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Abstract
The idea of combining the high representational power of deep learning techniques with clustering methods has gained much 
attention in recent years. Optimizing a clustering objective and the dataset representation simultaneously has been shown 
to be advantageous over separately optimizing them. So far, however, all proposed methods have been using a flat cluster-
ing strategy, with the actual number of clusters known a priori. In this paper, we propose the Deep Embedded Cluster Tree 
(DeepECT), the first divisive hierarchical embedded clustering method. The cluster tree does not need to know the actual 
number of clusters during optimization. Instead, the level of detail to be analyzed can be chosen afterward and for each 
sub-tree separately. An optional data-augmentation-based extension allows DeepECT to ignore prior-known invariances of 
the dataset, such as affine transformations in image data. We evaluate and show the advantages of DeepECT in extensive 
experiments.
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Abbreviations
ACC   Clustering accuracy
AE  Autoencoder
AE + Complete  AE combined with agglomerative 

clustering with complete-linkage
AE + Single  AE combined with agglomerative 

clustering with single-linkage
DEC  Deep Embedded Cluster algorithm [3]
IDEC  Improved Deep Embedded Cluster 

algorithm [5]
DeepECT  Deep Embedded Cluster Tree
DeepECT + Aug  DeepECT with the optional augmenta-

tion extension
DP  Dendrogram purity
Eq.  Equation
LP  Leaf purity

NMI  Normalized mutual information
ReLU  Rectified linear unit
URL  Uniform resource locator

1 Introduction

Clustering algorithms are a fundamental tool for data mining 
tasks. However, of similar importance is the representation 
of the data to be clustered and this, in turn, depends on the 
data domain. In the last decade, deep learning techniques 
have achieved in areas that were previously very challenging 
for machine learning and data mining methods. These areas 
include images, graph structures, text, video, and audio. 
Many of these success stories have been made in the con-
text of supervised learning. Further, neural network-based, 
unsupervised representation learning has made it possible to 
embed these challenging domains into spaces more acces-
sible to classical data mining methods.

In recent years, the idea of simultaneously optimizing 
a clustering objective and the dataset representation has 
gained more traction. In this work, we call these methods 
either embedded clustering or deep clustering. The com-
bined optimization holds the promise of improved results 
compared to two separate steps: During optimization, 
better feature representations are learned that enhance 
the cluster assignments; the cluster assignments, in turn, 
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provide information to improve the embedding. However, 
this also makes the task especially challenging, because, 
with each update of the embedding network, the embedded 
data space changes, and the clustering method has to adapt 
to this changing environment.

Typically, the embedding method is an autoencoder, 
a specific type of neural network. These networks learn 
to map a data space onto a latent, embedded space and a 
mapping back to the original space. Usually, these embed-
dings have a lower dimensionality than the original data 
domain and, therefore, are easier to visualize.

In this paper, we focus on a novel, specialized cluster-
ing layer, the Deep Embedded Cluster Tree (DeepECT) 
layer. We explicitly do not consider any specific autoen-
coder type that is used for the embedding. Instead, we only 
apply a generic feedforward autoencoder architecture and 
focus on the clustering layer. We expect that DeepECT 
profits to the same degree from better embeddings through 
domain-specific autoencoders (e.g., convolutional autoen-
coders) as other clustering algorithms would do.

DeepECT is inspired by classical hierarchical cluster-
ing. It simultaneously improves the embedded features 
and iteratively grows a cluster tree. In contrast to previous 
embedded flat clustering methods, the cluster tree repre-
sents a hierarchy of clusters that separate populations and 
subpopulations within the data. DeepECT grows top-down 
and assigns the data bottom-up. It is optimized with mini-
batches, which also makes it suited for large datasets. The 
final cluster assignments are flexible and can be deter-
mined on a by-need basis.

Over other embedded flat clustering techniques, Deep-
ECT has the advantage of not requiring the specification 
of the number of clusters to be found. This feature is much 
more crucial for embedded techniques than for traditional 
clustering settings because other embedded flat clustering 
techniques actively destroy structural information that is 
not captured through the clusters and the embedded space 
is actively optimized to reflect the selected number of 
clusters. Therefore, the cluster validity and consistency 
of these methods cannot be evaluated by measures such 
as the Silhouette coefficient. Even the inclusion of the 
autoencoder’s reconstruction loss cannot fully overcome 
this behavior. For DeepECT, we can separately choose the 
level of detail we want to inspect during analysis—i.e., 
after optimization—for every local structure captured by a 
sub-tree. This feature is enabled through a new projection-
based loss function that we use for DeepECT. It does not 
penalize orthogonal structures—not yet captured by the 
cluster tree—allowing that those structures can be found 
when we let the tree grow in subsequent steps of the opti-
mization process.

We summarize the contributions of this work as follows:

• Hierarchical clustering layer We propose a novel cluster-
ing layer that builds a cluster tree in an embedded space. 
Both the embedding and the tree are trained simulta-
neously, and degenerated solutions are avoided—as 
opposed to other proposed methods. In contrast to other 
embedded clustering methods, DeepECT does not need 
the actual number of clusters during optimization. 
Instead, the level of detail can be chosen afterward.

• Novel optimization strategy We propose a novel projec-
tion-based optimization strategy that enhances the cluster 
boundaries and preserves orthogonal structural informa-
tion.

• Optional augmentation An optional extension, utilizing 
augmentation methods, allows ignoring known invari-
ances within the data.

2  Deep Embedded Cluster Tree

2.1  Overview

In this section, we discuss the deep embedded cluster tree 
(DeepECT). An implementation can be found at https ://
dmm.dbs.ifi.lmu.de/downl oads. We focus on the novel 
DeepECT clustering layer and assume that we are given 
some generic autoencoder that transforms a data point � via 
an encoding function enc(⋅) onto an embedded space and 
a decoding function dec(⋅) that reconstructs an embedded 
data point back onto the original space. This autoencoder 
has been pre-trained using a differentiable loss function that 
penalizes the reconstruction error for a data mini-batch B . A 
popular choice is the mean squared error loss:

Yet, the selected loss function is entirely domain-specific, as 
is the choice of the specific autoencoder architecture.

