∈ U . 
The data owner executes KeyGen() to generate a pub-
lic-master secret key pair (pk, msk). The public key 
pk is used for encrypting keywords and message. The 
master-secret key msk for delegation of search rights 
is kept private by the owner.

	 (2)	 In the offline phase (when the resource-limited device 
is connected to the power source), the data owner 
executes Offline_Encrypt() algorithm using a public 
key and generates intermediate ciphertexts {ICl}l∈[1,n] , 
without knowing the message and keyword(s) to be 
encrypted. The intermediate ciphertext {ICl}l∈[1,n] 
contains keyword ciphertexts {ICli,j

}i∈[1,m],j∈[1,Ni]
 for 

each keyword in the system {wi,j}i∈[1,m],j∈[1,Ni]
∈ KS 

along with the auxiliary values {ICl1
, ICl2

, ICl3
} that 

are required to generate final ciphertext Cl in the 
online encryption phase.

	 (3)	 To encrypt the lth document, i.e., docl , the data owner 
chooses lth intermediate ciphertext ICl and runs 
Online_Encrypt() algorithm for generating final 
ciphertext Cl . To encrypt a set ������⃗KW  of keywords, the 
Online_Encrypt() algorithm selects {ICli,j

}
wi,j∈ ���⃗KW

 and 
aggregates it to make a single element of keyword 
ciphertext Cl

��⃗KW
 . Specifically, the online encryption 

requires one multiplication in Zp for each keyword to 
be attached with the ciphertext. Furthermore, using 
auxiliary values of intermediate ciphertext 
{ICl1

, ICl2
, ICl3

} , the Online_Encrypt() algorithm gen-
erates public information �l and data ciphertext ClM

 . 
The data owner outsources resultant ciphertext Cl = 
( 𝛿l,Cl

��⃗KW
,ClM

) to the cloud server.
	 (4)	 The data owner is capable to grant search and access 

rights of the selected set S of documents to other 
user(s) by sharing an aggregate key of constant size. 
The aggregate key kagg is the single secret key using 
which an authorized user can retrieve and access all 
the shared documents. As kagg is having a constant 
size, it is easy for the data owner to share an aggregate 
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key with other user through a secure communication 
channel and with small communication costs.

	 (5)	 The data owner can revoke delegated rights of selected 
users within set Ul ⊂ U over lth document by gener-
ating encrypted revocation list RLl . The data owner 
uploads the revocation list on the cloud server. If and 
only if the privileges of the query requester have not 
been revoked, he can search and access the ciphertext 
Cl from the cloud server to obtain plaintext.

	 (6)	 An authorized user can search over shared dataset S 
within scope of an aggregate key kagg using a single 
trapdoor Tr. The user can generate a query trapdoor 
Tr using the shared aggregate key kagg and set of query 
keyword(s) ��⃗Q . A query trapdoor Tr represents search 
query within set ��⃗Q to the server. The user submits the 
trapdoor Tr to the cloud server.

	 (7)	 The cloud server provides massive storage and com-
putation resources to the users. At the time of receiv-
ing data access or search request for any document 
l stored on the cloud server, the server checks the 
user’s authorization using a revocation list RLl . If the 
identity of the query requester UQR matches with the 
revocation list RLl , then the failure state is returned 
to the user, otherwise, the cloud server performs the 
search process over lth document. With the failure 
state, the user will not be able to proceed further and 
search (or access) the document l. If a user Uli

∈ Ul 
was previously authorized to access documents within 

set S using an aggregate key kagg , now, he cannot fur-
ther access document l ∈ S , due to the published revo-
cation list. However, the user can search over other 
shared documents within set S − {l}.

	 (8)	 The cloud server performs the keyword search on 
behalf of the user, using the submitted trapdoor Tr 
and returns the search results to the user. The search 
result contains a true or false value for each docu-
ment l ∈ S , indicating whether a document contains 
keywords within the query set ��⃗Q or not. Then, the 
query requester only requires to download matching 
documents that are satisfying search query, instead of 
downloading all the shared documents.

	 (9)	 In the offline mode, the resource-constrained 
device used by the data user executes Offline_
Decrypt()  and generates  the parameters 
pub = ({pub1_l, pub2_l}l∈S, pub3, pub4) , that are used 
to decrypt the ciphertexts within set S.

	(10)	 An authorized user runs Online_Decrypt() algorithm 
to decrypt the ciphertext, using an aggregate key kagg 
and parameters pub generated by Offline_Decrypt().

4.4 � The R‑OO‑KASE Framework

The proposed R-OO-KASE scheme is an ensemble of ran-
domized polynomial-time algorithms, as discussed in this 
section. The data owner first sets up an account on the cloud 
server and establishes the public system parameters via 

Fig. 3   System model of the proposed R-OO-KASE scheme
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Setup(). At the time of registering in the system, the Trusted 
Authority (TA) assigns a unique identity to the user. TA 
manages users in the system, and it is fully trusted by entities 
in the system. The data owner generates a public/master-
secret key pair via KeyGen(). Messages can be encrypted 
via Offline_Encrypt() and Online_Encrypt() algorithms 
by anyone who has the public key of the data owner. To 
delegate the search and access rights to a specific subset of 
data, the data owner uses the master-secret key and gener-
ates a constant size aggregate key via Extract(). The gener-
ated key can be passed to the delegatees securely (via secure 
e-mails or secure devices). The data owner can take away 
the delegated privileges via the Revocation() algorithm. 
Finally, any user with an aggregate key can search over the 
shared dataset by generating a query trapdoor via Trapdoor-
Gen(). On receiving a query trapdoor from the user, the 
cloud server runs the Test() algorithm to retrieve matching 
documents and sends it further to the query requester. The 
user can decrypt the ciphertext and access the plaintext via 
Offline_Decrypt() and Online_Decrypt() algorithms, pro-
vided the ciphertext is within the scope of an aggregate key.

We now describe each of the algorithms involved in 
R-OO-KASE:

•	 SP ←Setup(1�, n ): Takes as input the security parameter 
� and n the number of documents held by a data owner. 
Outputs the public system parameters SP, which are 
omitted from the input of the other algorithms for brevity.

•	 (pk, msk) ←KeyGen(): Outputs a public and master-
secret key pair (pk, msk) for a data owner registering in 
the system.

•	 {ICl}l∈[1,n] ←Offline_Encrypt(pk): Takes as input the 
public key pk and outputs the intermediate ciphertext 
{ICl}l∈[1,n].

•	 Cl ←Online_Encrypt(pk, ICl, l,M, ������⃗KW  ): Takes as input 
the public key pk, lth intermediate ciphertext ICl , docu-
ment index l, message M, and a set of related keyword(s) 
������⃗KW  . Outputs the corresponding ciphertext Cl = 
( 𝛿l,Cl

��⃗KW
,ClM

 ), where �l is public information, Cl
��⃗KW

 key-
word-ciphertext and ClM

 data ciphertext. Then, the data 
owner stores the ciphertext Cl on the cloud server.

•	 kagg ←Extract(msk, S): Takes as input the master-secret 
key msk of the data owner and subset of data classes 
S ⊆ {1, 2,… , n} . Outputs the aggregate key kagg which 
aggregates the search and access rights of all encrypted 
messages within set S.

•	 RLl ←Revocation(Ul,msk, l ): Takes as input the set of 
users’ identities Ul whose delegated rights needs to be 
revoked over lth document and, master-secret key msk 
of the data owner. Outputs the revocation list RLl = 
( RLl1 ,RLl2).

•	 Tr ←TrapdoorGen(kagg, ��⃗Q ): Takes as input an aggregate 
key kagg and a set of query keywords ��⃗Q . Outputs a single 
trapdoor Tr. This algorithm is run by the user who holds 
an aggregate key kagg for document set S and wants to 
perform search over documents within set S. Then, the 
user should submit Tr and S to the server.

•	 R ←Test(Tr, S, l,UQR ): Takes as input a query trapdoor 
Tr, a set of shared documents’ indices S, document index 
l, and identity of the query requester UQR ∈ U . The Test 
algorithm outputs true (1) or false (0) to denote whether 
the document docl contains the set of keywords ��⃗Q . If UQR 
is not the revoked user and l ∈ S, Test algorithm returns 
the search result R ∈ {0,1} by following the rules shown 
below: 

 Otherwise, the algorithm returns NULL.
	   Let ��⃗Q ={Q1,Q2,… ,Qp} ∈ KS be the set of keywords 

attached with the trapdoor Tr ⟵ TrapdoorGen(kagg, ��⃗Q ) 
and ������⃗KW  ={KW1,KW2,… ,KWq} ∈ KS be the set of 
keywords labeled with the ciphertext Cl ⟵ Online_
Encrypt(pk, ICl, l,M, ������⃗KW) . Here, p is the number of 
keywords in the search query and q is the number of 
keywords attached with the ciphertext.

	   Test(Tr, S, l,UQR) = 1 iff p = q and ��⃗Q = ������⃗KW

	   Test(Tr, S, l,UQR) = 0 iff ��⃗Q ≠ ������⃗KW .
•	 pub ← �������_Decrypt(kagg, S ): Takes as input the 

aggregate key kagg corresponding to the set S and generates 
the parameters pub = ({pub1_l, pub2_l}l∈S, pub3, pub4) . 
The parameters pub are further used in Online_Decrypt() 
to decrypt {Cl}l∈S . For efficiency consideration, the 
parameters pub for the set S is computed only once.

•	 M ← ������_Decrypt(kagg, S, l,Cl, pub ): Takes as input 
the ciphertext Cl , ciphertext index l, the aggregate key 
kagg corresponding to the set S, and parameters pub gen-
erated from Offline_Decrypt(). The algorithm outputs the 
decrypted result M iff l ∈ S.

