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Abstract
Fair classification has become an important topic in machine learning research. While most bias mitigation strategies focus 
on neural networks, we noticed a lack of work on fair classifiers based on decision trees even though they have proven very 
efficient. In an up-to-date comparison of state-of-the-art classification algorithms in tabular data, tree boosting outperforms 
deep learning (Zhang et al. in Expert Syst Appl 82:128–150, 2017). For this reason, we have developed a novel approach of 
adversarial gradient tree boosting. The objective of the algorithm is to predict the output Y with gradient tree boosting while 
minimizing the ability of an adversarial neural network to predict the sensitive attribute S. The approach incorporates at 
each iteration the gradient of the neural network directly in the gradient tree boosting. We empirically assess our approach 
on four popular data sets and compare against state-of-the-art algorithms. The results show that our algorithm achieves a 
higher accuracy while obtaining the same level of fairness, as measured using a set of different common fairness definitions.
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1  Introduction

Machine learning models are increasingly used in decision 
making processes. In many fields of application, they gener-
ally deliver superior performance compared with conventional, 
deterministic algorithms. However, those models are mostly 
black boxes which are hard, if not impossible, to interpret. 
Since many applications of machine learning models have far-
reaching consequences on people (credit approval, recidivism 
score, etc.), there is growing concern about their potential to 
reproduce discrimination against a particular group of people 
based on sensitive characteristics such as gender, race, religion 
or other. In particular, algorithms trained on biased data are 
prone to learn, perpetuate or even reinforce these biases [2]. 
In recent years, many incidents of this nature have been 

documented. For example, an algorithmic model used to gen-
erate predictions of criminal recidivism in the USA (COMPAS) 
discriminated against black defendants [3]. Also, discrimination 
based on gender and race could be demonstrated for targeted 
and automated online advertising on employment opportuni-
ties [4]. In this context, the EU introduced the General Data 
Protection Regulation (GDPR) in May 2018. This legislation 
represents one of the most important changes in the regula-
tion of data privacy in more than 20 years. It strictly regulates 
the collection and use of sensitive personal data. With the aim 
of obtaining non-discriminatory algorithms, it rules in Article 
9(1): “Processing of personal data revealing racial or ethnic 
origin, political opinions, religious or philosophical beliefs, or 
trade union membership, and the processing of genetic data, 
biometric data for the purpose of uniquely identifying a natural 
person, data concerning health or data concerning a natural 
person’s sex life or sexual orientation shall be prohibited” [5]. 
One fairness method often used in practice today is to remove 
protected attributes from the data set. This concept is known as 
“fairness through unawareness” [6]. While this approach may 
prove viable when using conventional, deterministic algorithms 
with a manageable quantity of data, it is insufficient for machine 
learning algorithms trained on “big data.” Here, complex cor-
relations in the data may provide unexpected links to sensitive 
information. This way, presumably non-sensitive attributes, can 
serve as substitutes or proxies for protected attributes.
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For this reason, next to optimizing the performance of a 
machine learning model, the new challenge for data scien-
tists is to determine whether the model output predictions 
are discriminatory, and how they can mitigate such unwanted 
bias as much as possible.

Many bias mitigation strategies for machine learning have 
been proposed in recent years; however, most of them focus 
on neural networks. Ensemble methods combining several 
decision tree classifiers have proven very efficient for vari-
ous applications. Therefore, in practice for tabular data sets, 
actuaries and data scientists prefer the use of gradient tree 
boosting over neural networks due to its generally higher 
accuracy rates. Our field of interest is the development of 
fair classifiers based on decision trees. In this paper, we pro-
pose a novel approach to combine the strength of gradient 
tree boosting with an adversarial fairness constraint. The 
contributions of this paper are threefold:

•	 To the best of our knowledge, we propose the first adver-
sarial learning method for generic classifiers, including 
non-differentiable machines, such as decision trees;

•	 We apply adversarial learning for fair classification on 
decisions trees;

•	 We empirically compare our proposal and its variants 
with several state-of-the-art approaches, for two differ-
ent fairness metrics. Experiments show the great perfor-
mance of our approach.

The remainder of this paper proceeds as follows: First, 
Sect. 2.1 presents our notation and introduces common defi-
nitions of fairness which will serve as metrics to measure the 
performance of our approach. Then, Sect. 2.2 reviews papers 
related with our work. Section 3 briefly recaps the principle 
of classical gradient tree boosting. Next, Sect. 4 outlines a 
novel algorithm which combines gradient tree boosting with 
adversarial debiasing. Finally, Sect. 5 presents experimental 
results of our approach.