We combine the reconstruction loss and the clustering loss 
of the DeepECT layer into a final loss term. Figure 1 shows 
a sketch of the overall architecture, including the autoen-
coder and an illustration of the embedded cluster tree. The 
constructed tree is a binary tree; each node is either a leaf 
node or an inner node—we call this a split node—with two 
nodes as children. Each node has a vector representing a point 
in the embedded space and serving as a cluster center. We 
use this center as a representative of the assigned data. We 
combine ideas from both top-down and bottom-up hierarchi-
cal strategies. The data point assignment to the nodes follows 
a bottom-up strategy, whereas the tree grows in a top-down 
manner. We start with a single root node that we assign all 
data points to and iteratively split nodes until the tree has the 
desired number of leaf nodes (or some other user-specified 

(1)Lrec =
1

�B�
�

�∈B

‖� − dec(enc(�))‖2
2
.

https://dmm.dbs.ifi.lmu.de/downloads
https://dmm.dbs.ifi.lmu.de/downloads
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criteria is met). Algorithm 1 shows the pseudo-code of the 
optimization procedure. 

2.2  Object Assignment

The data point assignment is executed in a bottom-up fash-
ion. We assign each data point � of a mini-batch B to its 
closest leaf node:

where L is the set of all leaf nodes. Each split node obtains 
the data points assigned to its two child nodes.

2.3  Node Center Loss

Since the embedded space also changes between update 
steps, we have to adapt the nodes’ centers to the changing 
environment. The centers of the leaf nodes are trainable 
parameters, and we optimize them accordingly. We do this 
by penalizing the squared difference between the leaf nodes’ 
centers �n and the mean value of the data points of the mini-
batch assigned to this leaf node:

where we denote the set of all data points assigned to a node 
n as Bn and regard the embedded data points and the encoder 
as constant, which we indicate by the stop gradient operator 
sg[⋅] . Keeping the embedding constant ensures that we only 
push the center of a node toward the data mean, but not the 
data points toward the node center. Updating the embeddings 
is the purpose of the next loss function, and we explain in the 
next section the reason behind it. We divide by the number 
of leaf nodes to get the mean loss over the leaf nodes.

The centers of the split nodes are not trainable parameters 
but are determined based on the leaf nodes in the node’s 
sub-tree. Calculating the centers of the inner nodes has two 
advantages. First, we have fewer parameters the optimiza-
tion algorithm has to keep track of. Second, representing 
the inner node as trainable parameters can lead to situa-
tions where a split node center and the two centers of the 
respective children become inconsistent, i.e., the center of 
a split node may not lay on or even near the connection line 
between the centers of its child nodes. Defining the centers 
of split nodes based on their child nodes centers circumvents 
this issue.

We determine the split node centers as weighted averages 
over the child-nodes:

where l and r are the indices of the left and right child of 
this node and wl and wr represent their weights. The weights 
represent the number of data points assigned to this node 
over several update steps and guarantee that a calculated 
center is an suitable representative for both children, even 
in unbalanced situations.

Finally, we have to update the weights wn of each node 
used in Eq. (3). We represent the weights as an exponential 

argmin
n∈L

‖�n − enc(�)‖2,

(2)LNC =
1

|L|
∑

n∈L

‖‖‖�n −
1

|Bn|
∑

�∈Bn

sg[enc(�)]
‖‖‖2,

(3)�n =
1

wl + wr

(wl�l + wr�r),

Fig. 1  The figure shows an illustration of the combined architec-
ture of the DeepECT clustering algorithm and an autoencoder. The 
autoencoder network transforms the input data into an embedded 
space, where DeepECT is used to cluster it. The numbers in the illus-
trated cluster tree indicate the split order
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moving average over the number of assigned data points 
within each mini-batch. The weight of node n at iteration t 
is updated in the following way:

The 50:50 split showed a suitable trade-off in our ini-
tial experiments, and we, therefore, kept it for all of our 
experiments.

2.4  Node Data Compression Loss

Our optimization goal for the DeepECT-layer is to strengthen 
the boundary—i.e., enlarging the margin—between the data 
point partitions assigned to each pair of sibling-nodes within 
the cluster tree. We achieve this through a compression loss, 
in which we penalize the distance between data points and 
their assigned node centers. This penalization ensures that 
data points are embedded closer to the assigned node centers 
in subsequent iterations. A naive idea would be to penalize 
the Euclidean distance between the center of a node and 
its respective data points. However, this has the adverse 
effect that structural information orthogonal to the line con-
necting the two centroids is destroyed. These orthogonal 
structures might be relevant to the ancestors of these nodes. 
Figure 2 shows the situation with this naive approach. The 
plot illustrates an example of an embedded space with three 
ground truth clusters. The cluster tree in this example has 
only one root node and two leaf nodes. The hollow black 
squares represent the two centers of the leaf nodes. We can 
see that over several optimization steps, and we indeed get 
the desired effect that the margin between the two popula-
tions represented by the two leaf nodes is increased. How-
ever, at the same time, the structural information orthogonal 
to the two node centers is also destroyed. This destruction 
occurs although the reconstruction loss should counteract 
this behavior.

