
Vol.:(0123456789)1 3

Data Science and Engineering (2020) 5:419–432
https://doi.org/10.1007/s41019-020-00134-0

DeepECT: The Deep Embedded Cluster Tree

Dominik Mautz1 · Claudia Plant2 · Christian Böhm3

Received: 2 April 2020 / Revised: 26 June 2020 / Accepted: 26 June 2020 / Published online: 14 July 2020
© The Author(s) 2020

Abstract
The idea of combining the high representational power of deep learning techniques with clustering methods has gained much
attention in recent years. Optimizing a clustering objective and the dataset representation simultaneously has been shown
to be advantageous over separately optimizing them. So far, however, all proposed methods have been using a flat cluster-
ing strategy, with the actual number of clusters known a priori. In this paper, we propose the Deep Embedded Cluster Tree
(DeepECT), the first divisive hierarchical embedded clustering method. The cluster tree does not need to know the actual
number of clusters during optimization. Instead, the level of detail to be analyzed can be chosen afterward and for each
sub-tree separately. An optional data-augmentation-based extension allows DeepECT to ignore prior-known invariances of
the dataset, such as affine transformations in image data. We evaluate and show the advantages of DeepECT in extensive
experiments.

Keywords Embedded clustering · Hierarchical clustering · Autoencoder · Deep learning

Abbreviations
ACC Clustering accuracy
AE Autoencoder
AE + Complete AE combined with agglomerative

clustering with complete-linkage
AE + Single AE combined with agglomerative

clustering with single-linkage
DEC Deep Embedded Cluster algorithm [3]
IDEC Improved Deep Embedded Cluster

algorithm [5]
DeepECT Deep Embedded Cluster Tree
DeepECT + Aug DeepECT with the optional augmenta-

tion extension
DP Dendrogram purity
Eq. Equation
LP Leaf purity

NMI Normalized mutual information
ReLU Rectified linear unit
URL Uniform resource locator

1 Introduction

Clustering algorithms are a fundamental tool for data mining
tasks. However, of similar importance is the representation
of the data to be clustered and this, in turn, depends on the
data domain. In the last decade, deep learning techniques
have achieved in areas that were previously very challenging
for machine learning and data mining methods. These areas
include images, graph structures, text, video, and audio.
Many of these success stories have been made in the con-
text of supervised learning. Further, neural network-based,
unsupervised representation learning has made it possible to
embed these challenging domains into spaces more acces-
sible to classical data mining methods.

In recent years, the idea of simultaneously optimizing
a clustering objective and the dataset representation has
gained more traction. In this work, we call these methods
either embedded clustering or deep clustering. The com-
bined optimization holds the promise of improved results
compared to two separate steps: During optimization,
better feature representations are learned that enhance
the cluster assignments; the cluster assignments, in turn,

 * Dominik Mautz
 mautz@dbs.ifi.lmu.de

 Claudia Plant
 claudia.plant@univie.ac.at

 Christian Böhm
 boehm@dbs.ifi.lmu.de

1 LMU München, Munich, Germany
2 Faculty of Computer Science, ds:UniVie, University

of Vienna, Vienna, Austria
3 MCML, LMU München, Munich, Germany

http://orcid.org/0000-0003-3480-8537
http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-020-00134-0&domain=pdf

420 D. Mautz et al.

1 3

provide information to improve the embedding. However,
this also makes the task especially challenging, because,
with each update of the embedding network, the embedded
data space changes, and the clustering method has to adapt
to this changing environment.

Typically, the embedding method is an autoencoder,
a specific type of neural network. These networks learn
to map a data space onto a latent, embedded space and a
mapping back to the original space. Usually, these embed-
dings have a lower dimensionality than the original data
domain and, therefore, are easier to visualize.

In this paper, we focus on a novel, specialized cluster-
ing layer, the Deep Embedded Cluster Tree (DeepECT)
layer. We explicitly do not consider any specific autoen-
coder type that is used for the embedding. Instead, we only
apply a generic feedforward autoencoder architecture and
focus on the clustering layer. We expect that DeepECT
profits to the same degree from better embeddings through
domain-specific autoencoders (e.g., convolutional autoen-
coders) as other clustering algorithms would do.

DeepECT is inspired by classical hierarchical cluster-
ing. It simultaneously improves the embedded features
and iteratively grows a cluster tree. In contrast to previous
embedded flat clustering methods, the cluster tree repre-
sents a hierarchy of clusters that separate populations and
subpopulations within the data. DeepECT grows top-down
and assigns the data bottom-up. It is optimized with mini-
batches, which also makes it suited for large datasets. The
final cluster assignments are flexible and can be deter-
mined on a by-need basis.

Over other embedded flat clustering techniques, Deep-
ECT has the advantage of not requiring the specification
of the number of clusters to be found. This feature is much
more crucial for embedded techniques than for traditional
clustering settings because other embedded flat clustering
techniques actively destroy structural information that is
not captured through the clusters and the embedded space
is actively optimized to reflect the selected number of
clusters. Therefore, the cluster validity and consistency
of these methods cannot be evaluated by measures such
as the Silhouette coefficient. Even the inclusion of the
autoencoder’s reconstruction loss cannot fully overcome
this behavior. For DeepECT, we can separately choose the
level of detail we want to inspect during analysis—i.e.,
after optimization—for every local structure captured by a
sub-tree. This feature is enabled through a new projection-
based loss function that we use for DeepECT. It does not
penalize orthogonal structures—not yet captured by the
cluster tree—allowing that those structures can be found
when we let the tree grow in subsequent steps of the opti-
mization process.

We summarize the contributions of this work as follows:

• Hierarchical clustering layer We propose a novel cluster-
ing layer that builds a cluster tree in an embedded space.
Both the embedding and the tree are trained simulta-
neously, and degenerated solutions are avoided—as
opposed to other proposed methods. In contrast to other
embedded clustering methods, DeepECT does not need
the actual number of clusters during optimization.
Instead, the level of detail can be chosen afterward.

• Novel optimization strategy We propose a novel projec-
tion-based optimization strategy that enhances the cluster
boundaries and preserves orthogonal structural informa-
tion.

• Optional augmentation An optional extension, utilizing
augmentation methods, allows ignoring known invari-
ances within the data.

2 Deep Embedded Cluster Tree

2.1 Overview

In this section, we discuss the deep embedded cluster tree
(DeepECT). An implementation can be found at https ://
dmm.dbs.ifi.lmu.de/downl oads. We focus on the novel
DeepECT clustering layer and assume that we are given
some generic autoencoder that transforms a data point � via
an encoding function enc(⋅) onto an embedded space and
a decoding function dec(⋅) that reconstructs an embedded
data point back onto the original space. This autoencoder
has been pre-trained using a differentiable loss function that
penalizes the reconstruction error for a data mini-batch B . A
popular choice is the mean squared error loss:

Yet, the selected loss function is entirely domain-specific, as
is the choice of the specific autoencoder architecture.