2 � Fair Machine Learning

2.1 � Definitions of Fairness

Throughout this document, we consider a classical super-
vised classification problem training with n examples 
(xi, si, yi)

n

i=1
 , where xi ∈ �

p is the feature vector with p pre-
dictors of the ith example, si is its binary sensitive attribute 
and yi is its binary label.

In order to achieve fairness, it is essential to establish a 
clear understanding of its formal definition. In the follow-
ing, we outline the most popular definitions used in recent 
research. First, there is information sanitization which limits 
the data that is used for training the classifier. Then, there is 

individual fairness, which binds at the individual level and 
suggests that fairness means that similar individuals should 
be treated similarly. Finally, there is statistical or group fair-
ness. This kind of fairness partitions the world into groups 
defined by one or several high-level sensitive attributes. It 
requires that a specific relevant statistic about the classifier is 
equal across those groups. In the following, we focus on this 
family of fairness measures and explain the most popular 
definitions of this type used in recent research.

2.1.1 � Demographic Parity

Based on this definition, a classifier is considered fair if the 
prediction Ŷ  from features X is independent from the pro-
tected attribute S [7]. The underlying idea is that each demo-
graphic group has the same chance for a positive outcome.

Definition 1  P(Ŷ = 1|S = 0) = P(Ŷ = 1|S = 1)

There are multiple ways to assess this objective. The 
p-rule assessment ensures the ratio of the positive rate for 
the unprivileged group is no less than a fixed threshold p

100
 . 

The classifier is considered as totally fair when this ratio 
satisfies a 100%-rule. Conversely, a 0%-rule indicates a com-
pletely unfair model:

The second metric available for demographic parity is the 
disparate impact (DI) assessment [8]. It considers the abso-
lute difference of outcome distributions for subpopulations 
with different sensitive attribute values. The smaller the dif-
ference, the fairer the model:

2.1.2 � Equalized Odds

An algorithm is considered fair if across both demographics 
S = 0 and S = 1 , for the outcome Y = 1 the predictor Ŷ  has 
equal true positive rates, and for Y = 0 , the predictor Ŷ  has 
equal false positive rates [9]. This constraint enforces that 
accuracy is equally high in all demographics since the rate of 
positive and negative classification is equal across the groups. 
The notion of fairness here is that chances of being correctly or 
incorrectly classified positive should be equal for every group.

Definition 2 

A metric to assess this objective is to measure the dis-
parate mistreatment (DM) [10]. It computes the absolute 

(1)P − rule ∶ min

(
P(Ŷ = 1|S = 1)

P(Ŷ = 1|S = 0)
,
P(Ŷ = 1|S = 0)

P(Ŷ = 1|S = 1)

)

(2)DI ∶ |P(Ŷ = 1|S = 1) − P(Ŷ = 1|S = 0)|

P(Ŷ = 1|S = 0, Y = y) = P(Ŷ = 1|S = 1, Y = y),∀y ∈ {0, 1}
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difference between the false positive rate (FPR) and the false 
negative rate (FNR) for both demographics:

 The closer the values of DFPR and DFNR to 0, the lower the 
degree of disparate mistreatment of the classifier.

2.2 � Related Work

Recently, research in fair machine learning has prospered, 
and considerable progress was made when it comes to quan-
tifying and mitigating undesired bias. For the mitigation 
strategies, three distinct approaches exist.

Algorithms which belong to the “pre-processing” fam-
ily ensure that the input data are fair. This can be achieved 
by suppressing the sensitive attributes, by changing class 
labels of the data set and by reweighting or resampling the 
data [11–13].

The second type of mitigation strategies comprises the 
“in-processing” algorithms. Here, undesired bias is directly 
mitigated during the training phase. A straightforward 
approach to achieve this goal is to integrate a fairness penalty 
directly in the loss function. One such algorithm integrates a 
decision boundary covariance constraint for logistic regres-
sion or linear SVM [14]. In another approach, a meta-algo-
rithm takes the fairness metric as part of the input and returns 
a new classifier optimized toward that fairness metric [15]. 
Furthermore, the emergence of generative adversarial net-
works (GANs) provided the required underpinning for fair 
classification using adversarial debiasing [16]. In this field, 
a neural network classifier is trained to predict the label Y, 
while simultaneously minimizing the ability of an adversarial 
neural network to predict the sensitive attribute S [17–19].

The final group of mitigation algorithms follows a post-
processing” approach. In this case, only the output of a trained 
classifier is modified. A Bayes optimal equalized odds pre-
dictor can be used to change output labels with respect to 
an equalized odds objective [9]. A different paper presents a 
weighted estimator for demographic disparity which uses soft 
classification based on proxy model outputs [20]. The advan-
tage of post-processing algorithms is that fair classifiers are 
derived without the necessity of retraining the original model 
which may be time-consuming or difficult to implement in 
production environments. However, this approach may have a 
negative effect on accuracy or could compromise any gener-
alization acquired by the original classifier [21]. 