Therefore, we propose to penalize the distance between 
the data point and the center of a node when projected onto 
the line connecting the center of the node and its sibling 

(4)w(t)
n

= 0.5w(t−1)
n

+ 0.5|Bn|.

center. We determine the projection onto the connection line 
with the following formula:

where n is the node’s index, for which we need the projection 
direction and m is the index of its sibling node. In all cases, 
where we use this projection, we regard it as a constant. We 
define the compression loss as follows:

where N  is the set of all node indices excluding the root 
node and we regard both �n and �n as constants. Further, 
we use the absolute value instead of the Euclidean norm 
because the term inside is—due to the projection—a scalar 
value. By dividing through the number of nodes and sam-
ples in the batch, we get the mean loss for each data point 
and node.

The effect of optimizing the projected compression loss is 
shown in Fig. 3. Again, we can see that the margin between 
the two node centers increases, but—in contrast to the 
unprojected example—the structural information orthogonal 
to the connection line is kept intact. The objects on the left 
side still show the structure of two distinctive groups that 
was lost in the naive unprojected version.

2.5  Complete Loss

The complete loss function combines the three above-
defined losses: (a) the autoencoder reconstruction loss Lrec 
to preserve local structures, (b) the node center loss LNC to 
adapt the node centers to a changed embedded space, and (c) 
the data compression loss that improves the cluster separa-
tion LDC . We combine all these losses by summing them up:

�n = sg

�
�n − �m

‖�n − �m‖2

�
,

(5)LDC =
1

|N| ⋅ |B|
∑

n∈N

∑

�∈Bn

|��
n

(
sg[�n] − enc(�)

)
|,

(6)L = LDC + LNC + Lrec,

Fig. 2  The plots illustrate the 
deficiencies of the compression 
loss without projection. The 
data point colors represent leaf 
node assignments. We can see 
that orthogonal information is 
destroyed. Therefore, splitting 
one of the leaf nodes would not 
result in sufficiently large mar-
gins between the two potential 
leaf nodes
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where we refrain from introducing weights between the dif-
ferent losses for simplicity.

2.6  Growing the Tree

We start the optimization with only a single root node—that 
is also a split node—and grow the tree by splitting nodes 
after a certain number of update steps until we reach a previ-
ously defined number of leaf nodes.

Growing a tree by one leaf node is straight forward. We 
transform the dataset (or a representative sub-sample of it) 
onto the embedded space. Then, we determine the leaf node 
with the highest sum of squared distances between its center 
and the assigned data points. We selected this rule because it 
provides a good balance between the number of data points 
and data variance for this cluster.

Next, we split the selected node and attach two new leaf 
nodes to it as children. We determine the initial centers for 
these new leaf nodes by applying two-means (k-means with 
k = 2 ) to the assigned data points.

Our experiments show that usually, 500–1000 mini-batch 
update steps between splits are sufficient to ensure that the 
embedded space has adapted to the new leaf nodes. Figure 4 
shows what happens when we split the example data shown 
in Fig. 3 after 1000 steps [diagram (c)] and optimize it fur-
ther. The black circle represents the computed center of the 

split node created by splitting the leaf node on the left side 
in the plots shown in Fig. 3. We can see that the compres-
sion loss now also strengthens the margin between the two 
clusters previously represented by just one leaf node.

2.7  Tree Pruning

The alternating assignment and update steps—which are 
utilized by almost all centroid-based clustering methods—
are susceptible to degenerated situations, in which a cluster 
center does not get assigned any data points. This situation 
is more severe in the context of deep clustering because 
from one iteration to the next, the embeddings may change 
considerably. Most proposed flat clustering methods ignore 
these degenerate situations completely [1]. We avoid these 
degenerate results in DeepECT by pruning the tree during 
optimization. When we find ourselves in a situation, where 
we do not assign a node any data points over many optimiza-
tion steps—i.e., the node dies out —all data points the parent 
gets assigned originate from the sibling node. Therefore, we 
can replace this parent node with the sibling and remove the 
dead node from the tree. We can detect this behavior if the 
exponential moving average w converges toward zero. The 
actual value should be set depending on the batch size and 
the number of leaf nodes. For our experiments, we set the 
threshold value for such a pruning to w < 0.1.

Fig. 3  The plots show the 
effect of the compression loss 
with projection as we use it 
in DeepECT. We can see that 
structures orthogonal to the two 
leaf node centers are preserved. 
(Colors represent leaf node 
assignments)

Fig. 4  The plots show the effect 
of the projected compression 
loss after splitting the left leaf 
node after 1000 steps (as shown 
in Fig. 3). We can see that 
the data points on the left are 
compressed into two distinctive 
clusters, whereas the single leaf 
node on the right still preserves 
its orthogonal structure
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Pruning the tree reduces its complexity and helps to pre-
serve structural information by preventing the compression 
loss from acting on a ‘living’ node against its ‘dead’ sibling.

2.8  Optional: Extension with Input Augmentation

Image data augmentation has been shown to improve the 
accuracy of supervised learning tasks considerably [2]. 
Thereby, the algorithm learns to ignore known invariances 
within the data. Examples are rotations or translations of 
objects in images, a slight shift of the window in time series, 
or synonym substitution in text data.

In this section, we show a simple extension of DeepECT 
that exploits such an augmentation for the unsupervised 
clustering task. The key idea is that a (randomly) augmented 
object aug(�)—which we consider as constant—must be 
assigned to the same nodes as the original object � . We can 
then penalize the distance between the node centers and both 
the original and the augmented objects in the same fashion 
as in Eq. 5:

We define the center loss by the average of the original and 
the augmented data and replace Eq. 2:

The complete loss of DeepECT with augmentation is then 
defined as:

where LrecA is the reconstruction loss for the original batch 
and the augmented data objects.

3  Experiments

We evaluate our proposed method DeepECT on four com-
monly used deep learning datasets: MNIST, USPS, Fash-
ion-MNIST, and Reuters. Table 1 shows the statistics of all 

(7)LDCA =
1

|N| ⋅ |B|
∑

n∈N

∑

�∈Bn

[
|��

n
(sg[�n] − enc(�))| + |��

n
(sg[�n] − enc(sg[aug(�)]))|

]
.