We combine the reconstruction loss and the clustering loss
of the DeepECT layer into a final loss term. Figure 1 shows
a sketch of the overall architecture, including the autoen-
coder and an illustration of the embedded cluster tree. The
constructed tree is a binary tree; each node is either a leaf
node or an inner node—we call this a split node—with two
nodes as children. Each node has a vector representing a point
in the embedded space and serving as a cluster center. We
use this center as a representative of the assigned data. We
combine ideas from both top-down and bottom-up hierarchi-
cal strategies. The data point assignment to the nodes follows
a bottom-up strategy, whereas the tree grows in a top-down
manner. We start with a single root node that we assign all
data points to and iteratively split nodes until the tree has the
desired number of leaf nodes (or some other user-specified

(1)Lrec =
1

�B�
�

�∈B

‖� − dec(enc(�))‖2
2
.

https://dmm.dbs.ifi.lmu.de/downloads
https://dmm.dbs.ifi.lmu.de/downloads

421DeepECT: The Deep Embedded Cluster Tree

1 3

criteria is met). Algorithm 1 shows the pseudo-code of the
optimization procedure.

2.2 Object Assignment

The data point assignment is executed in a bottom-up fash-
ion. We assign each data point � of a mini-batch B to its
closest leaf node:

where L is the set of all leaf nodes. Each split node obtains
the data points assigned to its two child nodes.

2.3 Node Center Loss

Since the embedded space also changes between update
steps, we have to adapt the nodes’ centers to the changing
environment. The centers of the leaf nodes are trainable
parameters, and we optimize them accordingly. We do this
by penalizing the squared difference between the leaf nodes’
centers �n and the mean value of the data points of the mini-
batch assigned to this leaf node:

where we denote the set of all data points assigned to a node
n as Bn and regard the embedded data points and the encoder
as constant, which we indicate by the stop gradient operator
sg[⋅] . Keeping the embedding constant ensures that we only
push the center of a node toward the data mean, but not the
data points toward the node center. Updating the embeddings
is the purpose of the next loss function, and we explain in the
next section the reason behind it. We divide by the number
of leaf nodes to get the mean loss over the leaf nodes.

The centers of the split nodes are not trainable parameters
but are determined based on the leaf nodes in the node’s
sub-tree. Calculating the centers of the inner nodes has two
advantages. First, we have fewer parameters the optimiza-
tion algorithm has to keep track of. Second, representing
the inner node as trainable parameters can lead to situa-
tions where a split node center and the two centers of the
respective children become inconsistent, i.e., the center of
a split node may not lay on or even near the connection line
between the centers of its child nodes. Defining the centers
of split nodes based on their child nodes centers circumvents
this issue.

We determine the split node centers as weighted averages
over the child-nodes:

where l and r are the indices of the left and right child of
this node and wl and wr represent their weights. The weights
represent the number of data points assigned to this node
over several update steps and guarantee that a calculated
center is an suitable representative for both children, even
in unbalanced situations.

Finally, we have to update the weights wn of each node
used in Eq. (3). We represent the weights as an exponential

argmin
n∈L

‖�n − enc(�)‖2,

(2)LNC =
1

|L|
∑

n∈L

‖‖‖�n −
1

|Bn|
∑

�∈Bn

sg[enc(�)]
‖‖‖2,

(3)�n =
1

wl + wr

(wl�l + wr�r),

Fig. 1 The figure shows an illustration of the combined architec-
ture of the DeepECT clustering algorithm and an autoencoder. The
autoencoder network transforms the input data into an embedded
space, where DeepECT is used to cluster it. The numbers in the illus-
trated cluster tree indicate the split order

422 D. Mautz et al.

1 3

moving average over the number of assigned data points
within each mini-batch. The weight of node n at iteration t
is updated in the following way:

The 50:50 split showed a suitable trade-off in our ini-
tial experiments, and we, therefore, kept it for all of our
experiments.

2.4 Node Data Compression Loss

Our optimization goal for the DeepECT-layer is to strengthen
the boundary—i.e., enlarging the margin—between the data
point partitions assigned to each pair of sibling-nodes within
the cluster tree. We achieve this through a compression loss,
in which we penalize the distance between data points and
their assigned node centers. This penalization ensures that
data points are embedded closer to the assigned node centers
in subsequent iterations. A naive idea would be to penalize
the Euclidean distance between the center of a node and
its respective data points. However, this has the adverse
effect that structural information orthogonal to the line con-
necting the two centroids is destroyed. These orthogonal
structures might be relevant to the ancestors of these nodes.
Figure 2 shows the situation with this naive approach. The
plot illustrates an example of an embedded space with three
ground truth clusters. The cluster tree in this example has
only one root node and two leaf nodes. The hollow black
squares represent the two centers of the leaf nodes. We can
see that over several optimization steps, and we indeed get
the desired effect that the margin between the two popula-
tions represented by the two leaf nodes is increased. How-
ever, at the same time, the structural information orthogonal
to the two node centers is also destroyed. This destruction
occurs although the reconstruction loss should counteract
this behavior.

Therefore, we propose to penalize the distance between
the data point and the center of a node when projected onto
the line connecting the center of the node and its sibling

(4)w(t)
n

= 0.5w(t−1)
n

+ 0.5|Bn|.

center. We determine the projection onto the connection line
with the following formula:

where n is the node’s index, for which we need the projection
direction and m is the index of its sibling node. In all cases,
where we use this projection, we regard it as a constant. We
define the compression loss as follows:

where N is the set of all node indices excluding the root
node and we regard both �n and �n as constants. Further,
we use the absolute value instead of the Euclidean norm
because the term inside is—due to the projection—a scalar
value. By dividing through the number of nodes and sam-
ples in the batch, we get the mean loss for each data point
and node.

The effect of optimizing the projected compression loss is
shown in Fig. 3. Again, we can see that the margin between
the two node centers increases, but—in contrast to the
unprojected example—the structural information orthogonal
to the connection line is kept intact. The objects on the left
side still show the structure of two distinctive groups that
was lost in the naive unprojected version.

2.5 Complete Loss

The complete loss function combines the three above-
defined losses: (a) the autoencoder reconstruction loss Lrec
to preserve local structures, (b) the node center loss LNC to
adapt the node centers to a changed embedded space, and (c)
the data compression loss that improves the cluster separa-
tion LDC . We combine all these losses by summing them up:

�n = sg

�
�n − �m

‖�n − �m‖2

�
,

(5)LDC =
1

|N| ⋅ |B|
∑

n∈N

∑

�∈Bn

|��
n

(
sg[�n] − enc(�)

)
|,

(6)L = LDC + LNC + Lrec,

Fig. 2 The plots illustrate the
deficiencies of the compression
loss without projection. The
data point colors represent leaf
node assignments. We can see
that orthogonal information is
destroyed. Therefore, splitting
one of the leaf nodes would not
result in sufficiently large mar-
gins between the two potential
leaf nodes

423DeepECT: The Deep Embedded Cluster Tree

1 3

where we refrain from introducing weights between the dif-
ferent losses for simplicity.

2.6 Growing the Tree

We start the optimization with only a single root node—that
is also a split node—and grow the tree by splitting nodes
after a certain number of update steps until we reach a previ-
ously defined number of leaf nodes.

Growing a tree by one leaf node is straight forward. We
transform the dataset (or a representative sub-sample of it)
onto the embedded space. Then, we determine the leaf node
with the highest sum of squared distances between its center
and the assigned data points. We selected this rule because it
provides a good balance between the number of data points
and data variance for this cluster.

Next, we split the selected node and attach two new leaf
nodes to it as children. We determine the initial centers for
these new leaf nodes by applying two-means (k-means with
k = 2) to the assigned data points.