(3)
DFPR ∶ |P(Ŷ =1|Y = 0, S = 1) − P(Ŷ = 1|Y = 0, S = 0)|

(4)
DFNR ∶ |P(Ŷ =0|Y = 1, S = 1) − P(Ŷ = 0|Y = 1, S = 0)|

3 � Gradient Tree Boosting

In order to establish the basis for our approach and also to 
introduce our notation, we first summarize the principle of 
classical gradient tree boosting. The “gradient boosting 
machine” (GBM) constitutes a prediction model for regres-
sion and classification problems based on an ensemble tech-
nique where multiple weak learners are combined to produce 
a strong learner [22]. Often, such weak learners are decision 
trees, generally of the type classification and regression tree 
(CART). In this case, the algorithm is called gradient tree 
boosting (GTB). The weak learners are built sequentially. 
Eventually, a strong classifier is obtained as a weighted sum of 
the weak learners. The classical gradient descent algorithm is 
used to optimize the model by any differentiable loss function.

The objective of the GBM is to find a good estimate of the 
function F which approximately minimizes the empirical loss 
function:

where the loss function L(yi,F(xi)) measures the ith predic-
tion compared to the true label. In the classical version of 
the GBM, the prediction corresponding to a feature vector x 
is given by an additive model of the form:

(5)min
F

n∑

i=1

L(yi,F(xi))
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where M is the total number of iterations, and hm(xi) corre-
sponds to a weak learner at step m ( a greedy CART predic-
tor in the following).

The main steps for fitting the model are shown as pseu-
docode in Algorithm 1. The method exploits the fact that 
the residual corresponds to the negative gradient of the loss 
function. Thus, we calculate at each step m the so-called 
pseudoresiduals:

In order to update the model, we fit a new weak learner hm(x) 
to those pseudoresiduals and add it to the current model. 
This step is repeated until the algorithm converges.

4 � Fair Adversarial Gradient Tree Boosting 
(FAGTB)

Our aim is to learn a classifier that is both effective for pre-
dicting true labels and fair, in the sense that it cares about 
metrics defined in Sect. 2.1 for demographic parity or equal-
ized odds. The idea is to leverage the great performance of 
GTB for classification, while adapting it for fair machine 
learning via adversarial learning.

4.1 � Min–Max Formulation

While most state-of-the-art algorithms focus on the inde-
pendence of the predicted probability predictions.

The GTB processes sequentially by gradient iteration 
(Sect. 3). This architecture allows us to apply for fair clas-
sification with decision tree algorithms the concept of adver-
sarial learning, which corresponds to a two-player game with 
two contradictory components, such as in generative adver-
sarial network (GAN) [23]. In the vein of  [17–19] for fair 
classification, we consider a predictor function F that out-
puts the probability of an input vector X for being labelled 
Y = 1 and an adversarial model A which tries to predict the 
sensitive attribute S from the output of F. Depending on the 
accuracy rate of the adversarial algorithm, we penalize the 
gradient of the GTB at each iteration. The goal is to obtain 
a classifier F whose outputs do not allow the adversarial 
function to reconstruct the value of the sensitive attribute. 
If this objective is achieved, the data bias in favor of some 
demographics disappeared from the output prediction.

The predictor and the adversarial classifiers are optimized 
simultaneously in a min–max game defined as:

(6)FM(xi) =

M∑

m=0

�mhm(xi)

(7)rim = −

[
�L(yi,F(xi))

�F(xi)

]

F(x)=Fm−1(x)

for i = 1,… , n

where LFi
 and LAi

 are, respectively, the predictor and the 
adversary loss for the training sample i given F(xi) ∈ ℝ , 
which refers to the output of the GTB predictor for input xi . 
The hyperparameter � controls the impact of the adversarial 
loss.

The targeted classifier outputs the label Ŷ which maximizes 
the posterior P(Ŷ|X) . Thus, for a given sample xi , we get:

where pF(Y = 1|X = xi) = �(F(xi)) , with � denoting the 
sigmoid function. Therefore, LFi

 is defined as the negative 
log-likelihood of the predictor for the training sample i:

where �cond equals 1 if cond is true and 0 otherwise.
The adversary A corresponds to a neural network with 

parameters �A , which takes as input the sigmoid of the pre-
dictor’s output for any sample i (i.e., PF(Y = 1|X = xi) ), and 
outputs the probability PF,�A

 for the sensitive equal to 1:

•	 For the demographic parity task, PF(Y = 1|X = xi) is the 
only input given to the adversary for the prediction of the 
sensitive attribute si . In that case, the network A outputs 
the conditional probability PF,�A

(S = 1|V = vi) = A(vi) , 
with V = (�(F(X))).