(8)

LNCA =
1

|L|
∑

n∈L

‖‖‖�n − sg
[

1

2|Bn|
∑

�∈Bn

(enc(�) + enc(aug(�)))
]‖‖‖2,

(9)L = LDCA + LNCA + LrecA,

datasets used in the experiments. MNIST and USPS are both 
image datasets containing handwritten digits. The Fashion-
MNIST dataset contains images of fashion products, such 
as images of clothing, shoes, and bags. The Reuters dataset 
contains news articles in four top categories, and we use the 
same representation as described in [3].

3.1  Experimental Setup

We focus our experiments on the evaluation of our new clus-
tering layer. Therefore, we refrain from using more elabo-
rated autoencoder architectures. Instead, we use the same 
generic fully connected autoencoder layout for all experi-
ments, as used in [3]. As mentioned before, we expect that 
all methods would gain equally from more sophisticated and 
domain-specific architectures. However, a standard autoen-
coder architecture is sufficient to show the viability of Deep-
ECT compared to the baseline competitors. Hence, we use 
the same generic autoencoder architecture, as proposed in 
[4] and which also used in [3, 5] for the purpose of cluster-

ing the embedded space. The feedforward encoder in this 
architecture has the dimensions d-500–500–2000–10, and 
the decoder network has a mirrored layout. We use ReLU 
activations and the mean squared error reconstruction loss 
from Eq. (1).

We pre-train ten autoencoders for each dataset and use 
these same pre-trained networks for all experiments and 
comparison methods. Using these pre-trained autoencoders 
ensures that each method has the same starting conditions 
for the embedded space and that variations in the cluster-
ing quality do not merely stem from qualitatively different 
autoencoders. The pre-training setup is similar to the one 
described in [3]. We pre-train the autoencoders as denoising 
autoencoders with a 20% corruption rate. First, we perform 
a layer-wise pre-training with dropout after each layer (with 
a rate of 20%) and 20,000 steps per layer. Then, we fine-
tune the whole network for 50,000 steps without dropout. 
We use input corruption only for the pre-training and not 
for the actual optimization of DeepECT and its baseline 
methods. For all experiments, we use Adam [6] (learning 
rate = 0.0001 , �1 = 0.9, �2 = 0.999 ) as the optimization 
algorithm and a mini-batch size of 256 samples. For the 
combined optimization, we train for additional 50,000 itera-
tions to ensure convergence.

For DeepECT, our initial experiments with synthetic 
data showed that splitting the tree every 500 optimization 
steps yields promising results and more extended step 
sizes did not further increase the performance. For this 

Table 1  Statistics of datasets used in the experiments

Name Type # Points # Dimensions # Classes

MNIST Image 70,000 784 10
USPS Image 9298 256 10
Fashion-MNIST Image 70,000 784 10
Reuters Text 685,071 2000 4
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reason, we keep this schedule without adjusting it for the 
experiments on real-world datasets. The same applies to 
the pruning threshold mentioned in Sect. 2.7. For MNIST, 
Fashion-MNIST, and USPS, we grow the trees until they 
contain twenty leaf nodes. For the Reuters dataset, we 
set the maximal number of leaf nodes to twelve because 
it has fewer ground truth clusters. This way, we have two 
times and three times the actual number of clusters. We 
consider these values sufficient to capture essential struc-
tures of the selected datasets for the purpose of this paper. 
We use the same number of leaf nodes for the hierarchical 
baseline methods.

For the image datasets, we additionally experimented 
with the augmentation extension DeepECT + Aug. We 
start with the same pre-trained autoencoders as in the 
other experiments. Further, we stick to the same optimi-
zation schedule as described above for the experiments 
with the non-augmented versions of DeepECT. In each 
iteration, we use the original mini-batch and its aug-
mented counterpart to optimize the loss function in Eq. 9, 
instead of the non-augmented loss in Eq. 6. We create 
the augmented version of each image of a mini-batch, 
by applying on-the-fly a random affine transformation. 
The affine transformation randomly rotates and shears the 
image in the range of [− 15;15] degrees. Also, it moves the 
digit randomly up to two pixels in any direction. Figure 5 
shows an example of this augmentation for MNIST.

3.2  Evaluation Methods

We evaluate the cluster hierarchy of DeepECT with the 
dendrogram purity (DP) and leaf purity (LP) measure. 
We describe both below. Further, we evaluate the cluster 
tree against flat baseline methods. For this, we use the 
well-known normalized mutual information (NMI) and 
clustering accuracy (ACC) [3]. We include these for com-
pleteness and to show that DeepECT is also competitive 
in scenarios, where one expects a flat cluster structure 
and knows the actual number of clusters in dataset. To 
determine a k cluster partition from a cluster tree, we use 
the assignments to the k nodes that were leaf nodes after 
the first k − 1 splits.

3.2.1  Dendrogram Purity

The dendrogram purity measure [7, 8] can be used to 
evaluate the cluster tree against a flat ground truth parti-
tion. It is the expected purity of the sub-tree given by the 
least common ancestor node for two randomly sampled 
data points of the same class. It is 1.0 if and only if all 
data points belonging to one class in the ground truth are 
assigned to some pure sub-tree, and it approaches 0 for 
randomly generated trees.

The explicit formula is defined in [8] as:

where C1,… ,CK  are the data point sets correspond-
ing to the ground truth classes, lca(x, y) is the least com-
mon ancestor node of x and y in the cluster tree, dan(z) is 
the set of data points assigned to the node z in the clus-
ter tree, pur(S, T) = |S ∩ T|∕|S| is the purity measure, and 
P = {(x, y) ∣ ∃C ∈ {C1,… ,CK} ∶ x, y ∈ C ∧ x ≠ y} is the 
set of all data point pairs that belong to the same class. The 
dendrogram purity can be computed efficiently and accu-
rately in a bottom-up recursion on the cluster tree.