Our experiments show that usually, 500–1000 mini-batch
update steps between splits are sufficient to ensure that the
embedded space has adapted to the new leaf nodes. Figure 4
shows what happens when we split the example data shown
in Fig. 3 after 1000 steps [diagram (c)] and optimize it fur-
ther. The black circle represents the computed center of the

split node created by splitting the leaf node on the left side
in the plots shown in Fig. 3. We can see that the compres-
sion loss now also strengthens the margin between the two
clusters previously represented by just one leaf node.

2.7 Tree Pruning

The alternating assignment and update steps—which are
utilized by almost all centroid-based clustering methods—
are susceptible to degenerated situations, in which a cluster
center does not get assigned any data points. This situation
is more severe in the context of deep clustering because
from one iteration to the next, the embeddings may change
considerably. Most proposed flat clustering methods ignore
these degenerate situations completely [1]. We avoid these
degenerate results in DeepECT by pruning the tree during
optimization. When we find ourselves in a situation, where
we do not assign a node any data points over many optimiza-
tion steps—i.e., the node dies out —all data points the parent
gets assigned originate from the sibling node. Therefore, we
can replace this parent node with the sibling and remove the
dead node from the tree. We can detect this behavior if the
exponential moving average w converges toward zero. The
actual value should be set depending on the batch size and
the number of leaf nodes. For our experiments, we set the
threshold value for such a pruning to w < 0.1.

Fig. 3 The plots show the
effect of the compression loss
with projection as we use it
in DeepECT. We can see that
structures orthogonal to the two
leaf node centers are preserved.
(Colors represent leaf node
assignments)

Fig. 4 The plots show the effect
of the projected compression
loss after splitting the left leaf
node after 1000 steps (as shown
in Fig. 3). We can see that
the data points on the left are
compressed into two distinctive
clusters, whereas the single leaf
node on the right still preserves
its orthogonal structure

424 D. Mautz et al.

1 3

Pruning the tree reduces its complexity and helps to pre-
serve structural information by preventing the compression
loss from acting on a ‘living’ node against its ‘dead’ sibling.

2.8 Optional: Extension with Input Augmentation

Image data augmentation has been shown to improve the
accuracy of supervised learning tasks considerably [2].
Thereby, the algorithm learns to ignore known invariances
within the data. Examples are rotations or translations of
objects in images, a slight shift of the window in time series,
or synonym substitution in text data.

In this section, we show a simple extension of DeepECT
that exploits such an augmentation for the unsupervised
clustering task. The key idea is that a (randomly) augmented
object aug(�)—which we consider as constant—must be
assigned to the same nodes as the original object � . We can
then penalize the distance between the node centers and both
the original and the augmented objects in the same fashion
as in Eq. 5:

We define the center loss by the average of the original and
the augmented data and replace Eq. 2:

The complete loss of DeepECT with augmentation is then
defined as:

where LrecA is the reconstruction loss for the original batch
and the augmented data objects.

3 Experiments

We evaluate our proposed method DeepECT on four com-
monly used deep learning datasets: MNIST, USPS, Fash-
ion-MNIST, and Reuters. Table 1 shows the statistics of all

(7)LDCA =
1

|N| ⋅ |B|
∑

n∈N

∑

�∈Bn

[
|��

n
(sg[�n] − enc(�))| + |��

n
(sg[�n] − enc(sg[aug(�)]))|

]
.

(8)

LNCA =
1

|L|
∑

n∈L

‖‖‖�n − sg
[

1

2|Bn|
∑

�∈Bn

(enc(�) + enc(aug(�)))
]‖‖‖2,

(9)L = LDCA + LNCA + LrecA,

datasets used in the experiments. MNIST and USPS are both
image datasets containing handwritten digits. The Fashion-
MNIST dataset contains images of fashion products, such
as images of clothing, shoes, and bags. The Reuters dataset
contains news articles in four top categories, and we use the
same representation as described in [3].

3.1 Experimental Setup

We focus our experiments on the evaluation of our new clus-
tering layer. Therefore, we refrain from using more elabo-
rated autoencoder architectures. Instead, we use the same
generic fully connected autoencoder layout for all experi-
ments, as used in [3]. As mentioned before, we expect that
all methods would gain equally from more sophisticated and
domain-specific architectures. However, a standard autoen-
coder architecture is sufficient to show the viability of Deep-
ECT compared to the baseline competitors. Hence, we use
the same generic autoencoder architecture, as proposed in
[4] and which also used in [3, 5] for the purpose of cluster-

ing the embedded space. The feedforward encoder in this
architecture has the dimensions d-500–500–2000–10, and
the decoder network has a mirrored layout. We use ReLU
activations and the mean squared error reconstruction loss
from Eq. (1).

We pre-train ten autoencoders for each dataset and use
these same pre-trained networks for all experiments and
comparison methods. Using these pre-trained autoencoders
ensures that each method has the same starting conditions
for the embedded space and that variations in the cluster-
ing quality do not merely stem from qualitatively different
autoencoders. The pre-training setup is similar to the one
described in [3]. We pre-train the autoencoders as denoising
autoencoders with a 20% corruption rate. First, we perform
a layer-wise pre-training with dropout after each layer (with
a rate of 20%) and 20,000 steps per layer. Then, we fine-
tune the whole network for 50,000 steps without dropout.
We use input corruption only for the pre-training and not
for the actual optimization of DeepECT and its baseline
methods. For all experiments, we use Adam [6] (learning
rate = 0.0001 , �1 = 0.9, �2 = 0.999) as the optimization
algorithm and a mini-batch size of 256 samples. For the
combined optimization, we train for additional 50,000 itera-
tions to ensure convergence.

For DeepECT, our initial experiments with synthetic
data showed that splitting the tree every 500 optimization
steps yields promising results and more extended step
sizes did not further increase the performance. For this

Table 1 Statistics of datasets used in the experiments

Name Type # Points # Dimensions # Classes

MNIST Image 70,000 784 10
USPS Image 9298 256 10
Fashion-MNIST Image 70,000 784 10
Reuters Text 685,071 2000 4

425DeepECT: The Deep Embedded Cluster Tree

1 3

reason, we keep this schedule without adjusting it for the
experiments on real-world datasets. The same applies to
the pruning threshold mentioned in Sect. 2.7. For MNIST,
Fashion-MNIST, and USPS, we grow the trees until they
contain twenty leaf nodes. For the Reuters dataset, we
set the maximal number of leaf nodes to twelve because
it has fewer ground truth clusters. This way, we have two
times and three times the actual number of clusters. We
consider these values sufficient to capture essential struc-
tures of the selected datasets for the purpose of this paper.
We use the same number of leaf nodes for the hierarchical
baseline methods.

For the image datasets, we additionally experimented
with the augmentation extension DeepECT + Aug. We
start with the same pre-trained autoencoders as in the
other experiments. Further, we stick to the same optimi-
zation schedule as described above for the experiments
with the non-augmented versions of DeepECT. In each
iteration, we use the original mini-batch and its aug-
mented counterpart to optimize the loss function in Eq. 9,
instead of the non-augmented loss in Eq. 6. We create
the augmented version of each image of a mini-batch,
by applying on-the-fly a random affine transformation.
The affine transformation randomly rotates and shears the
image in the range of [− 15;15] degrees. Also, it moves the
digit randomly up to two pixels in any direction. Figure 5
shows an example of this augmentation for MNIST.