•	 For the equalized odds task, the label yi is concate-
nated to PF(Y = 1|X = xi) to form the input vector of 
the adversary vi = (�(F(xi)), yi) , so that the function A 
could be able to output different conditional probabilities 
PF,�A

(S = 1|V = vi) depending on the label yi of i.

The adversary loss is then defined for any training sample 
i as:

with vi defined according to the task as detailed above.
Note that, for the case of demographic parity, if there 

exists (F∗, �∗
A
) such that �∗

A
= argmax

�A

PF∗,�A
(S|V) on the 

training set, PF∗,�∗
A
(S|V) = P̂(S) and PF∗ (Y|X) = P̂(Y|X) , with 

P̂(S) and P̂(Y|X) being the corresponding distributions on 
the training set, and (F∗, �∗

A
) is a global optimum of our 

min–max problem Eq. (8). In that case, we have both a per-
fect classifier in training and a completely fair model since 

(8)argmin
F

max
�A

n∑

i=1

LFi
(F(xi)) − �

n∑

i=1

LAi
(F(xi);�A)

(9)ŷi = argmax
y∈{0;1}

pF(Y = y|X = xi)

(10)

LFi
(F(xi)) = − log pF(Y = yi|X = xi)

= −�yi=1 log(�(F(xi)))

− �yi=0
log(1 − �(F(xi)))

(11)
LAi

(F(xi);�A) = −�si=1 log(�(A(vi)))

− �si=0
log(1 − �(A(vi)))
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the best possible adversary is not able to predict S more 
accurately than the estimated prior distribution. Similar 
observations can easily be made for the equalized odds task 
(by replacing P̂(S) by P̂(S|Y) and using the corresponding 
definition of V in the previous assertion). While such a per-
fect setting does not always exist in the data, it shows that 
the model is able to identify a solution when it reaches one. 
If a perfect solution does not exist in the data, the optimum 
of our min–max problem is a trade-off between prediction 
accuracy and fairness, controlled by the hyperparameter � . 

4.2 � Learning

The learning process is outlined as pseudocode in Algo-
rithm 2. The algorithm first initializes the classifier F0 with 
constant values for all inputs, as done for the classical GBT. 
Additionally, it initializes the parameters �A of the adversar-
ial neural network A. (A Xavier initialization is used in our 
experiments.) Then, at each iteration m, beyond calculating 
the pseudoresiduals rim for any training sample i w.r.t. the 
targeted prediction loss LFi

 , it computes pseudoresiduals tim 
for the adversarial loss LAi

 too. Both residuals are combined 
in uim = rim − � ∗ tim , where � controls the impact of the 
adversarial network. The algorithm then fits a new weak 
regressor hm (a decision tree in our work) to residuals using 
the training set {(xi, uim)}ni=1 . This pseudoresiduals regressor 
is supposed to correct both prediction and adversarial biases 
of the old classifier Fm−1 . It is added to it after a line search 
step, which determines the best �m weight to assign to hm in 
the new classifier Fm . Finally, the adversarial has to adapt 
its weights according to new outputs (i.e., using the training 
set {(Fm(xi), si)}

n
i=1

 ). This is done by gradient backpropaga-
tion. A schematic representation of our approach is shown 
in Fig. 1.

5 � Empirical Results

We evaluate the performance of our algorithm empirically 
with respect to regression accuracy and fairness. We con-
duct the experiments on a synthetic scenario, but also on 
real-world data sets. Finally, we compare the results with 
state-of-the-art algorithms.

5.1 � Synthetic Scenario

We illustrate the fundamental functionality of our proposal 
with a simple toy scenario which was inspired by the Red 
Car example [24]. The subject is a pricing algorithm for a 
fictional car insurance policy. The purpose of this exercise 
is to train a fair classifier which estimates the claim likeli-
hood without incorporating any gender bias. We want to 
demonstrate the effects of an unfair model versus a fair 
model.

We focus on the general claim likelihood and ignore the 
severity or cost of the claim. Further, we only consider the 
binary case of claim or not (as opposed to a frequency). 
We assume that the claim likelihood only depends on the 
aggressiveness and the inattention of the policyholder. 
To make the training more complex, these two proper-
ties are not directly represented in the input data but only 
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indirectly available through correlations with other input 
features. We create a binary label Y with no dependence 
with the sensitive attribute S. Concretely, we use as fea-
tures the protected attribute gender of the policyholder, 
the unprotected attributes color of the car and age of the 
policyholder. In our data distribution, the color of the car 
is strongly correlated with both gender and aggressive-
ness. The age is not correlated with gender. However, the 
age is correlated with the inattention of the policyholder. 
Thus, the latter input feature is actually linked to the claim 
likelihood.