4.5 � Security and Functional Goals

The proposed KASE scheme aims to achieve the follow-
ing security and functional goals: The compactness of the 
scheme is to ensure that the size of the aggregate key should 
be independent of the number of documents in the scope of 
the key. Similarly, the size of the query trapdoor should be 
independent of the number of keywords in the query set. 
For the correctness, the proposed scheme should get cor-
rect result, whether ciphertext Cl of any message M with an 
index l contain keyword(s) ��⃗Q or not, when giving trapdoor 
Tr which represents query for keyword(s) within set ��⃗Q . The 
privacy of the scheme ensures that the cloud server or any 

R =

{
1, If Q⃗ ⊨ ������⃗KW

0, otherwise
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third party should not get any additional information for 
which they are not authorized. The revocation property of 
the scheme ensures that if delegated rights of any user are 
revoked on the document, then he is no longer permitted to 
search or access the same. The controlled searching ensures 
that an authorized user or the cloud server cannot perform 
searches on the documents for which search or access rights 
are not delegated. Moreover, an authorized user cannot cre-
ate new aggregate keys for another set of documents from 
the known one. For the efficiency, the above-mentioned goals 
of privacy and functionality should be achieved with lower 
bandwidth, computation and storage overhead. The proposed 
R-OO-KASE scheme must be secure against the collision 
resistance attack. In order to get additional information other 
than each aggregate key individually contains, a collision 
attack is carried out by combining multiple aggregate keys.

Definition 2  (Compactness) The proposed R-OO-KASE 
scheme is compact if for any set of documents |S| = x 
having indices of x different ciphertexts, then kagg ⟵ 
Extract(S, msk) outputs a single aggregate key having con-
stant size. Moreover, for any set of query keywords ��⃗Q,Tr ⟵ 
TrapdoorGen(kagg, ��⃗Q ) outputs a single trapdoor having con-
stant size.

Definition 3  (Correctness) The proposed R-OO-KASE 
scheme is correct if for any document docl containing set of 
query keywords ��⃗Q,Cl ⟵ Online_Encrypt(pk, ICl, l,M, ������⃗KW) 
and  Tr ⟵ Trapdoo rGen(kagg, ��⃗Q  ) ,  t h en  1 ⟵ 
Test(Tr, S, l,UQR) iff ��⃗Q ⊨ ������⃗KW .

Definition 4  (Privacy) The proposed R-OO-KASE 
scheme is privacy preserving if for any set of query 
keywords ��⃗Q , searchable trapdoor Tr representing 
query keywords ��⃗Q and adversary A running in PPT, 
Cl ⟵ Online_Encrypt(pk, ICl, l,M, ������⃗KW) ,  kagg ⟵ 
Extract(S,  msk) and Tr ⟵ TrapdoorGen(kagg, ��⃗Q ), 
t h e n  t h e  Pr[A(param, pk, S, Tr, 𝛿l,C ���⃗KW ) =

��⃗Q] a n d 
Pr[A(param, pk, S, kagg, 𝛿l,C ���⃗KW ) =

������⃗KW] are negligible.

Definition 5  (Revocation) The proposed R-OO-KASE 
scheme is revocable if for a set of revoked users’ identities Ul 
and document index l, the data owner having master-secret 
key generates a revocation list RLl ⟵ Revocation(Ul,msk, l) 
and any query requester having user id UQR ∈ Ul submits the 
trapdoor to the cloud server Tr ⟵ TrapdoorGen(kagg, ��⃗Q ), 
then ⟂⟵ Test(Tr, S, l,UQR).

Definition 6  (Controlled Searching) The proposed R-OO-
KASE scheme provides controlled searching if for dataset 
S and set of query keywords ��⃗Q , kagg ⟵ Extract(S, msk), 
Tr ⟵ TrapdoorGen(kagg, ��⃗Q ) and l ∉ S  , then ⟂⟵ 
Test(Tr, S, l,UQR).

D e f i n i t i o n  7   ( E f f i c i e n c y )  T h e  p r o -
posed  R-OO-KASE scheme  i s  e f f i c i en t  i f 
O(Computation_TimeOnline_Encrypt),O(Computation_TimeExtract) 
and O(Computation_TimeRevocation) at the data owner side and 
O(Computation_TimeTrapdoorGen),O(Computation_TimeOnline_Decrypt) 
at the user side is �(1) or �(c) for some constant c.

4.6 � Security Model

We consider the cloud servers and the data users to be hon-
est but curious, i.e., they follow the given protocols hon-
estly, but try to get some additional information beyond their 
authorization. However, the capacity of the data user in the 
system is limited by both the storage space and the comput-
ing power. Moreover, communication channels involving the 
server are assumed to be insecure.

The goals of an adversary considered for the proposed 
scheme are as follows:

•	 Retrieve the information about the keywords related to 
the ciphertext.

•	 Gain the information about the query keyword(s) ��⃗Q by 
looking at the search trapdoor Tr.

•	 Retrieve the plaintext or try to search over the ciphertext 
using a single or combination of aggregate keys such that 
none of them have rights for it.

To prove the privacy of the proposed R-OO-KASE scheme 
against defined attacks, we consider two security notions: 
ciphertext privacy and trapdoor privacy.

•	 Ciphertext privacy The keyword ciphertext does not 
reveal any information about the corresponding keyword 
to the attacker who is the unauthorized user. We prove 
this claim by the security of Indistinguishability against 
the Chosen Keyword Attack (IND-CKA) model. IND-
CKA model ensures that an adversary cannot obtain the 
relationship between the challenge ciphertext and the 
corresponding keyword.

•	 Trapdoor privacy The trapdoor does not reveal any infor-
mation about the corresponding keyword to the attacker 
who does not possess the authorization keys. We prove 
this claim by the Indistinguishability against Keyword 
Guessing Attack (IND-KGA) model. IND-KGA model 
ensures that an adversary cannot find the relationship 
between the challenge trapdoor and the corresponding 
keyword. The size of the guessing keyword dictionary 
equals to the number of keywords in the attacked file.

We introduce the games between an attack algorithm A and 
a challenger, both of whom are given input of n, the total 
number of documents.
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4.6.1 � IND‑CKA Model

We need to ensure that Test(Tr, S, l,UQR ) does not reveal any 
information about keywords ������⃗KW labeled with the ciphertext 
Cl
��⃗KW

 unless trapdoor Tr is available. We define security 
against an active adversary A who is able to obtain trapdoor 
Tr for any set of keywords ��⃗Q of his choice. Even under such 
attack the attacker should not be able to distinguish an 
encryption of a keyword �������⃗KW0 from an encryption of a key-
word �������⃗KW1 for which he did not obtain the trapdoor. We say 
that the proposed R-OO-KASE scheme hold the privacy for 
keyword if no polynomial bounded adversary A has a non-
negligible advantage against the challenger in the following 
IND-CKA game. The game proceeds as follows:

Init Phase
The adversary A selects a challenge index ic for which he 

wishes to be challenged upon.
Setup
The challenger runs Setup(1�, n ) to generate the system 

parameters and KeyGen() to obtain a public/ master-secret 
key pair (pk, msk) . It issues public key pk to the adversary 
A.

Query Phase 1
The adversary A adaptively queries q1,… , qn� to follow-

ing oracles and oracle answers in polynomial time.

•	 Aggregate key generation oracle Okagg
 On giving inputs 

of (msk, S) by the adversary, where msk is master secret 
key corresponding to pk, oracle returns an aggregate key 
kagg ← Extract(msk, S). The restriction is that an adver-
sary cannot ask for the aggregate key for challenge index, 
i.e., if ic ∈ S , then Okagg

 returns null. The oracle adds 
aggregate key (kagg, S) in table Tkagg.

•	 Offline_Encryption oracle OOff_Encrypt On giving input 
of pk by the adversary, the oracle generates intermedi-
ate ciphertext {ICl}l∈[1,n] using the Offline_Encrypt(pk) 
algorithm.

•	 Revocation oracle ORL On giving inputs of ( Ul,msk, l ) 
by the adversary, where msk is master secret key cor-
responding to pk and document index l ≤ n , then oracle 
returns a revocation list RLl ←Revocation(Ul,msk, l ) to 
the A.

•	 Trapdoor generation oracle OTr On giving inputs of 
( kagg, ��⃗Q ), the challenger checks kagg occurs in table Tkagg , 
if yes, the oracle runs Tr ←TrapdoorGen(kagg, ��⃗Q ), and 
returns the trapdoor Tr for query set ��⃗Q to A.

•	 Test oracle Otest On giving inputs of ( Tr, S, l,UQR ), the 
challenger checks authorization of user UQR , if the del-
egated rights of user UQR is not revoked and ic ∉ S , the 
oracle returns output of Test(Tr, S, l,UQR ) to the adver-
sary. Otherwise, it returns null.

•	 Offline_Decryption oracle OOff_Decrypt The oracle com-
putes the parameters pub ←Offline_Decrypt(kagg, S ) that 
are used to decrypt the ciphertext within given set S.

•	 Online_Decryption oracle OOn_Decrypt On giving inputs 
of ( kagg, S, l,Cl, pub ), the challenger checks if kagg occurs 
in table Tkagg , if yes, then the oracle returns M ←Online_
Decrypt(kagg, S, l,Cl, pub ) to the adversary. Otherwise, it 
returns null.

Challenge Phase
The attacker A sends the challenger two equal length set 

of keywords �������⃗KW0;
�������⃗KW1 on which it wishes to be challenged 

along with an index ic , a message M from message space, a 
public key pk. Here, the restriction is that the attacker had 
not previously asked for the query trapdoor corresponding 
to keywords �������⃗KW0;

�������⃗KW1 to the oracle OTr . The challenger 
chooses �  randomly from {0, 1} and runs Online_
Encrypt(pk, ICic

, ic,M, �������⃗KW𝛽  ). The challenger returns key-
word ciphertext C∗

�
 to the adversary.

Query Phase 2
The adversary A asks for more queries qn�+1,… , qn�

2

 to ora-
cles and oracle answers in polynomial time. The oracles are 
identical to that in the query phase 1 except the following:

•	 Trapdoor generation oracle OTr On giving inputs of 
( kagg, ��⃗Q ) by the adversary, the challenger answers same 
as that in phase 1, except the following cases:

•	 The adversary had previously ask for the trapdoor 
corresponding to a set of keywords �������⃗KW0 or �������⃗KW1

•	 ��⃗Q ⊨ �������⃗KW0 or ��⃗Q ⊨ �������⃗KW1

	    If one of the above condition holds, then challenger 
returns null.