3.2 Evaluation Methods

We evaluate the cluster hierarchy of DeepECT with the
dendrogram purity (DP) and leaf purity (LP) measure.
We describe both below. Further, we evaluate the cluster
tree against flat baseline methods. For this, we use the
well-known normalized mutual information (NMI) and
clustering accuracy (ACC) [3]. We include these for com-
pleteness and to show that DeepECT is also competitive
in scenarios, where one expects a flat cluster structure
and knows the actual number of clusters in dataset. To
determine a k cluster partition from a cluster tree, we use
the assignments to the k nodes that were leaf nodes after
the first k − 1 splits.

3.2.1 Dendrogram Purity

The dendrogram purity measure [7, 8] can be used to
evaluate the cluster tree against a flat ground truth parti-
tion. It is the expected purity of the sub-tree given by the
least common ancestor node for two randomly sampled
data points of the same class. It is 1.0 if and only if all
data points belonging to one class in the ground truth are
assigned to some pure sub-tree, and it approaches 0 for
randomly generated trees.

The explicit formula is defined in [8] as:

where C1,… ,CK are the data point sets correspond-
ing to the ground truth classes, lca(x, y) is the least com-
mon ancestor node of x and y in the cluster tree, dan(z) is
the set of data points assigned to the node z in the clus-
ter tree, pur(S, T) = |S ∩ T|∕|S| is the purity measure, and
P = {(x, y) ∣ ∃C ∈ {C1,… ,CK} ∶ x, y ∈ C ∧ x ≠ y} is the
set of all data point pairs that belong to the same class. The
dendrogram purity can be computed efficiently and accu-
rately in a bottom-up recursion on the cluster tree.

3.2.2 Leaf Purity

Besides using dendrogram purity, we introduce another
measure that we call leaf purity (LP). It is the weighted-
average purity of the leaf nodes w.r.t. to the majority class
of the objects assigned to a leaf node, given by the formula:

where LD is the set of sets containing the data points
assigned to the leaf nodes.

3.2.3 Tree Height Dependence of Purity Measures

Comparing dendrogram and leaf purity of two cluster trees
is only directly possible if both trees have the same number
of leaf nodes. However, sub-trees can always be collapsed
into leaf nodes to fulfill this requirement. Therefore, we
collapse the bottom-up linkage-trees of the baseline meth-
ods—in the order of linkage—by compressing sub-trees into
leaf nodes until we have the same number of merge steps

DP =
1

|P|

K∑

k=1

∑

x, y ∈ Ck

∧x ≠ y

pur(dan(lca(x, y)),Ck),

LP =
1

|D|
∑

L∈LD

|L| max
C∈{C1,…,CK}

pur(L,C),

Fig. 5 The plots show a sample of original MNIST digits and a ran-
domly augmented version

426 D. Mautz et al.

1 3

left as split-nodes in the top-down trees of DeepECT and
Bisecting-K-means. This process ensures that both methods
are comparable w.r.t. the hierarchical evaluation measures.

3.3 Hierarchical Clustering Baselines

As a baseline for evaluating the hierarchical properties, we
cluster the embedded data with the classical hierarchical
clustering algorithms bisecting-k-means (AE + Bisect-
ing), single-linkage (AE + Single), and complete-linkage
(AE + Complete). Since none of these classical algorithms
can optimize the embedded space, we also explore the sim-
ple idea of combining the flat embedded clustering algo-
rithm IDEC [5] with single-linkage and complete-linkage.
IDEC is a method that combines the clustering layer of
DEC [3] with the reconstruction loss of the autoencoder.
First, we run IDEC with the number of clusters set to a
value higher than the expected number of clusters—in our
case, we set it equal to the maximal number of leaf nodes
we use for DeepECT. Then, we consider these IDEC clus-
ter centers as representatives of the assigned data points
and try to recover a hierarchical clustering structure by
performing single-linkage and complete-linkage on the
cluster centers (IDEC + Single and IDEC + Complete).
A similar technique is proposed in [9] for classical, non-
embedded settings with k-means instead of IDEC.

3.4 Flat Clustering Baselines

As a baseline for evaluating the performance of DeepECT
in a flat clustering setting, we use k-means on the embed-
ded data of the pre-trained autoencoder (AE+k-means) and
IDEC [5]. If we ignore the advantages of more domain-
specific and sophisticated autoencoder architectures, IDEC
is currently one of the best embedded-clustering methods.
In contrast to DeepECT, we have to set the actual number

of clusters in the ground truth during optimization for
IDEC and k-means. Further, we set the hyperparameter of
IDEC for the reconstruction loss to 0.1 as described in [5].

3.5 General Results

The general results—averaged over the ten pre-trained
autoencoders—for the hierarchical evaluation using dendro-
gram purity and leaf purity measures for DeepECT and the
hierarchical baseline algorithms are shown in Table 2. Deep-
ECT consistently produces cluster trees of high quality and
is the top-performing algorithm by a wide margin. We can
also see that the augmentation extension further improves
the results considerably for MNIST and USPS. The results
of DeepECT with and without the augmentation extension
for the Fashion-MNIST dataset are similar because the data-
set authors chose to pre-process all images such that each
fashion item has a normalized representation. The results
of the classical methods can be explained by their inability
to enhance the embedding. The leaf purity values for Deep-
ECT indicate that the method is able to create homogene-
ous sub-populations. If we compare the leaf purity values
of DeepECT and the hierarchical IDEC + Center-linkage
variants to the other baselines’ leaf purity values, we can see
that the combined optimization of the clustering and autoen-
coder—of both methods—indeed improves the homogeneity
of local structures. However, the IDEC + Center-linkage is
also unable to extract a coherent hierarchical structure.

Table 3 shows the experimental results for the flat clus-
tering comparison methods based on the same pre-trained
autoencoders. Since we use the same pre-trained autoencod-
ers, we can directly see the influence of the respective clus-
tering objective. Both IDEC and DeepECT benefit from the
combined optimization compared to k-means, which cannot
optimize the embedding. Table 4 shows the results of more
centroid-based clustering methods taken from the respec-
tive publication. More details about these methods can be

Table 2 Our experiments show that DeepECT is the top-performing algorithm in terms of dendrogram purity (DP) and leaf purity (LP)

For results marked with a *, we had to use a random subset of the dataset with 100,000 objects and the same class distribution, because of
memory limitations. The values are averages and the standard deviation for the ten pre-trained autoencoders. Best value in bold; runner up is
italicized

Method MNIST USPS Fashion-MNIST Reuters

DP LP DP LP DP LP DP LP

DeepECT 0.82 ± 0.03 0.93 ± 0.02 0.72 ± 0.03 0.85 ± 0.04 �.�� ± �.�� �.�� ± �.�� �.�� ± �.�� �.�� ± �.��

DeepECT + Aug �.�� ± �.�� �.�� ± �.�� �.�� ± �.�� �.�� ± �.�� 0.44 ± 0.04 0.60 ± 0.05 n.a. n.a.
IDEC + Single 0.39 ± 0.09 0.60 ± 0.08 0.61 ± 0.09 0.72 ± 0.06 0.34 ± 0.04 0.54 ± 0.03 0.52 ± 0.04 0.67 ± 0.04
IDEC + Complete 0.40 ± 0.05 0.60 ± 0.08 0.61 ± 0.09 0.72 ± 0.06 0.35 ± 0.03 0.54 ± 0.03 0.52 ± 0.04 0.67 ± 0.04
AE + Bisecting 0.53 ± 0.02 0.78 ± 0.02 0.39 ± 0.02 0.69 ± 0.02 0.38 ± 0.02 0.64 ± 0.03 0.63 ± 0.03 0.76 ± 0.03

AE + Single 0.11 ± 0.00 0.11 ± 0.00 0.12 ± 0.00 0.17 ± 0.00 0.10 ± 0.00 0.10± 0.00 0.36 ± 0.00* 0.44 ± 0.00*
AE + Complete 0.25 ± 0.04 0.45 ± 0.05 0.20 ± 0.04 0.40 ± 0.07 0.26 ±0.04 0.44 ±0.03 0.41 ± 0.02* 0.54 ± 0.04*

427DeepECT: The Deep Embedded Cluster Tree

1 3

found in Sect. 4. We can see that DeepECT also performs
well compared to these methods. However, we can also see
that the autoencoder architecture influences the clustering
result considerably. For instance, DBC differs from DEC
only by the use of a convolutional autoencoder but achieves
superior results. Yet, the selected autoencoder architecture
is independent to the selected clustering layer.