First, we generate the training samples (xi, si, yi)
n

i=1
 . The 

unprotected attributes xi = (ci, ai) represent the color of 
the car and the age of the policyholder, respectively. s is 
the protected variable gender. y is the binary class label, 
where y = 1 indicates a registered claim. As stated above, 
we do not use the two features aggressiveness (A) and inat-
tention (I) as input features but only to construct the data 
distribution which reflects the claim likelihood. In order 
to make it more complex, we add a little noise �i . These 
training samples are generated as follows: for each i, let s 
be a discrete variable with the discrete uniform distribu-
tion such that si ∈ [0, 1]:

A correlation matrix of the distribution is shown in Table 1. 

(
Ii
ai

)
∼ N

[(
0

40

)
,

(
1 4

4 20

)]

Ai ∼ N(0, 1)

ci = (1.5 ∗ si + Ai) > 1

yi = 𝜎(Ai + Ii + 𝜖i) > 0.5

𝜖i ∼ N(0, 0.1)

We execute first a classical GTB algorithm. In Fig. 2, first 
graph, we can see the curves of accuracy and the fairness met-
ric p-rule during the training phase. The model shows a stabil-
ity of the two objectives, this being due to the lack of infor-
mation and the small number of explanatory variables. Even 
though there is no obvious link with the sensitive attribute, 
we notice that this model is unfair (p-rule of 67%). In fact, the 
outcome observations Y depend exclusively on A and I which 
should have no dependence with the sensitive feature S. To 
reconstruct the aggressiveness, the classifier has to consider 
the color of the car. Unfortunately, it incorporates the sensitive 
information too, resulting in a claim likelihood prediction one 
and a half times more for men than for women (1/0.67).

To solve this problem and, thus, to achieve demographic 
parity, we use the FAGTB algorithm with a specific hyperpa-
rameter � . This hyperparameter is obtained by tenfold cross-
validation on 20% of the test set. As explained above, the 
choice of this value depends on the main objective, resulting 
in a trade-off between accuracy and fairness. We decided to 
train a model that reaches a p-rule of approximately 95% with 
a � equal to 0.015.

Fig. 1   The architecture of the fair adversarial gradient tree boosting 
(FAGTB). Four steps are depicted, each one corresponding to a tree 
h that is added to the global classifier F. The neural network on the 
right is the adversary that tries to predict the sensitive attributes from 

the outputs of the classifier. Solid lines represent forward operations, 
while dashed ones represent gradient propagation. At each step m, 
gradients from the prediction loss and the adversary loss are summed 
to form the target for the next decision tree hm+1

Table 1   Correlation matrix of the synthetic scenario

The features are: age (a), aggressivity (A), color (c), gender (s), inat-
tention (I)

a 1.0
A 0.01 1.0
c − 0.01 0.68 1.0
s 0.0 − 0.01 0.36 1.0
I 0.90 0.01 0.0 0.0 1.0

a A c s I
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In Fig. 2, we also plot five other models with different val-
ues of � , optimized for demographic parity. We observe that 
during training, when the attenuation of the bias is sudden, 
the accuracy also dramatically drops. We note that gaining 29 
points of p-rule leads to a decrease in accuracy of ten points. 
To have a better understanding of what is happening when we 
consider the model as fair in this specific scenario, we plot 
the features importance permutation for the fair and the unfair 
model in Fig. 3. The model reported importance on the age 
feature, which is not correlated with the sensitive. The dif-
ference between the two features is higher for the fair model 
(0.145 points), the color feature becoming insignificant. With 
higher lambda values, the weight of this indirectly correlated 
feature would tend to 0.

5.2 � Comparison Against the State of the Art

5.2.1 � Data Sets

For our experiments, we use four different popular data sets 
often used in fair classification (Table 2):

•	 Adult The Adult UCI income data set [25] contains 14 
demographic attributes of approximately 45,000 indi-
viduals together with class labels which state whether 
their income is higher than $50,000 or not. As sensitive 
attribute, we use gender encoded as a binary attribute, 
male or female.

•	 COMPAS The COMPAS data set [3] contains 13 attrib-
utes of about 7,000 convicted criminals with class labels 

Fig. 2   Synthetic scenario: accuracy and p-rule metric for a biased model ( � = 0 ) and for several fair models with varying values of � optimized 
for demographic parity

Fig. 3   Synthetic scenario: 
feature importance for a biased 
model ( � = 0 ) and a fair model 
( � = 0.015 ) optimized for 
demographic parity
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that state whether or not the individual recidivated within 
2 years of its most recent crime. Here, we use race as sen-
sitive attribute, encoded as a binary attribute, Caucasian 
or not Caucasian.