•	 Test oracle  Otest On input of Test(Tr, S, l,UQR ), if ic = l 
or ic ∈ S , then the challenger returns null. Otherwise, the 
challenger responds as that in phase 1

Guess
The adversary A outputs its guess � �

∈ {0,1} for � and 
wins the game if � = �

�.
The advantage of the adversary in this game is defined 

as ADVR−OO−KASE
A,K

= |Pr[� = �
� ]− 1

2
| , where the probability 

is taken over the random bits used by the challenger and the 
adversary.

Definition 8  (IND-CKA Security) We say that the proposed 
R-OO-KASE scheme is CKA secure if for any polynomial 
time adversary A , we have that |ADVR−OO−KASE

A,K
| ≤ �.
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4.6.2 � IND‑KGA Model

We need to ensure that Tr does not reveal any information 
about the corresponding query keywords ��⃗Q to the attacker 
who does not possess the authorization key kagg . We define 
security against an active adversary A who is able to obtain 
almost all the trapdoor Tr except the two specified set of 
query keywords ����⃗Q0 and ����⃗Q1 . Even under such attack the 
attacker cannot find the relationship of the challenge trap-
door and the corresponding keyword. We say that the pro-
posed R-OO-KASE scheme hold the security against key-
word guessing attack if no polynomial bounded adversary A 
has a non-negligible advantage against the challenger in the 
following IND-KGA game. The game proceeds as follows:

Init Phase
The adversary A selects a challenge index ic for which he 

wishes to be challenged upon.
Setup
The challenger runs Setup(1�, n ) to generate the system 

parameters and KeyGen() to obtain a public/ master-secret 
key pair (pk, msk) . It issues public key pk to the adversary 
A.

Query Phase 1
The adversary A adaptively queries q1,… , qn� to oracles 

and oracle answers in polynomial time. The oracles are 
identical to that in the IND-CKA security model except the 
following:

•	 Online_Encryption oracle OOn_Encrypt The attacker A 
sends the challenger a set of keywords ������⃗KW  along with 
an index l, a message M from the message space, a pub-
lic key pk. If l ≠ ic , then the challenger runs Online_
Encrypt(pk, ICl, l,M, ������⃗KW  ) and returns ciphertext Cl to 
the adversary.

•	 Test oracle Otest On giving input of ( Tr, S, l,UQR ), the 
challenger checks ic ∉ S and l ≠ ic , the oracle returns 
output of Test(Tr, S, l,UQR ) to the adversary. Otherwise, 
it returns null.

Challenge Phase
The attacker A sends the challenger two equal length of 

query keyword ����⃗Q0;
����⃗Q1 on which it wishes to be challenged 

along with an index ic , and an aggregate key kcagg correspond-
ing to a set S which includes an index ic . Here, the restriction 
is that the attacker had not previously asked for the cipher-
text corresponding to keyword ����⃗Q0;

����⃗Q1  to the oracle 
OOn_Encrypt . The challenger chooses � randomly from {0,1} 
and runs TrapdoorGen(kcagg , ����⃗Q𝛽  ) and returns query trapdoor 
Tr∗

�
 to the adversary.
Query Phase 2
The adversary A asks for more queries qn�+1,… , qn�

2

 to 
oracles and oracle answers in polynomial time. The oracles 

are identical to that in the query phase 1 except the 
following:

•	 The adversary A cannot ask for the aggregate key cor-
responding to a set S which includes an index ic

•	 Ciphertext query on set of keywords ����⃗Q0 or ����⃗Q1 under chal-
lenge index ic is not allowed

Guess
The adversary A outputs its guess � �

∈ {0,1} for � and 
wins the game if � = �

�.
The advantage of the adversary in this game is defined as 

ADVR−OO−KASE
A,KG

= |Pr[� = �
� ]− 1

2
| , where the probability is 

taken over the random bits used by the challenger and the 
adversary.

Definition 9  (IND-KGA Security) We say that the pro-
posed R-OO-KASE method hold the privacy for trapdoor if 
|ADVR−OO−KASE

A,KG
| ≤ � is negligible with respect to the secu-

rity parameter for any polynomial time adversary.

5 � R‑OO‑KASE : Revocable Online/offline 
Key Aggregate Multi‑Keyword Searchable 
Encryption over Multi‑owners’ Data

In this section, we discuss the construction of the proposed 
scheme. In the following discussion, Zp is a group of large 
prime order p. Group G and GT are cyclic multiplicative 
group of prime order p. The other notations used in the 
forthcoming discussion are already introduced in Sect. 3.

The detailed construction of the proposed R-OO-KASE 
scheme is as follows: 

A.	� System Initialization The data owner first sets up an 
account on the cloud server. At the time of system ini-
tialization, TA assigns a unique user identity Uid ∈ G 
to each cloud user. Let we assume that there are total X 
users in the system and U = {U1,…UX} is a set of all 
users’ identities. For each Uid ∈ U, {Uid = g�

id

}id∈[1,X] , 
where � ∈ Zp . If a new user gets registered in the 
system, a unique user identity UX+1 = g�

X+1 will be 
assigned to him and UX+1 will be added to the set U . 
The data owner establishes the public system param-
eter via Setup() and generates a public/master-secret 
key pair via KeyGen().

1.	� Setup  ( 1�, n ) The data owner runs this algorithm and 
publishes the system parameters SP = (B, PubK, H). 
In the following discussion, bilinear map group system 
B=(p,G,GT , e(., .)) , where p is the order of G and 2� 
≤ p ≤ 2�+1 . g is a generator of group G. n is the number 
of documents D= ( doc1, doc2 , ..., docn ) that belongs to 
the data owner. The random secret element � ∈ Zp . 
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in the public parameters PubK. Therefore, an attacker can-
not compute the value of e (Cl1

, gn+1) to get the value of 
e (g1, gn)tl . An attacker cannot get any information related 
to message M.

	� Algorithm 3 clearly indicates that the Online_
Encrypt() requires only multiplication operations 
in linear with the number of keywords attached 
with the ciphertext.

C.	
�Sharing Scenario In order to delegate search and access rights 
on the selected set of documents S to other users, the data 
owner generates an aggregate key (refer to Extract()). Using 
an aggregate key an authorized user can retrieve and access 
all the shared documents.
5.	� Extract (msk, S) The data owner runs this algorithm 

using master-secret key msk = � , subset S ⊆ {1,… , n} 
which contains documents’ indices. The algorithm 
outputs aggregate key kagg by computing:

	� kagg = �j∈S g
�

j

	� The data owner securely sends kagg and a set S to 
the user in order to delegate the keyword search 
rights of ciphertexts in the range of set S.

D.	� Revocation Scenario If the shared documents are mod-
ified or if the delegated rights for the shared docu-
ments need to be revoked, the data owner can generate 
revocation list (refer to Revocation()).

6.	
�Revocation(Ul,msk, l ) The proposed scheme allows the data 
owner to revoke delegated rights of selected users within set 
Ul over lth document, without affecting the users’ rights over 
rest of the shared documents. The data owner generates the 
revocation list RLl for lth document using his master-secret 
key msk and set of revoked users’ identities Ul . The cloud 
server checks the user’s authorization each time when he 
received a search and data access request for any stored docu-
ment. If the identity of the query requester UQR matches with 
the revocation list RLl , then the failure state is returned to 
the user, otherwise, the cloud server performs the search pro-
cess over lth document. Suppose, after storing the revocation 
list RLl on the cloud server, the data owner wants to revoke 
rights of users within set U

′

l
 along with the users in set Ul . The 

2.	� KeyGen() The data owner runs this algorithm to gener-
ate a key pair (pk, msk)

	� pk = v = g� ; msk = � , where � ∈ Zp

	� The public key pk is used for encrypting key-
words and messages. The master-secret key msk 
for delegation of search rights is kept private by 
the owner.

B.	� Storage Scenario The data owner executes offline 
encryption algorithm (refer to Offline_Encrypt()) 
using only public key and perform the majority of 
costly operations before knowing a message and key-
words to be encrypted. Further, the online encryption 
(refer to Online_Encrypt()) is performed once the 
message and keywords to be encrypted are known.

3.	� Offline_Encrypt (pk) The data owner gives public 
key pk = v = g� as input and generates intermedi-
ate ciphertext {ICl}l∈[1,n] using the following offline 
encryption algorithm. 

4.	� Online_Encrypt ( pk, ICl, l,M, ������⃗KW  ) In the online 
phase, the data owner selects lth intermediate cipher-
text ICl to generate the ciphertext Cl for lth document. 

 The data ciphertext ClM
 is generated by multiplying message 

M with the term e (g1, gn)tl . The term gn+1 = g�n+1 is missing 
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data owner will generate new revocation list RL′

l
 consider-

ing revoked users set Ul

⋃
U

′

l
 . The data owner will upload a 

new revocation list RL′

l
 to the cloud server. On receiving new 

revocation list for lth document from the data owner, the cloud 
server will store a new revocation list RL′

l
 and discard the old 

one RLl . 

E.	� Search Scenario The user who holds an aggregate 
key kagg for dataset S and wants to retrieve documents 
having a set of keywords ��⃗Q from the shared dataset, 
generates the trapdoor Tr for query keywords (refer to 
TrapdoorGen()). Then, the user submits the trapdoor 
Tr and S to the server. The cloud server performs the 
keyword search on behalf of the user, using the sub-
mitted trapdoor Tr and returns the search results to the 
user (refer to Test()).

7.	� TrapdoorGen(kagg, ��⃗Q ) The user who wants to perform 
the keyword search over the shared data runs this algo-
rithm and generates a single aggregate trapdoor Tr. If 
the set S of documents are in the scope of an aggregate 
key kagg , then the user having trapdoor Tr can search 
over any document in the range of set S. 

8.	� Test ( Tr, S, l,UQR ) On receiving the trapdoor Tr from the 
query requester, the cloud server runs Test() algorithm 
to check if document docl contains query keyword(s) 
��⃗Q or not. In the following discussion, UQR ∈ U is an 
identity of query requester and Ul is a set of revoked 
users’ identities corresponding to list RLl . 

Correctness:

	� The correctness of Test algorithm can be realized 
as follows:

	� If the query requester UQR is revoked user, then

	�
 Therefore, if the query requester is revoked user then Test 
algorithm outputs failure. Then, user is no longer permitted 
to search on the lth document.