3.2.2  Leaf Purity

Besides using dendrogram purity, we introduce another 
measure that we call leaf purity (LP). It is the weighted-
average purity of the leaf nodes w.r.t. to the majority class 
of the objects assigned to a leaf node, given by the formula:

where LD is the set of sets containing the data points 
assigned to the leaf nodes.

3.2.3  Tree Height Dependence of Purity Measures

Comparing dendrogram and leaf purity of two cluster trees 
is only directly possible if both trees have the same number 
of leaf nodes. However, sub-trees can always be collapsed 
into leaf nodes to fulfill this requirement. Therefore, we 
collapse the bottom-up linkage-trees of the baseline meth-
ods—in the order of linkage—by compressing sub-trees into 
leaf nodes until we have the same number of merge steps 

DP =
1

|P|

K∑

k=1

∑

x, y ∈ Ck

∧x ≠ y

pur(dan(lca(x, y)),Ck),

LP =
1

|D|
∑

L∈LD

|L| max
C∈{C1,…,CK}

pur(L,C),

Fig. 5  The plots show a sample of original MNIST digits and a ran-
domly augmented version
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left as split-nodes in the top-down trees of DeepECT and 
Bisecting-K-means. This process ensures that both methods 
are comparable w.r.t. the hierarchical evaluation measures.

3.3  Hierarchical Clustering Baselines

As a baseline for evaluating the hierarchical properties, we 
cluster the embedded data with the classical hierarchical 
clustering algorithms bisecting-k-means (AE + Bisect-
ing), single-linkage (AE + Single), and complete-linkage 
(AE + Complete). Since none of these classical algorithms 
can optimize the embedded space, we also explore the sim-
ple idea of combining the flat embedded clustering algo-
rithm IDEC [5] with single-linkage and complete-linkage. 
IDEC is a method that combines the clustering layer of 
DEC [3] with the reconstruction loss of the autoencoder. 
First, we run IDEC with the number of clusters set to a 
value higher than the expected number of clusters—in our 
case, we set it equal to the maximal number of leaf nodes 
we use for DeepECT. Then, we consider these IDEC clus-
ter centers as representatives of the assigned data points 
and try to recover a hierarchical clustering structure by 
performing single-linkage and complete-linkage on the 
cluster centers (IDEC + Single and IDEC + Complete). 
A similar technique is proposed in [9] for classical, non-
embedded settings with k-means instead of IDEC.

3.4  Flat Clustering Baselines

As a baseline for evaluating the performance of DeepECT 
in a flat clustering setting, we use k-means on the embed-
ded data of the pre-trained autoencoder (AE+k-means) and 
IDEC [5]. If we ignore the advantages of more domain-
specific and sophisticated autoencoder architectures, IDEC 
is currently one of the best embedded-clustering methods. 
In contrast to DeepECT, we have to set the actual number 

of clusters in the ground truth during optimization for 
IDEC and k-means. Further, we set the hyperparameter of 
IDEC for the reconstruction loss to 0.1 as described in [5].

3.5  General Results

The general results—averaged over the ten pre-trained 
autoencoders—for the hierarchical evaluation using dendro-
gram purity and leaf purity measures for DeepECT and the 
hierarchical baseline algorithms are shown in Table 2. Deep-
ECT consistently produces cluster trees of high quality and 
is the top-performing algorithm by a wide margin. We can 
also see that the augmentation extension further improves 
the results considerably for MNIST and USPS. The results 
of DeepECT with and without the augmentation extension 
for the Fashion-MNIST dataset are similar because the data-
set authors chose to pre-process all images such that each 
fashion item has a normalized representation. The results 
of the classical methods can be explained by their inability 
to enhance the embedding. The leaf purity values for Deep-
ECT indicate that the method is able to create homogene-
ous sub-populations. If we compare the leaf purity values 
of DeepECT and the hierarchical IDEC + Center-linkage 
variants to the other baselines’ leaf purity values, we can see 
that the combined optimization of the clustering and autoen-
coder—of both methods—indeed improves the homogeneity 
of local structures. However, the IDEC + Center-linkage is 
also unable to extract a coherent hierarchical structure.

Table 3 shows the experimental results for the flat clus-
tering comparison methods based on the same pre-trained 
autoencoders. Since we use the same pre-trained autoencod-
ers, we can directly see the influence of the respective clus-
tering objective. Both IDEC and DeepECT benefit from the 
combined optimization compared to k-means, which cannot 
optimize the embedding. Table 4 shows the results of more 
centroid-based clustering methods taken from the respec-
tive publication. More details about these methods can be 

Table 2  Our experiments show that DeepECT is the top-performing algorithm in terms of dendrogram purity (DP) and leaf purity (LP)

For results marked with a *, we had to use a random subset of the dataset with 100,000 objects and the same class distribution, because of 
memory limitations. The values are averages and the standard deviation for the ten pre-trained autoencoders. Best value in bold; runner up is 
italicized

Method MNIST USPS Fashion-MNIST Reuters

DP LP DP LP DP LP DP LP

DeepECT 0.82 ± 0.03 0.93 ± 0.02 0.72 ± 0.03 0.85 ± 0.04 �.�� ± �.�� �.�� ± �.�� �.�� ± �.�� �.�� ± �.��

DeepECT + Aug �.�� ± �.�� �.�� ± �.�� �.�� ± �.�� �.�� ± �.�� 0.44 ± 0.04 0.60 ± 0.05 n.a. n.a.
IDEC + Single 0.39 ± 0.09 0.60 ± 0.08 0.61 ± 0.09 0.72 ± 0.06 0.34 ± 0.04 0.54 ± 0.03 0.52 ± 0.04 0.67 ± 0.04
IDEC + Complete 0.40 ± 0.05 0.60 ± 0.08 0.61 ± 0.09 0.72 ± 0.06 0.35 ± 0.03 0.54 ± 0.03 0.52 ± 0.04 0.67 ± 0.04
AE + Bisecting 0.53 ± 0.02 0.78 ± 0.02 0.39 ± 0.02 0.69 ± 0.02 0.38 ± 0.02 0.64 ± 0.03 0.63 ± 0.03 0.76 ± 0.03