Of course, this comparison of flat clustering objectives
and DeepECT is unfair toward the latter, because the com-
peting methods are given the true number of clusters dur-
ing optimization, whereas for DeepECT, we only use this
information during evaluation. Nevertheless, we can see that
the ordinary version of DeepECT can keep up with these
methods in terms of raw NMI and ACC measures and that
the augmentation extension DeepECT + Aug shows substan-
tial improvements over the results of DeepECT, because it
can ignore known invariances within the data. These results
show that DeepECT is also competitive in scenarios, where
one expects a flat cluster structure, but does not know the
number of clusters and inspects the cluster tree recursively.

3.6 Detailed Evaluation

In this section, we take a closer look at the resulting Deep-
ECT-trees for the above datasets. Since the USPS dataset’s
findings are comparable to the one of MNIST—as both rep-
resent handwritten digits—we omit these results for brevity.

3.6.1 MNIST Results

A closer look at the resulting DeepECT-trees for the MNIST
dataset shows some exciting properties of different subpopu-
lations within the handwritten digits. Two illustrative exam-
ples are shown in Fig. 6 and can be found in the ordinary
and augmented extension of DeepECT. The node purity of
the depicted sub-trees for the digit 7’ is 98% and contain-
ing almost all instances of this class. It contains two leaf
nodes. One leaf node shows sevens with a small crossbar as
it is commonly written in Europe, the other leaf node shows
this digit as it is more commonly written in the USA. The
second sub-tree contains almost all instances of the digit ‘2’
with a purity of 97%. This sub-tree also contains two leaf
nodes, each with specific characteristics. The first leaf node
contains instances that are more curly and have a distinctive

Table 3 This table shows that DeepECT is even competitive when compared to flat clustering methods that are given the true number of clusters
during optimization and have therefore an unfair and unrealistic advantage over DeepECT

All methods started from the same pre-trained autoencoders. The values are averages and the standard deviation for the ten pre-trained autoen-
coders. Best value in bold; runner up is italicized

Method MNIST USPS Fashion-MNIST Reuters

NMI ACC NMI ACC NMI ACC NMI ACC

DeepECT 0.83 ± 0.02 0.85 ± 0.04 0.71 ± 0.02 0.71 ± 0.04 �.�� ± �.�� 0.52 ± 0.06 0.47 ± 0.05 �.�� ± �.��

DeepECT + Aug �.�� ± �.�� �.�� ± �.�� �.�� ± �.�� �.�� ± �.�� 0.59 ± 0.04 0.50 ±0.05 n.a. n.a.
IDEC 0.86 ± 0.01 0.85 ± 0.03 0.76 ± 0.02 0.74 ± 0.03 0.58 ±0.02 �.�� ± �.�� �.�� ± �.�� 0.67 ± 0.03

AE + k-means 0.70 ± 0.02 0.77 ± 0.02 0.49 ± 0.03 0.56 ± 0.03 0.52 ± 0.02 0.48 ± 0.02 0.39 ± 0.07 0.65 ± 0.05

Table 4 This table shows DeepECT in the context of other deep clustering methods using k-means like flat clustering objectives.

The shown clustering accuracy values are taken from the respective publication and therefore use different autoencoders (also different architec-
tures). Further, we indicate if the paper reports the highest achieved (best) or average (avg) value. All of these methods have the advantage over
DeepECT that they were provided with a dataset’s actual number of clusters during optimization

Method Architecture Reported MNIST USPS Reuters

DeepECT Fully connected AE Avg (best) 0.85 (0.90) 0.71 (0.77) 0.72 (0.77)
DeepECT + Aug Fully connected AE Avg (best) 0.95 (0.98) 0.82 (0.88) –
DEC [3] Fully connected encoder Best 0.84 – 0.72
DBC [10] Convolutional encoder + DEC objective Best 0.96 0.74 –
IDEC [5] Fully connected AE + DEC objective Best 0.88 0.76 0.76
DCN [11] Fully connected AE Best 0.83 – 0.80
DEPICT [12] Convolution AE Best 0.96 0.96 –
SDEC [13] Fully connected AE + Semi-Supervised DEC Best 0.86 0.76 –
best DKM [14] Fully connected AE Avg 0.85 0.75 0.58

428 D. Mautz et al.

1 3

loop at the bottom part. The second leaf node contains a
more ‘streamlined’ version of this digit, looking like the
character ‘Z.’ The shown sub-trees build a natural hierar-
chy for the respective digit, and one can easily imagine that
these findings can be of interest to a researcher. Other shape
depending groupings of digits can also be found in lower
parts of the tree, for instance, the written versions of the
digits ‘4’ and ‘9’ share many characteristics. Consequently,
they often can be found grouped together as a sub-tree con-
taining only these two digit types.

3.6.2 Reuters Results

The Reuters dataset contains four unbalanced top catego-
ries (first-level labels) with the following class distribution:
Cooperate/Industrial with 44%, Government/Social with

24%, Markets with 24%, and Economics with 8%. This data-
set is explained in more detail in [15]. The categories for
each news article were chosen by hand and are, therefore,
to some extent subjective. Further, each top category has
several additional overlapping sub-categories (second-level
labels)—and sub-sub-categories (third-level labels)—with
over 96% of the articles belonging to two or more sub-
categories. Table 5 shows a DeepECT result for this data-
set. We can see that the first two splits separate most of the
Government/Social—sub-tree starting at the node 3—and
Markets—sub-tree starting at the node 5—categories from
the other two categories. The Government/Social sub-tree
then differentiates further into topics of the sub-categories
such as sports, war and crime, domestic and international
politics. The Markets category also further differentiates
into different aspects of the respective sub-categories. For
instance, the leaf nodes in the last two rows are concerned
with different sub-sub-categories of the sub-category Com-
modity Markets. The leaf nodes in the middle are mostly
related to Corporate/Industrial and Economics. They are
not as well separated as the other two sub-trees. Yet, even
there, we can find interesting leaf nodes. For instance, the
seventh leaf node (row) from the top shares news articles
labeled with the sub-categories Performance (of Corporate/
Industrial) and the Economic Performance (of Economics)
and it seems reasonable to expect related words for those
two sub-sub-categories.