	� Now, consider the case UQR ∉ Ul , i.e., query 
requester is not the revoked user. If the user’s 
query trapdoor Tr matches with the keyword 
ciphertext C ���⃗KW , then Test algorithm outputs: 

F.	� Online/Offline Decryption The cloud server sends 
search results to the query requester. The search result 
contains a true or false value for each document l ∈ S , 
indicating whether document contains keywords 
within query set ��⃗Q or not. Then, the query requester 
only requires to download matching documents that 
are satisfying search query, instead of downloading all 

= e(RLl2 , gl)∕e(UQR ⋅ pub
�,RLl1 )

= e((�Uli
∈Ul

Uli
)�r, gl)∕e(UQR ⋅ p�Uli

∈Ul,Uli
≠UQR

Uli
, g

�r

l
)

= 1

=
e(Tr0 ⋅ pub

�
1
,Cl1

)

e(pub�
2
,Cl2

) e(Cl
��⃗KW
, Tr1)

=

e(kagg𝛱wi,j∈ �⃗Q
(H(wi,j))

b
⋅𝛱j∈Sgj+l, g

tl)

e(𝛱j∈Sgj, (v ⋅ gl)
tl ) e(𝛱

wi,j∈ ���⃗KW
(H(wi,j))

tl , gb)

=

e(kagg, g
tl) e(𝛱

wi,j∈ �⃗Q
(H(wi,j))

b, gtl ) e(𝛱j∈Sgj+l, g
tl )

e(𝛱j∈Sgj, g
𝛾tl ) e(𝛱j∈Sgj, g

tl
l
) e(𝛱

wi,j∈ ���⃗KW
(H(wi,j))

tl , gb)

= 1
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the shared documents. The user having an aggregate 
key can decrypt the retrieved data. The offline phase of 
the decryption (refer to Offline_Decrypt() ) computes 
the parameters pub = ({pub1_l, pub2_l}l∈S, pub3, pub4) , 
which are used to decrypt {Cl}l∈S . In the online phase 
(refer to Online_Decrypt() ), the ciphertext is 
decrypted with minimal computation overhead.

9.	� Offline_Decrypt ( kagg, S ) The user who holds an aggre-
gate key kagg for dataset S can precompute the param-
eters that are required to decrypt ciphertexts within 
range of set S, in offline mode. This algorithm generates 
the parameters pub = ({pub1_l, pub2_l}l∈S, pub3, pub4) . 
For efficiency consideration, the parameters 
({pub1_l, pub2_l}l∈S, pub3, pub4) for the set S is com-
puted only once.

	� {pub1_l}l∈S = {�j∈S gj+l}l∈S

	� {pub2_l}l∈S = {�j∈S,j≠l gn+1−j+l}l∈S

	� pub3 = �j∈Sgj

	� pub4 = �j∈Sgn+1−j+l
10.	� Online_Decrypt ( kagg, S, l,Cl, pub ) If l ∉ S, Online_

Decrypt() algorithm outputs NULL. Otherwise, 
returns the output:

	� M = Cl4
 e(kagg pub1_l pub2_l , Cl1

 ) / e(pub3,Cl2
 ) 

e(pub4,Cl1
)

	� Correctness:

	� Cl4
 e(kagg pub1_l pub2_l , Cl1

 ) / e(pub3,Cl2
 ) 

e(pub4,Cl1
 ) 

=
Cl4

e(kagg ⋅�j∈Sgj+l ⋅�j∈S,j≠lgn+1−j+l, g
tl )

e(�j∈Sgj, (v ⋅ gl)
tl )e(�j∈Sgn+1−j+l, g

tl)

=
Cl4

e(�j∈Sgj+l, g
tl ) e(�j∈S,j≠lgn+1−j+l, g

tl )

e(�j∈Sgj, g
tl
l
) e(�j∈Sgn+1−j+l, g

tl )

=
M e(g1, gn)

tl
e(�j∈Sgn+1−j+l,g

tl )

e(gn+1,g
tl )

e(�j∈Sgn+1−j+l, g
tl)

=
M e(g1, gn)

tl

e(gn, g1)
tl

= M

6 � Security Analysis

We prove the security of the proposed scheme against 
the IND-CKA, IND-KGA and cross-pairing attack in the 
generic group model using the DDH hardness assumption.

Theorem 1  The proposed R-OO-KASE scheme is IND-CKA 
secure, assuming that the DDH problem is hard to solve.

Proof  We consider a challenger C , a simulator SIM and a 
polynomial-time adversary A . We assume that the adversary 
A has a non-negligible advantage � to break the privacy of 
our scheme.

Then, we can construct a simulator SIM that breaks the 
decisional DDH problem � = ( g, ga, gb, gc,R ) with the advan-
tage �

2
(1 −

N2

p
).

Here, we assume that for trapdoors Tr �⃗Q which denotes 
search query of keyword set ��⃗Q and Tr �⃗Q′ which denotes query 
of keyword set ��⃗Q′ ; Tr �⃗Q ≠ Tr �⃗Q′ . If there exists ��⃗Q and 
��⃗Q

′

, ��⃗Q ≠ ��⃗Q
′ such that Tr �⃗Q = Tr �⃗Q� , then Tr �⃗Q can search over 

keyword-ciphertext C ���⃗KW ′ where Tr �⃗Q′ ⊧ C ���⃗KW ′ and Tr �⃗Q| ≠ C ���⃗KW ′ . 
This assumption hold with the probability

where N is number of possible keywords in the system and 
p is the order of group G.

On DDH input (g, ga, gb, gc,R) , simulator SIM aims to 
decide if R = gabc.

The challenger C generates a, b, c, z ∈R Zp , bilinear groups 
G,GT with prime order p and the mapping G × G → GT . g 
is a generator of group G. The challenger C computes v as 
follows:

The challenger gives instance ( g, ga, gb, gc,R)∈ GT to simu-
lator SIM.

SIM interacts with A ( SIM simulates the C for A ) and 
starts the simulation as follows.

Init Phase
The adversary A selects a challenge index ic for which he 

wishes to be challenged upon.
Setup
The simulator SIM generates public parameters 

PubK=(g, g1,… , gn, gn+2,… , g2n).
Here, gl = (ga)�

l

∈ G for l = {1, 2,… , n, n + 2,… , 2n}.

p(p − 1)… (p − (N − 1))

pN
>

(p − (N − 1))N

pN

= (1 −
N − 1

p
)N > (1 −

N(N − 1)

p
) > (1 −

N2

p
)

R =

{
gabc, (v = 0)

gz, (v = 1)
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Moreover, SIM simulates the hash oracles for keyword 
as follows:

•	 OH(wi,j) ∶ Given a keyword wi , having value wi,j , the hash 
function proceeds as follows:

•	 If wi,j has not been queried before, then SIM toss a ran-
dom coin ci ∈ {0, 1} with the probability that 
Pr|ci = 0| = 1∕(qT + 1) , where qT is very large number. 
We require that qT should be larger than the number of 
oracle queries for Okagg

,OTr,Otest . If ci = 0 , then selects 
f ∈ Zp and computes T∗

wi,j
 = (gf )c . Otherwise, computes 

T∗
wi,j

 = (gf )bc . Add the tuple < wi,wi,j, ci, T
∗
wi,j

> to table 
TKW and return T∗

wi,j
.

•	 Otherwise, retrieve T∗
wi,j

 from table TKW with respect to 
wi,j and return T∗

wi,j

SIM sets public-key pk = v = (gc)u where u ∈R Zp . Finally, 
SIM records the tuple < pk, u > in table Tk . Table Tk is used 
to records the tuple < pk, u > and these records will be used 
in other oracles to response the queries. The simulator SIM 
sends the public key pk to A.

Query phase 1
The simulator SIM constructs following oracles and 

adversary A can adaptively queries q1,… , qn� to these ora-
cles in polynomial for multiple times.

•	 Aggregate key generation oracle Okagg
 On giving inputs 

of (msk, S) by the adversary, where msk is master secret 
key corresponding to pk, the simulator checks that key 
pair (pk, msk) occurs in table Tk , if not, SIM reports 
failure and terminates. Otherwise, it returns an aggregate 
key kagg ← Extract(msk,  S) and add the tuple 
< kagg,msk, S > in table Tkagg . The adversary A cannot ask 
for the aggregate key corresponding to a set S that 
includes an index ic . The SIM add aggregate key (kagg, S) 
in table Tkagg.

•	 Offline_Encryption oracle OOff_Encrypt On giving input 
of pk by the adversary, the oracle generates intermedi-
ate ciphertext {ICl}l∈[1,n] using the Offline_Encrypt(pk) 
algorithm.

•	 Revocation oracle ORL On giving inputs of ( Ul,msk, l ) 
by the adversary, where msk is master secret key cor-
responding to pk and document index l ≤ n , then oracle 
returns a revocation list RLl ←Revocation(Ul,msk, l ) to 
the A.

•	 Trapdoor generation oracle OTr On giving inputs 
( kagg, ��⃗Q ), the simulator first checks kagg occurs in table 
Tkagg , if yes, then it proceeds as follows:

•	 For each wi,j ∈
��⃗Q , the simulator queries OH(wi,j) and 

obtain (wi, ci,wi,j, T
∗
wi,j
)

•	 If ci = 1 , set trapdoor Tr ← TrapdoorGen(kagg,
��⃗Q)

•	 Otherwise, report failure and terminate.

•	 Test oracle Otest On giving inputs of ( Tr, S, l,UQR ), the 
challenger checks authorization of user UQR , if the del-
egated rights of user UQR is not revoked and ic ∉ S , the 
oracle returns output of Test(Tr, S, l,UQR ) to the adver-
sary. Otherwise, it returns null.

•	 Offline_Decryption oracle OOff_Decrypt The oracle com-
putes the parameters pub ←Offline_Decrypt(kagg, S ) that 
are used to decrypt the ciphertext within given set S cor-
responding to given aggregate key kagg.