AE + Single 0.11 ± 0.00 0.11 ± 0.00 0.12 ± 0.00 0.17 ± 0.00 0.10 ± 0.00 0.10± 0.00 0.36 ± 0.00* 0.44 ± 0.00*
AE + Complete 0.25 ± 0.04 0.45 ± 0.05 0.20 ± 0.04 0.40 ± 0.07 0.26 ±0.04 0.44 ±0.03 0.41 ± 0.02* 0.54 ± 0.04*
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found in Sect. 4. We can see that DeepECT also performs 
well compared to these methods. However, we can also see 
that the autoencoder architecture influences the clustering 
result considerably. For instance, DBC differs from DEC 
only by the use of a convolutional autoencoder but achieves 
superior results. Yet, the selected autoencoder architecture 
is independent to the selected clustering layer.

Of course, this comparison of flat clustering objectives 
and DeepECT is unfair toward the latter, because the com-
peting methods are given the true number of clusters dur-
ing optimization, whereas for DeepECT, we only use this 
information during evaluation. Nevertheless, we can see that 
the ordinary version of DeepECT can keep up with these 
methods in terms of raw NMI and ACC measures and that 
the augmentation extension DeepECT + Aug shows substan-
tial improvements over the results of DeepECT, because it 
can ignore known invariances within the data. These results 
show that DeepECT is also competitive in scenarios, where 
one expects a flat cluster structure, but does not know the 
number of clusters and inspects the cluster tree recursively.

3.6  Detailed Evaluation

In this section, we take a closer look at the resulting Deep-
ECT-trees for the above datasets. Since the USPS dataset’s 
findings are comparable to the one of MNIST—as both rep-
resent handwritten digits—we omit these results for brevity.

3.6.1  MNIST Results

A closer look at the resulting DeepECT-trees for the MNIST 
dataset shows some exciting properties of different subpopu-
lations within the handwritten digits. Two illustrative exam-
ples are shown in Fig. 6 and can be found in the ordinary 
and augmented extension of DeepECT. The node purity of 
the depicted sub-trees for the digit 7’ is 98% and contain-
ing almost all instances of this class. It contains two leaf 
nodes. One leaf node shows sevens with a small crossbar as 
it is commonly written in Europe, the other leaf node shows 
this digit as it is more commonly written in the USA. The 
second sub-tree contains almost all instances of the digit ‘2’ 
with a purity of 97%. This sub-tree also contains two leaf 
nodes, each with specific characteristics. The first leaf node 
contains instances that are more curly and have a distinctive 

Table 3  This table shows that DeepECT is even competitive when compared to flat clustering methods that are given the true number of clusters 
during optimization and have therefore an unfair and unrealistic advantage over DeepECT

All methods started from the same pre-trained autoencoders. The values are averages and the standard deviation for the ten pre-trained autoen-
coders. Best value in bold; runner up is italicized

Method MNIST USPS Fashion-MNIST Reuters

NMI ACC NMI ACC NMI ACC NMI ACC 

DeepECT 0.83 ± 0.02 0.85 ± 0.04 0.71 ± 0.02 0.71 ± 0.04 �.�� ± �.�� 0.52 ± 0.06 0.47 ± 0.05 �.�� ± �.��

DeepECT + Aug �.�� ± �.�� �.�� ± �.�� �.�� ± �.�� �.�� ± �.�� 0.59 ± 0.04 0.50 ±0.05 n.a. n.a.
IDEC 0.86 ± 0.01 0.85 ± 0.03 0.76 ± 0.02 0.74 ± 0.03 0.58 ±0.02 �.�� ± �.�� �.�� ± �.�� 0.67 ± 0.03

AE + k-means 0.70 ± 0.02 0.77 ± 0.02 0.49 ± 0.03 0.56 ± 0.03 0.52 ± 0.02 0.48 ± 0.02 0.39 ± 0.07 0.65 ± 0.05

Table 4  This table shows DeepECT in the context of other deep clustering methods using k-means like flat clustering objectives.

The shown clustering accuracy values are taken from the respective publication and therefore use different autoencoders (also different architec-
tures). Further, we indicate if the paper reports the highest achieved (best) or average (avg) value. All of these methods have the advantage over 
DeepECT that they were provided with a dataset’s actual number of clusters during optimization

Method Architecture Reported MNIST USPS Reuters

DeepECT Fully connected AE Avg (best) 0.85 (0.90) 0.71 (0.77) 0.72 (0.77)
DeepECT + Aug Fully connected AE Avg (best) 0.95 (0.98) 0.82 (0.88) –
DEC [3] Fully connected encoder Best 0.84 – 0.72
DBC [10] Convolutional encoder + DEC objective Best 0.96 0.74 –
IDEC [5] Fully connected AE + DEC objective Best 0.88 0.76 0.76
DCN [11] Fully connected AE Best 0.83 – 0.80
DEPICT [12] Convolution AE Best 0.96 0.96 –
SDEC [13] Fully connected AE + Semi-Supervised DEC Best 0.86 0.76 –
best DKM [14] Fully connected AE Avg 0.85 0.75 0.58
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loop at the bottom part. The second leaf node contains a 
more ‘streamlined’ version of this digit, looking like the 
character ‘Z.’ The shown sub-trees build a natural hierar-
chy for the respective digit, and one can easily imagine that 
these findings can be of interest to a researcher. Other shape 
depending groupings of digits can also be found in lower 
parts of the tree, for instance, the written versions of the 
digits ‘4’ and ‘9’ share many characteristics. Consequently, 
they often can be found grouped together as a sub-tree con-
taining only these two digit types.