3.6.3 Fashion‑MNIST Results

The Fashion-MNIST contains ten different classes of
clothes, shoes and bags, namely T-shirt/top, trousers, pullo-
ver, dress, coat, sandal, shirt, sneaker, bag, and ankle boot.
A resulting cluster tree of our method is shown in Fig. 7.
The leaf nodes are represented as randomly sampled objects

Fig. 6 The plots show two extracted sub-trees from interesting sub-
populations of the MNIST dataset found by DeepECT. These are the
digits seven (with and without a middle-crossbar) and two (a curly
and a ‘streamlined’ version, looking more like the character ‘Z’). The
shown digits are randomly sampled

Table 5 This table shows a cluster tree for the Reuters dataset

Cluster tree Cor
por

ate/
indu

stria
l

Marke
ts
Gov

ernm
ent/

soc
ial

Eco
nom

ics

Sub-categories
– –
–

–

–

–
–

–
–

–
––

–

–

–
–
–

–
–

–
–

The first column shows the cluster tree itself, and each row represents one leaf node. The next four columns show the percentages of documents
for the four top categories (first-level labels) assigned to each leaf node. For clarity, we omit the values for occurrences below 1%. The last col-
umn shows the most frequent sub-categories (second-level labels) for each leaf node with more than 5% occurrences (max. five)

429DeepECT: The Deep Embedded Cluster Tree

1 3

assigned to it. The labels of each node are our interpretation
based on the objects assigned to the respective node. We can
see that DeepECT found an entirely natural-looking hierar-
chy within this dataset. First, the images are split into three
categories: clothes, shoes, and bags. We highlighted these
sub-trees with colored areas. Within each sub-tree, we can
find natural hierarchies. The category of bags distinguishes
between bags without a visible strap/handle, bags with
small handles, and bags with a shoulder strap. The ground
truth does not distinguish between these types of bags and
assigns them all to the same class. The clothes category is
first divided into trousers and clothes for the upper body.
These are then again partitioned into short and long sleeves.
Here, the length of the sleeve must be seen relative to the
total length of the respective garment because each item is
normalized to appear of the same size within the image, i.e.,
dresses and shirts appear to be of the same size. The shoe
category also shows some interesting characteristics. First,
smaller and bigger shoes are distinguished. The smaller
shoes are then further divided into sandals and sneakers.
The bigger shoes have either a flat sole, a small heel, or are
high-heeled. Building the hierarchy based on these features
runs against the ground truth classes of sneakers, sandals,
and ankle boots. Nevertheless, it is—from an appearance
perspective—a valid and informative hierarchy for shoes.

3.7 Applicability for Prediction Tasks on MNIST

We also evaluate DeepECT in a prediction task. Thereby, we
keep the autoencoders and the clustering optimization proce-
dure as described above. In contrast to the experimental evalu-
ation above, we only use the first 50.000 samples (training
set) of the dataset MNIST during the cluster tree optimization.
After optimization, we evaluate the clustering performance of
the cluster tree on the previously unseen, remaining 20.000
data points (test set).

In this experiment, we get for the test set a dendrogram
purity of 0.73 ± 0.08 and a leaf purity of 0.85 ± 0.06 , which
is a slight drop compared to the values in Table 2. Never-
theless, the result is robust enough to allow for limited label-
predictions of previously unseen data points directly by the
cluster tree. However, in most cases, we would train a classifier
based on the found cluster structures. The same applies, for the
embedding itself, where we can utilize, for instance, the super-
vised autoencoder [16] loss to enhance the found embedding.

3.8 Experiments Summary

In summary, we think that the shown experiments on four real-
world datasets show clearly the utility and effectiveness of the
DeepECT cluster tree. Finding these kind of structures and

�at

�ip�ops

�

Fig. 7 The diagram shows a cluster tree for the Fashion-MNIST data-
set. Each leaf node shows randomly sampled objects assigned to it.
The labels are interpretations by the authors. The colored areas high-

light the three dominant sub-trees representing three types of objects
found in the dataset: bags, clothes, and shoes

430 D. Mautz et al.

1 3

selecting the level of detail to be analyzed make DeepECT a
valuable method for data scientists.

4 Related Work

Our proposed method DeepECT touches two aspects of
the vast literature on clustering: hierarchical methods and
embedded methods that utilize autoencoders.

Hierarchical clustering algorithms are a well-estab-
lished area within data mining and an overview of many
well-known methods can be found in [17]. Agglomerative
clustering algorithms are a family of hierarchical bottom-
up strategies with single-linkage and complete-linkage as
the most prominent members. In each step, the two closest
clusters are merged based on some defined cluster distance
measure. In single-linkage, the cluster distance is defined
as the distance between the two closest points of two clus-
ters. In complete-linkage, the cluster distance is defined as
the maximum distance between the points of two clusters
[18, p. 895ff.]. BCM [7] is a recent Bayesian approach
to bottom-up agglomerative clustering, that uses hypoth-
esis testing to decide if clusters should be merged. The
Bisecting-K-means algorithm [19] is a top-down, divisive
method that applies k-means with k = 2 recursively on the
previous clustering result. PERCH [8] is a non-greedy,
incremental algorithm that aims to build a cluster tree that
scales to both massive numbers of data points and clusters.
GHC [20] assigns data points softly to each sub-tree and
optimizes a differentiable cost function. All these methods
are well tested in classical settings; however, in combina-
tion with a nonlinear embedding, they can only be used
after the embedding is learned. This is the advantage of
DeepECT, which interacts with the embedding in such a
way that both mutually improve each other.

Deeply embedded clustering methods have recently
gained much attention. So far, the primary focus has
merely been on flat-clustering objectives that need the
expected number of clusters during optimization. Within
this field, many algorithms utilize k-means-like centroids
as cluster representatives. DEC [3] can be seen as the first
algorithm that successfully combines autoencoders with
a clustering objective. Its clustering objective utilizes a
soft-assignment to the centroids using a Student-t kernel.
These cluster assignments are then hardened using the
Kullback–Leibler divergence and an auxiliary target dis-
tribution. Thereby, it only uses the encoder part of a pre-
trained autoencoder. DBC [10] replaces the feedforward
autoencoder with a convolutional autoencoder. IDEC [5]
extends DEC by combining its clustering objective with
the autoencoder’s reconstruction loss. SDEC [13] com-
bines the DEC objective with a semi-supervised setting,

where the user can provide pairwise constraints of objects
that should or should not belong to the same cluster. Both
DKM [14] and DEPICT [21] soft-assign data points to
clusters centroids based on Gaussian kernels. Thereby,
DEPICT hardens these assignments similar to DEC using
the Kullback–Leibler divergence between these assign-
ments and an auxiliary target distribution. The authors of
DKM also explores the idea of using autoencoders with-
out pre-training. DCN [11] combines autoencoder with
the training scheme of k-means by alternating between
updating the autoencoder parameters, then the data point
assignments, and finally the cluster centers. The cluster-
ing objective of ENRC [22] aims to find multiple, non-
redundant, k-means-like partitions in an autoencoder’s
embedded space.