•	 Online_Decryption oracle OOn_Decrypt On giving inputs 
of ( kagg, S, l,Cl, pub ), the challenger checks if kagg occurs 
in table Tkagg , if yes, then the oracle returns M ←Online_
Decrypt(kagg, S, l,Cl, pub ) to the adversary. Otherwise, it 
returns null.

Challenge Phase
A outputs two set of keywords �������⃗KW0,

�������⃗KW1 on which it 
wishes to be challenged, message M, public key pk and index 
ic . We consider only the case where ��⃗Q� ≠ �������⃗KW0

⋀
��⃗Q� ≠ �������⃗KW1.

The reason for this is
if �������⃗KW0 = �������⃗KW1 OR ( ��⃗Q ⊧ �������⃗KW0 

⋀
 ��⃗Q ⊧ �������⃗KW1 ), then SIM 

simply aborts and takes a random guess. The probability that 
the simulator SIM aborts is Pr[abort] = N2∕p

Otherwise, SIM randomly chooses a bit b ∈ {0,1} and 
compute keyword-ciphertext for �������⃗KWb.

Challenger C sets t = a and computes ciphertext by run-
ning Online_Encrypt(pk, ICic

, ic,M, �������⃗KWb)
C∗
1
 = ga ; C∗

2
 = ( v ⋅ gic)

a

C∗
3
 = C ���⃗KW = 𝛱

wi,j∈�����⃗KWb

(H(wi,j))
a

C∗
4
 = CM = M e(g1, gn)a

Query phase 2
The adversary A asks for more queries qn�+1,… , qn�

2

 to 
oracles and oracle answers in polynomial time. The oracles 
are identical to that in the query phase 1 except the 
following:

•	 Trapdoor generation oracle OTr On giving inputs of 
( kagg, ��⃗Q ) by the adversary, the challenger answers same 
as that in phase 1, except the following cases:

•	 The adversary had previously ask for the trapdoor 
corresponding to a set of keywords �������⃗KW0 or �������⃗KW1

•	 ��⃗Q = �������⃗KW0 or ��⃗Q = �������⃗KW1

	    If one of the above condition holds, then challenger 
returns null.

•	 Test oracle Otest On input of Test(Tr, S, l,UQR ), if ic = l 
or ic ∈ S , then the challenger returns null. Otherwise, the 
challenger responds as that in phase 1
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Guess
A outputs a guess b� ∈R {0, 1}.
If b� = b , then SIM outputs v� = 0 . If b′ ≠ b , then SIM 

outputs v� = 1 . Based on this, there will be two cases as 
follows:

case (i) if v = 0 , then Z = gabc , and hence, challenge 
ciphertext is a correct ciphertext of keyword KWb.

•	 ∴ A outputs b� = b with an advantage �
•	 ∴ Pr[b� = b|v = 0 ∧ abort] = 1∕2 + �

•	 ∴ Pr[v� = v|v = 0 ∧ abort] = 1∕2 + � because SIM 
guesses v� = 0 when b� = b

case (ii) if v = 1 , then the challenge ciphertext is independ-
ent of �������⃗KW0 and �������⃗KW1 , so that A cannot obtain any informa-
tion of b.

•	 ∴ A outputs b′ ≠ b with NO knowledge
•	 ∴ Pr[b� ≠ b|v = 1 ∧ abort] = 1∕2

•	 ∴ Pr[v� = v|v = 1 ∧ abort] = 1/2 because SIM guesses 
v� = 1 when b′ ≠ b

From (i) and (ii), it follows that SIM ’s advantage in this 
DDH game can be computed as:

Because the event “abort” is independent of DDH challenge, 
we have

Therefore, if the A has a non-negligible advantage � in the 
above game, then we can build a simulator ( SIM ) which 

Pr[v� = v] −
1

2

= Pr[v = 0]Pr[v� = v|v = 0] + Pr[v = 1]Pr[v� = v|v = 1] −
1

2

=
1

2
Pr[v� = v|v = 0] +

1

2
Pr[v� = v|v = 1] −

1

2

=
1

2
{Pr[v� = v|v = 0] + Pr[v� = v|v = 1] − 1}

=
1

2
{Pr[abort]Pr[v� = v|v = 0 ∧ abort] + Pr[abort]Pr[v� = v|v = 0 ∧ abort] + Pr[abort]Pr[v� = v|v = 1 ∧ abort]
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can break the DDH problem with non-negligible quantity 
=

�
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(1 −

N2

p
) , which is an intractable problem. 	�  ◻

Theorem 2  The proposed R-OO-KASE scheme is IND-KGA 
secure under the DDH assumption, assuming that the DDH 
problem is hard to solve.

Proof  We consider a challenger C , a simulator SIM and a 
polynomial-time adversary A . We assume that the adversary 
A has a non-negligible advantage �(l) to break the privacy 
of our scheme. Then, we can construct simulator SIM that 
breaks the decisional DDH problem � = ( g, ga, gb, gc,R ) with 
the advantage �(l)∕2

On DDH input (g, ga, gb, gc,R) , simulator SIM aims to 
decide if R = gabc.

The challenger C generates a, b, c, z ∈R Zp , bilinear groups 
G,GT with prime order p and the mapping G × G → GT . g 
is a generator of group G. The challenger C computes v as 
follows:

R =

{
gabc, (v = 0)

gz, (v = 1)

The challenger gives instance ( g, ga, gb, gc,R)∈ GT to simu-
lator SIM.

SIM interacts with A ( SIM simulates the C for A ) and 
starts the simulation as follows.

Init Phase
The adversary A selects a challenge index ic for which he 

wishes to be challenged upon.
Setup
The simulator SIM generates public parameters 

PubK=(g, g1,… , gn, gn+2,… , g2n).
Here, gl = (ga)�l ∈ G for l = {1, 2,… , n, n + 2,… , 2n}.
Moreover, SIM simulates the hash oracle to map the 

given keyword with unique value. The hash oracle is identi-
cal to that in the IND-CKA security model.
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SIM sets public key pk = v = (gc)u where u ∈R Zp . 
Finally, SIM records the tuple < pk, u > in table Tk . Table 
Tk is used to records the tuple < pk, u > , and these records 
will be used in other oracles to response the queries. The 
simulator SIM sends the public key pk to A.

Query Phase 1
The adversary A adaptively queries q1,… , qn� to oracles 

and oracle answers in polynomial time. The oracles are 
identical to that in the IND-CKA security model except the 
following:

•	 Online_Encryption oracle OOn_Encrypt The attacker A 
sends the challenger set of keywords ������⃗KW  along with 
an index l, a message M from message space, a pub-
lic key pk. If l ≠ ic , then the challenger runs Online_
Encrypt(pk, ICl, l,M, ������⃗KW  ) and returns ciphertext Cl to 
the adversary.

•	 Test oracle Otest On giving input of ( Tr, S, l,UQR ), the 
challenger checks ic ∉ S and l ≠ ic , the oracle returns 
output of Test(Tr, S, l,UQR ) to the adversary. Otherwise, 
it returns null.

Challenge Phase
The attacker A sends the challenger two equal length of 

query keyword ����⃗Q0;
����⃗Q1 on which it wishes to be challenged 

along with an index ic , and an aggregate key kcagg correspond-
ing to a set S which includes an index ic . Here, the restriction 
is that the attacker had not previously asked for the cipher-
text corresponding to keyword ����⃗Q0;

����⃗Q1  to the oracle 
OOn_Encrypt.

Otherwise, SIM randomly chooses a bit u ∈ {0,1} and 
computes Trapdoor Tr∗

u
.

The challenger runs TrapdoorGen(kcagg , ����⃗Qu ) and computes 
trapdoor Tr∗

u
 for ����⃗Qu as follows:

Tr0 ← kcagg ⋅𝛱wi,j∈ ��⃗Qu

(H(wi,j))
a

Tr1 ← ga
Query Phase 2
The adversary A asks for more queries qn�+1,… , qn�

2

 to 
oracles and oracle answers in polynomial time. The oracles 
are identical to that in the query phase 1 except the 
following:

•	 The adversary A cannot ask for the aggregate key cor-
responding to a set S which includes an index ic

•	 Ciphertext query on set of keywords ����⃗Q0 or ����⃗Q1 under chal-
lenge index ic is not allowed

Guess A outputs a guess u� ∈R {0, 1}.
If u� = u (Z = gabc ) , then SIM outputs v� = 0 . If u′ ≠ u 

, then SIM outputs v� = 1 to indicate trapdoor is a random 
element. Therefore, A gains no information about v, in turn, 

Pr[u ≠ u�|v = 1] = 1∕2 . As, the simulator SIM guesses 
v� = 1 when u ≠ u�,Pr[v = v�|v = 1] = 1∕2.

If v = 0 , then A is able to view the valid trapdoor compo-
nents with advantage �(l), a negligible quantity in security 
parameter in l. Therefore, Pr[u = u�|v = 0] = 1∕2 + �(l) . 
Similarly, simulator SIM guesses v� = 0 when u = u� , in 
turn, Pr[v = v�|v = 0] = 1∕2 + �(l).

The overall advantage of the simulator in DDH game is

Therefore, if the A has a non-negligible advantage �(l) in the 
above game, then we can build a simulator ( SIM ) which 
can break the DDH problem with non negligible quantity 
�(l)∕2 , which is an intractable problem. 	�  ◻

Theorem 3  The proposed KASE is secure against cross-
pairing attack.

Proof  An attacker A (the curious cloud server or an author-
ized user) may try to learn more information from the stored 
encrypted data beyond their authorization. With the knowl-
edge of public parameters PubK=(g, g1,… , gn, gn+2,… , g2n ) 
∈ G and public information �l = ( Cl1

,Cl2
 ) where Cl1

 = gtl ,Cl2
 

= (v ⋅ gl)tl ; A may try to get information about message M 
by performing the cross-pairing attack on data ciphertext 
Cl4

= M ∗ e(g1, gn)
tl . The adversary A may try to compute 

the value of e(g1, gn)tl . However, the term gn+1 = g�n+1 is miss-
ing in the public parameters PubK. Therefore, an attacker 
cannot compute the value of e (C1, gn+1) to get the value of 
e (g1, gn)tl . Notice that A cannot get the value of e(g1, gn)tl by 
cross-paring the available public information PubK and �l . 
Moreover, data-ciphertext CM is secured with value of tl , A 
is unable to get the value of tl as per the discrete logarithm 
problem. In addition, using the keyword-ciphertext and pub-
lic information an attacker cannot launch cross-paring attack 
to learn whether docl contains keyword value wi,j or not.