•	 Default The Default data set [26] contains 23 features 
about 30,000 Taiwanese credit card users with class 
labels which state whether an individual will default on 
payments. As sensitive attribute we use gender encoded 
as a binary attribute, male or female.

•	 Bank The bank marketing data set  [27] contains 16 
features about 45,211 clients of a Portuguese banking 
institution. The goal is to predict whether the client has 
subscribed or not to a term deposit. We consider the age 
as sensitive attribute, encoded as a binary attribute, indi-
cating whether the client’s age is between 33 and 60 years 
or not.

For all data sets, we repeat ten experiments by randomly 
sampling two subsets: 80% for the training set and 20% for 
the test set. Finally, we report the average of the accuracy 
and the fairness metrics from the test set.

5.2.2 � Fairness Algorithms

Because different optimization objectives result in dif-
ferent algorithms, we run separate experiments for the 
two fairness metrics of our interest: demographic parity 
(Table 3) and equalized odds (Table 4). More specifically, 
for demographic parity we aim at a p-rule of 90% for all 
algorithms and then compare the accuracy. Optimizing for 
equalized odds, results are more difficult to compare. In 
order to be able to compare the accuracy, we have done 
our best to obtain, each time, a disparate level below 0.03.  

As a baseline, we use a classical, “unfair” gradient tree 
boosting algorithm, Standard GTB, and a deep neural net-
work, Standard NN.

Further, to evaluate whether the complexity of the 
adversarial network has an impact on the quality of the 
results, we compare a simple logistic regression adversar-
ial, FAGTB-1-Unit, with a complex deep neural network, 
FAGTB-NN.

In addition to the algorithms mentioned above, we eval-
uate the following fair state-of-the-art in-processing algo-
rithms: Wadsworth [18]2 , Zhang [17]3 , Kamishima [28]1 
Feldman [8]1 , Zafar-DI [29]1 and Zafar-DM [10]1.

123

For each algorithm and for each data set, we obtain the 
best hyperparameters by grid search in fivefold cross-vali-
dation (specific to each of them). As a reminder, for FAGTB 
the � value is used to balance the two cost functions during 
the training phase. This value depends exclusively on the 
main objective: for example, to obtain the demographic par-
ity objective with 90% p-rule, we choose a lower and thus 
less weighty � than for a 100% p-rule objective. In order 
to better understand this hyperparameter � , we illustrate its 
impact on the accuracy and the p-rule metric in Fig. 4 for 
the Adult UCI data set. For that, we model the FAGTB-NN 
algorithm with ten different values of � and we run each 
experiment ten times. In the graph, we report the accuracy 
and the p-rule fairness metric and finally plot a polynomial 
regression of second order to demonstrate the general effect.

For Standard GTB, we parameterize the number of trees 
and the maximum tree depth. For example, for the Bank 
data set, a tree depth of 3 with 800 trees is sufficient. For the 
Standard NN, we parameterize the number of hidden lay-
ers and units with a ReLU function and we apply a specific 
dropout regularization to avoid overfitting. Further, we use 
an Adam optimization with a binary cross-entropy loss. For 
the Adult UCI data set for example, the architecture consists 
of two hidden layers with 16 and eight units, respectively, 
and ReLU activations. The output layer comprises one single 
output node with sigmoid activation.

For FAGTB, to accelerate the learning phase, we decided 
to sacrifice some performance by replacing the one-dimen-
sional optimization �m by a specific fixed learning rate for the 
classifier predictor. All hyperparameters mentioned above, 
for trees and neural networks, are selected jointly. Notice that 
those choices impact the rapidity of convergence for each of 
them. For example, if the classifier predictor converges too 

Table 2   Data sets used for the 
experiments

Description of the data sets: number of observations, number of features, target, total share of the target, 
sensitive attribute and total share of the sensitive attribute

Data set # Observations # Features Target %Target Sensitive %Sensitive

Adult UCI 45,000 14 Income >= $50k 30.0 Gender 58.0
COMPAS 6967 13 2-year recidivism 45.5 Race 34.0
Default 30,000 23 Defaulting on payments 22.1 Gender 60.4
Bank 45,211 16 Subscription to a term deposit 11.7 Age 32.9

1  https​://githu​b.com/algof​airne​ss/fairn​ess-compa​rison​.
2  https​://githu​b.com/equia​lgo/fairn​ess-in-ml.
3  https​://githu​b.com/IBM/AIF36​0.