3.6.2  Reuters Results

The Reuters dataset contains four unbalanced top catego-
ries (first-level labels) with the following class distribution: 
Cooperate/Industrial with 44%, Government/Social with 

24%, Markets with 24%, and Economics with 8%. This data-
set is explained in more detail in [15]. The categories for 
each news article were chosen by hand and are, therefore, 
to some extent subjective. Further, each top category has 
several additional overlapping sub-categories (second-level 
labels)—and sub-sub-categories (third-level labels)—with 
over 96% of the articles belonging to two or more sub-
categories. Table 5 shows a DeepECT result for this data-
set. We can see that the first two splits separate most of the 
Government/Social—sub-tree starting at the node 3—and 
Markets—sub-tree starting at the node 5—categories from 
the other two categories. The Government/Social sub-tree 
then differentiates further into topics of the sub-categories 
such as sports, war and crime, domestic and international 
politics. The Markets category also further differentiates 
into different aspects of the respective sub-categories. For 
instance, the leaf nodes in the last two rows are concerned 
with different sub-sub-categories of the sub-category Com-
modity Markets. The leaf nodes in the middle are mostly 
related to Corporate/Industrial and Economics. They are 
not as well separated as the other two sub-trees. Yet, even 
there, we can find interesting leaf nodes. For instance, the 
seventh leaf node (row) from the top shares news articles 
labeled with the sub-categories Performance (of Corporate/
Industrial) and the Economic Performance (of Economics) 
and it seems reasonable to expect related words for those 
two sub-sub-categories.

3.6.3  Fashion‑MNIST Results

The Fashion-MNIST contains ten different classes of 
clothes, shoes and bags, namely T-shirt/top, trousers, pullo-
ver, dress, coat, sandal, shirt, sneaker, bag, and ankle boot. 
A resulting cluster tree of our method is shown in Fig. 7. 
The leaf nodes are represented as randomly sampled objects 

Fig. 6  The plots show two extracted sub-trees from interesting sub-
populations of the MNIST dataset found by DeepECT. These are the 
digits seven (with and without a middle-crossbar) and two (a curly 
and a ‘streamlined’ version, looking more like the character ‘Z’). The 
shown digits are randomly sampled

Table 5  This table shows a cluster tree for the Reuters dataset

Cluster tree Cor
por

ate/
indu

stria
l

Marke
ts
Gov

ernm
ent/

soc
ial

Eco
nom

ics

Sub-categories
– –
–

–

–

–
–

–
–

–
––

–

–

–
–
–

–
–

–
–

The first column shows the cluster tree itself, and each row represents one leaf node. The next four columns show the percentages of documents 
for the four top categories (first-level labels) assigned to each leaf node. For clarity, we omit the values for occurrences below 1%. The last col-
umn shows the most frequent sub-categories (second-level labels) for each leaf node with more than 5% occurrences (max. five)
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assigned to it. The labels of each node are our interpretation 
based on the objects assigned to the respective node. We can 
see that DeepECT found an entirely natural-looking hierar-
chy within this dataset. First, the images are split into three 
categories: clothes, shoes, and bags. We highlighted these 
sub-trees with colored areas. Within each sub-tree, we can 
find natural hierarchies. The category of bags distinguishes 
between bags without a visible strap/handle, bags with 
small handles, and bags with a shoulder strap. The ground 
truth does not distinguish between these types of bags and 
assigns them all to the same class. The clothes category is 
first divided into trousers and clothes for the upper body. 
These are then again partitioned into short and long sleeves. 
Here, the length of the sleeve must be seen relative to the 
total length of the respective garment because each item is 
normalized to appear of the same size within the image, i.e., 
dresses and shirts appear to be of the same size. The shoe 
category also shows some interesting characteristics. First, 
smaller and bigger shoes are distinguished. The smaller 
shoes are then further divided into sandals and sneakers. 
The bigger shoes have either a flat sole, a small heel, or are 
high-heeled. Building the hierarchy based on these features 
runs against the ground truth classes of sneakers, sandals, 
and ankle boots. Nevertheless, it is—from an appearance 
perspective—a valid and informative hierarchy for shoes.

3.7  Applicability for Prediction Tasks on MNIST

We also evaluate DeepECT in a prediction task. Thereby, we 
keep the autoencoders and the clustering optimization proce-
dure as described above. In contrast to the experimental evalu-
ation above, we only use the first 50.000 samples (training 
set) of the dataset MNIST during the cluster tree optimization. 
After optimization, we evaluate the clustering performance of 
the cluster tree on the previously unseen, remaining 20.000 
data points (test set).

In this experiment, we get for the test set a dendrogram 
purity of 0.73 ± 0.08 and a leaf purity of 0.85 ± 0.06 , which 
is a slight drop compared to the values in Table 2. Never-
theless, the result is robust enough to allow for limited label-
predictions of previously unseen data points directly by the 
cluster tree. However, in most cases, we would train a classifier 
based on the found cluster structures. The same applies, for the 
embedding itself, where we can utilize, for instance, the super-
vised autoencoder [16] loss to enhance the found embedding.

3.8  Experiments Summary

In summary, we think that the shown experiments on four real-
world datasets show clearly the utility and effectiveness of the 
DeepECT cluster tree. Finding these kind of structures and 

�at 

�ip�ops

�

Fig. 7  The diagram shows a cluster tree for the Fashion-MNIST data-
set. Each leaf node shows randomly sampled objects assigned to it. 
The labels are interpretations by the authors. The colored areas high-

light the three dominant sub-trees representing three types of objects 
found in the dataset: bags, clothes, and shoes



430 D. Mautz et al.

1 3

selecting the level of detail to be analyzed make DeepECT a 
valuable method for data scientists.