Furthermore, in the proposed KASE scheme, both the 
parameters of trapdoor Tr = (Tr0, Tr1) are protected using 
same value b ∈R Zp . Therefore, cross-paring of two differ-
ent trapdoors Tr and Tr′ is not possible, as the value of b is 
used different to generate each trapdoor. Cross-pairing of 
different trapdoors can generate incompatibility. Addition-
ally, in the proposed scheme, the aggregate key contains 
single group element. Therefore, an adversary cannot extract 
the individual secret keys or keyword from the single aggre-
gate key and trapdoor. Hence, different users cannot collide 
to decrypt or search over ciphertext(s) not in the scope of 
their respective aggregate keys. Even an authorized user 

1

2
Pr[v = v�|v = 1] +

1

2
Pr[v = v�|v = 0] −

1

2

=
1

2

1
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+

1
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cannot try to generate new aggregate key or trapdoor from 
the known ones.

Therefore, the proposed KASE is secure against cross-
pairing attack. 	�  ◻

7 � Performance and Efficiency Analysis

In this section, we analyze and compare the theoretical 
space, computational and communicational complexities of 
the proposed R-OO-KASE scheme with other related KASE 
schemes [4, 13, 18–24, 31, 32, 34, 35]. Our observations 
from the theoretical analysis are as follows:

•	 Storage Overhead

•	 The comparison of storage overhead is shown in 
Table 2. The size of intermediate ciphertext gener-
ated from the Offline_Encrypt() algorithm in the 
R-OO-KASE scheme depends on the number of key-
words in the keywords space and the total number 
of documents belonging to a data owner. If we use a 
curve E(F2271) × E(F2271) → F2271 over the binary field 
F2271 , which is equivalent to the 80-bit security level 

[11]. The size of an element in group G is 542 bits 
using an elliptic curve with 252 bits p. The size of an 

element in group G can be reduced to 34 bytes using 
a compression technique proposed in the paper [26]. 
Therefore, if there are 10000 keywords in the system 
and data owner owns n =1000 documents, then also 
intermediate ciphertext requires less than 0.24GB 
storage space. Further, the size of final ciphertext 
generated after Online_Encrypt() remains con-
stant in our scheme, whereas in the existing KASE 
schemes [4, 13, 18–22, 24, 31, 32, 34, 35] the size 
of ciphertext is linear in the number of keywords to 
be attached with the ciphertext.

•	 In the existing KASE schemes [4, 13, 18–22, 24, 31, 
32, 34, 35], the storage overhead of trapdoor is linear 
in the number of keywords in the search query. On 
the other hand, the storage overhead of trapdoor in 
the R-OO-KASE is constant and independent of the 
number of keywords in the search query set.

•	 The size of the revocation list in the proposed 
scheme is constant, i.e., two group elements, and 
it is independent of the number of revoked users. 
The storage complexity of each individual revoca-
tion list RLl (i.e., revocation list for lth document) 
is O(1) . However, the proposed approach gener-
ates a revocation list document-wise, so there will 
be a total n revocation list in the system if the data 
owner held n documents. The total storage cost of 
all the revocation list in the system is linear with the 
number of documents that a data owner holds. Even 
though the proposed revocation solution brought lin-
ear storage cost of O(n) by generating revocation list 
document-wise, the idea of direct revocation used 
in the proposed approaches eliminates the expen-
sive cost of updated key distribution among all the 
non-revoked users, as the revocation is realized by 
publishing the revocation list. The revocation in the 
proposed scheme does not affect the non-revoked 
users, as they do not require updating their corre-
sponding delegated keys, which greatly reduces the 
expensive cost of key update and the overhead of 
key delegate authority. Especially, to realize search 
right revocation, re-encryption operations on key-
word ciphertexts are not needed in our scheme. The 
KASE [35] scheme supports the revocation of dele-
gated rights by distributing the new set of keys to the 
non-revoked users in each time period. The revoca-
ble KASE scheme proposed in [35] requires the data 
owner to maintain a user list to generate authorized 
keys for all the non-revoked users. The authorized 
users registered in the data owner’s list can receive 
a new pair of authorized keys from the data owner. 
Therefore, the existing revocable KASE scheme [35] 
consumes more overhead at the data owner side to 

Table 2   Comparative analysis: storage overhead

|������⃗KW| number of keywords attached with the ciphertext, |��⃗Q| number 
of keywords in the query set, n number of documents held by a data 
owner, m size of keywords space in the system, NA not applicable

Schemes Size of Ciphertext Size of Trapdoor Size of RL

Online Offline

[4] O(|������⃗KW|) NA O(|��⃗Q|) NA

[19] O(|������⃗KW|) NA O(|��⃗Q|) NA

[18] O(|������⃗KW|) NA O(|��⃗Q|) NA

[34] O(|������⃗KW|) NA O(|��⃗Q|) NA

[22] O(|������⃗KW|) NA O(|��⃗Q|) NA

[35] O(|������⃗KW|) NA O(|��⃗Q|) NA

[20] O(|������⃗KW|) NA O(|��⃗Q|) NA

[21] O(|������⃗KW|) NA O(|��⃗Q|) NA

[24] O(|������⃗KW|) NA O(|��⃗Q|) NA

[23] O(1) NA O(1) NA
[32] O(|������⃗KW|) NA O(|��⃗Q|) NA

[13] O(|������⃗KW|) NA O(|��⃗Q|) NA

[31] O(|������⃗KW|) NA O(|��⃗Q|) NA

R-OO-KASE O(1) O(nm) O(1) O(1)
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generate as well as distribute keys periodically to 
each authorized user of the system.

•	 Computation Overhead

•	 The comparison of computation overhead is shown 
in Table 3. The computational cost of revocation 
in the proposed scheme is linear in the number of 
revoked users, whereas verification of the user’s 
authorization with the revocation list only requires 
two pairing operations.

•	 In the proposed R-OO-KASE scheme, Offline_
Encrypt() algorithm requires only one pairing opera-
tion along with the exponentiation operations pro-
portional to the number of keywords in the system. 
Additionally, Online_Encrypt() algorithm in the pro-
posed scheme requires only multiplication operations 
linearly dependent on the number of keywords to 
be attached with the ciphertext. The existing KASE 
methods [4, 13, 18–21, 31] use two pairing opera-
tions to generate a keyword ciphertext for each key-
word to be attached with the document, whereas in 
the proposed scheme, we are using exponentiation to 
generate the keyword ciphertext. The authors of [25] 
shows that for different security levels (i.e., for 80 
bits, 112 bits and 128 bits) and prime order groups, 
the group exponentiation (of a random group ele-
ment with a random exponent) requires significantly 
less time compared to the pairing operations (on ran-
dom group elements). We remark that the work done 
in the offline phase in the R-OO-KASE scheme is 
roughly equivalent to the work of the regular encryp-
tion algorithm in the existing KASE schemes [4, 13, 
18–22, 24, 31, 32, 34, 35]. Therefore, the proposed 
R-OO-KASE scheme reduces the online computa-
tion cost of the existing KASE methods [4, 13, 18–
22, 24, 31, 32, 34, 35] substantially.

•	 The computational cost of trapdoor generation in 
case of multi-keyword search is same for all the con-
sidered KASE schemes [4, 13, 18–24, 31, 32, 34, 35] 
including the proposed KASE scheme. However, in 
case of multi-keyword search, the number of result-
ant trapdoors are |��⃗Q| in the existing KASE schemes 
[4, 13, 18–22, 24, 31, 32, 34, 35], whereas in the 
proposed scheme, one can perform a multi-keyword 
search using a single trapdoor of constant size. We 
are not focusing on the query expressiveness, but 
our aim is to support multiple keyword searches 
using a single trapdoor. The proposed scheme sup-
ports only the case in which ��⃗Q = ������⃗KW  , i.e, the set 
of queried keywords are the same as the set of key-
words encrypted. Moreover, the proposed approach 
provides trapdoor privacy in contrast to the existing 

KASE schemes [4, 18–21] that leak data related to 
keyword from the trapdoor as discussed in [14].

•	 The computational cost of Test() algorithm in the 
existing schemes [4, 13, 18–22, 24, 31, 32, 34, 35] 
scales linearly with the number of keywords in the 
search query set. In contrast, in the proposed KASE 
scheme, the computational cost of the Test() algo-
rithm is constant and independent of the number of 
keywords in the query set. Moreover, in the existing 
KASE schemes [4, 13, 18–21, 31, 34, 35], when an 
authorized user submits the trapdoor to the cloud 
server in order to perform search; the total time 
required to search a keyword at the cloud server is: 
Time required to transform aggregate trapdoor Tr to 
generate actual trapdoor Trl for searching over lth 
document + Time required to execute Test () algo-
rithm. This trapdoor transformation process used in 
the existing KASE schemes [4, 13, 18–21, 31, 34, 
35] adds extra computational and storage overhead at 
the server-side. The proposed R-OO-KASE scheme 
allows searching over shared documents using aggre-
gate trapdoor without requiring to generate individ-
ual trapdoor Trl from the aggregate trapdoor. In this 
way, we overcome the extra overhead of trapdoor 
transformation required on the server-side. With such 
constant computational overhead of Test() algorithm, 
the proposed scheme performs better than the exist-
ing KASE schemes [4, 13, 18–21, 31, 34, 35].

•	 In the proposed KASE scheme, the Online_Decrypt() 
only requires three pairing operations and most of 
the costly computation of the decryption work is 
shifted to the offline phase. In this way, we reduce 
the computation overhead at both data owners and 
users’ sides.

•	 Communication Overhead

•	 We compare the communication overhead of cipher-
text and query trapdoor as shown in Table 4.

•	 The communication overhead of query trapdoor in 
the existing KASE [4, 13, 18–22, 24, 31, 32, 34, 35] 
schemes is linear in the number of keywords in the 
query set. The communication overhead of cipher-
text in the existing KASE schemes [4, 13, 18–22, 24, 
31, 32, 34, 35] is linear in the number of keywords 
attached with the ciphertext.