https://github.com/algofairness/fairness-comparison
https://github.com/equialgo/fairness-in-ml
https://github.com/IBM/AIF360
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quickly, this may result in biased prediction probabilities 
during the first iterations which are difficult to correct by the 
adversary afterward. For FAGTB-NN, in order to achieve 
better results, we execute for each gradient boosting iteration 

several training iterations of the adversarial NN. This pro-
duces a more persistent adversarial algorithm. Otherwise, 
the predictor classifier GTB could dominate the adversary. 
At the first iteration, we begin with modeling a biased GTB 

Table 3   Results for demographic parity

Comparing our approach with different common fair algorithms by accuracy and fairness (p-rule metric) for the Adult UCI, the COMPAS, the 
Default and the Bank data set
The results in bold represent the best performance achieved for each columns among the fair algorithms

Adult COMPAS Default Bank

Accuracy (%) P-rule (%) Accuracy (%) P-rule (%) Accuracy (%) P-rule (%) Accuracy (%) P-rule (%)

Standard GTB 86.8 32.6 69.1 61.2 82.9 77.2 90.8 48.1
Standard NN 85.3 31.4 67.5 71.1 82.1 63.3 90.3 58.6
FAGTB-1-Unit 84.4 90.4 61.8 90.1 81.5 90.1 90.1 90.0
FAGTB-NN 84.9 90.3 64.5 90.0 82.2 90.2 90.2 90.0
Wadsworth 2018 [18] 83.1 89.7 63.9 90.1 81.8 90.0 90.2 90.1
Zhang 2018 [17] 83.3 90.0 64.1 89.8 81.4 90.0 90.0 90.0
Zafar-DI [14] 82.2 89.8 63.9 89.7 80.7 89.8 89.2 90.1
Kamishima [28] 82.3 89.9 63.8 90.0 81.1 90.0 89.6 89.9
Feldman [8] – – 61.4 90.1 72.2 90.2 – –

Table 4   Results for equalized odds

Comparing our approach with different common fair algorithms by accuracy and fairness (DispFPR, DispFNR) for the Adult UCI, the COM-
PAS, the Default and the Bank data set
The results in bold represent the best performance achieved for each columns among the fair algorithms

Adult COMPAS

Accuracy (%) DispFPR DispFNR Accuracy (%) DispFPR DispFNR

Standard GTB 86.8 0.06 0.07 69.1 0.12 0.20
Standard NN 85.3 0.07 0.10 67.5 0.09 0.15
FAGTB-1-Unit 86.3 0.02 0.02 65.1 0.03 0.12
FAGTB-NN 86.4 0.02 0.02 66.2 0.01 0.02
Wadsworth 2018 [18] 84.9 0.02 0.03 65.4 0.02 0.03
Zhang 2018 [17] 84.8 0.03 0.03 64.9 0.03 0.02
Zafar-DM [10] 83.9 0.03 0.09 64.3 0.09 0.17
Kamishima [28] 82.6 0.06 0.24 63.6 0.08 0.11
Feldman [8] 80.6 0.07 0.05 61.1 0.03 0.03

Default Bank

Accuracy (%) DispFPR DispFNR Accuracy (%) DispFPR DispFNR

Standard GTB 82.9 0.02 0.04 90.8 0.04 0.06
Standard NN 82.1 0.02 0.05 90.3 0.05 0.08
FAGTB-1-Unit 82.1 0.00 0.01 89.7 0.02 0.07
FAGTB-NN 82.5 0.00 0.01 90.3 0.01 0.07
Wadsworth 2018 [18] 81.2 0.01 0.02 89.4 0.01 0.07
Zhang 2018 [17] 81.9 0.00 0.01 89.8 0.00 0.07
Zafar-DM [10] 81.0 0.00 0.03 89.5 0.01 0.08
Kamishima [28] 80.5 0.00 0.04 89.3 0.00 0.08
Feldman [8] 71.8 0.02 0.02 87.1 0.05 0.06
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and we then model the adversarial NN based on those biased 
predictions. This approach allows to have a better weight 
initialization of the adversarial NN. It is more suitable for 
the specific bias on the data set. Without this specific ini-
tialization, we encountered some cases where the predictor 
classifier surpasses the adversarial too quickly and tends to 
dominate from the beginning. Compared to the FAGTB-
NN, the adversary of the FAGTB-1-Unit is more simple. In 
this case, the two parameters of the adversarial are chosen 
randomly and for each gradient boosting iteration only one 
is computed for the adversarial unit.