However, not all methods utilize centroids. The follow-
ing algorithms also aim to produce a flat clustering parti-
tion, yet they follow other ideas than centroids to provide
a flat partition of a dataset. DSC-Nets [23] introduces a so-
called self-expressive layer, a fully connected layer with-
out bias and nonlinear activation, which is put between the
encoder and decoder functions. This layer aims to encode
each data point as a linear combination of the other sam-
ples in the same subspace. In deep subspace clustering
[24, 25], one aims to find clusters together with a corre-
sponding subspace of the embedded space, which exhibits
the cluster structure. JULE [26] is a clustering algorithm
for images that interprets the optimization of the convo-
lutional autoencoder as a recurrent process and utilizes
an affinity measure also used in agglomerative clustering
to generate clusters in a bottom-up process. However, the
final result is nevertheless a flat clustering. VaDE [27] is
a generative, variational Bayesian approach that utilizes a
Gaussian mixture model as the latent variable of a varia-
tional autoencoder. The ClusterGAN [28] harnesses a cate-
gorical distribution in the generative part of the generative
adversarial network architecture. Two recent surveys [29,
30] provide a broader overview of other embedded cluster-
ing methods. All of the above-described methods utilize a
pre-trained autoencoder for the initial embedding. Further,
they need the expected number of clusters for optimiza-
tion. This also means that only those structures captured
by the clusters are improved. Moreover, other structural
information is actively destroyed through their loss func-
tions. As a consequence, the final embedded space will
resemble the chosen number of clusters, regardless of the
actual structure within the dataset and validation methods
such as the Silhouette coefficient will fail. Figure 2 shows
that even the inclusion of a reconstruction loss will not
entirely prevent this. DeepECT circumvents this behavior
through its novel projected compression loss. Our experi-
ments show that with a sufficiently large tree, all relevant

431DeepECT: The Deep Embedded Cluster Tree

1 3

structures will be successfully captured. The level of detail
can then be chosen during analysis.

5 Conclusion

In this work, we proposed the Deep Embedded Cluster
Tree (DeepECT). It simultaneously improves the nonlinear
features embedding and iteratively grows a binary tree of
clusters capturing (hierarchical) structures. Our experi-
ments show that DeepECT outperforms the hierarchical
baseline methods by a wide margin. We believe that is
DeepECT is an attractive tool when dealing with com-
plex data domains that profit from nonlinear transforma-
tions—such as images—and one either does not know the
exact number of clusters or expects a hierarchical data
structure. The optional data augmentation extension can
improve performance by avoiding known invariances of
the dataset. Future efforts may be directed toward experi-
ments, where DeepECT is combined with domain-specific
embedding methods.

Author Contributions All authors contributed to the development of
methods presented in this paper as well as paper writing.

Funding No funding was received.

Availability of Data and Materials The implementations of DeepECT
and the baseline methods, the pre-trained autoencoders and scripts to
reproduce the results shown in the Experiments section are available
under https ://dmm.dbs.ifi.lmu.de/downl oads. The datasets are available
at the following locations:

Dataset Available at

Fashion-MNIST https ://githu b.com/zalan dores earch /fashi
on-mnist

MNIST http://yann.lecun .com/exdb/mnist /
Reuters http://jmlr.csail .mit.edu/paper s/volum e5/

lewis 04a/
USPS https ://www.csie.ntu.edu.tw/~cjlin /libsv

mtool s/datas ets/multi class .html#usps

Compliance with Ethical Standards

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not

permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

References

 1. Caron M, Bojanowski P, Joulin A, Douze M (2018) Deep clus-
tering for unsupervised learning of visual features. In: Ferrari V,
Hebert M, Sminchisescu C, Weiss Y (eds) Computer Vision—
ECCV—15th European conference, Munich, Germany, 8–14
September 2018, Proceedings, Part XIV, ser. Lecture notes in
computer science, vol 11218. Springer, pp 139–156. https ://doi.
org/10.1007/978-3-030-01264 -9_9

 2. Perez L, Wang J (2017) The effectiveness of data augmenta-
tion in image classification using deep learning. CoRR, vol
abs/1712.04621 . arXiv :1712.04621

 3. Xie J, Girshick RB, Farhadi A (2016) Unsupervised deep embed-
ding for clustering analysis. In: Balcan M, Weinberger KQ (eds)
Proceedings of the 33nd international conference on machine
learning, ICML , New York City, NY, USA, 19–24 June 2016,
ser. JMLR workshop and conference proceedings, vol 48. JMLR.
org, 2016, pp 478–487. http://proce eding s.mlr.press /v48/xieb1
6.html

 4. van der Maaten L (2009) Learning a parametric embedding by
preserving local structure. In: Dyk DAV, Welling M (eds) Pro-
ceedings of the twelfth international conference on artificial
intelligence and statistics, AISTATS , Clearwater Beach, Florida,
USA, 16–18 April 2009, ser. JMLR Proceedings, vol 5. JMLR.
org, 2009, pp 384–391. http://proce eding s.mlr.press /v5/maate
n09a.html

 5. Guo X, Gao L, Liu X, Yin J (2017) Improved deep embedded
clustering with local structure preservation. In: Sierra C (ed) Pro-
ceedings of the 26th international joint conference on artificial
intelligence, IJCAI , Melbourne, Australia, 19–25 August 2017,
ijcai.org, 2017, pp 1753–1759. https ://doi.org/10.24963 /ijcai
.2017/243

 6. Kingma DP, Ba J (2015) Adam: a method for stochastic optimiza-
tion. In: Bengio Y, LeCun Y (eds) 3rd international conference on
learning representations, ICLR 2015, San Diego, CA, USA, 7–9
May, Conference Track Proceedings, 2015. arXiv :1412.6980

 7. Heller KA, Ghahramani Z (2005) Bayesian hierarchical cluster-
ing. In: Raedt LD, Wrobel S (eds) Machine learning, Proceedings
of the 22nd international conference (ICML), Bonn, Germany,
7–11 August 2005, ser. ACM international conference proceeding
series, vol 119. ACM, pp 297–304. https ://doi.org/10.1145/11023
51.11023 89

 8. Kobren A, Monath N, Krishnamurthy A, McCallum A (2017) A
hierarchical algorithm for extreme clustering. In: Proceedings of
the 23rd ACM SIGKDD international conference on knowledge
discovery and data mining, Halifax, NS, Canada, 13–17 August
2017. ACM, pp 255–264. https ://doi.org/10.1145/30979 83.30980
79

 9. Peterson AD, Ghosh AP, Maitra R (2018) Merging k-means with
hierarchical clustering for identifying general-shaped groups. Stat
7(1):e172

 10. Li F, Qiao H, Zhang B (2018) Discriminatively boosted image
clustering with fully convolutional auto-encoders. Pattern Rec-
ognit 83:161–173. https ://doi.org/10.1016/j.patco g.2018.05.019

 11. Yang B, Fu X, Sidiropoulos ND, Hong M (2017) Towards
k-means-friendly spaces: simultaneous deep learning and clus-
tering. In: Precup D, Teh YW (eds) Proceedings of the 34th
international conference on machine learning, ICML, Sydney,

https://dmm.dbs.ifi.lmu.de/downloads
https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist
http://yann.lecun.com/exdb/mnist/
http://jmlr.csail.mit.edu/papers/volume5/lewis04a/
http://jmlr.csail.mit.edu/papers/volume5/lewis04a/
https://www.csie.ntu.edu.tw/%7ecjlin/libsvmtools/datasets/multiclass.html#usps
https://www.csie.ntu.edu.tw/%7ecjlin/libsvmtools/datasets/multiclass.html#usps
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-030-01264-9_9
https://doi.org/10.1007/978-3-030-01264-9_9
http://arxiv.org/abs/1712.04621
http://proceedings.mlr.press/v48/xieb16.html
http://proceedings.mlr.press/v48/xieb16.html
http://proceedings.mlr.press/v5/maaten09a.html
http://proceedings.mlr.press/v5/maaten09a.html
https://doi.org/10.24963/ijcai.2017/243
https://doi.org/10.24963/ijcai.2017/243
http://arxiv.org/abs/1412.6980
https://doi.org/10.1145/1102351.1102389
https://doi.org/10.1145/1102351.1102389
https://doi.org/10.1145/3097983.3098079
https://doi.org/10.1145/3097983.3098079
https://doi.org/10.1016/j.patcog.2018.05.019