•	 The proposed scheme reduces communication cost 
as compared to the existing KASE schemes [4, 13, 
18–22, 24, 31, 32, 34, 35]. The communication cost 
of the trapdoor in the R-OO-KASE scheme is inde-
pendent of the number of keywords in the query set. 
Similarly, the communication cost of ciphertext in 
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the R-OO-KASE scheme is independent of the num-
ber of keywords attached with the ciphertext.

•	 If we use 80-bit [6] security level, then the size of 
an element in group G is 542 bits using an ellip-
tic curve with 252 bits p. The size of an element in 
group G can be reduced to 34 bytes using a compres-
sion technique proposed in the paper [26]. There-
fore, in the proposed scheme, the size of ciphertext 
is 3|G| + |GT | = 3*34 + 34bytes= 136bytes and 
trapdoor size is |G| = 34 bytes. The MICA2 equipped 
with an ATmega128 8-bit processor clocked at 
7.3728MHz, 4-KB RAM, and 128-KB ROM requires 
3*27*8/12400 = 0.052 mJ to transmit one-byte mes-
sage, as discuss in [27]. Therefore, communication 
energy consumptions of the sensor in the R-OO-
KASE scheme to send ciphertext are 0.052*136 
=7.072 mJ and trapdoor is 0.052*34=1.768 mJ.

7.1 � Evaluation of KASE Schemes

In this section, we compare the proposed R-OO-KASE 
scheme with the existing KASE schemes [4, 13, 18–24, 
31, 32, 34, 35] in the security, efficiency and functional 
respects. The comparison results are summarized in Table 5. 

Table 3   Comparative analysis: computation overhead

|������⃗KW| number of keywords attached with the ciphertext, |��⃗Q| number of keywords in the query set, n number of documents held by a data owner, m 
size of keywords space in the system, |U| number of revoked users, E exponentiation, MUL scalar multiplication, P pairing, |S| size of set S, NA 
not applicable

Schemes Revocation Encryption() Data + Keyword 
ciphertext

TrapdoorGen() Test() Decryption()

Offline Online Multi-keyword search Multi-keyword search Offline Online

[4] NA NA O(|������⃗KW|P) O(|��⃗Q|MUL) O(|��⃗Q|P) NA NA

[19] NA NA O(|������⃗KW|P) O(|��⃗Q|MUL) O(|��⃗Q|P) NA NA

[18] NA NA O(|������⃗KW|P) O(|��⃗Q|MUL) O(|��⃗Q|P) NA NA

[34] NA NA O(|������⃗KW|E) O(|��⃗Q|MUL) O(|��⃗Q|P) NA NA

[22] NA NA O(|������⃗KW|E) O(|��⃗Q|MUL) O(|��⃗Q|P) NA NA

[35] NA NA O(|������⃗KW|E) O(|��⃗Q|MUL) O(|��⃗Q|P) NA NA

[20] NA NA O(|������⃗KW|P) O(|��⃗Q|MUL) O(|��⃗Q|P) NA NA

[21] NA NA O(|������⃗KW|P) O(|��⃗Q|MUL) O(|��⃗Q|P) NA NA

[24] NA NA O(|������⃗KW|E) O(|��⃗Q|MUL) O(|��⃗Q|P) NA NA

[23] NA NA O(|������⃗KW|E) O(|��⃗Q|MUL) O(3P) NA NA

[32] NA NA O(|������⃗KW|n2logn) O(|��⃗Q|) O(|��⃗Q|nlogn) NA NA

[13] NA NA O(|������⃗KW|P) O(|��⃗Q|MUL) O(|��⃗Q|P) NA NA

[31] NA NA O(|������⃗KW|P) O(|��⃗Q|MUL) O(|��⃗Q|P) NA NA

R-OO-KASE O(|U|MUL) O(mnE) O(|������⃗KW|MUL) O(|��⃗Q|MUL) O(3P) O( |S|MUL) O(3P)

Table 4   Comparative analysis: communication overhead

n number of documents that belongs to the data owner, |������⃗KW| num-
ber of keywords attached with the ciphertext, |��⃗Q| number of keywords 
in the query set, q size prime number in lattice-based KASE scheme 
[32], mXn size of matrix in lattice-based KASE scheme [32], |G| size 
of a element in group G, |GT | size of a element in group GT

Schemes Ciphertext Search request 
(No. of Trap-
door)

[4] 2|G| + |������⃗KW||GT | |��⃗Q||G|
[19] 2|G| + |������⃗KW||GT | |��⃗Q||G|
[18] 2|G| + |������⃗KW||GT | |��⃗Q||G|
[34] (2 + |������⃗KW|)|G| + |GT | |��⃗Q||G|
[22] (2 + |������⃗KW|)|G| + |GT | |��⃗Q||G|
[35] (2 + |������⃗KW|)|G| + |GT | |��⃗Q||G|
[20] 2|G| + |������⃗KW||GT | |��⃗Q||G|
[21] 2|G| + |������⃗KW||GT | |��⃗Q||G|
[24] 3|G| + |������⃗KW||GT | |��⃗Q||G|
[23] 4|G| + 2|GT | |G|
[32] |������⃗KW|((2m + 1)logq) ���⃗Q�(𝜏 �

√
m)

[13] 3|G| + |������⃗KW||GT | |��⃗Q|(|G| + 2|Z∗
p
|)

[31] 2|G| + |������⃗KW||GT | |��⃗Q||G|
R-OO-KASE 3|G| + |GT | |G|
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In Table 5, each scheme is compared in terms of the follow-
ing parameters:

•	 Efficiency for resource starved environment
•	 Support for multi-keyword search using a single trapdoor
•	 Support for revocation of delegated rights
•	 Support for search over multi-owners’ data using a single 

trapdoor
•	 Requirement of trapdoor transformation before keyword 

search
•	 Scalability
•	 Security against IND-CKA and IND-KGA
•	 Security against cross-paring attack
•	 Support for verification of search result

From Table 5, we can observe that none of the exist-
ing KASE schemes listed in the table provide revocation 
of delegated rights, conjunctive keywords search using a 
single trapdoor and energy-efficient encryption as well as 
decryption algorithms for resource-limited devices. Addi-
tionally, as shown in Table 5, the KASE schemes [4, 13, 
23, 24, 31, 32, 34, 35] do not support search over multi-
owners’ data using a single trapdoor. On the other hand, the 
KASE schemes proposed in [18–22] provide the solution to 
search over multi-owners’ data using a single trapdoor. The 
KASE schemes proposed in [18–21, 31] allow verification 
of search result using an aggregate key. However, the exist-
ing KASE schemes [4, 13, 18–21, 31, 32, 34, 35] require 
trapdoor transformation at the time of keyword searching 
that adds an additional computational and storage overhead 

at the server-side. Further, the KASE schemes [4, 18–21, 
31] do not provide formal security proof against IND-CKA 
and IND-KGA. The existing KASE schemes [4, 18–21, 31] 
are insecure against cross-pairing attack. The existing KASE 
schemes [4, 13, 18–21, 31, 32, 34, 35] are not scalable, i.e., 
if the number of files exceeds n (maximum number of docu-
ments held by a data owner), the whole system should be 
reestablished. The KASE [35] scheme supports revocation 
of delegated rights by distributing the new set of keys to the 
non-revoked users in each time period. However, the exist-
ing revocable KASE scheme [35] consumes more overhead 
at the data owner side to generate as well as distribute keys 
periodically to each authorized user of the system. Further, 
considering the requirements of resource-limited environ-
ment, none of the existing KASE[4, 13, 18–24, 31, 32, 34, 
35] schemes can be applicable to work on resource-limited 
devices, with the battery as the only source of power.

In contrast, the proposed KASE scheme supports multi-
keyword searches using a single trapdoor. The proposed 
R-OO-KASE scheme allows the data owner to revoke del-
egated rights. Additionally, the proposed scheme reduces 
the computation overhead of encryption and decryption, to 
make the scheme practically applicable in the resource-lim-
ited environment. Furthermore, the proposed KASE scheme 
does not require trapdoor transformation and reduces over-
head at the server side at the time of keyword searching. The 
proposed approach is also scalable and the aggregate key is 
independent of the maximum number of documents held by 
a data owner. The proposed R-OO-KASE scheme provides 
security against the IND-KGA, IND-CKA and cross-pairing 
attack.

Table 5   A Comparative 
summary of the existing KASE 
schemes with the R-OO-KASE

EFF efficient for resource starved environment, MUL support multi-keyword search using a trapdoor, REV 
support revocation of delegated rights, MO search over multi-owners’ data using a single query trapdoor, 
TT is trapdoor transformation required?, SCA scalable, IND-KGA secure against keyword guessing attack, 
IND-CKA secure against keyword indistinguishability attack, CPrA secure against cross-pairing attack, 
SRV support verification of search result using an aggregate key

Scheme EFF MUL REV MO TT SCA IND-KGA IND-CKA CPrA SRV

[4] × × × × ✓ × × × × ×

[19] × × × ✓ ✓ × × × × ✓

[18] × × × ✓ ✓ × × × × ✓

[34] × × × × ✓ × ✓ ✓ ✓ ×

[22] × × × ✓ × ✓ ✓ ✓ ✓ ×

[35] × × ✓ × ✓ × ✓ ✓ ✓ ×

[20] × × × ✓ ✓ × × × × ✓

[21] × × × ✓ ✓ × × × × ✓

[24] × ✓ × ✓ × ✓ ✓ ✓ ✓ ×

[23] × ✓ ✓ × × ✓ ✓ ✓ ✓ ×

[32] × × × × ✓ × ✓ ✓ × ×

[13] × × × × ✓ × ✓ ✓ × ×

[31] × × × × ✓ × × × × ✓

R-OO-KASE ✓ ✓ ✓ × × ✓ ✓ ✓ ✓ ×
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8 � Empirical Evaluation

8.1 � Implementation Details

We implement a prototype of the proposed R-OO-KASE 
scheme and conduct the experiments on two different plat-
forms: the computer and the mobile device, using Java Pair-
ing-Based Cryptographic (JPBC) library [7]. The experi-
ments are conducted as follows: client implementations 
were executed in a personal computer with 64 bit Intel(R) 
Core(TM) i5 -7200U CPU @ 2.50 GHz with Windows10 
OS; server implementations were deployed in the Ama-
zon AWS cloud, using an EC2 M5 large instance. Com-
munications were performed on a 10MB/s connection, with 
26.932ms round-trip time. In order to evaluate computa-
tional cost on the resource-constrained device, we simulate 
client implementations on Xiaomi Redmi 3S mobile device 
with Android OS 6. For evaluation, the official Medicare.
gov Hospital Compare datasets provided by the Centers for 
Medicare and Medicaid Services [12] are used. Type A pair-
ing is used for the evaluation, and it is the fastest (symmet-
ric) pairing among all types of curves. The Type A pairings 
are constructed on the curve y2 = x3 + x over the field Fq for 
some prime q = 3 mod 4.