4  Related Work

Our proposed method DeepECT touches two aspects of 
the vast literature on clustering: hierarchical methods and 
embedded methods that utilize autoencoders.

Hierarchical clustering algorithms are a well-estab-
lished area within data mining and an overview of many 
well-known methods can be found in [17]. Agglomerative 
clustering algorithms are a family of hierarchical bottom-
up strategies with single-linkage and complete-linkage as 
the most prominent members. In each step, the two closest 
clusters are merged based on some defined cluster distance 
measure. In single-linkage, the cluster distance is defined 
as the distance between the two closest points of two clus-
ters. In complete-linkage, the cluster distance is defined as 
the maximum distance between the points of two clusters 
[18, p. 895ff.]. BCM [7] is a recent Bayesian approach 
to bottom-up agglomerative clustering, that uses hypoth-
esis testing to decide if clusters should be merged. The 
Bisecting-K-means algorithm [19] is a top-down, divisive 
method that applies k-means with k = 2 recursively on the 
previous clustering result. PERCH [8] is a non-greedy, 
incremental algorithm that aims to build a cluster tree that 
scales to both massive numbers of data points and clusters. 
GHC [20] assigns data points softly to each sub-tree and 
optimizes a differentiable cost function. All these methods 
are well tested in classical settings; however, in combina-
tion with a nonlinear embedding, they can only be used 
after the embedding is learned. This is the advantage of 
DeepECT, which interacts with the embedding in such a 
way that both mutually improve each other.

Deeply embedded clustering methods have recently 
gained much attention. So far, the primary focus has 
merely been on flat-clustering objectives that need the 
expected number of clusters during optimization. Within 
this field, many algorithms utilize k-means-like centroids 
as cluster representatives. DEC [3] can be seen as the first 
algorithm that successfully combines autoencoders with 
a clustering objective. Its clustering objective utilizes a 
soft-assignment to the centroids using a Student-t kernel. 
These cluster assignments are then hardened using the 
Kullback–Leibler divergence and an auxiliary target dis-
tribution. Thereby, it only uses the encoder part of a pre-
trained autoencoder. DBC [10] replaces the feedforward 
autoencoder with a convolutional autoencoder. IDEC [5] 
extends DEC by combining its clustering objective with 
the autoencoder’s reconstruction loss. SDEC [13] com-
bines the DEC objective with a semi-supervised setting, 

where the user can provide pairwise constraints of objects 
that should or should not belong to the same cluster. Both 
DKM [14] and DEPICT [21] soft-assign data points to 
clusters centroids based on Gaussian kernels. Thereby, 
DEPICT hardens these assignments similar to DEC using 
the Kullback–Leibler divergence between these assign-
ments and an auxiliary target distribution. The authors of 
DKM also explores the idea of using autoencoders with-
out pre-training. DCN [11] combines autoencoder with 
the training scheme of k-means by alternating between 
updating the autoencoder parameters, then the data point 
assignments, and finally the cluster centers. The cluster-
ing objective of ENRC [22] aims to find multiple, non-
redundant, k-means-like partitions in an autoencoder’s 
embedded space.

However, not all methods utilize centroids. The follow-
ing algorithms also aim to produce a flat clustering parti-
tion, yet they follow other ideas than centroids to provide 
a flat partition of a dataset. DSC-Nets [23] introduces a so-
called self-expressive layer, a fully connected layer with-
out bias and nonlinear activation, which is put between the 
encoder and decoder functions. This layer aims to encode 
each data point as a linear combination of the other sam-
ples in the same subspace. In deep subspace clustering 
[24, 25], one aims to find clusters together with a corre-
sponding subspace of the embedded space, which exhibits 
the cluster structure. JULE [26] is a clustering algorithm 
for images that interprets the optimization of the convo-
lutional autoencoder as a recurrent process and utilizes 
an affinity measure also used in agglomerative clustering 
to generate clusters in a bottom-up process. However, the 
final result is nevertheless a flat clustering. VaDE [27] is 
a generative, variational Bayesian approach that utilizes a 
Gaussian mixture model as the latent variable of a varia-
tional autoencoder. The ClusterGAN [28] harnesses a cate-
gorical distribution in the generative part of the generative 
adversarial network architecture. Two recent surveys [29, 
30] provide a broader overview of other embedded cluster-
ing methods. All of the above-described methods utilize a 
pre-trained autoencoder for the initial embedding. Further, 
they need the expected number of clusters for optimiza-
tion. This also means that only those structures captured 
by the clusters are improved. Moreover, other structural 
information is actively destroyed through their loss func-
tions. As a consequence, the final embedded space will 
resemble the chosen number of clusters, regardless of the 
actual structure within the dataset and validation methods 
such as the Silhouette coefficient will fail. Figure 2 shows 
that even the inclusion of a reconstruction loss will not 
entirely prevent this. DeepECT circumvents this behavior 
through its novel projected compression loss. Our experi-
ments show that with a sufficiently large tree, all relevant 
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structures will be successfully captured. The level of detail 
can then be chosen during analysis.

5  Conclusion

In this work, we proposed the Deep Embedded Cluster 
Tree (DeepECT). It simultaneously improves the nonlinear 
features embedding and iteratively grows a binary tree of 
clusters capturing (hierarchical) structures. Our experi-
ments show that DeepECT outperforms the hierarchical 
baseline methods by a wide margin. We believe that is 
DeepECT is an attractive tool when dealing with com-
plex data domains that profit from nonlinear transforma-
tions—such as images—and one either does not know the 
exact number of clusters or expects a hierarchical data 
structure. The optional data augmentation extension can 
improve performance by avoiding known invariances of 
the dataset. Future efforts may be directed toward experi-
ments, where DeepECT is combined with domain-specific 
embedding methods.
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