5.2.3 � Results

For demographic parity (Table 3), as expected Standard GTB 
and Standard NN achieve the highest accuracy. However, 
they are also the most biased ones. For example, the classical 
gradient tree boosting algorithm achieves a 32.6% p-rule for 

the Adult UCI data set. In this particular case, the prediction 
for earning a salary above $50,000 is in average more than 
three times higher for men than for women. Comparing the 
mitigation algorithms, FAGTB-NN achieves the best result 
with the highest accuracy while maintaining a reasonable 
high p-rule equality (90%). The choice of a neural network 
architecture for the adversary proved to be in any case better 
than a simple logistic regression. This is particularly true for 
the COMPAS data set where, for a similar p-rule, the dif-
ference in accuracy is considerable (2.7 points). Recall that 
for demographic parity, the adversarial classifier only has 
one single input feature which is the output of the predic-
tion classifier. It seems necessary to be able to segment this 
input in several ways to better capture information relevant 
to predict the sensitive attribute. The sacrifice of accuracy 
is less important for the Bank and the Default data set. The 
dependence between the sensitive attribute and the target 
label is thus less important than for the COMPAS data set. 
To achieve a p-rule of 90%, we sacrifice 4.6 points of accu-
racy (comparing GTB and FAGTB-NN) for COMPAS, 0.7 
points for Default and 0.6 points for Bank.

In Fig. 5, we plot the distribution of the predicted prob-
abilities for each sensitive attribute S for three different mod-
els: an unfair model with � = 0 and two fair FAGTB mod-
els with � = 0.06 and � = 0.15 , respectively. For the unfair 
model, the distribution differs most for the lower probabili-
ties. The second graph shows an improvement, but there 
remain some differences. For the final one, the distributions 
are practically aligned.

Zhang [17] introduced a projection term which ensures 
that the predictor never moves in a direction that could 
help the adversary. While this is an interesting approach, 
we noticed that this term does not improve the results for 
demographic parity. In fact, the Wadsworth [18] algorithm 
follows the same approach but without projection term and 
obtains similar results.

Fig. 4   Impact of hyperparameter � (Adult UCI data set): higher val-
ues of � produce fairer predictions, while � near 0 allows to only 
focus on optimizing the classifier predictor

Fig. 5   Distributions of the predicted probabilities given the sensitive attribute S (Adult UCI data set)
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For equalized odds, the min–max optimization is more 
difficult to achieve than demographic parity. The fairness 
metrics DispFPR and DispFNR are not exactly compara-
ble; thus, we did not succeed to obtain the same level of 
fairness. However, we notice that the FAGTB-NN achieves 
better accuracy with a reasonable level of fairness. Con-
cretely, we achieve for the four data sets and for both metrics 
values below 0.02 or less, except for the Bank data set where 
DispFNR is equal to 0.07. For this data set, most of the state-
of-the-art algorithms result in a DispFNR between 0.06 and 
0.08. The reason why it proves hard to achieve a low false 
negative rate (FNR) is that the total share of the target is 
very low at 11.7%. A possible way to handle this problem of 
imbalanced target class could be to to add a specific weight 
directly in the loss function. We also notice that the differ-
ence in the results between FAGTB-1-Unit and FAGTB-
NN is much more significant; one possible reason is that an 
unique logistic regression cannot keep a sufficient amount of 
information in order to predict the sensitive attribute.

6 � Conclusion

In this work, we developed a new approach to produce fair 
predictors, based on generic, non-necessarily differentiable, 
machines. Our gradient boosting framework indeed allows 
us to consider any regression machine, by iteratively feed-
ing it with both prediction and fairness residuals as target 
outputs. This enables the use of very effective machines such 
as CART decision trees for fair machine learning. Compared 
with other state-of-the-art algorithms, our fair gradient tree 
boosting approach proves to be more efficient in terms of 
accuracy while obtaining a similar level of fairness. Cur-
rently, we use a neural network architecture for the adver-
sary. We chose this approach in order to recover the gradi-
ent of the input. Another possible strategy is to replace the 
adversarial neural network by deep neural decision forests 
[30] which allow to recover the gradient by derivative. Such 
an architecture would therefore only be composed of trees. 
Another field left for further investigations is the mathemati-
cal identification of the optimal hyperparameter � . Objec-
tives here are a better convergence of the algorithm and the 
optimization of the trade-off between accuracy and fairness. 
Additionally, a recent work in [31] proposes a new hierarchi-
cal rule-based model for classification tasks, concept rule 
sets (CRS), with a strong transparent inner structure. With 
the aim of developing a model which achieves three objec-
tives : a high classification performance, a low complexity 
and fair predictions, it would be interesting to implement this 
contribution with an adversarial neural network architecture. 
By taking up the general idea of our framework, the negative 
gradient from an adversarial which predicts the sensitive 
feature at each step could be added to the predictor gradient 

of the discrete CRS via continuous multilayer logical per-
ceptron (MLLP) and random binarization (RB). Finally, it 
might be interesting to investigate a measure which does 
not only consider the general case of bias but can also spot 
and quantify bias that persists on specific subsegments of 
the population.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.
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