432 D. Mautz et al.

1 3

NSW, Australia, 6–11 August 2017, ser. Proceedings of machine
learning research, vol 70. PMLR, pp 3861–3870. http://proce eding
s.mlr.press /v70/yang1 7b.html

 12. Ghasedi Dizaji K, Herandi A, Deng C, Cai W, Huang H (2017)
Deep clustering via joint convolutional autoencoder embedding
and relative entropy minimization. In: Proceedings of the IEEE
international conference on computer vision, pp 5736–5745

 13. Ren Y, Hu K, Dai X, Pan L, Hoi SC, Xu Z (2019) Semi-supervised
deep embedded clustering. Neurocomputing 325:121–130

 14. Fard MM, Thonet T, Gaussier É (2018) Deep k-means: jointly
clustering with k-means and learning representations. CoRR, vol
abs/1806.10069. arXiv :1806.10069

 15. Lewis DD, Yang Y, Rose TG, Li F (2004) RCV1: a new bench-
mark collection for text categorization research. J Mach Learn Res
5:361–397

 16. Le L, Patterson A, White M (2018) Supervised autoencoders:
improving generalization performance with unsupervised regu-
larizers. In: Bengio S, Wallach H, Larochelle H, Grauman K,
Cesa-Bianchi N, Garnett R (eds) Advances in neural information
processing systems, vol 31. Curran Associates Inc, Red Hook, pp
107–117

 17. Murtagh F, Contreras P (2012) Algorithms for hierarchical clus-
tering: an overview. Wiley Interdiscip Rev Data Min Knowl Dis-
cov 2(1):86–97. https ://doi.org/10.1002/widm.53

 18. Murphy KP (2012) Machine learning—a probabilistic perspective.
Adaptive computation and machine learning series. MIT Press,
Cambridge

 19. Steinbach M , Karypis G, Kumar V et al (2000) A comparison of
document clustering techniques. In: 6th ACM SIGKDD (Boston),
World text mining conference, vol 400. ACM, pp 525–526

 20. Monath N, ZaheerM, Silva D , McCallum A, Ahmed A (2019)
Gradient-based hierarchical clustering using continuous represen-
tations of trees in hyperbolic space. In: Teredesai A, Kumar V, Li
Y, Rosales R, Terzi E, Karypis G (eds) Proceedings of the 25th
ACM SIGKDD international conference on knowledge discovery
and data mining, KDD, Anchorage, AK, USA, 4–8 August 2019.
ACM, pp 714–722. https ://doi.org/10.1145/32925 00.33309 97

 21. Dizaji KG, Herandi A, Deng C, Cai W, Huang H (2017) Deep
clustering via joint convolutional autoencoder embedding and
relative entropy minimization. In: IEEE international conference

on computer vision, ICCV , Venice, Italy, 22–29 October 2017.
IEEE Computer Society, pp 5747–5756. https ://doi.org/10.1109/
ICCV.2017.612

 22. Miklautz L, Mautz D, Altinigneli C, Böhm C, Plant C (2020)
Deep embedded non-redundant clustering. In: To be published in
proceedings of the conference on artificial intelligence. AAAI

 23. Ji P, Zhang T, Li H, Salzmann M, Reid ID (2017) Deep sub-
space clustering networks. In: Guyon I, von Luxburg U, Bengio
S, Wallach HM, Fergus R, Vishwanathan SVN, Garnett R (eds)
Advances in neural information processing systems 30: annual
conference on neural information processing systems, 4–9 Decem-
ber 2017, Long Beach, CA, USA, pp 24–33. http://paper s.nips.cc/
paper /6608-deep-subsp ace-clust ering -netwo rks

 24. Ji P, Zhang T, Li H, Salzmann M, Reid I (2017) Deep subspace
clustering networks. In: Advances in neural information process-
ing systems, pp 24–33

 25. Zhang T, Ji P, Harandi M, Hartley R, Reid I (2018) Scalable deep
k-subspace clustering. In: Asian conference on computer vision.
Springer, pp 466–481

 26. Yang J, Parikh D, Batra D(2016) Joint unsupervised learning of
deep representations and image clusters. In: 2016 IEEE confer-
ence on computer vision and pattern recognition, CVPR , Las
Vegas, NV, USA, 27–30 June 2016. IEEE Computer Society, pp
5147–5156. https ://doi.org/10.1109/CVPR.2016.556

 27. Jiang Z, Zheng Y, Tan H, Tang B, Zhou H (2017) Variational deep
embedding: an unsupervised and generative approach to cluster-
ing. In: Proceedings of the 26th international joint conference on
artificial intelligence, pp 1965–1972

 28. Mukherjee S, Asnani H, Lin E, Kannan S (2019) Clustergan:
latent space clustering in generative adversarial networks. In:
Proceedings of the AAAI conference on artificial intelligence,
vol 33, pp 4610–4617

 29. Aljalbout E, Golkov V, Siddiqui Y, Cremers D (2018) Cluster-
ing with deep learning: taxonomy and new methods. CoRR, vol
abs/1801.07648. arXiv :1801.07648

 30. Min E, Guo X, Liu Q, Zhang G, Cui J, Long J (2018) A survey
of clustering with deep learning: from the perspective of net-
work architecture. IEEE Access 6:39 501–39 514. https ://doi.
org/10.1109/ACCES S.2018.28554 37

http://proceedings.mlr.press/v70/yang17b.html
http://proceedings.mlr.press/v70/yang17b.html
http://arxiv.org/abs/1806.10069
https://doi.org/10.1002/widm.53
https://doi.org/10.1145/3292500.3330997
https://doi.org/10.1109/ICCV.2017.612
https://doi.org/10.1109/ICCV.2017.612
http://papers.nips.cc/paper/6608-deep-subspace-clustering-networks
http://papers.nips.cc/paper/6608-deep-subspace-clustering-networks
https://doi.org/10.1109/CVPR.2016.556
http://arxiv.org/abs/1801.07648
https://doi.org/10.1109/ACCESS.2018.2855437
https://doi.org/10.1109/ACCESS.2018.2855437

	DeepECT: The Deep Embedded Cluster Tree
	Abstract
	1 Introduction
	2 Deep Embedded Cluster Tree
	2.1 Overview
	2.2 Object Assignment
	2.3 Node Center Loss
	2.4 Node Data Compression Loss
	2.5 Complete Loss
	2.6 Growing the Tree
	2.7 Tree Pruning
	2.8 Optional: Extension with Input Augmentation

	3 Experiments
	3.1 Experimental Setup
	3.2 Evaluation Methods
	3.2.1 Dendrogram Purity
	3.2.2 Leaf Purity
	3.2.3 Tree Height Dependence of Purity Measures

	3.3 Hierarchical Clustering Baselines
	3.4 Flat Clustering Baselines
	3.5 General Results
	3.6 Detailed Evaluation
	3.6.1 MNIST Results
	3.6.2 Reuters Results
	3.6.3 Fashion-MNIST Results

	3.7 Applicability for Prediction Tasks on MNIST
	3.8 Experiments Summary

	4 Related Work
	5 Conclusion
	References