In the proposed scheme, the Setup(), KeyGen(), 
Encrypt(), Extract(), Revocation(), TrapdoorGen() algo-
rithms are executed at client-side and the Test() algorithm 
on the server-side. The running time is measured in milli-
seconds. The results represent an average of five executions.

8.2 � Experimental Results

In this section, we evaluate and analyze the computational 
cost of different algorithms of the proposed scheme.

The time cost of Setup() is linear in the maximum number 
of documents belonging to the data owner (Fig. 4a). Fig-
ure 4b shows the computational cost of KeyGen() approxi-
mate to a constant. The results given in Fig. 4c show that 
the computational overhead of Online_Encrypt() is linear 
in the number of keywords to be attached with the cipher-
text. The results are given in Fig. 4d, clearly indicate that 
when the number of keywords is greater than 500, only 10% 
of the work remains to be done in online encryption phase 
and more than 90% of the work in the keyword and mes-
sage encryption is shifted to the offline phase. The com-
putational cost of Revocation() is linear in the number of 
revoked users, as shown in Fig. 4e. Figure 4f shows that 
the computational time of Extract() is linear in the number 
of shared documents. Figure 4g shows the computational 
time of TrapdoorGen() is linear in the number of keywords 
within the search query set. The execution time of Test() is 

linear in the number of shared documents (Fig. 4i), whereas 
in the case of multi-keyword search, the computational time 
of Test() remains constant with respect to the number of 
keywords in the query set (Fig. 4h). Figure 4j, k shows that 
in the online decryption phase only 3 pairing operations are 
required to perform and more than 80% of the decryption 
work is shifted to the offline phase. This observation from 
empirical analysis implies that we reduce the computation 
overhead at both data owners and users’ sides.

8.3 � Comparative Analysis Results

In this section, to show the trade-off in performance of the 
proposed R-OO-KASE scheme, the proposed solution is 
evaluated against the existing KASE[20, 22] schemes.

In the proposed scheme as well as in the existing 
KASE schemes[20, 22], the Setup(), KeyGen(), Encrypt(), 
Extract(), Revocation(), TrapdoorGen() algorithms are exe-
cuted at client-side and the Test() algorithm on the server-
side. To calculate the computation cost of the proposed 
Test() algorithm for the multi-keyword query, the conjunc-
tive search queries are given. The total time required by the 
proposed Test() algorithm to get the results after he sends 
out the query with multiple keywords is measured. The run-
ning time is measured in milliseconds. The results represent 
an average of five executions.

Our observations from the empirical analysis are as 
follows:

•	 Time cost of Setup() for the proposed R-OO-KASE 
is lesser as compared to the existing KASE [20, 22] 
schemes and it is in linear with the maximum number of 
documents belonging to the data owner (Fig. 4l).

•	 The results given in Fig. 4m show that the computational 
overhead of Encrypt() is in linear with the number of 
keywords attached with the ciphertext. However, the 
encryption cost of the proposed R-OO-KASE and the 
MULKASE [22] scheme is lesser as compared to the 
MO-VKASE[20] scheme, since the cost of pairing is 
much more heavy than the multiplication and exponen-
tiation operations. The MO-VKASE uses two pairing 
operations to generate a keyword ciphertext, whereas, 
the MULKASE uses multiplication and exponentiation to 
generate a keyword ciphertext. The proposed Encrypt() 
algorithm uses one pairing operation to generate a 
ciphertext.

•	 Figure 4n shows that the computational time of Extract() 
is in linear with the number of shared documents for the 
proposed R-OO-KASE and the existing KASE schemes 
[20, 22]. The computational time of Extract() is same for 
all the considered KASE schemes.
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Fig. 4   The computational cost 
of R-OO-KASE algorithms()
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•	 Figure 4o shows that the computational time of Trap-
doorGen() is linear with the number of keywords in the 
search query set for the proposed R-OO-KASE and the 
existing KASE [20, 22] schemes. However, the MUL-
KASE [22] and the MO-VKASE [20] only support the 
exact keyword match query on a single keyword.

•	 Figure 4p shows the comparison result of the time cost 
required to send and execute a search query with mul-
tiple keywords. The total time considered for compari-
son is: Communication cost required to send trapdoor(s) 
for a query with multiple keywords + Computation 
cost required to execute Test() for multi-keyword query 
+ Communication cost to receive search results. The 
dataset size considered for this comparison is 10, i.e., 
10 documents are in the range of given query trapdoor. 
Therefore, the results shown in the comparison graph 
are the total time after executing Test() for multi-key-
word query over 10 documents. Additionally, the time 
cost for the existing VKASE [20] scheme also includes 
computation cost of Adjust() algorithm, as VKASE [20] 
scheme requires trapdoor transformation by executing 
Adjust() before running Test(). The proposed R-OO-
KASE and the existing MULKASE [22] schemes do 
not use Adjust() algorithm for trapdoor transformation 
before searching. Therefore, R-OO-KASE and the exist-
ing MULKASE [22] schemes take lesser computation 
time for Test() as compared to the VKASE [20]. Further, 
the existing KASE[20, 22] schemes do not support multi-
keyword searches using a single trapdoor. Therefore, the 
total time cost required to send and execute search query 
with multiple keywords is less in the proposed R-OO-
KASE scheme as compared to the existing KASE [20, 
22] schemes. In the existing KASE [4, 18–22, 34, 35] 
schemes, the user requires to submit different trapdoors 
for each individual keyword to the server. The server per-
forms a search for each of the keywords separately and 
returns the intersection of all the results. Specifically, 
for searching a set of keywords ��⃗Q = {Q1,… ,Qp} over 
shared dataset, the existing KASE schemes [4, 18–22, 34, 
35] require |��⃗Q| = p number of trapdoors. Similarly, the 
cloud server requires to perform O(|��⃗Q|) pairing opera-
tions to execute the multi-keyword query. Additionally, 
the cloud server must perform a search query over all the 
shared dataset. In the considered scenario, as the dataset 
is 10 the cloud server requires to perform O(|��⃗Q|) pair-
ing operations over all the 10 documents to execute the 
multi-keyword query. Therefore, the time cost increases 
drastically in the existing KASE [20, 22] schemes as 
compared to the proposed approach. In the proposed 
R-O-KASE scheme, the communication and computa-
tion cost required to execute multi-keyword query is 
independent of the size of keywords in the query set.

8.4 � Findings

•	 The encryption cost of the proposed R-OO-KASE 
scheme is lesser as compared to the MO-VKASE [20] 
scheme. The reason for the lesser computation cost of the 
R-OO-KASE scheme is that the proposed Encrypt() algo-
rithm mainly uses the multiplication and exponentiation 
operations whereas the MO-VKASE [20] uses pairing 
operations in Encrypt() algorithm (Fig. 4m).

•	 The existing MO-VKASE [20] scheme takes more com-
putation time for Test() as compared to the proposed 
R-OO-KASE for the exact keyword match query on 
non-numeric keywords. The reason for the same is the 
MO-VKASE [20] uses Adjust() algorithm for trapdoor 
transformation before running Test() algorithm and it 
increases search time. On the other hand, the proposed 
KASE scheme does not use the Adjust() algorithm. The 
proposed R-OO-KASE scheme allows searching over the 
shared dataset S using a single trapdoor Tr that a query 
requester submits to the cloud server (Fig. 4p).

•	 The computation cost of the proposed Test() is independ-
ent of the number of keywords in the search query, how-
ever, the computation cost of Test() is linear with the 
number of shared documents (Fig. 4h, i).

9 � Conclusions and Future Extensions

In this paper, we propose the R-OO-KASE (Revoca-
ble Online/Offline KASE) scheme that is suitable for the 
resource-constrained environment, as we split costly opera-
tions of encryption and decryption into two phases: online 
and offline. In the offline phase, the user performs expen-
sive pairing and exponentiation operations required in the 
encryption/decryption. In the online phase, i.e., when the 
device is moving on (not connected to the power source), 
the user can generate the final output with the minimal com-
putational cost. We provide the performance estimates that 
showed over 90% of the computation operations of encryp-
tion/decryption are shifted to the offline phase. The proposed 
KASE scheme also supports the revocation of delegated 
rights in the cloud environment, realizing the key aggre-
gation and user access control effectively. The proposed 
scheme supports fine-grained revocation of the delegated 
rights on document level, instead of coarse-grained all-or-
nothing access. The idea of direct revocation used in the 
proposed approach eliminates the expensive cost of updated 
key distribution among all the non-revoked users, as the 
revocation is realized by publishing the revocation list. The 
other contribution of the proposed approach is that it offers 
multi-keyword searches over a shared dataset using a con-
stant size query trapdoor. We also proved that the proposed 
scheme is secure against defined IND-CKA, IND-KGA and 
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cross-pairing attacks. In addition, the empirical analysis con-
firms that the proposed scheme is suitable for resource-con-
strained devices and improves query performance as com-
pared to the existing KASE schemes. Overall, the proposed 
R-OO-KASE scheme helps to reduce the cost of bringing 
KASE into practice on the power-constrained device.

In the future, one can extend the scheme and enhance the 
system usability by providing fuzzy, semantic and ranked 
search on the encrypted dataset using a single trapdoor. 
Research on query expressiveness needs to move toward 
closing the gap between existing SE schemes and plaintext 
searches.
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